

1 **CAGEE: computational analysis of gene expression evolution**
2 Jason Bertram^{1,2,*}, Ben Fulton^{1,3}, Jason P. Tourigny^{1,4}, Yadira Peña-Garcia¹, Leonie C.
3 Moyle¹, and Matthew W. Hahn^{1,4,*}

4

5 ¹Department of Biology, Indiana University, Bloomington, IN 47405, USA

6 ²Department of Mathematics, Western University, London, ON N6A 5B7, Canada

7 ³University Information Technology Services, Indiana University, Bloomington, IN

8 47405, USA

9 ⁴Department of Computer Science, Indiana University, Bloomington, IN 47405, USA

10

11 *Corresponding authors: E-mail: jason.bertram@uwo.ca, mwh@indiana.edu

12

13

14 **Abstract**

15 Despite the increasing abundance of whole transcriptome data, few methods are
16 available to analyze global gene expression across phylogenies. Here, we present a
17 new software package (CAGEE) for inferring patterns of increases and decreases in
18 gene expression across a phylogenetic tree, as well as the rate at which these changes
19 occur. In contrast to previous methods that treat each gene independently, CAGEE can
20 calculate genome-wide rates of gene expression, along with ancestral states for each
21 gene. The statistical approach developed here makes it possible to infer lineage-specific
22 shifts in rates of evolution across the genome, in addition to possible differences in rates
23 among multiple tissues sampled from the same species. We demonstrate the accuracy
24 and robustness of our method on simulated data, and apply it to a dataset of ovule gene
25 expression collected from multiple self-compatible and self-incompatible species in the
26 genus *Solanum* to test hypotheses about the evolutionary forces acting during mating
27 system shifts. These comparisons allow us to highlight the power of CAGEE,
28 demonstrating its utility for use in any empirical system and for the analysis of most
29 morphological traits. Our software is available at <https://github.com/hahnlab/CAGEE/>.

30

31

32

33 Key words: RNA-seq; phylogenetic comparative methods; Brownian motion; *Solanum*
34

35 **Introduction**

36 Early studies of gene expression in single genes revealed widespread and
37 frequent changes in the levels, timing, and breadth of expression across species
38 (reviewed in Wray et al. 2003; Fay and Wittkopp 2008; Hill et al. 2021). Such changes in
39 gene expression have been shown to be responsible for many differences between
40 species, and may be a major driver of evolution (King and Wilson 1975). Advances in
41 sequencing technologies (i.e. RNA-seq) have transformed research into gene
42 expression, allowing researchers to cheaply and accurately measure transcript levels
43 for every gene in a genome, in multiple tissues, and across several timepoints or
44 conditions (Wang et al. 2009). There is now a flood of interest in applying RNA-seq to
45 whole clades of organisms in order to identify the genetic changes and evolutionary
46 forces driving species differences (e.g. Brawand et al. 2011; Meisel et al. 2012; Coolon
47 et al. 2014; Harrison et al. 2015; Berthelot et al. 2018; Catalan et al. 2019; Blake et al.
48 2020; El Taher et al. 2021).

49 To better understand the importance of changes in gene expression, researchers
50 must be able to characterize the mechanisms and modes by which gene expression
51 evolves. Such work entails understanding the role of natural selection in driving species
52 differences, the stages of development or the tissues that evolve most rapidly, as well
53 as the environments most likely to generate changes in gene expression (Dunn et al.
54 2013; Hill et al. 2021; Price et al. 2022). Phylogenetic comparative methods enable the
55 rigorous study of traits like gene expression across a species tree (Revell and Harmon
56 2022). These methods can be used for testing hypotheses about natural selection, the
57 inference of ancestral states (allowing us to polarize the direction of changes), and the
58 estimation of evolutionary rates. Multiple software packages are available that
59 implement a wide variety of comparative methods (e.g. Pennell et al. 2014), including
60 models specifically intended for studying gene expression across a tree (Bedford and
61 Hartl 2009; Rohlf et al. 2014; Rohlf and Nielsen 2015; Catalán et al. 2019; Chen et al.
62 2019; Yang et al. 2019).

63 However, as far as we are aware, all existing comparative methods for analyzing
64 gene expression implement fundamentally single-gene analyses. Each gene is

65 considered a separate trait, such the evolutionary parameters for each gene are
66 estimated separately. Single-gene analyses can be used to identify tissue-specific or
67 lineage-specific shifts in evolutionary rates, but their power is quite low (Beaulieu et al.
68 2012). As a result, identifying trends in evolution must be carried out *post hoc* by
69 summing the number of genes found to be individually significant (e.g. Harrison et al.
70 2015; El Taher et al. 2021). This approach is less than ideal, especially when carrying
71 out comparisons between branches of different lengths or between tissues with different
72 average expression levels (both of which can result in differential statistical power).

73 Therefore, to better characterize the forces affecting gene expression evolution,
74 we must be able to model effects shared along a lineage, experienced by many genes
75 in the same tissue, or experienced by all genes found in the same environment. In this
76 article, we present a genome-scale platform for the analysis of gene expression data
77 that allows for such shared factors. Our software, CAGEE (Computational Analysis of
78 Gene Expression Evolution), provides a robust set of methods for analyzing expression
79 data across a species tree. CAGEE estimates ancestral states and rates, with rates
80 shared by all or subsets of genes (single-gene analyses can also be carried out). We
81 show that lineage-specific and tissue-specific (or condition-specific) rates can be
82 accurately inferred, and provide principled statistical approaches for model selection.
83 Our current implementation uses a bounded Brownian motion model and assumes
84 expression data are accurate, but the architecture and codebase will easily allow for
85 future extensions that relax these and other assumptions.

86

87 **New Approaches**

88 We model gene expression evolution as a bounded Brownian motion (BBM)
89 process on a known species tree (cf. Boucher and Démery 2016). Our model has a
90 single bound: trait values must be greater than or equal to zero; there is no upper bound
91 (Figure 1). Previous researchers have often modeled gene expression using an
92 Ornstein-Uhlenbeck (OU) process (e.g. Bedford and Hartl 2009; Rohlf et al. 2014;
93 Rohlf and Nielsen 2015; Chen et al. 2019), a model that includes a force constraining
94 traits about the mean. However, to our knowledge, the OU model has only been

95 compared against an unbounded Brownian motion model (i.e. one that allows negative
96 expression values), making fair comparisons difficult. In addition, OU models may be
97 frequently and incorrectly favored over simpler models due to several biases (e.g.
98 measurement error), especially when the number of tips in a tree is small (Pennell et al.
99 2015; Silvestro et al. 2015; Boucher and Démery 2016; Cooper et al. 2016; Catalán et
100 al. 2019). Therefore, the initial version of our software models gene expression with the
101 BBM process, which naturally bounds possible values without invoking an additional
102 constraining force.

103 Let $E_{ij} \geq 0$ be the expression level of gene i in species j . We assume that log-
104 transformed expression $X_{ij} = \ln(E_{ij} + e_{\min})$ evolves as a Brownian motion process with
105 variance σ^2 per unit time, where e_{\min} is a small offset (constant across genes and
106 species) that prevents X_{ij} from taking infinite values if measured values of E_{ij} are zero.
107 We log-transform before assuming Brownian motion because we expect the variance in
108 the evolutionary process to scale with expression level. Assuming that E_{ij} is itself
109 Brownian would unrealistically assume that the rate of evolution is constant across
110 expression levels, even though expression levels vary by many orders of magnitude.
111 We impose a reflecting lower boundary at $x_{\min} = \ln(e_{\min})$, meaning that the Brownian
112 walk immediately bounces back if it reaches x_{\min} . Expression can therefore effectively
113 never reach zero, our theoretical lower bound (Figure 1).

114 The second major feature of our model (as implemented in CAGEE) is that many
115 genes can share the evolutionary rate parameter, σ^2 . This rate may be shared among
116 genes expressed in the same tissue or sample, among genes located on the same
117 chromosome, or among genes evolving along the same lineage of the phylogenetic
118 tree. The simplest model allows σ^2 to be shared among all genes, providing an average
119 rate of evolution across the genome and over time; this average may include genes that
120 vary in their individual rates of evolution. We explain this model briefly here, with more
121 detail provided in the Materials and Methods.

