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Let Fq denote the finite field of q elements with characteristic 
p. Let Zq denote the unramified extension of the p-adic 
integers Zp with residue field Fq . In this paper, we investigate 
the q-divisibility for the number of solutions of a polynomial 
system in n variables over the finite Witt ring Zq/pmZq , 
where the n variables of the polynomials are restricted to 
run through a box lifting Fn

q
. It turns out that in general 

the answers do depend upon the box chosen. Based on the 
addition operation of Witt vectors, we prove a q-divisibility 
theorem for any box of low algebraic complexity, including the 
simplest Teichmüller box. This extends the classical Ax-Katz 
theorem over finite field Fq (the case m = 1). Taking q = p to 
be a prime, our result extends and improves a recent theorem 
of Grynkiewicz for the unweighted case.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Let N denote the set of positive integers. Let p be a prime number and q = ph with 

h ∈ N. Let Qp denote the field of p-adic rational numbers and Zp the ring of integers 
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in Qp. Let Fq denote the finite field of q elements and Zq the unramified extension of 

the p-adic integers Zp with residue field Fq. Let Fq[x1, . . . , xn] denote the ring of the 

polynomials in n variables x1, . . . , xn with coefficients in Fq. The study of the common 

zeros of a system of polynomials in Fq[x1, . . . , xn] is a classical and important subject 

in Number Theory and Arithmetic Geometry. In general it is hard to know the exact 

cardinality of the set of such common zeros in Fq. However, the Chevalley-Warning and 

Ax-Katz theorems provide estimates of p-divisibility for this problem by utilizing the 

degrees of the associated polynomials. Given a set S, let |S| denote the cardinality of S. 

Write X := (x1, . . . , xn) and set [a, b] := {x ∈ Z | a f x f b} for a, b ∈ R.

Theorem 1.1. (Chevalley-Warning) Let f1(X), . . . , fs(X) ∈ Fq[x1, . . . , xn] be a system of 

nonzero polynomials, and let

V := {X ∈ Fn
q |fk(X) = 0 for all k ∈ [1, s]}.

If n >
∑s

k=1 deg(fk), then p divides |V |.

The Chevalley-Warning theorem also gave an affirmative answer to Artin’s conjecture 

for the homogeneous polynomials (see [13] and [28]), and it was greatly improved by Ax 

[3] for the case s = 1 and Katz [20] for general s g 1. Let ordq denote the q-adic additive 

valuation normalized by ordqq = 1. If q = p, then ordp is the p-adic additive valuation 

normalized by ordpp = 1. For t ∈ R, let �t� denote the least integer more than or equal 

to t, and let �t� denote the greatest integer less then or equal to t. The Ax-Katz theorem 

can be stated as follows.

Theorem 1.2. (Ax-Katz) With the same assumption as in Theorem 1.1, we have

ordq(|V |) g

⌈
n −

∑s
k=1 deg(fk)

maxk∈[1,s] deg(fk)

⌉
. (1)

An elementary proof of the Ax-Katz theorem is given in [26]. The simplest proof of 

the Ax-Katz theorem and its extension to character sums are given in [27]. A reduction 

of the Ax-Katz theorem for a system of equations to Ax’s theorem for a single equation 

has been found by Hou [18]. Besides these, there has been a lot of research work on 

this topic, including extensions, refinements, variants and alternative proofs (see, for 

example, [1,2,4–9,11,12,14,15,17,21,22,29]).

Recently, motivated by combinatorial applications, Grynkiewicz [16] proved a version 

of the Chevalley-Warning and Ax-Katz theorems over the residue class ring Zp/pmZp, 

in which the varying prime power moduli are allowed. The following theorem is just the 

unweighted case of [16, Theorem 1.3].

Theorem 1.3. Let p be a prime number and B = I1 × · · · × In with each Ij ⊆ Zp a 

complete system of residues modulo p for j ∈ [1, n]. Let m1, . . . , ms ∈ N and f1, . . . , fs ∈

Zp[x1, . . . , xn] be a system of nonzero polynomials, and let
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V := {X ∈ B : fk(X) ≡ 0 (mod pmk ) for all k ∈ [1, s]}.

Then

ordp(|V |) g

⌈
n −

∑s
k=1

pmk −1
p−1 deg(fk)

maxk∈[1,s]{pmk−1 deg(fk)}

⌉
.

Note that each Ij is a lifting of the prime field Fp in Zp and thus the box B is a lifting of 

Fn
p in Zn

p . If m1 = · · · = ms = 1, then Theorem 1.3 recovers the Ax-Katz theorem for the 

prime finite field Fp. The box B in Theorem 1.3 allows many combinatorial applications. 

As suggested by Grynkiewicz in [16], if there is an mk > 1 for some k ∈ [1, s], one should 

appropriately choose the box B to apply Theorem 1.3 to some problems in Combinatorial 

Number Theory. In other words, the elements in Ii should satisfy the proposition below. 

In our terminology, this just means that one should typically choose the Teichmüller box 

(cf. Subsection 2.3).

Proposition 1.4. ([16, Proposition 1.4]) Let p be a prime number and m ∈ N. There 

exists a complete system of residues I ⊆ [0, pm − 1] modulo p such that

xp−1 ≡

{
1 (mod pm) if x �≡ 0 (mod p)

0 (mod pm) if x ≡ 0 (mod p),
for every x ∈ I.

To prove and apply Theorem 1.3, Grynkiewicz [16] comprehensively utilized the 

weighted Weisman-Fleck congruence [25] and Wilson’s arguments [29]. In fact, Gryn-

kiewicz [16] proved the Ax-Katz theorem over Fp. But it is not clear how to use his 

method to extend Theorem 1.3 from Zp to Zq with the box B being a lifting of Fn
q so 

that it would also include the general Ax-Katz theorem. We will give counter-examples 

showing that the Zq generalization of Theorem 1.3 is false. This suggests that the prob-

lem is more subtle for Zq than for Zp.

Another restriction in Theorem 1.3 is that the box is in split form, that is, the n-

dimensional box B is the product of one dimensional boxes Ij for 1 f j f n. In general, 

a box (a lifting of Fn
p in Zn

p ) will not be in such a split form. We will also give counter-

examples showing that Theorem 1.3 is false for general non-split boxes.

Despite all these obstacles, our aim of this paper is to investigate the problem over 

Zq and a general box B lifting Fn
q , in an attempt to unify and hence extend both the 

general Ax-Katz theorem and Theorem 1.3. This desired unification is achieved in this 

paper. Our main result says that the desired q-divisibility theorem holds over Zq as long 

as the box B (lifting Fn
q ) has low algebraic complexity, in the sense that it is close to 

the Teichmüller box up to a low degree polynomial perturbation. In the case q = p, any 

split box has low algebraic complexity, which explains Theorem 1.3. There are many 

non-split boxes with low algebraic complexity, and thus our result significantly extends 

Theorem 1.3 as well, even in the case q = p. We now make these more precise. For 
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simplicity of exposition, we only state some weaker but simpler consequences of our 

main result in this introduction.

Let Tq be the set of Teichmüller representatives of Fq in Zq. The set T n
q is clearly a 

lifting of Fn
q , and is called the Teichmüller box. It is the simplest and nicest box for our 

purpose. Our result for the Teichmüller box is the following statement.

