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Let F, denote the finite field of ¢ elements with characteristic
p. Let Z, denote the unramified extension of the p-adic
integers Z, with residue field F,. In this paper, we investigate
the g-divisibility for the number of solutions of a polynomial
system in n variables over the finite Witt ring Z4/p™Z,
where the n variables of the polynomials are restricted to
run through a box lifting F". It turns out that in general
the answers do depend upon the box chosen. Based on the
addition operation of Witt vectors, we prove a g-divisibility
theorem for any box of low algebraic complexity, including the
simplest Teichmiiller box. This extends the classical Ax-Katz
theorem over finite field F, (the case m = 1). Taking ¢ = p to
be a prime, our result extends and improves a recent theorem
of Grynkiewicz for the unweighted case.
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1. Introduction

Let N denote the set of positive integers. Let p be a prime number and ¢ = p” with
h € N. Let Q, denote the field of p-adic rational numbers and Z, the ring of integers
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in Q,. Let F, denote the finite field of ¢ elements and Z, the unramified extension of
the p-adic integers Z, with residue field F,. Let Fy[z1,...,z,] denote the ring of the
polynomials in n variables x.,...,z, with coefficients in IF;. The study of the common
zeros of a system of polynomials in Fgy[z1,...,2,] is a classical and important subject
in Number Theory and Arithmetic Geometry. In general it is hard to know the exact
cardinality of the set of such common zeros in ;. However, the Chevalley-Warning and
Ax-Katz theorems provide estimates of p-divisibility for this problem by utilizing the
degrees of the associated polynomials. Given a set S, let |\S| denote the cardinality of S.
Write X := (x1,...,2,) and set [a,b] :={z € Z | a <z < b} for a,b € R.

Theorem 1.1. (Chevalley-Warning) Let f1(X),..., fo(X) € Fg[z1,...,x,] be a system of
nonzero polynomials, and let

Vi={X €F}|fe(X)=0 for all k € [1,s]}.
Ifn > >"i_ deg(fx), then p divides |V|.

The Chevalley-Warning theorem also gave an affirmative answer to Artin’s conjecture
for the homogeneous polynomials (see [13] and [28]), and it was greatly improved by Ax
[3] for the case s = 1 and Katz [20] for general s > 1. Let ord, denote the g-adic additive
valuation normalized by ordyq = 1. If ¢ = p, then ord, is the p-adic additive valuation
normalized by ord,p = 1. For ¢t € R, let [¢] denote the least integer more than or equal
to ¢, and let |¢| denote the greatest integer less then or equal to ¢. The Ax-Katz theorem
can be stated as follows.

Theorem 1.2. (Ax-Katz) With the same assumption as in Theorem 1.1, we have

n— > r—1 deg(fr)
ord, (V) > {mmeu,sl - fk)] . W

An elementary proof of the Ax-Katz theorem is given in [26]. The simplest proof of
the Ax-Katz theorem and its extension to character sums are given in [27]. A reduction
of the Ax-Katz theorem for a system of equations to Ax’s theorem for a single equation
has been found by Hou [18]. Besides these, there has been a lot of research work on
this topic, including extensions, refinements, variants and alternative proofs (see, for
example, [1,2,4-9,11,12,14,15,17,21,22,29]).

Recently, motivated by combinatorial applications, Grynkiewicz [16] proved a version
of the Chevalley-Warning and Ax-Katz theorems over the residue class ring Z,/p™Z,,
in which the varying prime power moduli are allowed. The following theorem is just the
unweighted case of [16, Theorem 1.3].

Theorem 1.3. Let p be a prime number and B = I; x --- x I, with each Z; C Z,, a
complete system of residues modulo p for j € [1,n]. Let my,...,ms € N and f1,...,fs €
Zplxa,...,x,] be a system of nonzero polynomials, and let
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Vi={XeB: frf(X)=0 (mod p™*) for all k € [1, s]}.
Then

n— >y Bt deg(fr)
maxge(r s {p"™ ! deg(fx)}

ord,(|V]) =

Note that each Z; is a lifting of the prime field [, in Z,, and thus the box B is a lifting of
Fj in Z. If my = --- = mg = 1, then Theorem 1.3 recovers the Ax-Katz theorem for the
prime finite field IF,. The box B in Theorem 1.3 allows many combinatorial applications.
As suggested by Grynkiewicz in [16], if there is an my > 1 for some k € [1, s], one should
appropriately choose the box B to apply Theorem 1.3 to some problems in Combinatorial
Number Theory. In other words, the elements in Z; should satisfy the proposition below.
In our terminology, this just means that one should typically choose the Teichmiiller box
(cf. Subsection 2.3).

Proposition 1.4. ([16, Proposition 1.4]) Let p be a prime number and m € N. There
exists a complete system of residues T C [0,p™ — 1] modulo p such that

7.
0 (mod p™) if =0 (mod p), Jor cvery v €

=1 — { 1 (mod p™) ifx#0 (mod p)

To prove and apply Theorem 1.3, Grynkiewicz [16] comprehensively utilized the
weighted Weisman-Fleck congruence [25] and Wilson’s arguments [29]. In fact, Gryn-
kiewicz [16] proved the Ax-Katz theorem over F,. But it is not clear how to use his
method to extend Theorem 1.3 from Z, to Z, with the box B being a lifting of F* so
that it would also include the general Ax-Katz theorem. We will give counter-examples
showing that the Z, generalization of Theorem 1.3 is false. This suggests that the prob-
lem is more subtle for Z, than for Z,.

Another restriction in Theorem 1.3 is that the box is in split form, that is, the n-
dimensional box B is the product of one dimensional boxes Z; for 1 < j < n. In general,
a box (a lifting of I in Z7) will not be in such a split form. We will also give counter-
examples showing that Theorem 1.3 is false for general non-split boxes.

Despite all these obstacles, our aim of this paper is to investigate the problem over
n
q 7
general Ax-Katz theorem and Theorem 1.3. This desired unification is achieved in this

Z4 and a general box B lifting F', in an attempt to unify and hence extend both the
paper. Our main result says that the desired ¢-divisibility theorem holds over Z, as long
as the box B (lifting ]F;L) has low algebraic complexity, in the sense that it is close to
the Teichmiiller box up to a low degree polynomial perturbation. In the case ¢ = p, any
split box has low algebraic complexity, which explains Theorem 1.3. There are many
non-split boxes with low algebraic complexity, and thus our result significantly extends
Theorem 1.3 as well, even in the case ¢ = p. We now make these more precise. For
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simplicity of exposition, we only state some weaker but simpler consequences of our
main result in this introduction.