122 CAGEE infers the most likely value(s) of σ^2 consistent with an ultrametric tree, T ,
123 and a set $E_{\{ij\}}$ of measured expression values at the tips of the tree; i.e. it maximizes

124 the likelihood $L(\sigma^2 | E_{\{ij\}}, T)$. Each gene is assumed to evolve independently, and so the
 125 likelihood for each gene $L_i(\sigma^2 | E_{\{ij\}}, T)$ is computed independently. The overall likelihood
 126 is obtained as the product $L(\sigma^2 | E_{\{ij\}}, T) = \prod_i L_i(\sigma^2 | E_{\{ij\}}, T)$ across genes. The likelihood
 127 for each gene $L_i(\sigma^2 | E_{\{ij\}}, T)$ is computed using the pruning algorithm (Felsenstein
 128 1973). The key ingredient needed to apply the pruning algorithm is the transition
 129 probability density $p(x_t | x_{t_0}) = \Pr [X(t) = x_t | X(t_0) = x_{t_0}]$ for log-expression at time t
 130 conditional on having log-expression x_{t_0} at time t_0 along a lineage. CAGEE computes
 131 the transition density by solving the standard Brownian diffusion equation with reflecting
 132 boundary conditions (Materials and Methods). The transition density is used to
 133 propagate expression probabilities along the tree: if the probability density of log-
 134 expression at time t_0 is $f(x_{t_0})$, then the probability density at time t on the same lineage
 135 is $f(x_t) = \int p(x_t | x_{t_0})f(x_{t_0})dx_{t_0}$. At each tip the probability density $f(x_{t_0})$ is a delta
 136 function centered at the corresponding measured value of X_{ij} .

137 Starting with the known tip distributions, the pruning algorithm propagates back
 138 to the tips' parent nodes. The distribution at the parent node is then the product of the
 139 two backward-propagated child node distributions. Proceeding iteratively across the
 140 tree, we ultimately obtain the gene-specific probability density for expression value at
 141 the root $f_i(x_R)$. Viewed as a likelihood for σ^2 , $f_i(x_R)$ is the gene-specific likelihood
 142 conditional on the unknown ancestral root value; i.e. $f_i(x_R) = L_i(\sigma^2 | E_{\{ij\}}, T, x_R)$.
 143 Therefore, we integrate over all possible x_R to obtain,

$$144 \quad L_i(\sigma^2 | E_{\{ij\}}, T) = \int L_i(\sigma^2 | E_{\{ij\}}, T, x_R) \rho(x_R) dx_R, \quad (1)$$

145 where $\rho(x_R)$ is the prior distribution for the root value of a randomly selected gene.
 146 The default prior $\rho(x_R)$ is assumed to be a gamma distribution with $k = 0.375$ and $\theta =$
 147 1600, though this distribution can also be set by the user in CAGEE. This choice is
 148 based on estimated expression distributions across genes in individual species, which
 149 we take as our baseline for the ancestral distribution. CAGEE uses the Nelder-Mead
 150 simplex method to find the optimal value(s) of σ^2 .

151

152 **Results**

153 *Using CAGEE*

154 The required inputs for CAGEE are a Newick-formatted, rooted, ultrametric tree
155 (with branch lengths) and a tab-delimited data file containing the expression levels of all
156 species or taxa being studied. The data file can consist of data on one gene/transcript
157 or thousands of different genes. The first line of the data file should contain the species'
158 names (matching those used in the Newick tree). In addition, headers for gene names,
159 gene descriptions, and sample IDs (see next section for an explanation of "samples" in
160 CAGEE) can be used. Subsequent lines each correspond to a single gene and contain
161 expression levels for each species. Missing data can be denoted using multiple
162 characters (-/?/N). Examples of Newick trees and corresponding data files can be found
163 in the online user manual
164 (https://github.com/hahnlab/CAGEE/docs/manual/cagee_manual.md).

165 We expect that CAGEE will most often be used to calculate the following outputs:
166 one or more σ^2 values, ancestral states at each internal node (including 95% credible
167 intervals around these states), and the final likelihood associated with a model.
168 However, users do not have to search for σ^2 : if a value for this parameter is specified,
169 then the output of CAGEE will just be the ancestral states and a likelihood. In addition to
170 the raw outputs provided in multiple formats (both tab-delimited files and NEXUS-
171 formatted files), CAGEE computes basic statistics about changes in expression levels
172 by comparing values at parent and child nodes. Summaries of these inferred changes
173 for every gene and for every branch of the tree are output, so that the evolutionary
174 history of gene expression changes in every gene are accessible to users. To avoid
175 over-interpretation of small changes in inferred expression levels—especially when
176 there is uncertainty in ancestral states—CAGEE will also compare the credible intervals
177 at parent and child nodes to note if a change is "credible" (i.e. the intervals do not
178 overlap). Credible intervals are calculated by summing the probabilities across possible
179 ancestral states at each node, so that 95% of the probability density is included.
180 Credible changes on each branch are annotated as such in the output.

181 We most often expect that an ultrametric species tree will be used as the input
182 topology, but this is not required by CAGEE. If users wish to specify a gene tree, or
183 some other bifurcating tree, as input, those can be used in CAGEE as well. However,
184 the major advantage of CAGEE—incorporating information from multiple genes to
185 accurately estimate genome-wide rates—will rapidly diminish for trees that represent
186 the history of only a minority of the genome. Trees that include duplication events
187 should provide suitable estimates for any genes that follow this topology, but CAGEE
188 does not have a way to further combine disparate gene trees.

189 There are multiple options available for running CAGEE. Users who can take
190 advantage of multiple threads can specify the number to use on the command line.
191 Complex models can also take a long time to converge; by default, CAGEE runs a
192 maximum of 300 iterations of the Nelder-Mead search, but users can increase this
193 number in subsequent runs if the likelihood is still improving when the limit is hit. As
194 mentioned above, the default prior distribution for the root state is a gamma distribution
195 with $k = 0.375$ and $\theta = 1600$. This distribution can also be specified by the user if
196 desired. Information on how to run more complex evolutionary models, beyond a single
197 σ^2 , is given in the next section.

198 *Estimating evolutionary rates in CAGEE*

199 We tested CAGEE’s ability to accurately estimate σ^2 by varying this rate
200 parameter and the number of genes used for inference, as well as the amount of
201 missing data in each dataset. We simulated different single values of σ^2 across a tree
202 with constant branch lengths (Supplementary Figure 1) using the simulation tool
203 available within CAGEE. (Note that the total amount of evolution in a tree is determined
204 by the product $\sigma^2 \cdot t$, such that changes in branch lengths will have an effect
205 commensurate with changes in σ^2 .) Figure 2 shows the average error associated with
206 estimates of different σ^2 values and using different numbers of genes within each
207 dataset. As can be seen, the error across all parameter values and dataset sizes is
208 quite small (generally less than 2.5%), and is less variable for larger dataset sizes.
209 Fortunately, we expect that most empirical datasets will contain closer to 10,000 genes

210 than 1,000 genes. The results in Figure 2 are for an ancestral state vector of length
211 $N=200$ (the default setting in CAGEE; Materials and Methods); we also estimated σ^2
212 when allowing the ancestral state vector to have length $N=500$ (Supplementary Figure
213 2A). There appears to be minimal gain from increasing the resolution in this vector,
214 though the computational time is greatly increased (similar to results in Boucher and
215 Démery 2016). We evaluated the accuracy of CAGEE when different amounts of data
216 were randomly missing: from 0% to 75% for a dataset of 1,000 genes. As shown in
217 Supplementary Figure 2B, CAGEE has high accuracy even when large amounts of data
218 are missing (at random) from a dataset.