Theorem 1.5 (Corollary 3.5). Let p be a prime number and q = ph with h ∈ N. Let 

f1, . . . , fs ∈ Zq[x1, . . . , xn] be a system of nonzero polynomials. For given m1, . . . , ms ∈

N, let

V := {X ∈ T n
q | fk(X) ≡ 0 (mod pmk ) for all k ∈ [1, s]}.

Then

ordq(|V |) g

⌈
n −

∑s
k=1

pmk −1
p−1 deg(fk)

maxk∈[1,s]{pmk−1 deg(fk)}

⌉
.

In the case m1 = · · · = ms = 1, this reduces to the Ax-Katz theorem over Fq. To 

be precise, our proof in the general case uses the Ax-Katz theorem over Fq, which is a 

special case of our result.

The possible extension from the Teichmüller box to a general box is more subtle. Let 

us define a box B to be a subset of Zn
q with qn elements such that B modulo p is equal 

to Fn
q . That is, B is a complete system of representatives of Fn

q in Zn
q , equivalently, B

is a lifting of Fn
q in Zn

q . In order to apply algebraic methods, we would like to give an 

algebraic presentation of the box B, using the image of a polynomial map, following the 

spirit in [19]. As proved in Section 4, for any box B, there exists a unique system of 

polynomials gj(X) ∈ Zq[x1, . . . , xn] (1 f j f n) whose degree in each variable is at most 

q − 1 such that for any Y = (y1, . . . , yn) ∈ B, we have

Y = X + (g1(X), . . . , gn(X))p, (2)

where X = (x1, . . . , xn) ∈ T n
q is the Teichmüller lifting of the modulo p reduction of 

Y . In other words, the box B is simply the image of the Teichmüller box T n
q under the 

polynomial map X −→ X + (g1(X), . . . , gn(X))p. This polynomial representation of the 

box B is unique since we require the polynomials gj(X) to be reduced and thus have 

degrees at most q − 1 in each variable, that is, we have reduced the polynomials modulo 

the ideal (xq
1 − x1, · · · , xq

n − xn). The total degree of gj is then bounded by (q − 1)n. 

The box B is called in split form or a split box if B = I1 × · · · × In, where each Ij is a 

1-dimensional box in Zq lifting Fq. The box B is in split form if and only if (2) becomes

Y = X + (g1(x1), . . . , gn(xn))p,

where each gj(xj) depends only on the one variable xj . In this case, each gj has total 

degree at most q − 1, much smaller than n(q − 1).
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The degrees of the representing polynomials gj ’s provide a crude measure for the 

algebraic complexity of the box B, see [19] for a discussion of this in the case of finite 

fields. A random box B has high algebraic complexity, and hence algebraic methods have 

limited values. One expects that a box of low algebraic complexity has some algebraic 

structure and hence suitable for study using algebraic methods. This explains why we 

need a low degree bound on the representing polynomials gj for the box B in the following 

theorems.

A polynomial f ∈ Zq[x1, . . . , xn] is called a Teichmüller polynomial if all of its coeffi-

cients are Teichmüller elements in Tq. Any polynomial f ∈ Zq[x1, . . . , xn] has the unique 

expansion

f(X) =

∞∑

i=0

pifi(X),

where each fi(X) is a Teichmüller polynomial. This is called the Teichmüller expansion 

of f . It is obtained from the Teichmüller expansion of the coefficients of f . Our result 

for a general box B in Zn
q is as follows.

Theorem 1.6 (Corollary 4.7). Let p be a prime number and q = ph with h ∈ N. Let B be 

a general box in Zn
q defined by the reduced polynomials gj ∈ Zq[x1, · · · , xn] with j ∈ [1, n]

as above. Let f1, . . . , fs ∈ Zq[x1, . . . , xn] be a system of nonzero polynomials. For given 

m1, . . . , ms ∈ N, let

V := {X ∈ B | fk(X) ≡ 0 (mod pmk ) for all k ∈ [1, s]}.

For 1 f j f n, write the Teichmüller expansion pgj(X) =
∑∞

i=1 pigij(X). Let m =

maxi∈[1,s]{mi}. If deg(gij) f ph� i
h

� for all j ∈ [1, n], i ∈ [1, m − 1], then

ordq(|V |) g

⌈
n −

∑s
k=1

pmk −1
p−1 deg(fk)

maxk∈[1,s]{pmk−1 deg(fk)}

⌉
.

If B is the Teichmüller box, then gij = 0 for all i, j g 1, and the condition deg(gij) f

ph� i
h

� is trivially satisfied. Theorem 1.6 is thus a generalization of Theorem 1.5 from the 

Teichmüller box to a general box of low algebraic complexity.

In the case q = p and thus h = 1, we obtain the following simpler consequence of 

Corollary 4.8.

Theorem 1.7. Let p be a prime number. Let B be a general box as defined above by the 

reduced polynomials gj(x1, · · · , xn) ∈ Zp[x1, · · · , xn] with j ∈ [1, n]. Let f1, . . . , fs ∈

Zp[x1, . . . , xn] be a system of nonzero polynomials. For given m1, . . . , ms ∈ N, let

V := {X ∈ B | fk(X) ≡ 0 (mod pmk ) for all k ∈ [1, s]}.
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If deg(gj) f p for all j ∈ [1, n], then

ordp(|V |) g

⌈
n −

∑s
k=1

pmk −1
p−1 deg(fk)

maxk∈[1,s]{pmk−1 deg(fk)}

⌉
. (3)

In this theorem, if the box B is in split form, then deg(gj) f p − 1 and hence the 

degree condition deg(gj) f p is automatically satisfied. In particular, (3) holds true for 

all split boxes B, recovering Theorem 1.3. Note that the above theorem is also true for 

many non-split boxes as long as the degrees of the gj are bounded by p.

We emphasize that Theorems 1.5, 1.6 and 1.7 presented above are simplified (and thus 

weaker) versions of our results. For their strong versions, which depend on the degree 

bounds in the p-adic expansion of the polynomials gj’s and fk’s, see Theorems 3.4 and 4.6. 

Our basic idea is to use the addition operation of Witt vectors to reduce the congruence 

solution counting in the box B to point counting of a system of equations over Fq for which 

the Ax-Katz theorem can be applied. The key is to control the degrees of the resulting 

polynomial equations over Fq. This leads to the assumption on the degree bounds for 

the gj ’s, or more generally the degree bounds in the p-adic Teichmüller expansions of 

the polynomials gj ’s and fk’s.

The paper is organized as follows. Some basic knowledge about the Witt vectors is 

reviewed in Section 2. Then we apply the ring of Witt vectors over Fq to study the 

polynomials in Zq[x1, . . . , xn], which is divided into two parts: the generalization of 

Theorem 1.3 to Zq[x1, . . . , xn] for the Teichmüller box case is given in Section 3, and 

that for the general box is given in Section 4. In Section 5, we give examples showing 

that all the theorems are false without the degree bounds of the representing polynomials 

gj ’s.

2. Preliminaries

Witt vector rings and their variants are a useful tool in many branches of mathematics 

ranging from algebra and algebraic number theory to arithmetic geometry and homotopy 

theory. In this section, we only review the construction and simple properties of the 

classical p-typical Witt vectors of Witt and Teichmüller [30]; for generalized or big Witt 

vectors, refer to [10,23,24]. Using the p-typical Witt vectors one may pass from a perfect 

field K of characteristic p to unramified complete discrete valuation ring with the residue 

field K and quotient field of characteristic zero.