Let T; be the set of Teichmiiller representatives of F, in Z,. The set T7" is clearly a
lifting of ', and is called the Teichmiiller box. It is the simplest and nicest box for our
purpose. Our result for the Teichmiiller box is the following statement.

Theorem 1.5 (Corollary 3.5). Let p be a prime number and ¢ = p" with h € N. Let
fi,oo o fs € Zglza, ..., x0] be a system of nonzero polynomials. For given my,...,ms €
N, let

Vi={XeT!| fu(X)=0 (modp™) for all k € [1,s]}.

Then
n—Ya_y Lt deg(f
ord,([V]) = 2ot por CeBl)
maxyep, s {p" ! deg(fi)}
In the case m; = --- = mg = 1, this reduces to the Ax-Katz theorem over F,. To

be precise, our proof in the general case uses the Ax-Katz theorem over F,, which is a
special case of our result.

The possible extension from the Teichmiiller box to a general box is more subtle. Let
us define a box B to be a subset of Zj with ¢" elements such that B modulo p is equal

to Fy'. That is, B is a complete system of representatives of F' in Z7, equivalently, B

)
is a lifting of F* in Zg. In order to apply algebraic methods, we Wouqld like to give an
algebraic presentation of the box B, using the image of a polynomial map, following the
spirit in [19]. As proved in Section 4, for any box B, there exists a unique system of
polynomials g;(X) € Zg[z1,...,2,] (1 <j <n) whose degree in each variable is at most

g — 1 such that for any Y = (y1,...,yn) € B, we have

Y:X+(91(X)7'--7gn(X))pv (2)

where X = (z1,...,2,) € T} is the Teichmiller lifting of the modulo p reduction of
Y. In other words, the box B is simply the image of the Teichmiiller box T;" under the
polynomial map X — X + (¢1(X), ..., gn(X))p. This polynomial representation of the
box B is unique since we require the polynomials g;(X) to be reduced and thus have
degrees at most ¢ — 1 in each variable, that is, we have reduced the polynomials modulo
the ideal (z{ — z1,---,2% — z,,). The total degree of g; is then bounded by (¢ — 1)n.
The box B is called in split form or a split box if B=17; x --- x Z,,, where each Z; is a
1-dimensional box in Z, lifting F,. The box B is in split form if and only if (2) becomes

Y =X+ (g1(21),- -, 9n(z0n))ps

where each g;(z;) depends only on the one variable z;. In this case, each g; has total
degree at most ¢ — 1, much smaller than n(q — 1).
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The degrees of the representing polynomials g;’s provide a crude measure for the
algebraic complexity of the box B, see [19] for a discussion of this in the case of finite
fields. A random box B has high algebraic complexity, and hence algebraic methods have
limited values. One expects that a box of low algebraic complexity has some algebraic
structure and hence suitable for study using algebraic methods. This explains why we
need a low degree bound on the representing polynomials g; for the box B in the following

theorems.

A polynomial f € Zg[z1,...,x,] is called a Teichmiiller polynomial if all of its coeffi-
cients are Teichmiiller elements in 7. Any polynomial f € Zg[z1, ..., zy] has the unique
expansion

F(X) =Y v fi(X),
=0

where each f;(X) is a Teichmiiller polynomial. This is called the Teichmiiller expansion
of f. It is obtained from the Teichmiiller expansion of the coefficients of f. Our result
for a general box B in Zg is as follows.

Theorem 1.6 (Corollary 4.7). Let p be a prime number and q = p" with h € N. Let B be
a general box in Zy defined by the reduced polynomials g; € Zg[x1,- -+ ,x,] with j € [1,n]
as above. Let fi,..., fs € Lglz1,..., 2] be a system of nonzero polynomials. For given
mi,...,mg € N, let

V={XeB| fr(X)=0 (modp™) forallk € [1,s]}.

For 1 < j < n, write the Teichmiiller ezpansion pg;(X) = Yoo P gij(X). Let m =
max;ep s {m}. If deg(gi;) < plid for all j € [1,n],i € [1,m — 1], then

n— Y h_y Bt deg(fi)

ord,(|V]) >
(VD = maxjeqy,s) {p™ ~* deg(fx)}

If B is the Teichmiiller box, then g;; = 0 for all ¢,j > 1, and the condition deg(g;;) <
phU’H is trivially satisfied. Theorem 1.6 is thus a generalization of Theorem 1.5 from the
Teichmiiller box to a general box of low algebraic complexity.

In the case ¢ = p and thus h = 1, we obtain the following simpler consequence of
Corollary 4.8.

Theorem 1.7. Let p be a prime number. Let B be a general box as defined above by the
reduced polynomials gj(x1,--- ,xn) € Lplx1,--- 25| with j € [1,n]. Let fi,...,fs €

Zplxa,...,x,) be a system of nonzero polynomials. For given mq,...,mgs € N, let

V={XeB| fr(X)=0 (modp™) forallk € [1,s]}.
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If deg(g;) < p for all j € [1,n], then

n—Yohoy Bt deg(fr)
maxjeq1, g {p™ ~* deg(fx)}

ord,(|V]) > (3)

In this theorem, if the box B is in split form, then deg(g;) < p — 1 and hence the
degree condition deg(g;) < p is automatically satisfied. In particular, (3) holds true for
all split boxes B, recovering Theorem 1.3. Note that the above theorem is also true for
many non-split boxes as long as the degrees of the g; are bounded by p.

We emphasize that Theorems 1.5, 1.6 and 1.7 presented above are simplified (and thus
weaker) versions of our results. For their strong versions, which depend on the degree
bounds in the p-adic expansion of the polynomials g;’s and f3’s, see Theorems 3.4 and 4.6.
Our basic idea is to use the addition operation of Witt vectors to reduce the congruence
solution counting in the box B to point counting of a system of equations over I, for which
the Ax-Katz theorem can be applied. The key is to control the degrees of the resulting
polynomial equations over IF,. This leads to the assumption on the degree bounds for
the g;’s, or more generally the degree bounds in the p-adic Teichmiiller expansions of
the polynomials g;’s and f3’s.