219 One major advantage of using CAGEE is that it combines information from
220 multiple genes to infer a rate of evolution: this is why it can return estimates with high
221 accuracy even when a large fraction of the data are missing. To further demonstrate this
222 advantage, we simulated evolution in 1,000 genes using the same parameter value
223 ($\sigma^2=1$) and then estimated σ^2 for each of the 1,000 genes individually. Supplementary
224 Figure 2C shows that these individual estimates of σ^2 are quite error-prone: although
225 the mean of all genes is close to the true value, individual estimates can be 7-8X higher
226 or lower and there is a large amount of variance. Although we have not shown it here,
227 we do expect that the accuracy of σ^2 will be greater for trees with larger numbers of
228 tips, even for estimates derived from single genes (cf. O'Meara et al. 2006). On the
229 other hand, CAGEE is combining information from multiple genes to infer an *average*
230 rate of evolution, even when the underlying rate may be quite variable. To explore any
231 effect of underlying rate variation, we carried out further simulations that combined three
232 simulations of 1,000 genes each with σ^2 equal to 0.5, 3, and 9, respectively (we
233 repeated these simulations 10 times). When analyzed as single datasets with 3,000
234 genes total, the average σ^2 inferred was 3.76, approximately 9% lower than the
235 arithmetic mean rate (Supplementary Figure 2D). It is well-known that single-rate
236 phylogenetic likelihood models tend to underestimate rates of evolution when there is
237 underlying variation (Golding 1983; Gillespie 1986; Yang 1996; Mendes et al. 2020),
238 and we see this effect here. Fortunately, the bias is small, and can be corrected in the
239 future by including gamma-distributed rate variation into CAGEE. Overall, inferences of

240 σ^2 should be quite accurate when a single rate parameter is shared across the tree and
241 across all genes and lineages.

242 Variation in the rate of expression can currently be accommodated by CAGEE in
243 a number of ways, using multi-rate σ^2 models. One type of model allows users to
244 specify that their data come from different “samples”: these samples can represent
245 tissues, conditions, timepoints, and even subsets of the genome (e.g. the X
246 chromosome, or a specific functional class of genes). In the input data file, the
247 “SAMPLETYPE” column is used to indicate which sample each gene is a member of; a
248 separate σ^2 value will be calculated for each sample or set of samples (these values
249 are assumed to be shared among all lineages in the tree). Specifying more than one
250 sample means that an individual gene or transcript name can be used more than once
251 (i.e. once for each sample), but there is no requirement that genes are measured in
252 each sample. For instance, assigning all autosomal genes to sample 1 and all X-linked
253 genes to sample 2 would not permit for any overlap in gene assignment, but is perfectly
254 allowable in CAGEE.

255 Each additional sample requires another σ^2 parameter to be estimated, and often
256 researchers would like to know if fitting this extra parameter is justified by the data.
257 Under standard information-theoretic criteria (Burnham and Anderson 2002), twice the
258 difference in log-likelihoods between nested models should be χ^2 -distributed with
259 degrees of freedom equal to the difference in the number of parameters between
260 models. To test this expectation, we simulated 1000 datasets with a single σ^2 value, but
261 fit models with two σ^2 values (assigning 1000 genes to two equal-sized samples at
262 random; the relative size of the samples should not affect the false positive rate). As
263 anticipated, the results fit a χ^2 distribution with one degree of freedom, with 4.4% of
264 datasets having a difference in $2 \times \text{log-likelihood}$ greater than 3.84 (5% are expected by
265 chance). This indicates that standard statistical procedures should adequately control
266 the false positive rate when fitting multi-sample σ^2 models.

267 CAGEE also allows models in which σ^2 varies across branches of the species
268 tree. It does so by fitting separate σ^2 parameters for different parts of the tree. On the

269 command line, CAGEE enables users to specify how multiple σ^2 parameters should be
270 assigned to branches. For n taxa, from 1 to $2n-2$ parameters can be specified, and
271 branches can be grouped together in any way. For instance, a two-parameter model
272 can have all branches that share a rate adjacent to one another in the tree
273 (Supplementary Figure 3A) or spread out across the tree (Supplementary Figure 3B).
274 Similar to the analyses carried out above for the false positive rate associated with
275 multiple samples, we simulated data with a single σ^2 value and then fit models with
276 multiple σ^2 parameters. Regardless of how we distributed the two rate classes across
277 the tree we observed good control of the false positive rate: 4.5% and 5.4% of 1000
278 simulated datasets were significant at the $P=0.05$ level (for the trees shown in
279 Supplementary Figures 3A and 3B, respectively). More limited simulations also showed
280 that we could accurately estimate multiple σ^2 parameters when the data were simulated
281 with multiple rates (Supplementary Table 1). Together, our results suggest that we can
282 estimate multiple types of multi-rate models, and can accurately control the false
283 positive rate when doing so.

284 *Analysis of wild tomato transcriptome data*

285 To demonstrate the utility of CAGEE in an empirical system, we analyzed data
286 from a clade that includes domesticated tomato, *Solanum lycopersicum*. This dataset
287 contains gene expression levels in unfertilized ovules from the flowers of six species,
288 one of which (*S. pennellii*) has two different populations represented (Figure 3). There
289 are 14,556 genes with expression levels measured in all seven accessions. RNA-seq
290 data for five of the seven accessions have been published previously (Moyle et al. 2021;
291 Hibbins and Hahn 2021), while two others are presented here for the first time
292 (Materials and Methods). Note, however, that all data were collected from all samples at
293 the same time (Materials and Methods).

294 Most species within the tomato clade are self-incompatible (SI), the ancestral
295 state in the family Solanaceae (Igić et al. 2006). Self-incompatibility means that plants
296 must outcross in order to successfully fertilize ovules. However, self-compatibility (SC)
297 has evolved multiple times both within the Solanaceae and within the genus *Solanum*

298 (Goldberg et al. 2010; Bedinger et al. 2011). Self-compatible individuals are able to
299 successfully fertilize ovules using their own pollen, though many also still outcross
300 (Whitehead et al 2018; including in *Solanum*: Vosters et al. 2014 and references
301 therein). Importantly, we have *a priori* expectations about the rate at which reproductive
302 traits—including ovule gene expression—might evolve between groups with different
303 mating systems. Due to conflict within and between the sexes, it is generally expected
304 that reproductive traits in species that outcross more (i.e. SI taxa) should evolve more
305 rapidly than in species that inbreed more (i.e. SC taxa; Clark et al. 2006). Such patterns
306 are found in some analyses of the rate of protein evolution (e.g. Gossman et al. 2016;
307 Harrison et al. 2019), but are equivocal in other comparisons (e.g. Gossman et al.
308 2014, Moyle et al. 2021). These complex patterns might reflect additional effects that
309 also accompany mating system shifts; for instance, such shifts often lead to reductions
310 in effective population size in more selfing lineages (Charlesworth and Wright 2001).
311 Mating system shifts could also alter global patterns of molecular evolution (including
312 gene expression) by changing the strength and pattern of purifying selection, as
313 morphological changes often accompany mating system changes. The exact effect of
314 shifts in mating system on molecular evolution remains an open question.

315 The *Solanum* species sampled here represent two independent transitions from
316 SI to SC, with one of the transitions (in accession *S. pennellii* LA0716) occurring
317 recently enough that different populations within this species have different
318 incompatibility systems (Figure 3). We therefore fit a series of nested models within
319 CAGEE to test two related hypotheses about ovule gene expression evolution. First, we
320 would like to know whether the rate of evolution of ovule gene expression is different in
321 SI species than in SC species. Second, given the recent transition to SC within
322 accession *S. pennellii* LA0716, we wanted to know if it shows a pattern of evolution
323 more similar to SI or to SC species. In total, we fit four separate evolutionary models
324 (Table 1; Figure 3). Model A has a single rate parameter for the entire tree. Model B has
325 two rate parameters, one for SI species and one for SC species. This model assigns the
326 branch leading to *S. pennellii* LA0716 as SC. Model C also has two rate parameters,
327 one for SI and one for SC, but assigns *S. pennellii* LA0716 as SI. Model D has three

328 rate parameters: one for SI species, one for longer-term SC species, and one for *S.*
329 *pennellii* LA0716.

