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Abstract

Despite the increasing abundance of whole transcriptome data, few methods are
available to analyze global gene expression across phylogenies. Here, we present a
new software package (CAGEE) for inferring patterns of increases and decreases in
gene expression across a phylogenetic tree, as well as the rate at which these changes
occur. In contrast to previous methods that treat each gene independently, CAGEE can
calculate genome-wide rates of gene expression, along with ancestral states for each
gene. The statistical approach developed here makes it possible to infer lineage-specific
shifts in rates of evolution across the genome, in addition to possible differences in rates
among multiple tissues sampled from the same species. We demonstrate the accuracy
and robustness of our method on simulated data, and apply it to a dataset of ovule gene
expression collected from multiple self-compatible and self-incompatible species in the
genus Solanum to test hypotheses about the evolutionary forces acting during mating
system shifts. These comparisons allow us to highlight the power of CAGEE,
demonstrating its utility for use in any empirical system and for the analysis of most

morphological traits. Our software is available at https://github.com/hahnlab/CAGEE/.
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Introduction

Early studies of gene expression in single genes revealed widespread and
frequent changes in the levels, timing, and breadth of expression across species
(reviewed in Wray et al. 2003; Fay and Wittkopp 2008; Hill et al. 2021). Such changes in
gene expression have been shown to be responsible for many differences between
species, and may be a major driver of evolution (King and Wilson 1975). Advances in
sequencing technologies (i.e. RNA-seq) have transformed research into gene
expression, allowing researchers to cheaply and accurately measure transcript levels
for every gene in a genome, in multiple tissues, and across several timepoints or
conditions (Wang et al. 2009). There is now a flood of interest in applying RNA-seq to
whole clades of organisms in order to identify the genetic changes and evolutionary
forces driving species differences (e.g. Brawand et al. 2011; Meisel et al. 2012; Coolon
et al. 2014; Harrison et al. 2015; Berthelot et al. 2018; Catalan et al. 2019; Blake et al.
2020; El Taher et al. 2021).

To better understand the importance of changes in gene expression, researchers
must be able to characterize the mechanisms and modes by which gene expression
evolves. Such work entails understanding the role of natural selection in driving species
differences, the stages of development or the tissues that evolve most rapidly, as well
as the environments most likely to generate changes in gene expression (Dunn et al.
2013; Hill et al. 2021; Price et al. 2022). Phylogenetic comparative methods enable the
rigorous study of traits like gene expression across a species tree (Revell and Harmon
2022). These methods can be used for testing hypotheses about natural selection, the
inference of ancestral states (allowing us to polarize the direction of changes), and the
estimation of evolutionary rates. Multiple software packages are available that
implement a wide variety of comparative methods (e.g. Pennell et al. 2014), including
models specifically intended for studying gene expression across a tree (Bedford and
Hartl 2009; Rohlfs et al. 2014; Rohlfs and Nielsen 2015; Catalan et al. 2019; Chen et al.
2019; Yang et al. 2019).

However, as far as we are aware, all existing comparative methods for analyzing

gene expression implement fundamentally single-gene analyses. Each gene is
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considered a separate trait, such the evolutionary parameters for each gene are
estimated separately. Single-gene analyses can be used to identify tissue-specific or
lineage-specific shifts in evolutionary rates, but their power is quite low (Beaulieu et al.
2012). As a result, identifying trends in evolution must be carried out post hoc by
summing the number of genes found to be individually significant (e.g. Harrison et al.
2015; El Taher et al. 2021). This approach is less than ideal, especially when carrying
out comparisons between branches of different lengths or between tissues with different

average expression levels (both of which can result in differential statistical power).

Therefore, to better characterize the forces affecting gene expression evolution,
we must be able to model effects shared along a lineage, experienced by many genes
in the same tissue, or experienced by all genes found in the same environment. In this
article, we present a genome-scale platform for the analysis of gene expression data
that allows for such shared factors. Our software, CAGEE (Computational Analysis of
Gene Expression Evolution), provides a robust set of methods for analyzing expression
data across a species tree. CAGEE estimates ancestral states and rates, with rates
shared by all or subsets of genes (single-gene analyses can also be carried out). We
show that lineage-specific and tissue-specific (or condition-specific) rates can be
accurately inferred, and provide principled statistical approaches for model selection.
Our current implementation uses a bounded Brownian motion model and assumes
expression data are accurate, but the architecture and codebase will easily allow for
future extensions that relax these and other assumptions.

New Approaches

We model gene expression evolution as a bounded Brownian motion (BBM)
process on a known species tree (cf. Boucher and Démery 2016). Our model has a
single bound: trait values must be greater than or equal to zero; there is no upper bound
(Figure 1). Previous researchers have often modeled gene expression using an
Ornstein-Uhlenbeck (OU) process (e.g. Bedford and Hartl 2009; Rohlfs et al. 2014;
Rohlfs and Nielsen 2015; Chen et al. 2019), a model that includes a force constraining
traits about the mean. However, to our knowledge, the OU model has only been
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compared against an unbounded Brownian motion model (i.e. one that allows negative
expression values), making fair comparisons difficult. In addition, OU models may be
frequently and incorrectly favored over simpler models due to several biases (e.g.
measurement error), especially when the number of tips in a tree is small (Pennell et al.
2015; Silvestro et al. 2015; Boucher and Démery 2016; Cooper et al. 2016; Catalan et
al. 2019). Therefore, the initial version of our software models gene expression with the
BBM process, which naturally bounds possible values without invoking an additional

constraining force.