The paper is organized as follows. Some basic knowledge about the Witt vectors is
reviewed in Section 2. Then we apply the ring of Witt vectors over F, to study the
polynomials in Zg[z1,...,x,], which is divided into two parts: the generalization of
Theorem 1.3 to Zg[z1,...,x,] for the Teichmiiller box case is given in Section 3, and
that for the general box is given in Section 4. In Section 5, we give examples showing
that all the theorems are false without the degree bounds of the representing polynomials

b
gj S.
2. Preliminaries

Witt vector rings and their variants are a useful tool in many branches of mathematics
ranging from algebra and algebraic number theory to arithmetic geometry and homotopy
theory. In this section, we only review the construction and simple properties of the
classical p-typical Witt vectors of Witt and Teichmiiller [30]; for generalized or big Witt
vectors, refer to [10,23,24]. Using the p-typical Witt vectors one may pass from a perfect
field K of characteristic p to unramified complete discrete valuation ring with the residue
field K and quotient field of characteristic zero.

2.1. The ring of p-typical Witt vectors

Let R be a commutative ring with identity and Ng = {0} UN. The underlying set of
the ring of p-typical Witt vectors over R is the set

W(R) = RN = {(ag,a1,...) | a; € R}.
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Now we explore the mysterious algebraic structure of W(R). For n € Ny, the n-th Witt
polynomial is defined to be
-1

wn(To, @1,y xn) i=ab +pxl 4+ p . (4)

Remark 2.1. If we define wt(z;) = p’, then w, is weighted homogeneous of weighted
degree p".

Using the Witt polynomials, we can establish the so-called ghost (or phantom) map
w:W(R)— RN, a=(ag,ai,...)— w@) = (wolag),w: (ag, ai),...), (5)

where wy, (ag, a1, ..., a,) is called the n-th ghost (or phantom) component of a. The ring
W(R) of p-typical Witt vectors over R is defined by componentwise addition and mul-
tiplication via the ghost components, which was found by the pioneering and ingenious
work of Witt [30]. Let & and ® denote the addition and multiplication in the ring W (R),
respectively.

Theorem 2.2 (Witt). There are two families of polynomials with integer coefficients

Sy (0, Y053 €1, Y15 -+ -3 Tny Yn)s  Mn(To, Y03 1,915+ -5 Zn, Yn), 1 € Ny,

such that for a = (ag,a1,...),b = (bg,b1,...) € W(R), we have

(So(ao,bo), S1(ao, bo; ar,b1),...),

( (Mo(ag,bo), M1(ao,bo; a1,01),-..),
(iii) w(a ® b) = w(a) + w(b),
( )

If p is invertible in the ring R, then the ring homomorphism w : W(R) — RNo
induced by the ghost map (5) is an isomorphism, i.e., W(R) = RNo. It is obvious that
the polynomials S,, and M, are determined by the first n + 1 coordinates of the Witt
vectors and their coefficients do not depend upon the ring R. In particular, one can
calculate

p—1
L(p\ i p—i
So = 2o + Yo, 51=$1+y1—25(i)$oy]03 "

=1

My = zoyo, M1 =zgy1 + 1Y) + pray:.
2.2. Polynomials S,, and M, for r-fold operation

The calculations of S, and M,, for big n are very complicated. However, for the
purpose of this paper, we are more concerned with the degree of the polynomial S,, for
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r-fold addition. We also give the degree of the polynomial M,, for r-fold multiplication
for completeness.
Let r € N. For j € [1,7], write X; = (2o, .., %nj,.-.), and

Xl@...@XT:(Sér),...,Sy),...), (6)
Xl@...@Xr:(Mér),...,Mff),...).

Lemma 2.3. Both S,(f) and M,(f) are polynomials with integer coefficients in (n + 1)r
variables x;;(i € [0,n],7 € [1,7]). If we set wt(z;;) = p* fori € [0,n] and j € [1,7], then
Sff) 1s weighted homogeneous of weighted degree p™, and Mnr) is weighted homogeneous
of weighted degree rp™. More generally, let d € N, if we set wt(x;;) < dp® for i € [0,n]
and j € [1,r], then Sr(f) is of weighted degree < dp™, and M,(f) is of weighted degree
< rdp™.

Proof. It immediately follows from (6) and Theorem 2.2 that the polynomial S5 has
integer coefficients and that

W (S5, 8T) = w(Xy) + - 4 wa(X5),
which in expansion by (4) is

(SEP" 4 (ST 4 (SY)) (7)

1 n—1

= (xgly +”'+x8r’) _|_p(1.1171_ +”'+x11)r/ )+ 0" (Tn1 + 0+ Tpr).

Thus we have

S0 = (Z wn(Xi) - Zp%si(”)p""') . (®)

=0

Since S has integer coefficients, the factor # in (8) will be cancelled eventually. Set
wt(z;;) = p' for i € [0,n], j € [1,7r]. We make use of induction on n to show that
ST is a weighted homogeneous polynomial of weighted degree p™ in (n + 1)r variables
xi;(i € [0,n],5 € [1,r]). The case of n = 0 in which S((]T) = Zo1 + -+ + xo, Is trivially
verified. We assume that S ,(f) is a weighted homogeneous polynomial of weighted degree
p* in (k + 1)r variables z;;(i € [0,k],j € [1,7]) for 0 < k < n — 1. Then the sum
Z?:_Ol p”(SZ-(T))pnfi in (8) is a weighted homogeneous polynomial of weighted degree p™
in nr variables z;;(i € [0,n—1], j € [1,7]). Note that by (7) the sum >__, w, (X;) in (8) is
weighted homogeneous of weighted degree p™ in (n+1)r variables z;;(i € [0,n],j € [1,7])
with the variables x,;(j € [1,7]) not occurring in Z?;OI pi(Si(T))p"_i, which implies that
Sff) # 0. Thus we conclude that S,(,T) is a weighted homogeneous polynomial of weighted
degree p™ in (n+1)r variables z;;(i € [0,n],j € [1,7]). The other results can be similarly
deduced. O
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Remark 2.4. (i) The weighted degree of Sff) does not depend upon 7, but the weighted
degree of M,(LT) does.
(ii) To indicate explicitly the variables as well as their order in Sr(f) and Mr(f), we

write
r) . r . . .
S = S (g1, Lori L1y ey oy Ty e Tyy), and
). _— r . . .
M) = MU (201, . . Lop; 11y - oy Tlrs e e i Tls e e ey L)