330 Estimated results from the different models are shown in Table 1. Model A has a
331 worse fit than any other model, with a single σ^2 value of 0.102. For context, this value
332 means that the bounded Brownian motion process the data are fit to has a variance of
333 0.102 per million years (of log-transformed expression values). This is the average rate
334 across all 14,556 genes and across all branches of the tree. In contrast to a single-rate
335 model, both models B and C are significantly better fits to the data. Contrary to some
336 hypotheses, both models find that SI lineages (σ_1^2) have a lower rate of evolution than
337 SC lineages (σ_2^2 ; Table 1). There is also a difference between the models, with model C
338 (the one in which *S. pennellii* LA0716 shares a rate with SI species) fitting significantly
339 better. To further examine the evolution of *S. pennellii* LA0716, model D fits a three-
340 parameter model, with this lineage assigned its own rate of evolution. This model is a
341 significantly better fit than model C ($P<0.00001$; χ^2 test with 1 degree of freedom), and
342 demonstrates that *S. pennellii* LA0716 has a rate of evolution (σ_3^2 in Table 1) that is
343 slightly *lower* than SI species. This highly similar rate to SI species implies that it has
344 only recently transitioned to self-compatibility, which is consistent with previous
345 inferences about the timing of transition to SC in this particular accession (e.g. Rick and
346 Tanksley 1981).

347 CAGEE also allows users to infer the number and direction of changes in gene
348 expression levels along each branch of the tree. Figure 3 reports the number of genes
349 that had “credible” increases and decreases in expression level under model D.
350 Credible changes require that the credible intervals around states at parent and
351 daughter nodes do not overlap, in order to account for uncertainty in our inferences.
352 However, because of this, fewer credible changes will be inferred deeper in the tree,
353 where credible intervals get wider. Therefore, while inferences about the identity of the
354 genes changing along each branch is greatly strengthened by using credible changes
355 (these genes are noted in the raw output from CAGEE), the absolute numbers of
356 credible changes cannot be compared across branches, except for sister branches of

357 equal length. For completeness, we show the total numbers of increases and decreases
358 of gene expression in Supplementary Figure 4; as expected, these total numbers are
359 more uniformly distributed across older and younger branches.

360 We assessed whether the genes identified as having credible increases or
361 decreases in expression specifically on any SC branch (solid red branches in Figure 3)
362 were significantly enriched for any biological process or molecular function gene
363 ontology (GO) categories compared to genes with credible changes on any SI branch
364 (black branches in Figure 3). This comparison specifically assesses gene expression
365 evolution associated with a transition to SC, over and above “background” rates of
366 expression evolution across the rest of the clade. Although fold enrichment was modest
367 1.20-1.36X; Supplementary Table 2), there were 11 terms significantly enriched
368 (FDR<0.05) specifically on SC branches; these terms primarily focused on regulation of
369 transcription, metabolic processes, and biosynthesis (Supplementary Table 2). Among
370 the genes in these over-represented categories, a large fraction are transcription factors
371 associated with development (e.g. WRKY and MADS Box), hormonal responses
372 (including ethylene- and auxin-responsive transcription factors), and regulation of cell
373 cycle (e.g. cyclins), in addition to protein kinases (Supplementary Table 2). This
374 enrichment is consistent with increased expression changes in genes involved in cell
375 division, differentiation, and development, that could follow transitions to SC.

376

377

378 **Discussion**

379 Here, we have developed a new software package that enables the estimation of
380 rates of gene expression evolution across a tree, CAGEE. Gene expression levels are
381 much like many other continuous traits, and multiple papers have introduced
382 phylogenetic comparative methods for studying gene expression (Bedford and Hartl
383 2009; Rohlf et al. 2014; Rohlf and Nielsen 2015; Catalán et al. 2019; Chen et al.
384 2019). However, as far as we are aware none of these methods allows genes to share
385 evolutionary parameters, which precludes the analysis of genome-wide trends, either
386 along the branches of a tree or between tissues/samples/conditions. To overcome this
387 limitation, CAGEE calculates the likelihood of the data using the pruning algorithm
388 (Felsenstein 1973) to facilitate the sharing of evolutionary parameters along branches of
389 the species tree, providing more statistical power to test evolutionary hypotheses.
390 Fortunately, we were able to take advantage of much of the codebase of our existing
391 software, CAFE (Hahn et al. 2005; De Bie et al. 2006; Hahn et al. 2007; Han et al. 2013;
392 Mendes et al. 2020), which implements the pruning algorithm for the analysis of gene
393 family sizes across a tree. While gene expression levels and gene family sizes differ in
394 the type of data they represent (continuous vs. discrete) and their underlying
395 evolutionary models (bounded Brownian motion vs. birth-death), many of the required
396 likelihood calculations and software components are the same.

397 An important thing to consider for the input to CAGEE is the normalization used
398 to make gene expression levels comparable across species. The data from wild
399 tomatoes used here was normalized using TPM (transcripts per million; Wagner et al.
400 2012); other published datasets also use this normalization (Berthelot et al. 2018; Chen
401 et al. 2019; El Taher et al. 2021). However, multiple other normalizations have also
402 been used in comparative analyses, including RPKM (Brawand et al. 2011), FPKM
403 (Catalán et al. 2019), and both TMM and CPM (Blake et al. 2020). Each normalization
404 approach has its advantages and disadvantages, and we cannot yet strongly
405 recommend one specific approach as input to CAGEE. The normalization method used
406 will likely depend on the conditions under which samples are collected: if all species can
407 be raised simultaneously in a greenhouse, vivarium, or growth chamber, we expect

408 many fewer batch effects than in samples collected from the field, which will therefore
409 necessitate different normalizations. However, even animals raised in a common
410 environment—but fed different diets—can show many differences in gene expression
411 not due to heritable change (e.g. Somel et al. 2008). Conversely, many between-sample
412 normalization approaches (e.g. TMM, trimmed mean of M values; Robinson and
413 Oshlack 2010) make the assumption that differences in gene expression between
414 samples are rare. While such normalization is sensible in the context of testing for
415 differential expression between samples from the same species, for a set of species
416 that have been evolving independently for millions of years this is likely not an
417 appropriate assumption.

418 CAGEE currently has multiple limitations, both in the available models that can
419 be applied and in the types of data that can be analyzed. As mentioned earlier, many
420 researchers have modeled gene expression using an OU process (Bedford and Hartl
421 2009; Rohlf et al. 2014; Chen et al. 2019; Yang et al. 2019). Although OU models may
422 be artifactually preferred over unbounded Brownian motion models due to a number of
423 non-biological factors (see discussion in “New Approaches” above), it would still be
424 helpful to be able to compare such a model to the bounded Brownian motion model
425 used here. However, fitting such a model to genome-wide data is non-trivial: each gene
426 must have its own mean expression value (μ), but possibly shared constraint
427 parameters (α) across genes. We have the goal of implementing such a model in the
428 near future, as well as other models commonly used in comparative methods research
429 (e.g. Landis and Schraiber 2017; Boucher et al. 2018). Implementation of multiple
430 models will not only allow for the analysis of different types of traits—each of which may
431 be evolving under different regimes—but will also allow users to test the sensitivity of
432 their analyses to model choice. For instance, it is not currently clear how different the
433 inferred ancestral states or rates of evolution will be under different models (e.g. BBM
434 vs. OU), and therefore how different the conclusions drawn from any such analyses
435 might be. Ideally, qualitative results will be similar, even when there are slight
436 quantitative differences.

437 Beyond the evolutionary model applied to any dataset, there are multiple
438 additional sources of variation that could be modeled. For instance, we have previously
439 accounted for measurement error in a likelihood framework, using an empirically
440 parameterized error model (Han et al. 2013). We can imagine both applying a similar
441 model here to RNA-seq data, as well as extending CAGEE to more error-prone data
442 such as single-cell sequencing. Such an extension would treat the level of expression in
443 each cell within a cell type as an error-prone draw from an underlying distribution; one
444 would then be able to infer the rate of evolution within and across cell-types across
445 multiple species. The biggest obstacle to this approach may be in identifying
446 homologous cell types across species (e.g. Tarashansky et al. 2021). In addition, not all
447 genes necessarily share the same average rate of evolution; gamma-distributed rate
448 categories can be used to model this variation among genes (cf. Ames et al. 2012;
449 Mendes et al. 2020). As shown above, not accounting for this rate variation leads to a
450 slight underestimate of σ^2 , but also obscures interesting patterns of evolution among
451 genes. Finally, the gene tree discordance found in many phylogenomic datasets implies
452 that complex traits (such as expression levels) will also be controlled by discordant gene
453 trees (Hahn and Nakhleh 2016; Hibbins and Hahn 2021). This underlying discordance
454 can cause evolutionary rates to be overestimated (Mendes et al. 2018), and should be
455 taken into account when seeking accurate parameter estimates (see discussion of wild
456 tomato data below). Our goal is to include methods for dealing with all these sources of
457 variation in future versions of CAGEE.