2.1. The ring of p-typical Witt vectors

Let R be a commutative ring with identity and N0 = {0} ∪ N. The underlying set of 

the ring of p-typical Witt vectors over R is the set

W (R) = RN0 = {(a0, a1, . . . ) | ai ∈ R}.
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Now we explore the mysterious algebraic structure of W (R). For n ∈ N0, the n-th Witt 

polynomial is defined to be

ωn(x0, x1, . . . , xn) := xpn

0 + pxpn−1

1 + · · · + pnxn. (4)

Remark 2.1. If we define wt(xi) = pi, then ωn is weighted homogeneous of weighted 

degree pn.

Using the Witt polynomials, we can establish the so-called ghost (or phantom) map

ω : W (R) → RN0 , a = (a0, a1, . . . ) �→ ω(a) = (ω0(a0), ω1(a0, a1), . . . ), (5)

where ωn(a0, a1, . . . , an) is called the n-th ghost (or phantom) component of a. The ring 

W (R) of p-typical Witt vectors over R is defined by componentwise addition and mul-

tiplication via the ghost components, which was found by the pioneering and ingenious 

work of Witt [30]. Let ⊕ and � denote the addition and multiplication in the ring W (R), 

respectively.

Theorem 2.2 (Witt). There are two families of polynomials with integer coefficients

Sn(x0, y0; x1, y1; . . . ; xn, yn), Mn(x0, y0; x1, y1; . . . ; xn, yn), n ∈ N0,

such that for a = (a0, a1, . . . ), b = (b0, b1, . . . ) ∈ W (R), we have

(i) a ⊕ b = (S0(a0, b0), S1(a0, b0; a1, b1), . . . ),

(ii) a � b = (M0(a0, b0), M1(a0, b0; a1, b1), . . . ),

(iii) ω(a ⊕ b) = ω(a) + ω(b),

(iv) ω(a � b) = ω(a)ω(b).

If p is invertible in the ring R, then the ring homomorphism ω : W (R) → RN0

induced by the ghost map (5) is an isomorphism, i.e., W (R) ∼= RN0 . It is obvious that 

the polynomials Sn and Mn are determined by the first n + 1 coordinates of the Witt 

vectors and their coefficients do not depend upon the ring R. In particular, one can 

calculate

S0 = x0 + y0, S1 = x1 + y1 −

p−1∑

i=1

1

p

(
p

i

)
xi

0yp−i
0 ,

M0 = x0y0, M1 = xp
0y1 + x1yp

0 + px1y1.

2.2. Polynomials Sn and Mn for r-fold operation

The calculations of Sn and Mn for big n are very complicated. However, for the 

purpose of this paper, we are more concerned with the degree of the polynomial Sn for 
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r-fold addition. We also give the degree of the polynomial Mn for r-fold multiplication 

for completeness.

Let r ∈ N. For j ∈ [1, r], write Xj = (x0j , . . . , xnj , . . . ), and

X1 ⊕ · · · ⊕ Xr = (S
(r)
0 , . . . , S(r)

n , . . . ),

X1 � · · · � Xr = (M
(r)
0 , . . . , M (r)

n , . . . ).
(6)

Lemma 2.3. Both S
(r)
n and M

(r)
n are polynomials with integer coefficients in (n + 1)r

variables xij(i ∈ [0, n], j ∈ [1, r]). If we set wt(xij) = pi for i ∈ [0, n] and j ∈ [1, r], then 

S
(r)
n is weighted homogeneous of weighted degree pn, and M

(r)
n is weighted homogeneous 

of weighted degree rpn. More generally, let d ∈ N, if we set wt(xij) f dpi for i ∈ [0, n]

and j ∈ [1, r], then S
(r)
n is of weighted degree f dpn, and M

(r)
n is of weighted degree 

f rdpn.

Proof. It immediately follows from (6) and Theorem 2.2 that the polynomial S
(r)
n has 

integer coefficients and that

ωn(S
(r)
0 , . . . , S(r)

n ) = ωn(X1) + · · · + ωn(Xr),

which in expansion by (4) is

(S
(r)
0 )pn

+ p(S
(r)
1 )pn−1

+ · · · + pn(S(r)
n ) (7)

= (xpn

01 + · · · + xpn

0r ) + p(xpn−1

11 + · · · + xpn−1

1r ) + pn(xn1 + · · · + xnr).

Thus we have

S(r)
n =

1

pn

(
r∑

i=1

ωn(Xi) −

n−1∑

i=0

pi(S
(r)
i )pn−i

)
. (8)

Since S
(r)
n has integer coefficients, the factor 1

pn in (8) will be cancelled eventually. Set 

wt(xij) = pi for i ∈ [0, n], j ∈ [1, r]. We make use of induction on n to show that 

S
(r)
n is a weighted homogeneous polynomial of weighted degree pn in (n + 1)r variables 

xij(i ∈ [0, n], j ∈ [1, r]). The case of n = 0 in which S
(r)
0 = x01 + · · · + x0r is trivially 

verified. We assume that S
(r)
k is a weighted homogeneous polynomial of weighted degree 

pk in (k + 1)r variables xij(i ∈ [0, k], j ∈ [1, r]) for 0 f k f n − 1. Then the sum ∑n−1
i=0 pi(S

(r)
i )pn−i

in (8) is a weighted homogeneous polynomial of weighted degree pn

in nr variables xij(i ∈ [0, n −1], j ∈ [1, r]). Note that by (7) the sum 
∑r

i=1 ωn(Xi) in (8) is 

weighted homogeneous of weighted degree pn in (n +1)r variables xij(i ∈ [0, n], j ∈ [1, r])

with the variables xnj(j ∈ [1, r]) not occurring in 
∑n−1

i=0 pi(S
(r)
i )pn−i

, which implies that 

S
(r)
n �= 0. Thus we conclude that S

(r)
n is a weighted homogeneous polynomial of weighted 

degree pn in (n +1)r variables xij(i ∈ [0, n], j ∈ [1, r]). The other results can be similarly 

deduced. �
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Remark 2.4. (i) The weighted degree of S
(r)
n does not depend upon r, but the weighted 

degree of M
(r)
n does.

(ii) To indicate explicitly the variables as well as their order in S
(r)
n and M

(r)
n , we 

write

S(r)
n : = S(r)

n (x01, . . . , x0r; x11, . . . , x1r; . . . ; xn1, . . . , xnr), and

M (r)
n : = M (r)

n (x01, . . . , x0r; x11, . . . , x1r; . . . ; xn1, . . . , xnr).

(iii) For later applications, we record the following explicit formulae for S
(r)
0 and S

(r)
1 .

S
(r)
0 = x01 + · · · + x0r,

S
(r)
1 = x11 + · · · + x1r −

1

p

∑

t1+···+tr=p, 0≤ti≤p−1

(
p

t1, · · · , tr

)
xt1

01 · · · xtr

0r.

2.3. Perfect rings with characteristic p

In this subsection, we always let R be a perfect ring with characteristic p, which means 

that the Frobenius map φ : a �→ ap is an automorphism. Let W (R) denote the ring of 

Witt vectors over R. The Teichmüller lifting is defined by

τ : R ↪→ W (R), a �→ τ(a) = (a, 0, 0, . . . ),

and τ(a) is called the Teichmüller representative of the element a. Let

KR := {τ(a0) + τ(a1)p + τ(a2)p2 + · · · | ai ∈ R, i = 0, 1, 2, . . . }.