111) For later applications, we record the following explicit formulae for an .
iii) For 1 licati d the follow licit formulae for 5§ and S\"

Sér) =xo1 + -+ + Zor,

1 P
S D DU (o e
1" Hlr

t1+-+t.=p, 0<t;<p—1

2.8. Perfect rings with characteristic p

In this subsection, we always let R be a perfect ring with characteristic p, which means
that the Frobenius map ¢ : a — aP is an automorphism. Let W(R) denote the ring of
Witt vectors over R. The Teichmiiller lifting is defined by

7:R—=>W(R), aw~ 7(a)=(a,0,0,...),
and 7(a) is called the Teichmiiller representative of the element a. Let
Kg = {r(ag) + m(a1)p+7(az)p* + - | a; € R,i=0,1,2,...}.
Then Kpg will be a p-adic ring under the usual addition and multiplication via its iso-
morphism with W (R). Moreover, if R is a field, then Kg is a complete discrete valuation

ring of zero characteristic with residue field R and maximal ideal pKg. Each element
(ap,a1,a2...) € W(R) can be uniquely represented in K as

7(ag) + 7(ay)p + 7(az2)p? + - -
However, this bijection is not a ring isomorphism between W (R) and K because it does
not respect the addition. Since R is a perfect ring with characteristic p, we have R = RP
via the Frobenius map ¢ : a — a”. The true ring isomorphism between W (R) and Kgr
is denoted by 7 again and given explicitly by

7:W(R) = Kg, (ag,a1,a2,...)+ 7(ag)+ T(al)’flp + T(ag)p72p2 + .-

We usually adopt the alternative expression for 7 given as below
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7:W(R) — Kg, (a07a117,a’2’2, o) e 1(ag) + T(ay)p + m(a)p® 4 - - ©))

The advantage of the expression (9) lies in that it makes the Witt polynomials become
homogenous (cf. Remark 2.1) and hence the polynomial Sn is weighted homogeneous
of weighted degree p™ by Lemma 2.3.

Example 2.5. A well-known example is that W (F,) = Z,. In particular, the finite Witt
ring W (F,)/p™W (F,) becomes Z,/p™Z,.

Now let » € N, we dicuss the r-fold addition and the r-fold multiplication in Kg. For
jel,r], let

2
Xj = (woj, 2%, 28;,--+) € W(R).

Then,

o

7(X;) =Y _7(wi)p' € K,

%

where 7 denotes the ring isomorphism between W (R) and Kr given by (9). We want
to find two functions 397 and M, which behave like S and MY as defined in
Lemma 2.3, such that

<Z 7(ij)p > = ZT(E{J))p",

=0 n=0 1
L (10)
11 (Z ) = > 7w
j=1 =0 n=0
The formulae for s %T) and m(r) are given below, and the proof for » = 2 can also be

found in [23, Theorem 1.5].

Theorem 2.6. With the above notation, for n € Ny we have

r 1/17" VLAl i pnt
S( (xol” -z ) yee e, Tk S Tnly e, Tnr), and
~ (1) _ as(r)(1/p" 1/p™, 1/p"! pt
mgl)fM,(L)(x01 e T 3T T e i Znl, e T

Let s\ = (fs(nr))pn and m'7) = (T?L,(f))p", then we have

) _ alr D p. . .p" p"
8;)—57(1)(3?01,-~-,130r,I11,---,l‘1r,--~,$n17--~7$m)7 and

) _ r . P D, . p"
m;)—M7(l)(a:m,...,xor,xll,...,mlr,...,mnl,...7xm)
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The polynomials sg) and m,(f) have integer coefficients. Moreover, sg) is homogeneous

of degree p™ and mSZ") is homogeneous of degree p" in the variables x;;.

Proof. We only consider the r-fold addition. Let & denote the addition in the ring W(R).
Like in (6), we have

(S8t =X aX, (11)
where
Shrl = Sff)(mm,...7m07~;x’1)1,...,x’17r;...;xﬁj,...,xﬁi).

Applying the map 7 to the two sides of (11) and combining (10) yields

S (S = S ) = 3 (zmm)pz‘) S G

n=0 j=1 j=1 \i=0 n=0
Therefore T(ST[LT])”% = T(gy)) and hence (ST[,,T])V" =37 for all n € Ny. That is,

- n
Eﬁf) = (S,(f))p n(xm,...,xo,.;x’fl,...,x]fr;...;xfbl,...,xf;:). (12)

n

Since R is perfect with characteristic p, we can put the power p~" inside, namely

r _ a(r),1/p" 1/p". 1/p"7! pnto
E(n)fS,(L)(xm s TR 3T e, XY N T R oy B

Note the degrees of variables in 3475') are fractions. To apply the Ax-Katz theorem later,
we need them to be integers. Let s&) = (Z‘ff))pn. Then by (12), we have

) _ ar oD p. ..p" p"
5%)f57(1)(IE01,~~~,$0r,$11,~-~,Ilr,~~-,$n1,-~-7$m)- (13)

Tt follows from Lemma 2.3 that the polynomial ! has integer coefficients and that s’

is homogeneous of degree p™. The result for m!” can be deduced similarly. 0

Remark 2.7. In the following we simply write sgf), which means by default it is in the
variables {xfj |i€[0,n],5 €[L,r]}. As presented in (13) the order of z}; may affect the
expression of sg), but it does not affect the homogeneous degree of sgf), with which we
are most concerned. So we may loosely write s = s%r)(xfj | i €[0,n],5 € [1,7]) when
the variables are needed to be indicated.

Lemma 2.8. Let R be a perfect ring with characteristic p. Let m € N and .2 7(z;)p’ €
Kpg with x; € R. Then the following statements are equivalent:

(i) Yo 7(xs)p" =0 (mod p™).
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(i) zp=21 =" =24,
1
(ili) zp=af =---=2P | =0.