458 In terms of the types of data that can be analyzed, at present CAGEE is limited to
459 positive, continuously varying traits (i.e. the BBM model). However, we also envision
460 different ways to represent and model gene expression data, including as a ratio (e.g.
461 male/female expression). Such a ratio, after log2-transformation, would be most
462 appropriately modeled by an unbounded Brownian motion model since both negative
463 and positive values are possible. This and other data types will be supported in future
464 releases. Moreover, CAGEE does not have to analyze whole-genome or even
465 molecular data: it can be applied to any single trait for which the BBM model is
466 appropriate, even morphological traits. One intriguing application of CAGEE could be to
467 suites of morphological traits that are hypothesized to share a common evolutionary

468 rate parameter. If, for instance, there is a shift in body plan along some lineages, then
469 multiple traits may all increase or decrease their rate of evolution at once, and CAGEE
470 can be used to estimate these shared parameters. Even in the context of single-trait
471 analyses, the pruning algorithm has been hailed as a solution for large-scale
472 comparative analyses (Freckleton 2012). Importantly, the number of branches in a
473 rooted, bifurcating tree with n tips is $2n-2$, so that the number of calculations scales
474 linearly with the number of species. This makes the pruning algorithm ideal for
475 comparative datasets with large numbers of taxa (e.g. Hahn et al. 2005; FitzJohn 2012;
476 Hiscott et al. 2016; Caetano and Harmon 2018; Mitov et al. 2020).

477 The analysis of data from a clade of wild tomatoes revealed a possibly
478 unexpected result: the rate of ovule gene expression evolution among self-compatible
479 (SC) species is twice as high as the rate among self-incompatible (SI) species (Table
480 1). This finding is contrary to some prior expectations— informed by research focused
481 on male-female interactions, especially between interacting proteins in the reproductive
482 tract (e.g. Swanson and Vacquier 2002; Clark et al. 2006)— that suggest that lineages
483 might experience slower evolution after transitioning to self-compatibility. However, it is
484 possible that global gene expression levels do not evolve in the same sort of tit-for-tat
485 manner as interacting protein sequences, such that increases/decreases in male-
486 expressed genes are not matched by increases/decreases in interacting female-
487 expressed genes (or vice versa). Alternatively, only a very small subset of genes may
488 evolve in this manner. Indeed, even prior studies comparing protein evolution have
489 failed to find clear evidence of slower global evolutionary rates in more inbreeding
490 species (e.g. Wong 2011). One caveat to the observed rate differences in our data is
491 that underlying gene tree discordance, whether due to incomplete lineage sorting or
492 introgression, can lead to artifactual higher rate estimates (Mendes et al. 2018;
493 Hibbins and Hahn 2021). However, there is in fact less discordance among the SC
494 lineages sampled here (Pease et al. 2016), which is the reverse of the pattern that
495 would be required to explain our results.

496 If not due to underlying bias in our estimates, these findings still raise the
497 question: why is ovule gene expression evolving more rapidly in SC than SI species?
498 One possibility is that this increased rate is due to a relaxation of selection in SC

499 species, possibly because genes involved in male-female interactions are no longer
500 needed. If this were the case, we might expect to see a general decrease in expression
501 levels in SC species; however, there appears to be no consistent directionality to the
502 changes along SC branches (Figure 3, Supplementary Figure 4). Instead, an alternative
503 hypothesis is that transitions to SC involve adaptation to new optima of ovule gene
504 expression, compared to SI species that tend to maintain ancestral optima. For
505 example, transitions to SC might favor greater investment in fewer ovules, because self-
506 compatibility decreases the probability that each ovule within a flower will go
507 unfertilized—an otherwise wasted investment under conditions (like SI) where receiving
508 sufficient compatible pollen to fertilize each ovule is less predictable (Burd et al. 2009).
509 The nature of these new optima might be even more complex, as traits like ovule size
510 and number can vary with multiple reproductive and ecological conditions, and often
511 trade-off with each other (Greenway and Harder 2007). Of the species examined here,
512 for example, two SC lineages (*S. pimpinellifolium*, and *S. lycopersicon*—domesticated
513 tomato) have significantly larger seeds than most of the SI lineages and SC *S. pennellii*
514 (unpubl. data). Indeed, individual genes identified in our GO analysis are known to
515 directly influence ovule and/or seed size in *Solanum* (e.g. *NOR-like1*
516 [SOLYC07G063420.3.1; Han et al, 2014], *GRAS2* [SOLYC07G063940.2.1; Li et al.
517 2018], and *CRY2* [SOLYC09G090100.3.1; Fantini et al. 2019]). Some of our
518 hypotheses could be evaluated with matching gene expression data from other (non-
519 ovule) reproductive tissues. Analyses including pollen in the same SI and SC lineages,
520 and/or data addressing alternative constraints and conditions shaping ovule evolution
521 including ovule size and number (e.g. Mione and Anderson 1992), would be useful in
522 teasing apart these hypotheses.

523

524

525 **Material and Methods**526 *Bounded Brownian motion model of expression evolution*

527 The probability density of expression, $p(x, t)$, at time t for evolutionary
 528 trajectories following a Brownian motion process starting at value x_{t_0} at time t_0 is
 529 governed by the diffusion equation

$$530 \quad \frac{\partial p(x,t)}{\partial t} = \frac{\sigma^2}{2} \frac{\partial^2 p(x,t)}{\partial x^2}, \quad (2)$$

531 with initial condition $p(x, t_0) = \delta(x - x_{t_0})$ where δ is the Dirac delta function. The
 532 reflective boundary condition at $x = x_{\min}$ implies that the probability fluxes into and out
 533 of the boundary are balanced, imposing the boundary condition

$$534 \quad \frac{\partial p(x=x_{\min}, t)}{\partial x} = 0. \quad (3)$$

535 Note that $p(x, t)$ is identical to the transition density $p(x_t | x_{t_0})$.

536 Without the reflecting boundary, $p(x, t) \propto e^{-(x-x_{t_0})^2/2\sigma^2(t-t_0)}$ is a normal
 537 distribution with variance $\sigma^2(t - t_0)$. The variance therefore scales linearly with elapsed
 538 time, $t - t_0$. With the reflecting boundary, $p(x, t)$ is the sum of this spreading normal and
 539 its mirror image centered at $2x_{\min} - x_{t_0}$. The analytical solution to this bounded process
 540 is helpful for understanding the behavior of $p(x, t)$, but is not used in CAGEE. In
 541 anticipation of implementing additional (and possibly more complicated) processes into
 542 CAGEE, we instead solve Eq. (2) numerically using the approach described in Boucher
 543 and Démery (2016). Briefly, the continuous diffusion equation is converted into a matrix
 544 equation by discretizing expression values into N equal bins of width $\delta = \frac{x_{\max} - x_{\min}}{N-1}$.
 545 Following Boucher and Démery (2016), we have used a default $N=200$, but this number
 546 can be set by the user (see Results). This approach gives

$$547 \quad \frac{\partial P(t)}{\partial t} = \frac{\sigma^2}{2\delta^2} M \cdot P(t), \quad (4)$$

548 where $P(t)$ is the vector obtained by discretizing $p(x, t)$ and x_{\max} is the largest
 549 expression value accounted for. The matrix M is tridiagonal with -2 on the diagonal

550 except at the first and last diagonal entries which are -1 . The sub- and supra-diagonal
551 entries are 1 . This equation has the matrix exponential solution

552
$$P(t) = \exp\left(\frac{\sigma^2(t-t_0)}{2\delta^2} M\right), \quad (5)$$

553 which is evaluated by diagonalizing M .

554 *Implementation of CAGEE*

555 CAGEE is written in C++ and is compatible with the C++11 standard. A
556 comprehensive manual and extensive unit tests facilitate further code development and
557 maintenance. CAGEE is organized into modular components. A *clade* class, with
558 references to a parent clade and any number of descendant clades, represents a tree
559 structure, and a *gene_transcript* class represents the expression levels observed in the
560 various species. These two classes comprise the fundamental data structures upon
561 which CAGEE performs its analysis (Supplementary Figure 5).

