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Some of the fundamentals of quantum information
science are described, including the concepts of
quantum resources, quantum states and mixedness
of states. The explanations are detailed and include
a combination of basic facts with fully worked
examples, and some more advanced topics. The
principles of quantum information are illustrated
with chemical examples drawn from singlet fission,
photophysics of radicals, molecular excitons, electron
transfer and so on. Suggestions for prospects and
challenges for the field are discussed.

1. Introduction

Quantum information science has become especially
prominent in the past decade. Emerging from funda-
mental developments in our understanding of the
quantum world, applications of quantum science are
poised to change technologies. Concomitantly, resear-
chers across a breadth of fields are interested in
seeking new phenomena that are explained by quantum
mechanics. However, a challenge is that the concepts at
the core of quantum science can be difficult to appreciate
properly. Even entanglement, an iconic property unique
to quantum systems, has subtle and sometimes technical
implications. Entanglement can be defined relatively
easily, but a first understanding tends to open more
questions than it answers.

Owing, in part, to the development of ultrafast
laser experiments that can prepare superpositions and
resolve the evolution of superposition states known
as wavepackets, researchers have been interested in
coherence phenomena in molecular and biological
systems [1]. The field opens many fundamental questions
and issues such as identifying function that arises from
underlying non-classical dynamics. More recently still,
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there has been interest in working out how chemical systems will be useful for quantum
information science and related technologies [2]. To identify opportunities more lucidly, it is
important to appreciate fundamentally what constitutes quantum resources. It is also an open
challenge to describe and identify quantum correlations in complex molecular systems. Ways of
addressing these kinds of problems might be inspired by a physical understanding of the basis of
quantum information.

The goal of the present paper is to give an introductory review of concepts in quantum
information science, illustrated by examples relevant to chemical systems. The paper is not a
review of progress, nor is it a complete technical exposition. Instead, the goal is to explain the
basics with sufficient transparency and physical intuition. Examples of chemical systems are
provided to give context to the intersection of molecular science and quantum information.

More detailed accounts of quantum information can be found in various books and reviews
[3-8]. In a complementary paper [9] we describe the idea of entanglement and qubits, develop
the concept of a general quantum state and touch on the main ideas behind quantum information
itself. In that work, we made an effort to explain what are quantum correlations and how they
differ from classical correlations.

2. Challenges for chemical quantum science

The following challenges motivate the content of this paper:

(a) How can we use entanglement as a resource in complex molecular systems?
Entanglement is a powerful quantum correlation, but it is likely limited to relatively
short length scales in real chemical systems. How can we use it to direct chemical
transformations or photophysics?

(b) How can we use coherence as a resource? There is interesting potential for long-range
coherence based on molecular aggregates or polaritons. Can coherence be exploited to
enable new sensors or to control ultrafast dynamics by correlating remote molecular
components? Such correlations might enhance quantum interference, providing a means
of constructing quantum coherent circuits at the molecular scale [10].

(c) Measuring quantum correlations in complex systems remains a challenge, even if we
were to know details of the relevant quantum state. Can experiments be devised that
reveal evidence for non-classical correlations?

(d) Localized or separated unpaired electron spins in molecules can be harnessed to promote
chemical reactions. Can entanglement of these spins be used to enable ‘quantum-
concerted” reactivity? Can a two-step reaction be more specifically guided to a product
using techniques like teleportation that can direct a sequence of spin correlations among
electrons?

3. Entanglement as a resource

If we are going to develop chemical systems that are relevant for quantum science, technology
or metrology, we need first to articulate: What is a resource for quantum information science?
A framework for devising how to exploit quantum states to enable processes or function is
laid out by quantum resource theories [11]. The ingredients of a quantum resource theory
are free states, free operations and resources. Examples of free states are separable states or
incoherent states—generally states that are readily available. Similarly, free operations are easily
implementable. They map free states to free states. The crucial ingredients are the resources.
Resources include entangled states and coherent states. In the following sections we show
examples of how entanglement can be exploited as a resource.

In the following, we often refer to canonical pure states of two entangled qubits, labelled A
and B, often called the Bell states. We consider each qubit a two-state system, so that qubit A, for
example, can be in state |0)4 or |1) 4. In terms of these basis states for each of the two qubits, we
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can write out the Bell states:

w4 = [ 10041108 + 1)4101] (3.1)
-1 = =100l = 1D4103s] (3:2)
192) = == [01410)8 + )a11s] (33)
and o) = %[|0)A|0 )8~ 11)alDs]. (3.4)

(a) Superdense coding

The following example is taken from Nielsen & Chuang [3]. It illustrates how a quantum resource
(entanglement) can help one party, Alice, to transmit two classical bits of information over a long
distance to a second party, Bob. By exploiting the properties of qubits, Alice can send these two
classical bits (00, 10, 01 or 11) using a single qubit, a protocol known as superdense coding.

A sketch of the procedure is as follows. To start, two qubits are entangled to produce |®).
Alice is given qubit A, while Bob takes qubit B. Alice can now perform a quantum operation (see
below) on her qubit in isolation. She will then send the resulting (single) qubit to Bob. Bob, once
in possession of both qubits, performs a measurement on the entangled pair to read out which
Bell state is encoded. Using a predefined ‘look-up’ table, Bob associates whichever Bell state he
holds with a pair of classical bits. For instance:

v, — 00
v_—01
d, — 10
and o_ —11.