Let E;; = 0 be the expression level of gene i in species j. We assume that log-
transformed expression X;; = In(E;; + enin) €volves as a Brownian motion process with
variance o2 per unit time, where e,;, is a small offset (constant across genes and
species) that prevents X;; from taking infinite values if measured values of E;; are zero.
We log-transform before assuming Brownian motion because we expect the variance in
the evolutionary process to scale with expression level. Assuming that E; is itself
Brownian would unrealistically assume that the rate of evolution is constant across
expression levels, even though expression levels vary by many orders of magnitude.
We impose a reflecting lower boundary at x.,;, = In(enin), meaning that the Brownian
walk immediately bounces back if it reaches x,,;,. Expression can therefore effectively

never reach zero, our theoretical lower bound (Figure 1).

The second major feature of our model (as implemented in CAGEE) is that many
genes can share the evolutionary rate parameter, o2. This rate may be shared among
genes expressed in the same tissue or sample, among genes located on the same
chromosome, or among genes evolving along the same lineage of the phylogenetic
tree. The simplest model allows o2 to be shared among all genes, providing an average
rate of evolution across the genome and over time; this average may include genes that
vary in their individual rates of evolution. We explain this model briefly here, with more

detail provided in the Materials and Methods.

CAGEE infers the most likely value(s) of o2 consistent with an ultrametric tree, T,

and a set E;;; of measured expression values at the tips of the tree; i.e. it maximizes



124 the likelihood L(0?|E;3, T). Each gene is assumed to evolve independently, and so the
125  likelihood for each gene L;(0?|E;;;, T) is computed independently. The overall likelihood
126  is obtained as the product L(02|E{U}, T) = HiLi(02|Ei{j},T) across genes. The likelihood
127  for each gene L;(c?|E;;;, T) is computed using the pruning algorithm (Felsenstein

128 1973). The key ingredient needed to apply the pruning algorithm is the transition

129  probability density p(x;|x,,) = Pr [X(t) = x,|X(t,) = x,,] for log-expression at time ¢

130  conditional on having log-expression x.  at time t, along a lineage. CAGEE computes
131  the transition density by solving the standard Brownian diffusion equation with reflecting
132 boundary conditions (Materials and Methods). The transition density is used to

133  propagate expression probabilities along the tree: if the probability density of log-

134  expression at time t, is f(x;,), then the probability density at time ¢ on the same lineage
135 is f(x.) = J p(x¢|xe, )f (xs, ) dxe,. At each tip the probability density f(x,,) is a delta

136  function centered at the corresponding measured value of X;;.

137 Starting with the known tip distributions, the pruning algorithm propagates back
138  to the tips’ parent nodes. The distribution at the parent node is then the product of the
139  two backward-propagated child node distributions. Proceeding iteratively across the
140 tree, we ultimately obtain the gene-specific probability density for expression value at
141  the root f;(xz). Viewed as a likelihood for o2, f;(x) is the gene-specific likelihood

142  conditional on the unknown ancestral root value; i.e. fi(xz) = L;(0?|E;(j;, T, Xg).

143  Therefore, we integrate over all possible x; to obtain,
144 Li(O'ZlEi{j}, T) = fLi(O'ZlEi{j},T,xR) p(xR)de, (1)
145  where p(xy) is the prior distribution for the root value of a randomly selected gene.

146  The default prior p(xg) is assumed to be a gamma distribution with k = 0.375 and 6 =
147 1600, though this distribution can also be set by the user in CAGEE. This choice is
148 based on estimated expression distributions across genes in individual species, which
149  we take as our baseline for the ancestral distribution. CAGEE uses the Nelder-Mead

150  simplex method to find the optimal value(s) of o2.
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Results
Using CAGEE

The required inputs for CAGEE are a Newick-formatted, rooted, ultrametric tree
(with branch lengths) and a tab-delimited data file containing the expression levels of all
species or taxa being studied. The data file can consist of data on one gene/transcript
or thousands of different genes. The first line of the data file should contain the species’
names (matching those used in the Newick tree). In addition, headers for gene names,
gene descriptions, and sample IDs (see next section for an explanation of “samples” in
CAGEE) can be used. Subsequent lines each correspond to a single gene and contain
expression levels for each species. Missing data can be denoted using multiple
characters (-/?/N). Examples of Newick trees and corresponding data files can be found
in the online user manual

(https://github.com/hahnlab/CAGEE/docs/manual/cagee_manual.md).

We expect that CAGEE will most often be used to calculate the following outputs:
one or more o2 values, ancestral states at each internal node (including 95% credible
intervals around these states), and the final likelihood associated with a model.
However, users do not have to search for ¢2: if a value for this parameter is specified,
then the output of CAGEE will just be the ancestral states and a likelihood. In addition to
the raw outputs provided in multiple formats (both tab-delimited files and NEXUS-
formatted files), CAGEE computes basic statistics about changes in expression levels
by comparing values at parent and child nodes. Summaries of these inferred changes
for every gene and for every branch of the tree are output, so that the evolutionary
history of gene expression changes in every gene are accessible to users. To avoid
over-interpretation of small changes in inferred expression levels—especially when
there is uncertainty in ancestral states—CAGEE will also compare the credible intervals
at parent and child nodes to note if a change is “credible” (i.e. the intervals do not
overlap). Credible intervals are calculated by summing the probabilities across possible
ancestral states at each node, so that 95% of the probability density is included.