Then KR will be a p-adic ring under the usual addition and multiplication via its iso-

morphism with W (R). Moreover, if R is a field, then KR is a complete discrete valuation 

ring of zero characteristic with residue field R and maximal ideal pKR. Each element 

(a0, a1, a2 . . . ) ∈ W (R) can be uniquely represented in KR as

τ(a0) + τ(a1)p + τ(a2)p2 + · · ·

However, this bijection is not a ring isomorphism between W (R) and KR because it does 

not respect the addition. Since R is a perfect ring with characteristic p, we have R ∼= Rp

via the Frobenius map φ : a �→ ap. The true ring isomorphism between W (R) and KR

is denoted by τ again and given explicitly by

τ : W (R) → KR, (a0, a1, a2, . . . ) �→ τ(a0) + τ(a1)p−1

p + τ(a2)p−2

p2 + · · ·

We usually adopt the alternative expression for τ given as below
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τ : W (R) → KR, (a0, ap
1, ap2

2 , . . . ) �→ τ(a0) + τ(a1)p + τ(a2)p2 + · · · (9)

The advantage of the expression (9) lies in that it makes the Witt polynomials become 

homogenous (cf. Remark 2.1) and hence the polynomial S
(r)
n is weighted homogeneous 

of weighted degree pn by Lemma 2.3.

Example 2.5. A well-known example is that W (Fq) ∼= Zq. In particular, the finite Witt 

ring W (Fq)/pmW (Fq) becomes Zq/pmZq.

Now let r ∈ N, we dicuss the r-fold addition and the r-fold multiplication in KR. For 

j ∈ [1, r], let

Xj = (x0j , xp
1j , xp2

2j , · · · ) ∈ W (R).

Then,

τ(Xj) =
∞∑

i

τ(xij)pi ∈ KR,

where τ denotes the ring isomorphism between W (R) and KR given by (9). We want 

to find two functions s̃
(r)
n and m̃

(r)
n , which behave like S

(r)
n and M

(r)
n as defined in 

Lemma 2.3, such that

r∑

j=1

(
∞∑

i=0

τ(xij)pi

)
=

∞∑

n=0

τ(s̃(r)
n )pn,

r∏

j=1

(
∞∑

i=0

τ(xij)pi

)
=

∞∑

n=0

τ(m̃(r)
n )pn.

(10)

The formulae for s̃
(r)
n and m̃

(r)
n are given below, and the proof for r = 2 can also be 

found in [23, Theorem 1.5].

Theorem 2.6. With the above notation, for n ∈ N0 we have

s̃(r)
n = S(r)

n (x
1/pn

01 , . . . , x
1/pn

0r ; x
1/pn−1

11 , . . . , x
1/pn−1

1r ; . . . ; xn1, . . . , xnr), and

m̃(r)
n = M (r)

n (x
1/pn

01 , . . . , x
1/pn

0r ; x
1/pn−1

11 , . . . , x
1/pn−1

1r ; . . . ; xn1, . . . , xnr).

Let s
(r)
n := (s̃

(r)
n )pn

and m
(r)
n := (m̃

(r)
n )pn

, then we have

s(r)
n = S(r)

n (x01, . . . , x0r; xp
11, . . . , xp

1r; . . . ; xpn

n1, . . . , xpn

nr), and

m(r)
n = M (r)

n (x01, . . . , x0r; xp
11, . . . , xp

1r; . . . ; xpn

n1, . . . , xpn

nr).
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The polynomials s
(r)
n and m

(r)
n have integer coefficients. Moreover, s

(r)
n is homogeneous 

of degree pn and m
(r)
n is homogeneous of degree rpn in the variables xij.

Proof. We only consider the r-fold addition. Let ⊕ denote the addition in the ring W (R). 

Like in (6), we have

(S
[r]
0 , . . . , S[r]

n , . . . ) = X1 ⊕ · · · ⊕ Xr, (11)

where

S[r]
n = S(r)

n (x01, . . . , x0r; xp
11, . . . , xp

1r; . . . ; xpn

n1, . . . , xpn

nr).

Applying the map τ to the two sides of (11) and combining (10) yields

∞∑

n=0

τ(S[r]
n )p−n

pn =

r∑

j=1

τ(Xj) =

r∑

j=1

(
∞∑

i=0

τ(xij)pi

)
=

∞∑

n=0

τ(s̃(r)
n )pn.

Therefore τ(S
[r]
n )p−n

= τ(s̃
(r)
n ) and hence (S

[r]
n )p−n

= s̃
(r)
n for all n ∈ N0. That is,

s̃(r)
n = (S(r)

n )p−n

(x01, . . . , x0r; xp
11, . . . , xp

1r; . . . ; xpn

n1, . . . , xpn

nr). (12)

Since R is perfect with characteristic p, we can put the power p−n inside, namely

s̃(r)
n = S(r)

n (x
1/pn

01 , . . . , x
1/pn

0r ; x
1/pn−1

11 , . . . , x
1/pn−1

1r ; . . . ; xn1, . . . , xnr).

Note the degrees of variables in s̃
(r)
n are fractions. To apply the Ax-Katz theorem later, 

we need them to be integers. Let s
(r)
n := (s̃

(r)
n )pn

. Then by (12), we have

s(r)
n = S(r)

n (x01, . . . , x0r; xp
11, . . . , xp

1r; . . . ; xpn

n1, . . . , xpn

nr). (13)

It follows from Lemma 2.3 that the polynomial s
(r)
n has integer coefficients and that s

(r)
n

is homogeneous of degree pn. The result for m
(r)
n can be deduced similarly. �

Remark 2.7. In the following we simply write s
(r)
n , which means by default it is in the 

variables {xpi

ij | i ∈ [0, n], j ∈ [1, r]}. As presented in (13) the order of xpi

ij may affect the 

expression of s
(r)
n , but it does not affect the homogeneous degree of s

(r)
n , with which we 

are most concerned. So we may loosely write s
(r)
n = s

(r)
n (xpi

ij | i ∈ [0, n], j ∈ [1, r]) when 

the variables are needed to be indicated.

Lemma 2.8. Let R be a perfect ring with characteristic p. Let m ∈ N and 
∑∞

i=0 τ(xi)p
i ∈

KR with xi ∈ R. Then the following statements are equivalent:

(i)
∑∞

i=0 τ(xi)p
i ≡ 0 (mod pm).
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(ii) x0 = x1 = · · · = xm−1 = 0.

(iii) x0 = xp
1 = · · · = xpm−1

m−1 = 0.

Proof. It follows directly from that τ((0, 0, . . . )) = 0 and that τ is a ring isomorphism 

between W (R) and KR. �

The above lemma can be easily extended to the r-fold addition, which will play the 

crucial role in our later proofs.

Lemma 2.9. Let R be a perfect ring with characteristic p. Let m, r ∈ N and ∑∞
i=0 τ(xij)pi ∈ KR with xij ∈ R, j ∈ [1, r]. Suppose 

∑r
j=1

(∑∞
i=0 τ(xij)pi

)
=

∑∞
n=0 τ(s̃

(r)
n )pn. For n ∈ N0, let s

(r)
n := (s̃

(r)
n )pn

. Then the following statements are 

equivalent:

(i)
∑r

j=1

∑∞
i=0 τ(xij)pi ≡ 0 (mod pm).