562 Calculations are carried out by additional classes. The *optimizer* class has the
563 responsibility of determining the σ^2 value with the highest likelihood, by comparing the
564 likelihood of candidate values and searching the likelihood surface using the Nelder-
565 Mead optimization algorithm. The work of computing the likelihood of a given σ^2 value is
566 performed by a subclass of the *model* class, which for now is limited to a single *Base*
567 model (allowing for further development in the future). After appropriate estimated
568 values are found, the *transcript_reconstructor* class builds a possible set of transcript
569 values for the entire tree (Supplementary Figure 5).

570 Performing the likelihood calculations requires extensive matrix operations; it is
571 recommended (though not required) that these be passed off to a specialized library
572 such as Intel's MKL or Nvidia's CUBLAS. If no external library is available, CAGEE will
573 carry out these calculations (slowly) by itself. Creating the diffusion matrix (M) requires
574 calculation of eigenvalues and eigenvectors, and is computationally expensive. This
575 work is performed by the Eigen linear algebra library (<https://eigen.tuxfamily.org>);
576 various internal data structures also take advantage of Eigen classes. To enable faster
577 searching, the matrix for an ancestral state vector of length 200 (the default in CAGEE)

578 has been pre-computed and is included with CAGEE. Users who wish to use vectors of
579 different lengths can specify this as an option.

580 Unit-testing is performed using the Doctest testing framework
581 (<https://github.com/doctest/doctest>). At the time of writing more than 200 unit tests had
582 been created, comprising more than 1200 individual assertions. For complex logging
583 and debugging cases, CAGEE uses the EasyLogging framework
584 (<https://github.com/amrayn/easyloggingpp>). C++ development is always made easier by
585 using the Boost C++ libraries (<https://www.boost.org/>), so we include them as well in
586 CAGEE.

587 *RNA-seq data from wild tomatoes*

588 We briefly describe here the data collected from seven accessions of wild
589 tomatoes (*S. lycopersicum* LA3475, *S. chmielewskii* LA1316, *S. pimpinellifolium*
590 LA1589, *S. habrochaites* LA1777, *S. chilense* LA4117A, *S. pennellii* LA3778, and *S.*
591 *pennellii* LA0716; all accession ID numbers from tgrc.ucdavis.edu). Further details are
592 given in Moyle et al. (2021). Ovule RNA-seq was performed on between one to four
593 (usually three) biological replicates (individual plants) from each accession. Plants were
594 germinated from seed, and cultivated until flowering. For each replicate individual,
595 ovules were dissected from mature, unpollinated flowers, flash frozen, and maintained
596 at -80C until extraction. For each individual, all ovule collections were pooled into a
597 single sample prior to library construction and sequencing on an Illumina HiSeq 2000.
598 Reads were mapped against the tomato reference genome (iTAG 2.4) and the number
599 of reads mapped onto genic regions were estimated with featureCounts (Liao et al.,
600 2014). We normalized the read counts from each library by calculating TPM (transcripts
601 per million; Wagner et al. 2012) and then calculated the mean normalized read counts
602 across all samples (individuals) within each accession. These means per accession
603 were used as input to CAGEE.

604 To construct a species tree for use with CAGEE, we started with the topology
605 given in Pease et al. (2016). Specifically, we used the tree found in the supplementary
606 file Pease_etal_TomatoPhylo_RAxMLConcatTree_no1360_Fig2A.nwk, and pruned it to
607 include only the accessions in our study using the software ETE (Huerta-Cepas et al.

608 2016). Using the “extend” method found in ETE, we converted this tree to ultrametric
609 (same root-to-tip distance for all taxa). Setting the root age to 2.48 million years ago
610 (following Pease et al. 2016), we were able to express all branches in millions of years.
611 Analyses of GO enrichment were carried out using ShinyGO (Ge et al. 2020) with a
612 false discovery rate of 0.05.

613

614

615 **Supplementary Material**

616 Supplementary data are available at .

617

618 **Acknowledgements**

619 We thank Mark Hibbins for assistance with the tomato phylogeny, Matthew Gibson for
620 putting together the tomato gene expression data, and especially Dan Vanderpool for
621 invaluable help in the initial development of CAGEE. Two reviewers provided helpful
622 comments, and Scott Edwards pointed out relevant work that we had previously missed.
623 This work was supported by National Science Foundation grants DEB-1856469 to
624 L.C.M. and DBI-2146866 to M.W.H.

625

626 **Data Availability**

627 Raw reads for each sample library are available at NCBI BioProject PRJNA714065. The
628 CAGEE software is available at <https://github.com/hahnlab/CAGEE>.

629 **References**

630 Ames RM, Money D, Ghatge VP, Whelan S, Lovell SC. 2012. Determining the
631 evolutionary history of gene families. *Bioinformatics* 28:48-55.

632 Beaulieu JM, Jhwueng DC, Boettiger C, O'Meara BC. 2012. Modeling stabilizing
633 selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. *Evolution*
634 66:2369-2383.

635 Bedford T, Hartl DL. 2009. Optimization of gene expression by natural selection.
636 *Proceedings of the National Academy of Sciences* 106:1133-1138.

637 Bedinger PA, Chetelat RT, McClure B, Moyle LC, Rose JK, Stack SM, van der Knaap E,
638 Baek YS, Lopez-Casado G, Covey PA. 2011. Interspecific reproductive barriers in
639 the tomato clade: opportunities to decipher mechanisms of reproductive isolation.
640 *Sexual Plant Reproduction* 24:171-187.

641 Berthelot C, Villar D, Horvath JE, Odom DT, Flicek P. 2018. Complexity and
642 conservation of regulatory landscapes underlie evolutionary resilience of mammalian
643 gene expression. *Nature Ecology & Evolution* 2:152-163.

644 Blake LE, Roux J, Hernando-Herraez I, Banovich NE, Perez RG, Hsiao CJ, Eres I,
645 Cuevas C, Marques-Bonet T, Gilad Y. 2020. A comparison of gene expression and
646 DNA methylation patterns across tissues and species. *Genome Research* 30:250-
647 262.

648 Boucher FC, Démery V. 2016. Inferring bounded evolution in phenotypic characters
649 from phylogenetic comparative data. *Systematic Biology* 65:651-661.

650 Boucher FC, Démery V, Conti E, Harmon LJ, Uyeda J. 2018. A general model for
651 estimating macroevolutionary landscapes. *Systematic Biology* 67:304-319.

652 Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G, Harrigan P, Weier M, Liechti
653 A, Aximu-Petri A, Kircher M, et al. 2011. The evolution of gene expression levels in
654 mammalian organs. *Nature* 478:343-348.

655 Burd M, Ashman T-L, Campbell DR, Dudash MR, Johnston MO, Knight TM, Mazer SJ,
656 Mitchell RJ, Steets JA, Vamosi JC. 2009. Ovule number per flower in a world of
657 unpredictable pollination. *American Journal of Botany* 96:1159-1167.

658 Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: A
659 practical information-theoretic approach. New York: Springer.

660 Caetano DS, Harmon LJ. 2018. Estimating correlated rates of trait evolution with uncertainty.
661 *Systematic Biology* 68:412-429.

662 Catalán A, Briscoe AD, Höhna S. 2019. Drift and directional selection are the
663 evolutionary forces driving gene expression divergence in eye and brain tissue of
664 *Heliconius* butterflies. *Genetics* 213:581-594.

665 Charlesworth D, Wright SI. 2001. Breeding systems and genome evolution. *Current
666 Opinion in Genetics & Development* 11:685-690.

667 Chen J, Swofford R, Johnson J, Cummings BB, Rogel N, Lindblad-Toh K, Haerty W, Di
668 Palma F, Regev A. 2019. A quantitative framework for characterizing the
669 evolutionary history of mammalian gene expression. *Genome Research* 29:53-63.

670 Clark NL, Aagaard JE, Swanson WJ. 2006. Evolution of reproductive proteins from
671 animals and plants. *Reproduction* 131:11-22.

672 Coolon JD, McManus CJ, Stevenson KR, Graveley BR, Wittkopp PJ. 2014. Tempo and
673 mode of regulatory evolution in *Drosophila*. *Genome Research* 24:797-808.