Credible changes on each branch are annotated as such in the output.
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We most often expect that an ultrametric species tree will be used as the input
topology, but this is not required by CAGEE. If users wish to specify a gene tree, or
some other bifurcating tree, as input, those can be used in CAGEE as well. However,
the major advantage of CAGEE —incorporating information from multiple genes to
accurately estimate genome-wide rates—will rapidly diminish for trees that represent
the history of only a minority of the genome. Trees that include duplication events
should provide suitable estimates for any genes that follow this topology, but CAGEE

does not have a way to further combine disparate gene trees.

There are multiple options available for running CAGEE. Users who can take
advantage of multiple threads can specify the number to use on the command line.
Complex models can also take a long time to converge; by default, CAGEE runs a
maximum of 300 iterations of the Nelder-Mead search, but users can increase this
number in subsequent runs if the likelihood is still improving when the limit is hit. As
mentioned above, the default prior distribution for the root state is a gamma distribution
with k = 0.375 and 6 = 1600. This distribution can also be specified by the user if
desired. Information on how to run more complex evolutionary models, beyond a single

a2, is given in the next section.

Estimating evolutionary rates in CAGEE

We tested CAGEE'’s ability to accurately estimate o2 by varying this rate
parameter and the number of genes used for inference, as well as the amount of
missing data in each dataset. We simulated different single values of a2 across a tree
with constant branch lengths (Supplementary Figure 1) using the simulation tool
available within CAGEE. (Note that the total amount of evolution in a tree is determined
by the product o2 - t, such that changes in branch lengths will have an effect
commensurate with changes in ¢2.) Figure 2 shows the average error associated with
estimates of different o2 values and using different numbers of genes within each
dataset. As can be seen, the error across all parameter values and dataset sizes is
quite small (generally less than 2.5%), and is less variable for larger dataset sizes.

Fortunately, we expect that most empirical datasets will contain closer to 10,000 genes
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than 1,000 genes. The results in Figure 2 are for an ancestral state vector of length
N=200 (the default setting in CAGEE; Materials and Methods); we also estimated o2
when allowing the ancestral state vector to have length N=500 (Supplementary Figure
2A). There appears to be minimal gain from increasing the resolution in this vector,
though the computational time is greatly increased (similar to results in Boucher and
Démery 2016). We evaluated the accuracy of CAGEE when different amounts of data
were randomly missing: from 0% to 75% for a dataset of 1,000 genes. As shown in
Supplementary Figure 2B, CAGEE has high accuracy even when large amounts of data

are missing (at random) from a dataset.

One major advantage of using CAGEE is that it combines information from
multiple genes to infer a rate of evolution: this is why it can return estimates with high
accuracy even when a large fraction of the data are missing. To further demonstrate this
advantage, we simulated evolution in 1,000 genes using the same parameter value
(6%2=1) and then estimated ¢ for each of the 1,000 genes individually. Supplementary
Figure 2C shows that these individual estimates of a2 are quite error-prone: although
the mean of all genes is close to the true value, individual estimates can be 7-8X higher
or lower and there is a large amount of variance. Although we have not shown it here,
we do expect that the accuracy of 2 will be greater for trees with larger numbers of
tips, even for estimates derived from single genes (cf. O’Meara et al. 2006). On the
other hand, CAGEE is combining information from multiple genes to infer an average
rate of evolution, even when the underlying rate may be quite variable. To explore any
effect of underlying rate variation, we carried out further simulations that combined three
simulations of 1,000 genes each with ¢ equal to 0.5, 3, and 9, respectively (we
repeated these simulations 10 times). When analyzed as single datasets with 3,000
genes total, the average o2 inferred was 3.76, approximately 9% lower than the
arithmetic mean rate (Supplementary Figure 2D). It is well-known that single-rate
phylogenetic likelihood models tend to underestimate rates of evolution when there is
underlying variation (Golding 1983; Gillespie 1986; Yang 1996; Mendes et al. 2020),
and we see this effect here. Fortunately, the bias is small, and can be corrected in the

future by including gamma-distributed rate variation into CAGEE. Overall, inferences of
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a2 should be quite accurate when a single rate parameter is shared across the tree and

across all genes and lineages.

Variation in the rate of expression can currently be accommodated by CAGEE in
a number of ways, using multi-rate o2 models. One type of model allows users to
specify that their data come from different “samples”: these samples can represent
tissues, conditions, timepoints, and even subsets of the genome (e.g. the X
chromosome, or a specific functional class of genes). In the input data file, the
“‘SAMPLETYPE” column is used to indicate which sample each gene is a member of; a
separate o2 value will be calculated for each sample or set of samples (these values
are assumed to be shared among all lineages in the tree). Specifying more than one
sample means that an individual gene or transcript name can be used more than once
(i.e. once for each sample), but there is no requirement that genes are measured in
each sample. For instance, assigning all autosomal genes to sample 1 and all X-linked
genes to sample 2 would not permit for any overlap in gene assignment, but is perfectly
allowable in CAGEE.

Each additional sample requires another o2 parameter to be estimated, and often
researchers would like to know if fitting this extra parameter is justified by the data.
Under standard information-theoretic criteria (Burnham and Anderson 2002), twice the
difference in log-likelihoods between nested models should be y2-distributed with
degrees of freedom equal to the difference in the number of parameters between
models. To test this expectation, we simulated 1000 datasets with a single o2 value, but
fit models with two o2 values (assigning 1000 genes to two equal-sized samples at
random; the relative size of the samples should not affect the false positive rate). As
anticipated, the results fit a 2 distribution with one degree of freedom, with 4.4% of
datasets having a difference in 2*log-likelihood greater than 3.84 (5% are expected by
chance). This indicates that standard statistical procedures should adequately control

the false positive rate when fitting multi-sample 2 models.