(ii) s̃
(r)
0 = s̃

(r)
1 = · · · = s̃

(r)
m−1 = 0.

(iii) s
(r)
0 = s

(r)
1 = · · · = s

(r)
m−1 = 0.

3. q-divisibility theorem for the Teichmüller box

Let p be a prime number and q = ph with h ∈ N. In this section, we always let R = Fq

and denote by W (Fq) the ring of Witt vectors over Fq. Let Tq be the set of Teichmüller 

representatives of Fq in Zq and the related Teichmüller lifting be τ : Fq → Zq, a �→ τ(a). 

Then Tq = {τ(a)|a ∈ Fq} and for each a ∈ Fq, we have τ(a)q = τ(a) and τ(a) ≡ a

(mod p). Then Tq = {ζi|i = 1, 2, . . . , q − 1} ∪ {0} where ζ is a primitive (q − 1)-th root 

of unity in Zq. For any a ∈ Tq, let ã be the unique element in Fq such that τ(ã) = a. We 

call T n
q the Teichmüller box in Zn

q .

Another construction of Zq is using the ring W (Fq), the Witt vectors over Fq, as 

described in Section 2. The ring isomorphism between W (Fq) and Zq is given by

τ : W (Fq) → Zq, (a0, ap
1, ap2

2 , . . . ) �→ τ(a0) + τ(a1)p + τ(a2)p2 + · · · (14)

If Fq = Fp, then W (Fp) ∼= Zp. Moreover, since ap = a for a ∈ Fp, the map (14) becomes

τ : W (Fp) → Zp, (a0, a1, a2, . . . ) �→ τ(a0) + τ(a1)p + τ(a2)p2 + · · · (15)

Let Zq[x1, . . . , xn] denote the ring of polynomials in n variables x1, . . . , xn with coeffi-

cients in Zq. Write Xu = xd1
1 · · · xdn

n with u = (d1, . . . , dn) ∈ Nn
0 . Let f =

∑r
j=1 ajXuj ∈

Zq[x1, . . . , xn] with 0 �= aj ∈ Zq. We can write

aj =

∞∑

i=0

aijpi, aij ∈ Tq.
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This is called the Teichmüller expansion of aj . Similarly,

f =

r∑

j=1

∞∑

i=0

aijpiXuj =

r∑

j=1

∞∑

i=0

(aijXuj )pi =

∞∑

i=0

pi
r∑

j=1

aijXuj

is the Teichmuller expansion of the polynomial f . We first consider the single polynomial 

case.

3.1. For a single polynomial

A polynomial f ∈ Zq[x1, . . . , xn] is called a Teichmüller polynomial if all of its coef-

ficients are Teichmüller elements in Tq. Clearly, any polynomial f ∈ Zq[x1, . . . , xn] has 

the unique expansion

f(X) =
∞∑

i=0

pifi(X),

where each fi(X) is a Teichmüller polynomial. This is called the Teichmüller expansion 

of f . It is obtained from the Teichmüller expansion of the coefficients of f .

Theorem 3.1 (Strong Version). Let p be a prime number and q = ph with h ∈ N. Let 

f ∈ Zq[x1, . . . , xn] be a nonzero polynomial. Given an m ∈ N, let

V := {X ∈ T n
q | f(X) ≡ 0 (mod pm)}.

Let f =
∑∞

i=0 pifi be the Teichmüller expansion of f . Let d ∈ N. If deg(fi) f dph� i
h

�

for all i ∈ [0, m − 1], then

ordq(|V |) g

⌈
n − pm−1

p−1 d

pm−1d

⌉
. (16)

Proof. Let s
(r)
n be the polynomial as defined before, which is homogeneous of degree pn

by Theorem 2.6. Write

f =

∞∑

i=0

pifi =

∞∑

i=0

pi
r∑

j=1

aijXuj , aij ∈ Tq.

From Lemma 2.9 we know that for a given X ∈ T n
q , f(X) ≡ 0 (mod pm) if and only if

gk(X̃) := s
(r)
k

(
(ãijX̃uj )pi

| i ∈ [0, k], j ∈ [1, r]
)

= 0, for all k ∈ [0, m − 1].

Note ãij , X̃ ∈ Fn
q with X ∈ T n

q . Define
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Ṽ :=
{

X ∈ Fn
q | gk(X) = 0 for all k ∈ [0, m − 1]

}
.

Then |V | = |Ṽ |. Note (ãijXuj )pi

= (ãijXuj )pi−h� i
h

�

in Fq with q = ph. Now

deg(aijXuj ) f deg(fi) f dph� i
h

�.

It follows that

deg((ãijXuj )pi−h� i
h

�

) f dph� i
h

�pi−h� i
h

� = dpi.

So by Lemma 2.3, deg(gk) f dpk for k ∈ [0, m − 1]. Thus

∑m−1

k=0
deg(gk) f

∑m−1

k=0
pkd =

pm − 1

p − 1
d. (17)

Applying the Ax-Katz Theorem 1.2 to Ṽ and using (17), we obtain

ordq(|Ṽ |) g

⌈
n −

∑m−1
k=0 deg(gk)

maxk∈[0,m−1] deg(gk)

⌉
g

⌈
n − pm−1

p−1 d

pm−1d

⌉
. (18)

Then (16) follows from (18) and the equality that |V | = |Ṽ |. �

If deg(f) = d, then deg(fi) f d f dph� i
h

� for all i and thus the condition of the theorem 

is automatically satisfied. This gives the following weaker but simpler consequence.

Corollary 3.2 (Weak Version). Let p be a prime number and q = ph with h ∈ N. Let 

f ∈ Zq[x1, . . . , xn] be a nonzero polynomial. Given an m ∈ N, let

V := {X ∈ T n
q | f(X) ≡ 0 (mod pm)}.

Then

ordq(|V |) g

⌈
n − pm−1

p−1 deg(f)

pm−1 deg(f)

⌉
.

Corollary 3.2, in which the condition is weaker than Theorem 3.1, can be viewed as 

the generalized Zq-version of Theorem 1.3 with s = 1 for the Teichmüller box case. In 

other words, Theorem 3.1 not only generalizes but also improves Theorem 1.3 for one 

polynomial in the Teichmüller box case.
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Corollary 3.3 below follows from Theorem 3.1 and the fact that h� i
h� = i for h = 1.

Corollary 3.3. Let p be a prime number. Let f ∈ Zp[x1, . . . , xn] be a nonzero polynomial. 

Given an m ∈ N, let

V := {X ∈ T n
p | f(X) ≡ 0 (mod pm)}.

Let f =
∑∞

i=0 pifi be the Teichmüller expansion of f . Let d ∈ N. If deg(fi) f dpi for all 

i ∈ [0, m − 1], then

ordp(|V |) g

⌈
n − pm−1

p−1 d

pm−1d

⌉
.

Note that the degree condition deg(fi) f dpi is significantly weaker than the condition 

deg(f) f d, which allows those terms of f that are divisible by p have much larger degree 

than d.

3.2. For a polynomial system

Theorem 3.1 can be extended to the system of polynomials without much more diffi-

culties except for more cumbersome notation. Theorem 3.4 below generalizes as well as 

improves Theorem 1.3 for the Teichmüller box case.