Proof. It follows directly from that 7((0,0,...)) = 0 and that 7 is a ring isomorphism
between W (R) and Kr. O

The above lemma can be easily extended to the r-fold addition, which will play the
crucial role in our later proofs.

Lemma 2.9. Let R be a perfect ring with characteristic p. Let m,r € N and
Yoo T(zij)pt € Kg with z;; € R,j € [1,7]. Suppose Z;Zl (ZioioT(xij)pZ) =
> T(E{nr))p", For n € Ny, let sgf) = (é{nr))pn. Then the following statements are
equivalent:

(1) 3251 Yo T(@iz)p' =0 (mod p™).

() 300 =50 =... =350 | =
(i) s =57 =-.. =" =o0.

3. g-divisibility theorem for the Teichmiiller box

Let p be a prime number and ¢ = p" with h € N. In this section, we always let R = F,
and denote by W (F,) the ring of Witt vectors over [,. Let T, be the set of Teichmiiller
representatives of F, in Z, and the related Teichmiiller lifting be 7 : Fy — Z4,a — 7(a).
Then T, = {7(a)|la € F,;} and for each a € F;, we have 7(a)? = 7(a) and 7(a) = a
(mod p). Then T, = {¢'|i = 1,2,...,q — 1} U {0} where ¢ is a primitive (¢ — 1)-th root
of unity in Z,. For any a € T, let @ be the unique element in Fy such that 7(a) = a. We
call T7" the Teichmiiller box in Zj.

Another construction of Z, is using the ring W (F,), the Witt vectors over Fy, as
described in Section 2. The ring isomorphism between W (F,) and Z, is given by

7:W(F,) = Zq, (ao,al, aIQ)Q, o) e 1(ag) + 1(ar)p + m(ax)p? + - - (14)

If F, = F,, then W(F,) = Z,. Moreover, since a” = a for a € Fp,, the map (14) becomes

7:W(F,) = Zp, (ao,a1,a2,...) 7(ag) +7(a1)p + 7(az2)p* + - - - (15)

Let Z4[z1, ..., x,] denote the ring of polynomials in n variables 1, . .., z, with coeffi-

cients in Z,. Write X* = z{* - 2 with u = (dy,...,d,) € Ng. Let f = 22:1 a; X% €
Zglx1,...,xy) with 0 # a; € Z,. We can write

o0
_ %
a; = E a;ip’, a;; €Ty,
=0
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This is called the Teichmiiller expansion of a;. Similarly,
I (oo} ) T oo ) oo ) T
N IIEUED 5 SIS 1 W s
j=114=0 j=1i=0 i=0  j=1

is the Teichmuller expansion of the polynomial f. We first consider the single polynomial
case.

3.1. For a single polynomial

A polynomial f € Zgy[z1,...,2,] is called a Teichmiiller polynomial if all of its coef-
ficients are Teichmiiller elements in Tj. Clearly, any polynomial f € Z,[z1,...,z,] has
the unique expansion

o0
FX) =) p'fi(X),
i=0
where each f;(X) is a Teichmiiller polynomial. This is called the Teichmiiller expansion
of f. It is obtained from the Teichmiiller expansion of the coefficients of f.

Theorem 3.1 (Strong Version). Let p be a prime number and q = p" with h € N. Let
f € Zy[xa, ..., x,] be a nonzero polynomial. Given an m € N, let

Vi={XeT}|f(X)=0 (modp™)}.

Let f = :2p'fi be the Teichmiiller expansion of f. Let d € N. If deg(f;) < dphls)
for alli € [0,m — 1], then

n pm:lld
ord, (V1) > M’"J . (16)

Proof. Let s%r) be the polynomial as defined before, which is homogeneous of degree p™
by Theorem 2.6. Write

o0 [oe] T
F=Y"06H=) 0" ayX", a; €T,
i=0 i=0  j=1
From Lemma 2.9 we know that for a given X € 77, f(X) =0 (mod p™) if and only if
ge(X) = s ((aijf(“j)pi lie[0,k],je [m) =0, forall k € [0,m —1].

Note @;j, X € F with X € T)". Define
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V= {X €F!| gi(X)=0forall k € [0,m —1]}.
Then |V| = |V|. Note (a5, X" )7 = (@, X% )" "% in F, with ¢ = p". Now
deg(a;; X"7) < deg(f;) < dp"i).
It follows that
deg((a;; X7 )piihtﬁj) < dphl ) pi=hli) = gpi.

So by Lemma 2.3, deg(gx) < dp* for k € [0,m — 1]. Thus

m—1 m—1 pm —1
Zk:o deg(gr) < Z pkd = d. (17)

k=0 p—1

Applying the Ax-Katz Theorem 1.2 to V and using (17), we obtain

maxgec[o,m—1] deg(gk)

pm—ld

Then (16) follows from (18) and the equality that [V| = [V|. O

If deg(f) = d, thendeg(f;) < d < dp"l#) for all i and thus the condition of the theorem
is automatically satisfied. This gives the following weaker but simpler consequence.

Corollary 3.2 (Weak Version). Let p be a prime number and q = p" with h € N. Let
f € Zy[xa,...,x,] be a nonzero polynomial. Given an m € N, let

Vi={XeT}|f(X)=0 (modp™)}.

Then

=
ordy(|V]) = { pmp
Corollary 3.2, in which the condition is weaker than Theorem 3.1, can be viewed as
the generalized Z,-version of Theorem 1.3 with s = 1 for the Teichmiiller box case. In
other words, Theorem 3.1 not only generalizes but also improves Theorem 1.3 for one
polynomial in the Teichmiiller box case.
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Corollary 3.3 below follows from Theorem 3.1 and the fact that [+ | =i for h = 1.

Corollary 3.3. Let p be a prime number. Let f € Z,[x1,...,x,) be a nonzero polynomial.
Given an m € N, let

Vi={XeT!| f(X)=0 (modp™)}.

Let f =32, D" fi be the Teichmiiller expansion of f. Let d € N. If deg(f;) < dp® for all
i€ [0,m—1], then

n— pm:lld
ordy(|V]) = {pm—fld—‘ :

Note that the degree condition deg(f;) < dp’ is significantly weaker than the condition
deg(f) < d, which allows those terms of f that are divisible by p have much larger degree
than d.