674 Cooper N, Thomas GH, Venditti C, Meade A, Freckleton RP. 2016. A cautionary note
675 on the use of Ornstein Uhlenbeck models in macroevolutionary studies. *Biological
676 Journal of the Linnean Society* 118:64-77.

677 De Bie T, Demuth JP, Cristianini N, Hahn MW. 2006. CAFE: a computational tool for the
678 study of gene family evolution. *Bioinformatics* 22:1269-1271.

679 Dunn CW, Luo X, Wu Z. 2013. Phylogenetic analysis of gene expression. *Integrative
680 and Comparative Biology* 53:847-856.

681 El Taher A, Böhne A, Boileau N, Ronco F, Indermaur A, Widmer L, Salzburger W. 2021.
682 Gene expression dynamics during rapid organismal diversification in African cichlid
683 fishes. *Nature Ecology & Evolution* 5:243-250.

684 Fantini E, Sulli M, Zhang L, Aprea G, Jiménez-Gómez JM, Bendahmane A, Perrotta G,
685 Giuliano G, Facella P. 2018. Pivotal roles of cryptochromes 1a and 2 in tomato
686 development and physiology. *Plant Physiology* 179:732-748.

687 Fay JC, Wittkopp PJ. 2008. Evaluating the role of natural selection in the evolution of
688 gene regulation. *Heredity* 100:191-199.

689 Felsenstein J. 1973. Maximum likelihood and minimum-steps methods for estimating
690 evolutionary trees from data on discrete characters. *Systematic Biology* 22:240-249.

691 FitzJohn RG. 2012. Diversitree: comparative phylogenetic analyses of diversification in
692 R. *Methods in Ecology and Evolution* 3:1084-1092.

693 Freckleton RP. 2012. Fast likelihood calculations for comparative analyses. *Methods in
694 Ecology and Evolution* 3:940-947.

695 Ge SX, Jung D, Yao R. 2020. ShinyGO: a graphical gene-set enrichment tool for
696 animals and plants. *Bioinformatics* 36:2628-2629.

697 Gillespie JH. 1986. Variability of evolutionary rates of DNA. *Genetics* 113:1077-1091.

698 Goldberg EE, Kohn JR, Lande R, Robertson KA, Smith SA, Igić B. 2010. Species
699 selection maintains self-incompatibility. *Science* 330:493-495.

700 Golding G. 1983. Estimates of DNA and protein sequence divergence: an examination
701 of some assumptions. *Molecular Biology and Evolution* 1:125-142.

702 Gossmann TI, Saleh D, Schmid MW, Spence MA, Schmid KJ. 2016. Transcriptomes of
703 plant gametophytes have a higher proportion of rapidly evolving and young genes
704 than sporophytes. *Molecular Biology and Evolution* 33:1669-1678.

705 Gossmann TI, Schmid MW, Grossniklaus U, Schmid KJ. 2014. Selection-driven
706 evolution of sex-biased genes is consistent with sexual selection in *Arabidopsis*
707 *thaliana*. *Molecular Biology and Evolution* 31:574-583.

708 Greenway CA, Harder LD. 2007. Variation in ovule and seed size and associated size–
709 number trade-offs in angiosperms. *American Journal of Botany* 94:840-846.

710 Hahn MW, De Bie T, Stajich JE, Nguyen C, Cristianini N. 2005. Estimating the tempo
711 and mode of gene family evolution from comparative genomic data. *Genome*
712 *Research* 15:1153-1160.

713 Hahn MW, Demuth JP, Han S-G. 2007. Accelerated rate of gene gain and loss in
714 primates. *Genetics* 177:1941-1949.

715 Hahn MW, Nakhleh L. 2016. Irrational exuberance for resolved species trees. *Evolution*
716 70:7-17.

717 Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW. 2013. Estimating gene gain and
718 loss rates in the presence of error in genome assembly and annotation using CAFE
719 3. *Molecular Biology and Evolution* 30:1987-1997.

720 Han QQ, Song YZ, Zhang JY, Liu LF. 2014. Studies on the role of the *S/NAC3* gene in
721 regulating seed development in tomato (*Solanum lycopersicum*). *The Journal of*
722 *Horticultural Science and Biotechnology* 89:423-429.

723 Harrison MC, Mallon EB, Twell D, Hammond RL. 2019. Deleterious mutation
724 accumulation in *Arabidopsis thaliana* pollen genes: a role for a recent relaxation of
725 selection. *Genome Biology and Evolution* 11:1939-1951.

726 Harrison PW, Wright AE, Zimmer F, Dean R, Montgomery SH, Pointer MA, Mank JE.
727 2015. Sexual selection drives evolution and rapid turnover of male gene expression.
728 *Proceedings of the National Academy of Sciences* 112:4393-4398.

729 Hibbins MS, Hahn MW. 2021. The effects of introgression across thousands of
730 quantitative traits revealed by gene expression in wild tomatoes. *PLoS Genetics*
731 17:e1009892.

732 Hill MS, Zande PV, Wittkopp PJ. 2021. Molecular and evolutionary processes
733 generating variation in gene expression. *Nature Reviews Genetics* 22:203-215.

734 Hiscott G, Fox C, Parry M, Bryant D. 2016. Efficient recycled algorithms for quantitative
735 trait models on phylogenies. *Genome Biology and Evolution* 8:1338-1350.

736 Huerta-Cepas J, Serra F, Bork P. 2016. ETE 3: reconstruction, analysis, and
737 visualization of phylogenomic data. *Molecular Biology and Evolution* 33:1635-1638.

738 Igić B, Bohs L, Kohn JR. 2006. Ancient polymorphism reveals unidirectional breeding
739 system shifts. *Proceedings of the National Academy of Sciences* 103:1359-1363.

740 King M-C, Wilson AC. 1975. Evolution at two levels in humans and chimpanzees.
741 *Science* 188:107-116.

742 Landis MJ, Schraiber JG. 2017. Pulsed evolution shaped modern vertebrate body sizes.
743 Proceedings of the National Academy of Sciences 114:13224-13229.

744 Li M, Wang X, Li C, Li H, Zhang J, Ye Z. 2018. Silencing *GRAS2* reduces fruit weight in
745 tomato. Journal of Integrative Plant Biology 60:498-513.

746 Liao Y, Smyth GK, Shi W. 2013. featureCounts: an efficient general purpose program
747 for assigning sequence reads to genomic features. Bioinformatics 30:923-930.

748 Meisel RP, Malone JH, Clark AG. 2012. Disentangling the relationship between sex-
749 biased gene expression and X-linkage. Genome Research 22:1255-1265.

750 Mendes FK, Fuentes-González JA, Schraiber JG, Hahn MW. 2018. A multispecies
751 coalescent model for quantitative traits. eLife 7:e36482.

752 Mendes FK, Vanderpool D, Fulton B, Hahn MW. 2020. CAFE 5 models variation in
753 evolutionary rates among gene families. Bioinformatics 36:5516-5518.

754 Mione T, Anderson GJ. 1992. Pollen-ovule ratios and breeding system evolution in
755 *Solanum* section *Basarthrum* (Solanaceae). American Journal of Botany 79:279-
756 287.

757 Mitov V, Bartoszek K, Asimomitis G, Stadler T. 2020. Fast likelihood calculation for
758 multivariate Gaussian phylogenetic models with shifts. Theoretical Population
759 Biology 131:66-78.

760 Moyle LC, Wu M, Gibson MJ. 2021. Reproductive proteins evolve faster than non-
761 reproductive proteins among *Solanum* species. Frontiers in Plant Science
762 12:635990.

763 O'Meara BC, Ané C, Sanderson MJ, Wainwright PC. 2006. Testing for different rates of
764 continuous trait evolution using likelihood. Evolution 60:922-933.

765 Pease JB, Haak DC, Hahn MW, Moyle LC. 2016. Phylogenomics reveals three sources
766 of adaptive variation during a rapid radiation. PLoS Biology 14:e1002379.

767 Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, FitzJohn RG, Alfaro ME,
768 Harmon LJ. 2014. geiger v2. 0: an expanded suite of methods for fitting
769 macroevolutionary models to phylogenetic trees. Bioinformatics 30:2216-2218.