Theorem 3.4 (Strong Version). Let p be a prime number and q = ph with h ∈ N. Let 

f1, . . . , fs ∈ Zq[x1, . . . , xn] be a system of nonzero polynomials. For given m1, . . . , ms ∈

N, let

V := {X ∈ T n
q | fk(X) ≡ 0 (mod pmk ) for all k ∈ [1, s]}.

Write the p-adic Teichmüller expansion

fk =
∞∑

i=0

pifk,i(X), k ∈ [1, s].

Let d1, . . . , ds ∈ N. If deg(fk,i) f dkph� i
h

� for all i ∈ [0, mk − 1], k ∈ [1, s], then

ordq(|V |) g

⌈
n −

∑s
k=1

pmk −1
p−1 dk

maxk∈[1,s]{pmk−1dk}

⌉
.

Proof. From the proof of Theorem 3.1, we see that for each modulus pmk , the poly-

nomial fk contributes mk polynomials gtk over Fq (t ∈ [0, mk − 1]) whose degree is 

bounded by ptdk and thus 
∑mk−1

t=0 deg(gtk) f pmk −1
p−1 dk. Now given s polynomials fk and 
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s moduli pmk , k ∈ [1, s], we get 
∑s

k=1 mk polynomials over Fq with the sum of degrees 

f
∑s

k=1
pmk −1

p−1 dk and maximal degree bounded by maxk∈[1,s]{pmk−1dk}. Applying the 

Ax-Katz theorem, we obtain the desired result. �

Let dk = deg(fk). Then trivially we have deg(fk,i) f dk f dkph� i
h

�. This gives the 

following weaker corollary.

Corollary 3.5 (Weak Version). Let p be a prime number and q = ph with h ∈ N. Let 

f1, . . . , fs ∈ Zq[x1, . . . , xn] be a system of nonzero polynomials. For given m1, . . . , ms ∈

N, let

V := {X ∈ T n
q | fk(X) ≡ 0 (mod pmk ) for all k ∈ [1, s]}.

Then

ordq(|V |) g

⌈
n −

∑s
k=1

pmk −1
p−1 deg(fk)

maxk∈[1,s]{pmk−1 deg(fk)}

⌉
.

In the case q = p, the theorem becomes

Corollary 3.6. Let p be a prime number. Let f1, . . . , fs ∈ Zp[x1, . . . , xn] be a system of 

nonzero polynomials. For given m1, . . . , ms ∈ N, let

V := {X ∈ T n
p | fk(X) ≡ 0 (mod pmk ) for all k ∈ [1, s]}.

For each k ∈ [1, s], write the p-adic Teichmüller expansion

fk =

∞∑

i=0

pifk,i(X).

Let d1, . . . , ds ∈ N. If deg(fk,i) f dkpi for all i ∈ [0, mk − 1], k ∈ [1, s], then

ordp(|V |) g

⌈
n −

∑s
k=1

pmk −1
p−1 dk

maxk∈[1,s]{pmk−1dk}

⌉
.

Note that in the p-adic expansion of the polynomial fk, the condition deg(fk,i) f dkpi

for i g 1 is significantly weaker than the condition deg(fk) f dk. Namely, the degree of 

those terms in fk which are divisible by p can have much larger degree than dk.

4. q-divisibility theorem for the general box

The box T n
q in the previous section is called the Teichmüller box. A natural question 

is whether our results in Section 3, especially Theorem 3.4, hold true for other non-
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Teichmüller boxes B. We address this question in this section. For this purpose, we first 

need to understand a general box algebraically.

Recall that a box B in Zn
q is defined to be a complete system of representatives of 

Fn
q in Zn

q . The box B considered in Theorem 1.3 is a special case in split form, that is, 

B = I1 ×· · ·×In, where each Ii is a complete system of representatives of Fq in Zq/pZq. 

Now, we would like to describe the box B in terms of the image of a polynomial system.

A polynomial g ∈ Zq[x1, . . . , xn] is called a Teichmüller polynomial if all of its coef-

fcients are Teichmüller elements in Tq. The polynomial g is called reduced if its degree 

in each variable is at most q − 1. Thus, a reduced polynomial g ∈ Zq[x1, . . . , xn] has 

total degree at most n(q − 1). For any given box B, the elements in B can be uniquely 

determined by a system of reduced polynomials over Zq.

Lemma 4.1. Let p be a prime number and q = ph with h ∈ N. Let B ⊆ Zn
q with |B| = qn

and B mod p = Fn
q .

(i) There exists a unique system of reduced Teichmüller polynomials gij ∈ Zq[x1, . . . ,

xn] depending only on the box B with j ∈ [1, n], i ∈ N such that for any Y = (y1, . . . , yn) ∈

B, we have

Y = X + (g11(X), . . . , g1n(X))p + (g21(X), . . . , g2n(X))p2 + · · · , (19)

where X = (x1, . . . , xn) ∈ T n
q is the Teichmüller lifting of the modulo p reduction of Y .

(ii) There exists a unique system of reduced polynomials gj ∈ Zq[x1, . . . , xn] depending 

only on the box B with j ∈ [1, n] such that for any Y = (y1, . . . , yn) ∈ B, we have

Y = X + (g1(X), . . . , gn(X))p, (20)

where X = (x1, . . . , xn) ∈ T n
q is the Teichmüller lifting of the modulo p reduc-

tion of Y . In particular, B is the image of T n
q under the polynomial map X →

X + (g1(X), . . . , gn(X))p.

(iii) Assume that B is in split form. Then (19) becomes

Y = X + (g11(x1), . . . , g1n(xn))p + (g21(x1), . . . , g2n(xn))p2 + · · · ,

where each gij(xj) ∈ Zq[xj ] is a reduced Teichmüller polynomial in the one variable xj

and hence has degree at most q − 1 for j ∈ [1, n], i ∈ N. Equivalently, (20) becomes

Y = X + (g1(x1), . . . , gn(xn))p,

where each gj(xj) ∈ Zq[xj ] is a reduced polynomial in the one variable xj and hence 

degree at most q − 1 for all 1 f j f n.
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Proof. (ii) is equivalent to (i) by taking

gj =
∞∑

i=1

pi−1gij , 1 f j f n.

Thus, the right side is just the Teichmüller expansion of the left side. (iii) is a consequence 

of (i) and (ii) by applying them to each one dimensional factor of the split box B. We 

shall now prove (i).

For a given Y = (y1, . . . , yn) ∈ B, we can write uniquely

(y1, . . . , yn) = (x01, . . . , x0n) + (x11, . . . , x1n)p,

where X = (x01, . . . , x0n) ∈ T n
q and (x11, . . . , x1n) ∈ Zn

q . The vector X = (x01, . . . , x0n)

in T n
q and the vector Y = (y1, . . . , yn) in B determine each other. In fact, X is just the 

Teichmüller lifting of the reduction Y mod p, and Y is the unique element in B with 

the same mod p reduction as X. In particular, (x11, . . . , x1n) is also uniquely determined 

by X = (x01, . . . , x0n).

Letting Y run over B, then X runs over T n
q as B mod p = Fn

q by assumption. For 

each 1 f j f n, the quantity x1j is a function of X. This establishes a map from T n
q to 

Zq, and we consider the corresponding map from Fn
q to Fq, namely

g̃1j : Fn
q → Fq, X �→ g̃1j(X).