3.2. For a polynomial system

Theorem 3.1 can be extended to the system of polynomials without much more diffi-
culties except for more cumbersome notation. Theorem 3.4 below generalizes as well as
improves Theorem 1.3 for the Teichmiuller box case.
Theorem 3.4 (Strong Version). Let p be a prime number and ¢ = p" with h € N. Let
fi,oo oo fs € Lglza, ..., xy] be a system of nonzero polynomials. For given mq,...,mg €
N, let

Vi={XeTl| fi(X)=0 (mod p™*) for all k € [1,s]}.

Write the p-adic Teichmiiller expansion
fe=> P frei(X), ke [l,s].
i=0

Let dy,...,ds € N. If deg(fri) < dpp"ti) for alli € [0,my, — 1], k € [1, 5], then

s p™Tk—1
n=3 p1

maxyen, {p™ tdi} |

ordy([V]) =

Proof. From the proof of Theorem 3.1, we see that for each modulus p™*, the poly-
nomial fj contributes my polynomials g, over F, (¢t € [0,my — 1]) whose degree is

bounded by p'dy and thus Z:i’“o_l deg(gur) < p:ifldk. Now given s polynomials fj and
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s moduli p™*, k € [1, 5], we get > _;_, my polynomials over F, with the sum of degrees

<> p:izldk and maximal degree bounded by maxyep o {p™" " *di}. Applying the

Ax-Katz theorem, we obtain the desired result. 0O

Let d, = deg(fx). Then trivially we have deg(fr,;) < dp < dpp"l%). This gives the
following weaker corollary.

Corollary 3.5 (Weak Version). Let p be a prime number and q¢ = p" with h € N. Let
fi,o o fs € Lglza, . .., x0] be a system of nonzero polynomials. For given my,...,ms €
N, let

Vi={XeTl| fi(X)=0 (mod p™) for all k € [1, s]}.
Then

n— Yhoy Bt deg(fr)
maxye, {p" ! deg(fi)}

ordy(|V]) =

In the case ¢ = p, the theorem becomes

Corollary 3.6. Let p be a prime number. Let f1,...,fs € Zplz1,...,2s] be a system of
nonzero polynomials. For given mq,...,mgs € N, let

Vi={XeT| fr(X)=0 (modp™*) forall k € [1,s]}.
For each k € [1,s], write the p-adic Teichmiiller expansion
fe=>_p fri(X).
i=0

Let dy,...,ds € N. If deg(fx.;) < dip® for all i € [0,my, — 1], k € [1,s], then

ord,([V]) =

Note that in the p-adic expansion of the polynomial f, the condition deg(fy ;) < dyp
for ¢ > 1 is significantly weaker than the condition deg(fi) < di. Namely, the degree of
those terms in f; which are divisible by p can have much larger degree than dj.

4. g-divisibility theorem for the general box

The box T7" in the previous section is called the Teichmiiller box. A natural question
is whether our results in Section 3, especially Theorem 3.4, hold true for other non-
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Teichmiiller boxes 5. We address this question in this section. For this purpose, we first
need to understand a general box algebraically.

Recall that a box B in Zj is defined to be a complete system of representatives of
Fg in Zj. The box B considered in Theorem 1.3 is a special case in split form, that is,
B =17 x---x1,, where each Z; is a complete system of representatives of Fy in Z,/pZ,.
Now, we would like to describe the box B in terms of the image of a polynomial system.

A polynomial g € Zy[x1,...,x,] is called a Teichmiiller polynomial if all of its coef-
fcients are Teichmiiller elements in 7;. The polynomial g is called reduced if its degree
in each variable is at most ¢ — 1. Thus, a reduced polynomial g € Zy[z1,...,z,] has
total degree at most n(q — 1). For any given box B, the elements in B can be uniquely
determined by a system of reduced polynomials over Z,.

Lemma 4.1. Let p be a prime number and q = p" with h € N. Let B C Zy with |B| = q"
and B mod p =TF/".

(i) There exists a unique system of reduced Teichmiller polynomials g;j € Zglx1, .. .,
x| depending only on the box B with j € [1,n],i € N such that for anyY = (y1,...,yn) €
B, we have

Y =X+ (9u(X), s 010 (X)) + (921(X), -, 920 (X))p% 4+ (19)
where X = (v1,...,2,) € T is the Teichmiiller lifting of the modulo p reduction of Y.

(ii) There exists a unique system of reduced polynomials g; € Zg[x1, ..., xy,) depending
only on the box B with j € [1,n] such that for any Y = (y1,...,yn) € B, we have

Y:X+(91(X)v"~vgn(X>)pa (20)
where X = (v1,...,z,) € Tp is the Teichmiiller lifting of the modulo p reduc-

tion of Y. In particular, B is the image of T} under the polynomial map X —

X+ (g1(X),...,9:(X))p.
(iii) Assume that B is in split form. Then (19) becomes

Y=X+ (gn(m), B 7gln(xn))p + (921(x1), A 792n(xn))p2 4+

where each g;;(x;) € Zg[z;] is a reduced Teichmiller polynomial in the one variable x;
and hence has degree at most ¢ — 1 for j € [1,n],i € N. Equivalently, (20) becomes

Y=X+ (g1(9€1)7 cee agn(xn))pa

where each gj(x;) € Zqlz;] is a reduced polynomial in the one variable x; and hence
degree at most q — 1 for all 1 < j <mn.
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Proof. (ii) is equivalent to (i) by taking

o0
9i=> 0 gy, 1<j<n.

i=1

Thus, the right side is just the Teichmiiller expansion of the left side. (iii) is a consequence
of (i) and (ii) by applying them to each one dimensional factor of the split box B. We
shall now prove (i).