CAGEE also allows models in which o2 varies across branches of the species

tree. It does so by fitting separate o2 parameters for different parts of the tree. On the

10
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command line, CAGEE enables users to specify how multiple a2 parameters should be
assigned to branches. For ntaxa, from 1 to 2n-2 parameters can be specified, and
branches can be grouped together in any way. For instance, a two-parameter model
can have all branches that share a rate adjacent to one another in the tree
(Supplementary Figure 3A) or spread out across the tree (Supplementary Figure 3B).
Similar to the analyses carried out above for the false positive rate associated with
multiple samples, we simulated data with a single o2 value and then fit models with
multiple o2 parameters. Regardless of how we distributed the two rate classes across
the tree we observed good control of the false positive rate: 4.5% and 5.4% of 1000
simulated datasets were significant at the P=0.05 level (for the trees shown in
Supplementary Figures 3A and 3B, respectively). More limited simulations also showed
that we could accurately estimate multiple o parameters when the data were simulated
with multiple rates (Supplementary Table 1). Together, our results suggest that we can
estimate multiple types of multi-rate models, and can accurately control the false

positive rate when doing so.

Analysis of wild tomato transcripfome data

To demonstrate the utility of CAGEE in an empirical system, we analyzed data
from a clade that includes domesticated tomato, Solanum lycopersicum. This dataset
contains gene expression levels in unfertilized ovules from the flowers of six species,
one of which (S. pennelli)) has two different populations represented (Figure 3). There
are 14,556 genes with expression levels measured in all seven accessions. RNA-seq
data for five of the seven accessions have been published previously (Moyle et al. 2021;
Hibbins and Hahn 2021), while two others are presented here for the first time
(Materials and Methods). Note, however, that all data were collected from all samples at

the same time (Materials and Methods).

Most species within the tomato clade are self-incompatible (Sl), the ancestral
state in the family Solanaceae (Igi¢ et al. 2006). Self-incompatibility means that plants
must outcross in order to successfully fertilize ovules. However, self-compatibility (SC)

has evolved multiple times both within the Solanaceae and within the genus Solanum

11



298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

315
316
317
318
319
320
321
322
323
324
325
326
327

(Goldberg et al. 2010; Bedinger et al. 2011). Self-compatible individuals are able to
successfully fertilize ovules using their own pollen, though many also still outcross
(Whitehead et al 2018; including in Solanum: Vosters et al. 2014 and references
therein). Importantly, we have a priori expectations about the rate at which reproductive
traits—including ovule gene expression—might evolve between groups with different
mating systems. Due to conflict within and between the sexes, it is generally expected
that reproductive traits in species that outcross more (i.e. Sl taxa) should evolve more
rapidly than in species that inbreed more (i.e. SC taxa; Clark et al. 2006). Such patterns
are found in some analyses of the rate of protein evolution (e.g. Gossmann et al. 2016;
Harrison et al. 2019), but are equivocal in other comparisons (e.g. Gossmann et al.
2014, Moyle et al. 2021). These complex patterns might reflect additional effects that
also accompany mating system shifts; for instance, such shifts often lead to reductions
in effective population size in more selfing lineages (Charlesworth and Wright 2001).
Mating system shifts could also alter global patterns of molecular evolution (including
gene expression) by changing the strength and pattern of purifying selection, as
morphological changes often accompany mating system changes. The exact effect of

shifts in mating system on molecular evolution remains an open question.

The Solanum species sampled here represent two independent transitions from
Sl to SC, with one of the transitions (in accession S. pennellii LAO716) occurring
recently enough that different populations within this species have different
incompatibility systems (Figure 3). We therefore fit a series of nested models within
CAGEE to test two related hypotheses about ovule gene expression evolution. First, we
would like to know whether the rate of evolution of ovule gene expression is different in
Sl species than in SC species. Second, given the recent transition to SC within
accession S. pennellii LA0716, we wanted to know if it shows a pattern of evolution
more similar to Sl or to SC species. In total, we fit four separate evolutionary models
(Table 1; Figure 3). Model A has a single rate parameter for the entire tree. Model B has
two rate parameters, one for Sl species and one for SC species. This model assigns the
branch leading to S. pennellii LA0716 as SC. Model C also has two rate parameters,

one for Sl and one for SC, but assigns S. pennelliiLA0716 as Sl. Model D has three

12
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rate parameters: one for Sl species, one for longer-term SC species, and one for S.
pennellii LAO716.

Estimated results from the different models are shown in Table 1. Model A has a
worse fit than any other model, with a single o2 value of 0.102. For context, this value
means that the bounded Brownian motion process the data are fit to has a variance of
0.102 per million years (of log-transformed expression values). This is the average rate
across all 14,556 genes and across all branches of the tree. In contrast to a single-rate
model, both models B and C are significantly better fits to the data. Contrary to some
hypotheses, both models find that Sl lineages (¢) have a lower rate of evolution than
SC lineages (a2; Table 1). There is also a difference between the models, with model C
(the one in which S. pennellii LA0O716 shares a rate with S| species) fitting significantly
better. To further examine the evolution of S. pennellii LA0O716, model D fits a three-
parameter model, with this lineage assigned its own rate of evolution. This model is a
significantly better fit than model C (P<0.00001; %2 test with 1 degree of freedom), and
demonstrates that S. pennellii LAO716 has a rate of evolution (o7 in Table 1) that is
slightly lower than Sl species. This highly similar rate to Sl species implies that it has
only recently transitioned to self-compatibility, which is consistent with previous
inferences about the timing of transition to SC in this particular accession (e.g. Rick and
Tanksley 1981).