Recall the fact that any map from Fn
q to Fq can be expressed uniquely by a reduced 

polynomial in n variables with coefficients in Fq. In particular, our map g̃1j is a reduced 

polynomial in Fq[x1, · · · , xn]. Let g1j be the Teichmüller lifting of g̃1j in Zq[x1, . . . , xn]. 

Then, we have proved

Y = X + (g11(X), · · · , g1n(X))p + (x21, · · · , x2n)p2,

where (x21, · · · , x2n) ∈ Zn
q is uniquely determined by X. Continuing this procedure, 

we find uniquely determined reduced Teichmüller polynomials gij(X) ∈ Zq[x1, · · · , xn]

(i g 1, 1 f j f n) such that (i) holds. The lemma is proved. �

Remark 4.2. For convenience, set g0j(X) = xj for j ∈ [1, n]. Then, equation (19) becomes

Y =
∞∑

i=0

(gi1(X), . . . , gin(X))pi. (21)

We simply write B = T n
q (gij : j ∈ [1, n], i ∈ N) provided that the gij ’s are reduced 

Teichmüller polynomials in Zq[x1, . . . , xn].
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This completes our discussion on the box B. We now move to the reduction from 

polynomial congruences in the box B to equations over the finite field Fq.

Fix a nonzero vector ³ = (³1, . . . , ³n) ∈ Nn
0 with |³| := ³1 + · · · + ³n. For an element 

´ ∈ N
|α|
0 of the form

´ = (´11, . . . , ´α11; ´12, . . . , ´α22; . . . ; ´1n, . . . , ´αnn), (22)

we write ´ = (´tl) for short with ´tl arranged as in (22) and define |´| :=
∑n

l=1

∑αl

t=1 ´tl. 

By (19), one has Y = (y1, . . . , yn) with yj =
∑∞

i=0 gij(X)pi for j ∈ [1, n]. Then

n∏

l=1

(
∞∑

k=0

g
kl

(X)pk

)αl

=
∑ n∏

l=1

αl∏

t=1

(
g

βtll
(X)pβtl

)
=

∑
(

n∏

l=1

αl∏

t=1

g
βtll

(X)

)
p|β|, (23)

where both the sums in (23) run over all the vectors ´ = (´tl) ∈ N
|α|
0 . In particular, 

if deg(gij) f ph� i
h

� for j ∈ [1, n], i ∈ [1, m − 1], then for any ´ = (´tl) ∈ N
|α|
0 with 

|´| f m − 1, we have

deg

(
n∏

l=1

αl∏

t=1

g
βtll

(X)

)
=

n∑

l=1

αl∑

t=1

deg(g
βtll

(X)) f

n∑

l=1

αl∑

t=1

ph�
βtl
h

� f |³|ph� |β|
h

�. (24)

4.1. For a single polynomial

Like in Section 3, we first consider the single polynomial case.

Theorem 4.3 (Strong Version). Let p be a prime number and q = ph with h ∈ N. Let 

B ⊆ Zn
q with |B| = qn and B mod p = Fn

q , and B = T n
q (gij : j ∈ [1, n], i ∈ N). Let 

f ∈ Zq[x1, . . . , xn] be a nonzero polynomial. Given an m ∈ N, let

V := {X ∈ B | f(X) ≡ 0 (mod pm)}.

Write the Teichmüller expansion f =
∑∞

i=0 pifi with fi =
∑r

j=1 aijXuj . Let d ∈ N. If 

for each term aijXuj , we have

deg

(
aij

n∏

l=1

αl∏

t=1

g
βtll

(X)

)
f dph� i+|β|

h
� (25)

for all i ∈ [0, m − 1], j ∈ [1, r], ´ = (´tl) ∈ N
|uj |
0 with the sum i + |´| f m − 1, then

ordq(|V |) g

⌈
n − pm−1

p−1 d

pm−1d

⌉
.
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Proof. We follow the notations used in the proof of Theorem 3.1, so we do not explain 

them more. Choose an arbitrary term of f , say aijXupi with u = (³1, . . . , ³n) ∈ Nn
0 and 

take any ´ = (´tj) ∈ N
|u|
0 . Let Y = (y1, . . . , yn) with yj =

∑∞
i=0 gij(X)pi for j ∈ [1, n]. 

Substituting Y for X in this term, by (23) we have

aijpi
n∏

l=1

αl∏

t=1

(
g

βtll
(X)pβtl

)
= aijpi+|β|

n∏

l=1

αl∏

t=1

g
βtll

(X).

This is zero modulo pm if i + |´| g m. Thus, we can assume i + |´| f m − 1. Since 

aph

= aq = a for a ∈ Fq, we deduce

(
ãij

n∏

l=1

αl∏

t=1

g̃
βtll

(X)

)pi+|β|

=

(
(ãij

n∏

l=1

αl∏

t=1

g̃
βtll

(X)

)pi+|β|−h�
i+|β|

h
�

.

By (25), we have

deg

(
aij

n∏

l=1

αl∏

t=1

g
βtll

(X)

)pi+|β|−h�
i+|β|

h
�

f dph� i+|β|
h

�pi+|β|−h� i+|β|
h

� = dpi+|β|.

The remaining is similar to the proof of Theorem 3.1. �

A weak version is the following result.

Corollary 4.4 (Weak Version). Let p be a prime number and q = ph with h ∈ N. Let 

B ⊆ Zn
q with |B| = qn and B mod p = Fn

q , and B = T n
q (gij : j ∈ [1, n], i ∈ N). Let 

f ∈ Zq[x1, . . . , xn] be a nonzero polynomial. Given an m ∈ N, let

V := {X ∈ B | f(X) ≡ 0 (mod pm)}.

If deg(gij) f ph� i
h

� for j ∈ [1, n], i ∈ [1, m − 1], then

ordq(|V |) g

⌈
n − pm−1

p−1 deg(f)

pm−1 deg(f)

⌉
.

Proof. Suppose deg(gij) f ph� i
h

� for j ∈ [1, n], i ∈ [1, m − 1]. Let d = deg(f). By (24)

we see that (25) holds naturally for ³ = (³1, . . . , ³n) ∈ Nn
0 and ´ = (´tl) ∈ N

|α|
0 with 

|´| f m − 1. �

Corollary 4.4 for the case q = p becomes simpler because h� i
h� = i for h = 1.
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Corollary 4.5 (Weak Version). Let p be a prime number. Let B ⊆ Zn
p with |B| = pn and 

B mod p = Fn
p , and B = T n

p (gij : j ∈ [1, n], i ∈ N). Let f ∈ Zp[x1, . . . , xn] be a nonzero 

polynomial. Given an m ∈ N, let

V := {X ∈ B | f(X) ≡ 0 (mod pm)}.

If deg(gij) f pi for all j ∈ [1, n], i ∈ [1, m − 1], then

ordp(|V |) g

⌈
n − pm−1

p−1 deg(f)

pm−1 deg(f)

⌉
. (26)

In particular, (26) holds true for all B in split form.

4.2. For a polynomial system

We extend the results above to the system of polynomials. The proofs are omitted 

since they are very similar to the ones given above.