For a given Y = (y1,...,yn) € B, we can write uniquely

(yla' 7yn) - (ajOla-'wan) + (xllw .. amln)pa

where X = (2o1,...,2on) € T, and (211,...,71,) € Zy. The vector X = (201, ..., Zon)
in T;' and the vector Y = (y1,...,yn) in B determine each other. In fact, X is just the
Teichmiiller lifting of the reduction ¥ mod p, and Y is the unique element in B with
the same mod p reduction as X. In particular, (z11,...,1,) is also uniquely determined
by X = (o1,.-.,Zon)-

Letting Y run over B, then X runs over T3 as B mod p = Fj' by assumption. For
each 1 < j <n, the quantity z; is a function of X. This establishes a map from 77" to
Zq, and we consider the corresponding map from Fj' to [F,, namely

Elj : F; — Fq, X — §1J(X)

Recall the fact that any map from Fj' to F; can be expressed uniquely by a reduced
polynomial in n variables with coefficients in IF,. In particular, our map g, is a reduced
polynomial in Fy[z1,- -+ ,z,]. Let gi; be the Teichmiiller lifting of g1, in Zgy[z1,. .., xy].
Then, we have proved

Y=X + (gll(X)7 o 7g17L(X))p+ (l‘21, e ,.I‘Qn)pZ,

where (x21,-+ ,x2,) € Zy is uniquely determined by X. Continuing this procedure,
we find uniquely determined reduced Teichmiller polynomials ¢;;(X) € Zy[x1,- - , ]
(1 >1,1<j<n)such that (i) holds. The lemma is proved. O

Remark 4.2. For convenience, set go;(X) = x; for j € [1,n]. Then, equation (19) becomes
Y = (9a(X), -, gin(X))p'. (21)
=0

We simply write B = T7*(gi; : j € [1,n],i € N) provided that the g;;’s are reduced
Teichmiiller polynomials in Zy[z1, ..., %]
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This completes our discussion on the box B. We now move to the reduction from
polynomial congruences in the box B to equations over the finite field F,.

Fix a nonzero vector o = (aq,...,ap) € N with |a] := a1 + -+ -+ a,. For an element
B e N[I)a\ of the form

B=(B11s-->Bar1; Brzs -+ Bas2s - Brns - - Bann), (22)

we write 3 = (By) for short with 8y arranged as in (22) and define 8] := >, > i, Bu.
By (19), one has Y = (y1,...,yn) with y; = > o= g;;(X)p" for j € [1,n]. Then

n 00 Rt n oo noo
H <Z gkl,(X)pk> = Z H H (gﬁ”z(X)pﬂtl> = Z <H Hg/s”l,(X)> p‘Blv (23)
1=1 \k=0 I=1t=1 I=1t=1

where both the sums in (23) run over all the vectors 8 = (8y) € N(‘)al. In particular,

if deg(gi;) < p"l#) for j € [1,n],i € [1,m — 1], then for any 8 = (8) € NJ)O‘I with
|B] < m — 1, we have

n o n [e7] n (6] P 181

o (H Hgmzl(X)> =D dealg,, (X)) < D03 M <ol (20)
1=1t=1 =1 t=1 1=1 t=1

4.1. For a single polynomial

Like in Section 3, we first consider the single polynomial case.

Theorem 4.3 (Strong Version). Let p be a prime number and q = p" with h € N. Let
B C Zy with |B] = ¢" and B mod p = F!, and B = Tj'(gij : j € [1,n],i € N). Let

q M
f € Zy[x1, ..., xy] be a nonzero polynomial. Given an m € N, let

Vi={XeB|f(X)=0 (modp™)}.

Write the Teichmiiller expansion f =Y o p'fi with f; = > i—1ai X" Let d € N. If
for each term a;; X", we have

n o
deg (aij H Hgﬁm(X)> < dpht=i! (25)

l=1t=1

forallie[0,m—1], j€[l,r], 8= (Bu) € N(l)ujl with the sum i+ |3| < m — 1, then

n— pm,_ld
ordy(|V]) = {7')_1-‘ :

pmfld
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Proof. We follow the notations used in the proof of Theorem 3.1, so we do not explain
them more. Choose an arbitrary term of f, say a;; X“p" with u = (a1, ..., a,) € NJ' and
take any 8 = (B;) € N(l)ul. Let Y = (y1,...,yn) with y; = 377 g:;(X)p" for j € [1,n].
Substituting Y for X in this term, by (23) we have

n o n o]

ai;p' [ 1] (95“1 (X)pﬁ”) = ai;p" VT 95, (-

I=1t=1 I=1t=1

This is zero modulo p™ if ¢ + |3] > m. Thus, we can assume i + |3] < m — 1. Since
h
a? = a? = a for a € Fy, we deduce

. ‘ i+|8]
pitlal pit1BI=nL AL

= ((alJ H H .55”1 (X)>

I=1t=1

(aij H H gg”z (X)>

I=1t=1
By (25), we have

pi+\ﬁl—hLi—+h@J

n (%}

1Bl 18] —p| i8] i

deg <a2«j]‘[1‘[gﬁﬂl(x>> < dpPL W it IBI=h LA it 1Bl
I=1t=1

The remaining is similar to the proof of Theorem 3.1. 0O
A weak version is the following result.

Corollary 4.4 (Weak Version). Let p be a prime number and q¢ = p" with h € N. Let
B C Zy with |B] = ¢" and B mod p = F, and B = T (gij : j € [1,n],i € N). Let

q )
f€Zylxr,... 2] be a nonzero polynomial. Given an m € N, let

V={XeB|f(X)=0 (modp™)}.

If deg(gi;) < p"li! for j € [1,n],i € [1,m — 1], then

n— 2= deg(f)
pm—tdeg(f) |

ordg(|V]) > {

Proof. Suppose deg(gi;) < p'li) for j € [1,n],i € [1,m — 1]. Let d = deg(f). By (24)
we see that (25) holds naturally for o = (o, ...,a,) € NJ and 8 = (By) € N(lJa‘ with
Bl <m—-1. O

Corollary 4.4 for the case ¢ = p becomes simpler because h|+] =i for h = 1.
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Corollary 4.5 (Weak Version). Let p be a prime number. Let B C Zy with |B| = p" and

B mod p=F}, and B =T, (gij : j € [L,n],i € N). Let f € Zy[z1,...,2,] be a nonzero

polynomial. Given an m € N, let
Vi={XeB|f(X)=0 (modp™)}.

If deg(gij) < p' for all j € [1,n],i € [1,m — 1], then

ord, (V1) > V = (26)

In particular, (26) holds true for all B in split form.
4.2. For a polynomial system

We extend the results above to the system of polynomials. The proofs are omitted
since they are very similar to the ones given above.