CAGEE also allows users to infer the number and direction of changes in gene
expression levels along each branch of the tree. Figure 3 reports the number of genes
that had “credible” increases and decreases in expression level under model D.
Credible changes require that the credible intervals around states at parent and
daughter nodes do not overlap, in order to account for uncertainty in our inferences.
However, because of this, fewer credible changes will be inferred deeper in the tree,
where credible intervals get wider. Therefore, while inferences about the identity of the
genes changing along each branch is greatly strengthened by using credible changes
(these genes are noted in the raw output from CAGEE), the absolute numbers of

credible changes cannot be compared across branches, except for sister branches of
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equal length. For completeness, we show the total numbers of increases and decreases
of gene expression in Supplementary Figure 4; as expected, these total numbers are

more uniformly distributed across older and younger branches.

We assessed whether the genes identified as having credible increases or
decreases in expression specifically on any SC branch (solid red branches in Figure 3)
were significantly enriched for any biological process or molecular function gene
ontology (GO) categories compared to genes with credible changes on any Sl branch
(black branches in Figure 3). This comparison specifically assesses gene expression
evolution associated with a transition to SC, over and above “background” rates of
expression evolution across the rest of the clade. Although fold enrichment was modest
1.20-1.36X; Supplementary Table 2), there were 11 terms significantly enriched
(FDR<0.05) specifically on SC branches; these terms primarily focused on regulation of
transcription, metabolic processes, and biosynthesis (Supplementary Table 2). Among
the genes in these over-represented categories, a large fraction are transcription factors
associated with development (e.g. WRKY and MADS Box), hormonal responses
(including ethylene- and auxin-responsive transcription factors), and regulation of cell
cycle (e.g. cyclins), in addition to protein kinases (Supplementary Table 2). This
enrichment is consistent with increased expression changes in genes involved in cell

division, differentiation, and development, that could follow transitions to SC.
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Discussion

Here, we have developed a new software package that enables the estimation of
rates of gene expression evolution across a tree, CAGEE. Gene expression levels are
much like many other continuous traits, and multiple papers have introduced
phylogenetic comparative methods for studying gene expression (Bedford and Hartl
2009; Ronhlfs et al. 2014; Rohlfs and Nielsen 2015; Catalan et al. 2019; Chen et al.
2019). However, as far as we are aware none of these methods allows genes to share
evolutionary parameters, which precludes the analysis of genome-wide trends, either
along the branches of a tree or between tissues/samples/conditions. To overcome this
limitation, CAGEE calculates the likelihood of the data using the pruning algorithm
(Felsenstein 1973) to facilitate the sharing of evolutionary parameters along branches of
the species tree, providing more statistical power to test evolutionary hypotheses.
Fortunately, we were able to take advantage of much of the codebase of our existing
software, CAFE (Hahn et al. 2005; De Bie et al. 2006; Hahn et al. 2007; Han et al. 2013;
Mendes et al. 2020), which implements the pruning algorithm for the analysis of gene
family sizes across a tree. While gene expression levels and gene family sizes differ in
the type of data they represent (continuous vs. discrete) and their underlying
evolutionary models (bounded Brownian motion vs. birth-death), many of the required
likelihood calculations and software components are the same.

An important thing to consider for the input to CAGEE is the normalization used
to make gene expression levels comparable across species. The data from wild
tomatoes used here was normalized using TPM (transcripts per million; Wagner et al.
2012); other published datasets also use this normalization (Berthelot et al. 2018; Chen
et al. 2019; El Taher et al. 2021). However, multiple other normalizations have also
been used in comparative analyses, including RPKM (Brawand et al. 2011), FPKM
(Catalan et al. 2019), and both TMM and CPM (Blake et al. 2020). Each normalization
approach has its advantages and disadvantages, and we cannot yet strongly
recommend one specific approach as input to CAGEE. The normalization method used
will likely depend on the conditions under which samples are collected: if all species can

be raised simultaneously in a greenhouse, vivarium, or growth chamber, we expect
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many fewer batch effects than in samples collected from the field, which will therefore
necessitate different normalizations. However, even animals raised in a common
environment—but fed different diets—can show many differences in gene expression
not due to heritable change (e.g. Somel et al. 2008). Conversely, many between-sample
normalization approaches (e.g. TMM, trimmed mean of M values; Robinson and
Oshlack 2010) make the assumption that differences in gene expression between
samples are rare. While such normalization is sensible in the context of testing for
differential expression between samples from the same species, for a set of species
that have been evolving independently for millions of years this is likely not an

appropriate assumption.