Theorem 4.6 (Strong Version). Let p be a prime number and q = ph with h ∈ N. Let 

B ⊆ Zn
q with |B| = qn and B mod p = Fn

q , and B = T n
q (gij : j ∈ [1, n], i ∈ N). Let 

f1, . . . , fs ∈ Zq[x1, . . . , xn] be a system of nonzero polynomials. For given m1, . . . , ms ∈

N, let

V := {X ∈ B | fk(X) ≡ 0 (mod pmk ) for all k ∈ [1, s]}.

For each k ∈ [1, s], write the p-adic Teichmüller expansion

fk =

∞∑

i=0

pifk,i(X),

with fk,i(X) =
∑rk

j=1 a
(k)
ij Xu

(k)
j . Let d1, . . . , ds ∈ N. If for each term a

(k)
ij Xu

(k)
j , we have

deg

(
a

(k)
ij

n∏

l=1

αl∏

t=1

g
βtll

(X)

)
f dkph� i+|β|

h
�

for all i ∈ [0, mk − 1], j ∈ [1, rk], ´ = (´tj) ∈ N
|u

(k)
j |

0 with the sum i + |´| f mk − 1, then

ordq(|V |) g

⌈
n −

∑s
k=1

pmk −1
p−1 dk

maxk∈[1,s]{pmk−1dk}

⌉
.

A weaker consequence is the following
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Corollary 4.7 (Weak Version). Let p be a prime number and q = ph with h ∈ N. Let 

B ⊆ Zn
q with |B| = qn and B mod p = Fn

q , and B = T n
q (gij : j ∈ [1, n], i ∈ N). Let 

f1, . . . , fs ∈ Zq[x1, . . . , xn] be a system of nonzero polynomials. For given m1, . . . , ms ∈

N, let

V := {X ∈ B | fk(X) ≡ 0 (mod pmk ) for all k ∈ [1, s]}.

Let m = maxi∈[1,s]{mi}. If deg(gij) f ph� i
h

� for j ∈ [1, n], i ∈ [1, m − 1], then

ordq(|V |) g

⌈
n −

∑s
k=1

pmk −1
p−1 deg(fk)

maxk∈[1,s]{pmk−1 deg(fk)}

⌉
.

In the case q = p, the above corollary reduces to

Corollary 4.8 (Weak Version). Let p be a prime number. Let B ⊆ Zn
p with |B| = pn and 

B mod p = Fn
p , and B = T n

p (gij : j ∈ [1, n], i ∈ N). Let f1, . . . , fs ∈ Zp[x1, . . . , xn] be a 

system of nonzero polynomials. For given m1, . . . , ms ∈ N, let

V := {X ∈ B | fk(X) ≡ 0 (mod pmk ) for all k ∈ [1, s]}.

Let m = maxi∈[1,s]{mi}. If deg(gij) f pi for all j ∈ [1, n], i ∈ [1, m − 1], then

ordp(|V |) g

⌈
n −

∑s
k=1

pmk −1
p−1 deg(fk)

maxk∈[1,s]{pmk−1 deg(fk)}

⌉
. (27)

In particular, (27) holds true for all boxes B in split form.

5. Examples

The corollary above shows that Theorem 1.3 extends to any box B in split form when 

q = p. However, as illustrated in the examples below, Theorem 1.3 cannot be extended 

to arbitrary B in general, even when q = p (cf. Example 5.1) or B in split form if q is a 

higher power of p, (cf. the last two rows in Table 1 in Example 5.2).

Example 5.1. Let p = 2. Let f = x1 + x2 + x3 + x4 ∈ Z2[x1, x2, x3, x4]. Let V = {X ∈

T 4
2 | f(X) = 0}. By Theorem 3.1, we have ordp(|V |) g 1 (in fact ordp(|V |) = 3). 

Given an a ∈ T2, let Ba = {(a1 + (a1a2a3a4 + a)p, a2, a3, a4) | ai ∈ T2, i ∈ [1, 4]} and 

Va = {X ∈ Ba | f(X) = 0 (mod p2)}. Thus, we have g1 = x1x2x3x4 + a, and gi = 0 for 

i ∈ [2, 4]. Now we consider the cardinality of Va, that is, the number of solutions of the 

congruence

(x1 + x2 + x3 + x4) + (x1x2x3x4 + a)2 ≡ 0 (mod 22)
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Table 1

|Vu| and ordp(|Vu|) for some u ∈ N
5
0 .

u 3u mod q − 1 |Vu| ordp(|Vu|)

(4, 4, 4, 4, 4) (4, 4, 4, 4, 4) 1206 2
(5, 5, 5, 5, 5) (7, 7, 7, 7, 7) 2601 2
(6, 6, 6, 6, 6) (2, 2, 2, 2, 2) 864 3
(7, 7, 7, 7, 7) (5, 5, 5, 5, 5) 1881 2
(8, 8, 8, 8, 8) (8, 8, 8, 8, 8) 606 1
(4, 7, 2, 5, 8) (4, 5, 6, 7, 8) 660 1

with xi ∈ T2. By Lemma 2.9 and Remark 2.4, it is equivalent to counting the number of 

solutions in F2 of the system

{
y1 + y2 + y3 + y4 = 0,

y1y2y3y4 + ã −
∑

1
2

(
2

t1,...,t4

)
yt1

1 · · · yt4
4 = 0,

where yi = x̃i for i ∈ [1, 4] and the sum in the second equation is over all the tuples 

(t1, . . . , t4) satisfying that t1 +· · ·+t4 = 2 and 0 f ti < 2 for all i. By easy calculation, we 

get |V0| = 1 and |V1| = 7 respectively, to both of which Theorem 3.1 cannot be applied 

as deg(g1) = 4 is larger than p = 2.

Example 5.2. Let p = 3 and q = p2 = 9. Let f = x1 + · · · + x5 ∈ Zq[x1, . . . , x5]. Given a 

vector u = (d1, . . . , d5) ∈ N5
0 , let the box B(d1,...,d5) be the set {(a1 +ad1

1 p, . . . , a5 +ad5
5 p) |

ai ∈ Tq, i ∈ [1, 5]}, or in concise notation,

Bu = {(X, · · · , X5) + (Xd1
1 , · · · , Xd5

5 )p | Xi ∈ Tq}.

Define Vu := {X ∈ Bu | f(X) ≡ 0 (mod p2)}. By Theorem 3.1, we have ordp(|V0|) g 2

(in fact ordp(|V0|) = 8). Now we consider the cardinality of Vu for u = (d1, . . . , d5) �= 0, 

that is, the number of solutions of the congruence

(x1 + · · · + x5) + (xd1
1 + · · · + xd5

5 )p ≡ 0 (mod p2)

with xi ∈ Tq. By Lemma 2.9 and Remark 2.4, it is equivalent to counting the number of 

solutions in Fq of the system

{
y1 + · · · + y5 = 0,

y3d1
1 + · · · + y3d5

5 −
∑

1
3

(
3

t1,...,t5

)
yt1

1 · · · yt5
5 = 0,

where yi = x̃i for i ∈ [1, 5] and the sum in the second equation is over all the tuples 

(t1, . . . , t5) satisfying that t1 + · · · + t5 = 3 and 0 f ti < 3 for all i. Randomly choosing 

some vectors u ∈ N5
0 in which some components are greater than p (so Theorem 3.1 is 

not valid for them), and computing via computer, we get the results listed in Table 1.
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The last two rows in Table 1 show that Theorem 4.6 is false without the degree bound 

condition on gij , even for split boxes.

Data availability
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