770 Pennell MW, FitzJohn RG, Cornwell WK, Harmon LJ. 2015. Model adequacy and the
771 macroevolution of angiosperm functional traits. The American Naturalist 186:E33-
772 E50.

773 Price PD, Palmer Droguett DH, Taylor JA, Kim DW, Place ES, Rogers TF, Mank JE,
774 Cooney CR, Wright AE. 2022. Detecting signatures of selection on gene expression.
775 Nature Ecology & Evolution 6:1035-1045.

776 Revell LJ, Harmon LJ. 2022. Phylogenetic Comparative Methods in R: Princeton
777 University Press.

778 Rick CM, Tanksley SD. 1981. Genetic variation in *Solanum pennellii*: Comparisons with
779 two other sympatric tomato species. Plant Systematics and Evolution 139:11-45.

780 Robinson MD, Oshlack A. 2010. A scaling normalization method for differential
781 expression analysis of RNA-seq data. *Genome Biology* 11:R25.

782 Rohlf RV, Harrigan P, Nielsen R. 2014. Modeling gene expression evolution with an
783 extended Ornstein–Uhlenbeck process accounting for within-species variation.
784 *Molecular Biology and Evolution* 31:201-211.

785 Rohlf RV, Nielsen R. 2015. Phylogenetic ANOVA: the expression variance and
786 evolution model for quantitative trait evolution. *Systematic Biology* 64:695-708.

787 Silvestro D, Kostikova A, Litsios G, Pearman PB, Salamin N. 2015. Measurement errors
788 should always be incorporated in phylogenetic comparative analysis. *Methods in
789 Ecology and Evolution* 6:340-346.

790 Somel M, Creely H, Franz H, Mueller U, Lachmann M, Khaitovich P, Pääbo S. 2008.
791 Human and chimpanzee gene expression differences replicated in mice fed different
792 diets. *PLoS ONE* 3:e1504.

793 Swanson WJ, Vacquier VD. 2002. The rapid evolution of reproductive proteins. *Nature
794 Reviews Genetics* 3:137-144.

795 Szövényi P, Ricca M, Hock Z, Shaw JA, Shimizu KK, Wagner A. 2013. Selection is no
796 more efficient in haploid than in diploid life stages of an angiosperm and a moss.
797 *Molecular Biology and Evolution* 30:1929-1939.

798 Tarashansky AJ, Musser JM, Khariton M, Li P, Arendt D, Quake SR, Wang B. 2021.
799 Mapping single-cell atlases throughout Metazoa unravels cell type evolution. *eLife*
800 10:e66747.

801 Vosters SL, Jewell CP, Sherman NA, Einterz F, Blackman BK, Moyle LC. 2014. The
802 timing of molecular and morphological changes underlying reproductive transitions in
803 wild tomatoes (*Solanum* sect. *Lycopersicon*). *Molecular Ecology* 23:1965-1978.

804 Wagner GP, Kin K, Lynch VJ. 2012. Measurement of mRNA abundance using RNA-seq
805 data: RPKM measure is inconsistent among samples. *Theory in Biosciences*
806 131:281-285.

807 Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for
808 transcriptomics. *Nature Reviews Genetics* 10:57-63.

809 Whitehead MR, Lanfear R, Mitchell RJ, Karron JD. 2018. Plant mating systems often
810 vary widely among populations. *Frontiers in Ecology and Evolution* 6:38.

811 Wong A. 2011. The molecular evolution of animal reproductive tract proteins: What
812 have we learned from mating-system comparisons? *International Journal of
813 Evolutionary Biology* 2011:908735.

814 Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA.
815 2003. The evolution of transcriptional regulation in eukaryotes. *Molecular Biology
816 and Evolution* 20:1377-1419.

817 Yang J, Ruan H, Xu W, Gu X. 2019. TreeExp2: an integrated framework for
818 phylogenetic transcriptome analysis. *Genome Biology and Evolution* 11:3276-3282.

819 Yang Z. 1996. Among-site rate variation and its impact on phylogenetic analyses.
820 Trends in Ecology & Evolution 11:367-372.

821

822

823

824 **Figures and Tables**

825 **Figure 1.** Bounded Brownian motion model. An example trait is shown in the bottom
826 graph, evolving along the tree shown above. Although the data input to CAGEE are
827 linear expression levels, internally it logs expression to ensure higher variance among
828 more highly expressed genes. There is also a minimum value, x_{min} , added to all tips.

829

830 **Figure 2.** Accuracy of CAGEE. For five different values of σ^2 we simulated 1000
831 datasets, with each dataset comprised of either 1000 genes or 10000 genes. All genes
832 in a dataset shared the same σ^2 , but their values at the root were drawn independently
833 from the prior. We then provided each simulated dataset to CAGEE in order to infer σ^2 .
834 Each box-and-whisker plot shows the mean (horizontal line), 50% interquartile range
835 (box), 1.5X the interquartile range (vertical lines), and outliers (dots).

836

837 **Figure 3.** Changes in gene expression along the tomato phylogeny. Given the set of
838 relationships among the seven *Solanum* accessions used here, we tested multiple
839 models that had branches assigned as different σ^2 parameters (Table 1). In model A, all
840 branches share σ_1^2 . In model B, all black branches share σ_1^2 , while all red branches
841 share σ_2^2 . In model C, all black branches and the dashed red branch share σ_1^2 , while all
842 solid red branches share σ_2^2 . In model D, all black branches share σ_1^2 , all solid red
843 branches share σ_2^2 , and the dashed red branch is assigned σ_3^2 . Using the results from
844 model D, we inferred the number of genes that had credible increases or decreases in
845 expression level along each branch (results for all changes are shown in Supplementary
846 Figure 4). Numbers are reported as +increases/-decreases for each branch.

847 **Table 1.** Model parameters estimated from the tomato data.
848

Model	Number of rates	-lnL	σ^2_1	σ^2_2	σ^2_3
A	1	67252.4	0.102		
B	2	65883.9	0.074	0.134	
C	2	65124.5	0.075	0.152	
D	3	65108.6	0.077	0.152	0.067

849

850

851 **Supplementary Figures**

852 **Supplementary Figure 1.** The tree used for simulations. The Newick-formatted tree
853 string with branch lengths is:

854 `((sp1:1,sp2:1):1,sp3:2):1,sp4:3):1,((sp5:2,sp6:2):2):1,sp7:5):1,sp8:6)`

855

856 **Supplementary Figure 2.** Accuracy of CAGEE. A) This figure is the same as Figure 2
857 in the main text, but the ancestral state vector has length $N=500$ (Figure 2 uses $N=200$).
858 B) For each of three different simulated values of σ^2 , we randomly removed different
859 amounts of data from an input dataset with 1,000 genes (the tree is the same as in all
860 other simulations). C) For 1,000 genes simulated with $\sigma^2=1$ (dashed vertical line), we
861 ran CAGEE independently on each one to estimate σ^2 . D) We combined three datasets
862 of 1,000 genes each simulated with three different values of σ^2 (we repeated these
863 simulations 10 times). The 10 estimates of σ^2 on the combined datasets were slightly
864 downwardly biased compared to the expected value (dashed horizontal line). Each dot
865 represents each of the 10 estimates, with jitter added for clarity,

866

867 **Supplementary Figure 3.** Trees used for simulations with lineage-specific values of σ^2 .

868 A) All black branches share a rate parameter (σ_1^2), and all red branches share a rate
869 parameter (σ_2^2). This “sigma_tree” is specified in CAGEE with the Newick string:
870 `((sp1:2,sp2:2):2,sp3:2):2,sp4:2):2,((sp5:1,sp6:1):1):1,sp7:1):1,sp8:1)`

871 B) All black branches share a rate parameter (σ_1^2), and all red branches share a rate
872 parameter (σ_2^2). This “sigma_tree” is specified in CAGEE with the Newick string:
873 `((sp1:2,sp2:1):1,sp3:2):1,sp4:1):1,((sp5:1,sp6:2):1):1,sp7:1):1,sp8:1)`

874

875 **Supplementary Figure 4.** Changes in gene expression along the tomato phylogeny.

876 This figure is the same as Figure 3 in the main text, but all increases and decreases are
877 reported, regardless of whether they are “credible”.

878

879 **Supplementary Figure 5.** Component diagram for the CAGEE software.