CAGEE currently has multiple limitations, both in the available models that can
be applied and in the types of data that can be analyzed. As mentioned earlier, many
researchers have modeled gene expression using an OU process (Bedford and Hartl
2009; Rohlfs et al. 2014; Chen et al. 2019; Yang et al. 2019). Although OU models may
be artifactually preferred over unbounded Brownian motion models due to a number of
non-biological factors (see discussion in “New Approaches” above), it would still be
helpful to be able to compare such a model to the bounded Brownian motion model
used here. However, fitting such a model to genome-wide data is non-trivial: each gene
must have its own mean expression value (u), but possibly shared constraint
parameters (c) across genes. We have the goal of implementing such a model in the
near future, as well as other models commonly used in comparative methods research
(e.g. Landis and Schraiber 2017; Boucher et al. 2018). Implementation of multiple
models will not only allow for the analysis of different types of traits—each of which may
be evolving under different regimes—but will also allow users to test the sensitivity of
their analyses to model choice. For instance, it is not currently clear how different the
inferred ancestral states or rates of evolution will be under different models (e.g. BBM
vs. OU), and therefore how different the conclusions drawn from any such analyses
might be. Ideally, qualitative results will be similar, even when there are slight

quantitative differences.
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Beyond the evolutionary model applied to any dataset, there are multiple
additional sources of variation that could be modeled. For instance, we have previously
accounted for measurement error in a likelihood framework, using an empirically
parameterized error model (Han et al. 2013). We can imagine both applying a similar
model here to RNA-seq data, as well as extending CAGEE to more error-prone data
such as single-cell sequencing. Such an extension would treat the level of expression in
each cell within a cell type as an error-prone draw from an underlying distribution; one
would then be able to infer the rate of evolution within and across cell-types across
multiple species. The biggest obstacle to this approach may be in identifying
homologous cell types across species (e.g. Tarashansky et al. 2021). In addition, not all
genes necessarily share the same average rate of evolution; gamma-distributed rate
categories can be used to model this variation among genes (cf. Ames et al. 2012;
Mendes et al. 2020). As shown above, not accounting for this rate variation leads to a
slight underestimate of 2, but also obscures interesting patterns of evolution among
genes. Finally, the gene tree discordance found in many phylogenomic datasets implies
that complex traits (such as expression levels) will also be controlled by discordant gene
trees (Hahn and Nakhleh 2016; Hibbins and Hahn 2021). This underlying discordance
can cause evolutionary rates to be overestimated (Mendes et al. 2018), and should be
taken into account when seeking accurate parameter estimates (see discussion of wild
tomato data below). Our goal is to include methods for dealing with all these sources of
variation in future versions of CAGEE.

In terms of the types of data that can be analyzed, at present CAGEE is limited to
positive, continuously varying traits (i.e. the BBM model). However, we also envision
different ways to represent and model gene expression data, including as a ratio (e.g.
male/female expression). Such a ratio, after log2-transformation, would be most
appropriately modeled by an unbounded Brownian motion model since both negative
and positive values are possible. This and other data types will be supported in future
releases. Moreover, CAGEE does not have to analyze whole-genome or even
molecular data: it can be applied to any single trait for which the BBM model is
appropriate, even morphological traits. One intriguing application of CAGEE could be to
suites of morphological traits that are hypothesized to share a common evolutionary
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rate parameter. If, for instance, there is a shift in body plan along some lineages, then
multiple traits may all increase or decrease their rate of evolution at once, and CAGEE
can be used to estimate these shared parameters. Even in the context of single-trait
analyses, the pruning algorithm has been hailed as a solution for large-scale
comparative analyses (Freckleton 2012). Importantly, the number of branches in a
rooted, bifurcating tree with n tips is 2n-2, so that the number of calculations scales
linearly with the number of species. This makes the pruning algorithm ideal for
comparative datasets with large numbers of taxa (e.g. Hahn et al. 2005; FitzJohn 2012;
Hiscott et al. 2016; Caetano and Harmon 2018; Mitov et al. 2020).

The analysis of data from a clade of wild tomatoes revealed a possibly
unexpected result: the rate of ovule gene expression evolution among self-compatible
(SC) species is twice as high as the rate among self-incompatible (Sl) species (Table
1). This finding is contrary to some prior expectations—informed by research focused
on male-female interactions, especially between interacting proteins in the reproductive
tract (e.g. Swanson and Vacquier 2002; Clark et al. 2006)— that suggest that lineages
might experience slower evolution after transitioning to self-compatibility. However, it is
possible that global gene expression levels do not evolve in the same sort of tit-for-tat
manner as interacting protein sequences, such that increases/decreases in male-
expressed genes are not matched by increases/decreases in interacting female-
expressed genes (or vice versa). Alternatively, only a very small subset of genes may
evolve in this manner. Indeed, even prior studies comparing protein evolution have
failed to find clear evidence of slower global evolutionary rates in more inbreeding
species (e.g. Wong 2011). One caveat to the observed rate differences in our data is
that underlying gene tree discordance, whether due to incomplete lineage sorting or
introgression, can lead to artifactually higher rate estimates (Mendes et al. 2018;
Hibbins and Hahn 2021). However, there is in fact less discordance among the SC
lineages sampled here (Pease et al. 2016), which is the reverse of the pattern that

would be required to explain our results.