Theorem 4.6 (Strong Version). Let p be a prime number and ¢ = p" with h € N. Let
B C Zy with |B] = ¢" and B mod p = F;!, and B = Tj'(gij : j € [1,n],i € N). Let

q M
fi, oo fs € Lyglza, ..., 0] be a system of nonzero polynomials. For given mq,...,mg €
N, let

Vi={XeB| f(X)=0 (modp™) for all k € [1,s]}.

For each k € [1,s], write the p-adic Teichmiiller expansion
oo
fe =Y _p' fei(X),
i=0

, e (0 yut® (k) yul®
with fii(X) =205 a;;’ X" . Let dy,...,ds € N. If for each term a;;” X"5~, we have

n (7}
i+]8|
deg (aEf)HH%t,zm) < "t

I=1t=1

[l

forallie [0,my—1], j € [1,7m%], B=(B) € Ny with the sum i+ |B| < my — 1, then

ordy(|V]) =

s M
n=3 ko %dk
maxgeqy o {p™ tdi} |

A weaker consequence is the following
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Corollary 4.7 (Weak Version). Let p be a prime number and q = p" with h € N. Let
B C Zy with |B| = ¢" and B mod p = F, and B = Tj(gi; : j € [1,n],i € N). Let
fi,oo oo fs € Lglza, ..., x,] be a system of nonzero polynomials. For given mq,...,mg €
N, let

Vi={XeB| fr(X)=0 (mod p™) forall k € [1,s]}.

Let m = max;ey ) {m.}. If deg(gi;) < Pl for j e [1,n),i € [1,m —1], then

DD Zklldeg(f)
mane[l,s]{pm’“ Ldeg(fr)}

ordy(|V]) =

In the case ¢ = p, the above corollary reduces to
Corollary 4.8 (Weak Version). Let p be a prime number. Let B C Zj with |B| = p" and
B mod p=TFp, and B="T,(gij : j € [1,n],i € N). Let f1,..., fs € Zp[z1,...,75] be a

system of nonzero polynomials. For given my,...,ms € N, let
Vi={XeB| fi(X)=0 (mod p™) for all k € [1,s]}.

Let m = max;ep, {m}. If deg(g:;) < p' for all j € [1,n],i € [1,m — 1], then

- Zi 1 ppkll deg(f )
maxpe(r, o {p"™* ! deg(fx)}

ord,(|V]) = (27)

In particular, (27) holds true for all boxes B in split form.
5. Examples

The corollary above shows that Theorem 1.3 extends to any box B in split form when
q = p.- However, as illustrated in the examples below, Theorem 1.3 cannot be extended
to arbitrary B in general, even when ¢ = p (cf. Example 5.1) or B in split form if ¢ is a
higher power of p, (cf. the last two rows in Table 1 in Example 5.2).

Example 5.1. Let p = 2. Let f = 21 + 22 + 3 + 24 € Zo[z1, T2, x3,24). Let V = {X €
T3 | f(X) = 0}. By Theorem 3.1, we have ord,(|]V]) > 1 (in fact ord,(|V]) = 3).
Given an a € Ty, let B, = {(a1 + (a1a2a3a4 + a)p,as,as,a4) | a; € Ta,i € [1,4]} and

={X € B, | f(X)=0 (mod p?)}. Thus, we have g; = z1227324 + a, and g; = 0 for
1€ [ ,4]. Now we consider the cardinality of V,, that is, the number of solutions of the
congruence

(x1 + 29 + 23 + 24) + (212273704 +a)2 =0 (mod 2%)
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Table 1

|Vo| and ord, (|V4,]) for some u € NJ.
U 3u modgq—1 [Vl ord, (|Vu])
(4,4,4,4,4) (4,4,4,4,4) 1206 2
(5,5,5,5,5) (7,7,7,7,7) 2601 2
(6,6,6,6,6)  (2,2,2,2,2) 864 3
(7, 7,7,7,7  (5,5,5,5,5) 1881 2
(8,8,8,8,8) (8,8,8,8,8) 606 1
(4,7,2,5,8)  (4,5,6,7,8) 660 1

with x; € To. By Lemma 2.9 and Remark 2.4, it is equivalent to counting the number of
solutions in Fy of the system

Y1Y2Y3ya + a— Z %(tl 2 t4)y§1 .. .yiél =0,

.....

{y1+y2+y3+y4=07

where y; = Z; for ¢ € [1,4] and the sum in the second equation is over all the tuples
(t1,...,ts) satisfying that t1+---+t4 = 2 and 0 < ¢; < 2 for all 7. By easy calculation, we
get |Vo| = 1 and |V4| = 7 respectively, to both of which Theorem 3.1 cannot be applied
as deg(g1) = 4 is larger than p = 2.

Example 5.2. Let p=3 and ¢ =p*> =9. Let f =1 + - + x5 € Zy[z1,...,25]. Given a
vector u = (dy, .. .,ds) € N§, let the box B(a,.,...,ds) be the set {(a; +a61l1p, e a5+ag5p) |
a; € Ty,i € [1,5]}, or in concise notation,

Bu:{(X,... ,X5)+(Xill,"' ’ng)p|Xi GTq}.

Define V,, := {X € B, | f(X) =0 (mod p?)}. By Theorem 3.1, we have ord,(|Vo|) > 2
(in fact ord,(|Vo|) = 8). Now we consider the cardinality of V,, for v = (d1,...,ds) # 0,
that is, the number of solutions of the congruence

(1‘1+~~~—|—1‘5)—|—($‘f1—|—--'+$g5)p50 (modpz)

with x; € Tj,. By Lemma 2.9 and Remark 2.4, it is equivalent to counting the number of
solutions in F, of the system

ity =0,
d d
S D, 5l =0

where y; = &; for ¢ € [1,5] and the sum in the second equation is over all the tuples
(t1,...,t5) satisfying that ¢t; +--- +t5 =3 and 0 < ¢; < 3 for all i. Randomly choosing
some vectors u € N§ in which some components are greater than p (so Theorem 3.1 is
not valid for them), and computing via computer, we get the results listed in Table 1.
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The last two rows in Table 1 show that Theorem 4.6 is false without the degree bound
condition on g;j, even for split boxes.

Data availability
The authors are unable or have chosen not to specify which data has been used.
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