If not due to underlying bias in our estimates, these findings still raise the
question: why is ovule gene expression evolving more rapidly in SC than S| species?
One possibility is that this increased rate is due to a relaxation of selection in SC
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species, possibly because genes involved in male-female interactions are no longer
needed. If this were the case, we might expect to see a general decrease in expression
levels in SC species; however, there appears to be no consistent directionality to the
changes along SC branches (Figure 3, Supplementary Figure 4). Instead, an alternative
hypothesis is that transitions to SC involve adaptation to new optima of ovule gene
expression, compared to Sl species that tend to maintain ancestral optima. For
example, transitions to SC might favor greater investment in fewer ovules, because self-
compatibility decreases the probability that each ovule within a flower will go
unfertilized—an otherwise wasted investment under conditions (like SlI) where receiving
sufficient compatible pollen to fertilize each ovule is less predictable (Burd et al. 2009).
The nature of these new optima might be even more complex, as traits like ovule size
and number can vary with multiple reproductive and ecological conditions, and often
trade-off with each other (Greenway and Harder 2007). Of the species examine here,
for example, two SC lineages (S. pimpinellifolium, and S. lycopersicon—domesticated
tomato) have significantly larger seeds than most of the Sl lineages and SC S. pennellii
(unpubl. data). Indeed, individual genes identified in our GO analysis are known to
directly influence ovule and/or seed size in Solanum (e.g. NOR-like1
[SOLYC07G063420.3.1; Han et al, 2014], GRAS2[SOLYC07G063940.2.1; Li et al.
2018], and CRY2[SOLYC09G090100.3.1; Fantini et al. 2019]). Some of our
hypotheses could be evaluated with matching gene expression data from other (non-
ovule) reproductive tissues. Analyses including pollen in the same Sl and SC lineages,
and/or data addressing alternative constraints and conditions shaping ovule evolution
including ovule size and number (e.g. Mione and Anderson 1992), would be useful in
teasing apart these hypotheses.
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Material and Methods
Bounded Brownian motion model of expression evolution

The probability density of expression, p(x, t), at time t for evolutionary
trajectories following a Brownian motion process starting at value x, at time ¢, is
governed by the diffusion equation

Op(x.t) _ a? ’p(x.t)
at 2 axz (2)
with initial condition p(x, t,) = §(x — x;,) where § is the Dirac delta function. The
reflective boundary condition at x = x,;, implies that the probability fluxes into and out
of the boundary are balanced, imposing the boundary condition

0p(X=Xmin,t) _
i) — g, 3)

Note that p(x, t) is identical to the transition density p(x.|x;,).

Without the reflecting boundary, p(x, t) o e~ (ext)"/26%(t=10) g 3 pormal
distribution with variance o2(t — t,). The variance therefore scales linearly with elapsed
time, t — t,. With the reflecting boundary, p(x, t) is the sum of this spreading normal and
its mirror image centered at 2x,;, — x;,. The analytical solution to this bounded process
is helpful for understanding the behavior of p(x, t), but is not used in CAGEE. In
anticipation of implementing additional (and possibly more complicated) processes into
CAGEE, we instead solve Eq. (2) numerically using the approach described in Boucher
and Démery (2016). Briefly, the continuous diffusion equation is converted into a matrix
Xmax~Xmin

equation by discretizing expression values into N equal bins of width § =

Following Boucher and Démery (2016), we have used a default N=200, but this number

can be set by the user (see Results). This approach gives

oP(t) _ o?
at 262

M- P(t), (4)

where P(t) is the vector obtained by discretizing p(x, t) and x,,., is the largest

expression value accounted for. The matrix M is tridiagonal with —2 on the diagonal
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except at the first and last diagonal entries which are —1. The sub- and supra-diagonal

entries are 1. This equation has the matrix exponential solution

P(t) = exp (MM), (5)

262

which is evaluated by diagonalizing M.

Implementation of CAGEE

CAGEE is written in C++ and is compatible with the C++11 standard. A
comprehensive manual and extensive unit tests facilitate further code development and
maintenance. CAGEE is organized into modular components. A clade class, with
references to a parent clade and any number of descendant clades, represents a tree
structure, and a gene_transcript class represents the expression levels observed in the
various species. These two classes comprise the fundamental data structures upon

which CAGEE performs its analysis (Supplementary Figure 5).

Calculations are carried out by additional classes. The optimizer class has the
responsibility of determining the 2 value with the highest likelihood, by comparing the
likelihood of candidate values and searching the likelihood surface using the Nelder-
Mead optimization algorithm. The work of computing the likelihood of a given o2 value is
performed by a subclass of the model class, which for now is limited to a single Base
model (allowing for further development in the future). After appropriate estimated
values are found, the transcript_reconstructor class builds a possible set of transcript
values for the entire tree (Supplementary Figure 5).

Performing the likelihood calculations requires extensive matrix operations; it is
recommended (though not required) that these be passed off to a specialized library
such as Intel's MKL or Nvidia’s CUBLAS. If no external library is available, CAGEE will
carry out these calculations (slowly) by itself. Creating the diffusion matrix (M) requires
calculation of eigenvalues and eigenvectors, and is computationally expensive. This
work is performed by the Eigen linear algebra library (https://eigen.tuxfamily.org);

various internal data structures also take advantage of Eigen classes. To enable faster

searching, the matrix for an ancestral state vector of length 200 (the default in CAGEE)
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has been pre-computed and is included with CAGEE. Users who wish to use vectors of
different lengths can specify this as an option.

Unit-testing is performed using the Doctest testing framework

(https://github.com/doctest/doctest ). At the time of writing more than 200 unit tests had
been created, comprising more than 1200 individual assertions. For complex logging
and debugging cases, CAGEE uses the EasylLogging framework
(https://github.com/amrayn/easyloggingpp). C++ development is always made easier by

using the Boost C++ libraries (https://www.boost.org/), so we include them as well in
CAGEE.

RNA-seq data from wild tomatoes

We briefly describe here the data collected from seven accessions of wild
tomatoes (S. lycopersicum LA3475, S. chmielewskii LA1316, S. pimpinellifolium
LA1589, S. habrochaites LA1777, S. chilense LA4117A, S. pennellii LA3778, and S.
pennellii LAQ716; all accession ID numbers from tgrc.ucdavis.edu). Further details are
given in Moyle et al. (2021). Ovule RNA-seq was performed on between one to four
(usually three) biological replicates (individual plants) from each accession. Plants were
germinated from seed, and cultivated until flowering. For each replicate individual,
ovules were dissected from mature, unpollinated flowers, flash frozen, and maintained
at -80C until extraction. For each individual, all ovule collections were pooled into a
single sample prior to library construction and sequencing on an lllumina HiSeq 2000.
Reads were mapped against the tomato reference genome (ITAG 2.4) and the number
of reads mapped onto genic regions were estimated with featureCounts (Liao et al.,
2014). We normalized the read counts from each library by calculating TPM (transcripts
per million; Wagner et al. 2012) and then calculated the mean normalized read counts
across all samples (individuals) within each accession. These means per accession
were used as input to CAGEE.

To construct a species tree for use with CAGEE, we started with the topology
given in Pease et al. (2016). Specifically, we used the tree found in the supplementary
file Pease_etal_TomatoPhylo RAXMLConcatTree_no1360_Fig2A.nwk, and pruned it to
include only the accessions in our study using the software ETE (Huerta-Cepas et al.
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608 2016). Using the “extend” method found in ETE, we converted this tree to ultrametric
609 (same root-to-tip distance for all taxa). Setting the root age to 2.48 million years ago
610 (following Pease et al. 2016), we were able to express all branches in millions of years.
611  Analyses of GO enrichment were carried out using ShinyGO (Ge et al. 2020) with a
612 false discovery rate of 0.05.
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Supplementary Material

Supplementary data are available at .
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824  Figures and Tables

825 Figure 1. Bounded Brownian motion model. An example trait is shown in the bottom
826  graph, evolving along the tree shown above. Although the data input to CAGEE are
827 linear expression levels, internally it logs expression to ensure higher variance among
828 more highly expressed genes. There is also a minimum value, xmin, added to all tips.
829

830 Figure 2. Accuracy of CAGEE. For five different values of a2 we simulated 1000

831 datasets, with each dataset comprised of either 1000 genes or 10000 genes. All genes
832 in a dataset shared the same o2, but their values at the root were drawn independently
833  from the prior. We then provided each simulated dataset to CAGEE in order to infer o2.
834  Each box-and-whisker plot shows the mean (horizontal line), 50% interquartile range
835 (box), 1.5X the interquartile range (vertical lines), and outliers (dots).

836

837  Figure 3. Changes in gene expression along the tomato phylogeny. Given the set of
838 relationships among the seven Solanum accessions used here, we tested multiple

839 models that had branches assigned as different 62 parameters (Table 1). In model A, alll
840 branches share ¢. In model B, all black branches share ¢, while all red branches

841 share ¢Z. In model C, all black branches and the dashed red branch share a7, while all
842  solid red branches share ¢Z. In model D, all black branches share 2, all solid red

843  branches share ¢Z, and the dashed red branch is assigned ¢2. Using the results from
844  model D, we inferred the number of genes that had credible increases or decreases in
845  expression level along each branch (results for all changes are shown in Supplementary

846  Figure 4). Numbers are reported as +increases/-decreases for each branch.
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847  Table 1. Model parameters estimated from the tomato data.

848
Model Number of -InL 02 02 023
rates

A 1 67252.4 0.102

B 2 65883.9 0.074 0.134

C 2 65124.5 0.075 0.152

D 3 65108.6 0.077 0.152 0.067
849
850
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Supplementary Figures

Supplementary Figure 1. The tree used for simulations. The Newick-formatted tree
string with branch lengths is:
((((sp1:1,8p2:1):1,5p3:2):1,5p4:3):1,((sp5:2,sp6:2):2)):1,5p7:5):1,5p8:6)

Supplementary Figure 2. Accuracy of CAGEE. A) This figure is the same as Figure 2
in the main text, but the ancestral state vector has length N=500 (Figure 2 uses N=200).
B) For each of three different simulated values of 62, we randomly removed different
amounts of data from an input dataset with 1,000 genes (the tree is the same as in all
other simulations). C) For 1,000 genes simulated with 62=1 (dashed vertical line), we
ran CAGEE independently on each one to estimate o2. D) We combined three datasets
of 1,000 genes each simulated with three different values of o (we repeated these
simulations 10 times). The 10 estimates of 62 on the combined datasets were slightly
downwardly biased compared to the expected value (dashed horizontal line). Each dot

represents each of the 10 estimates, with jitter added for clarity,

Supplementary Figure 3. Trees used for simulations with lineage-specific values of a2.

A) All black branches share a rate parameter (¢), and all red branches share a rate
parameter (o7). This “sigma_tree” is specified in CAGEE with the Newick string:
((((sp1:2,8p2:2):2,5p3:2):2,5p4:2):2,((sp5:1,sp6:1):1)):1,5p7:1):1,5p8:1)

B) All black branches share a rate parameter (), and all red branches share a rate
parameter (7). This “sigma_tree” is specified in CAGEE with the Newick string:
((((sp1:2,8p2:1):1,5p3:2):1,sp4:1):1,((sp5:1,sp6:2):1)):1,5p7:1):1,5p8:1)

Supplementary Figure 4. Changes in gene expression along the tomato phylogeny.
This figure is the same as Figure 3 in the main text, but all increases and decreases are

reported, regardless of whether they are “credible”.
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879  Supplementary Figure 5. Component diagram for the CAGEE software.
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