Notice that two qubits are needed to encode two classical bits, we have the same total
information supplied by four Bell states as four classical pair states. But, by making use of
entanglement, Alice can communicate any pair of classical bits by sending only one qubit.

To be more explicit about the quantum operation employed by Alice, we can make use of the
representation of quantum states and operators on the complex matrices. Recall that the initial
entangled state comprising both qubits is

1
9= [ 10041005 + 4/1)5] (35)
Alice is given the qubit labelled A:
lpa) =10)a + 1) (3.6)

that we can represent as the complex-valued vector

My = m . (3.7)

An operator on M4 takes the form of a 2 x 2 matrix that multiples M4, thus mapping it to another
vector in this (two-dimensional complex) Hilbert space. Specifically, Alice uses maps known as
‘quantum gates’. Here is how it works.

To send 00 to Bob, Alice simply applies the identity gate, then the original entangled state ends
up in Bob’s possession. To send 10, Alice applies the quantum NOT gate, X to her qubit:

wlt Y-
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When Bob collects both qubits, he finds he holds ¥ ), which corresponds to 10 in the look-up
table. To send 01, Alice applies the quantum phase-flip gate, Z to her qubit:

acly 22}

thus providing Bob with @_, which corresponds to 01 in the look-up table. To send 11, Alice
applies the sequence of gates ZX (equivalent to 1Y, where Y is the Pauli-Y gate) to her qubit. Bob
will then acquire |¥_). When checking the working, remember that states that differ by an overall
phase are equivalent, so |¥_) and | — ¥_) denote the same state.

(b) Quantum teleportation

Teleportation allows a party, Alice, to transfer a quantum state |y/), to a remote party, Bob, by
operating locally on a shared entangled state. The final read-out by Bob of the teleported qubit is
enabled by Alice sending Bob two classical bits. Here is a summary of the idea, with some detail,
using an example taken from Barnett [6].

Alice and Bob share the state

1
V2
which serves as the ‘quantum channel’. Alice wants to transfer to Bob the state |¢), = «|0), +
BI1)4. To do that, Alice prepares the three-qubit state:

=) = —=[100[1)5 = 11108, (3.10)

L
V2

Alice’s first step is to measure her two qubits in the Bell state basis of those bits. Let us rewrite
equation (3.11) in that basis:

[¥)a ® 9-)ap = [l0)a + Bl1)a] == [100a11)5 — 1)410}] (3.11)

1
[V)a ® W)= EI]‘IL):JA(_MO)B — BIL)B) + ¥4 )aa(—al0)p + BI1)B)

+19_)aa(@l)p + BIO)B) + @1 )aa(ls — BI0)B) | (312)

Clearly, because Alice’s measurement projects onto one of the four basis states (here the Bell
states), there are four equally probable outcomes of Alice’s measurement, |¥_),4, ¥4 )aa, |P—)aa
or |®,),a. Each of these possibilities leaves Bob holding a qubit in one of four distinct states,
(—al0)p — BI1)p), etc. The key is that each of those latter states can be converted to Alice’s original
qubit |/), by the action of one of a set of four operators (the Pauli operators). Alice uses her two
classical bits to tell Bob which operator to apply. Bob performs the operation and now holds
a qubit identical to Alice’s original [y/),. Thus, the idea of teleportation is that a sequence of
operations overlapping on a shared qubit can appear to transmit “instantaneously’ a state.

Wasielewski and co-workers have reported an example of ‘hard-wired’ teleportation of a spin
state by photo-induced electron transfer in a supramolecular system [12]. The hard-wiring refers
to the fact that Alice does not get to tell Bob which Pauli operator to apply, so he defaults to the
unit operation. The qubits are spin states located on molecular fragments and the overall system
comprises three connected molecular fragments, figure 1. The sequence of operations is shown in
the figure. Notice that the order of these operations is a little different than the idealized example
described above.

Alice holds her special qubit that is prepared by the experimenter (the radical). Optical
excitation prepares the entangled state shared by Alice and Bob; the singlet excited state produces
a singlet charge-transfer state by the photo-induced electron transfer reaction. Now, Alice returns
to the ground state by transferring her electron to the radical molecule—however, because the
radical was prepared in a specified spin state to start with, Alice must collapse the singlet charge-
transfer state in such a way that her transferred electron spin pairs with the radical species. This,
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(a) Alice prepares her qubit using a magnetic field and a microwave pulse

o o
//\ 0
=V W
\/ N
o__O
x o
Bob Alice

a|0), + BI1),

A spin doublet state is prepared with orientation
relative to an applied magnetic field: Alice wants
to share this state with Bob.

(b) Photo-induced charge separation entangles Alice and Bob

75 101125 = 14034

The green chromophore is photo-excited to a singlet state,
then spontaneous charge separation produces a singlet state
shared between the red and green chromophores.

(c) Electron transfer from Alice to her qubit teleports the qubit state

a|0)g + Bl
Charge transfer from the green to the blue molecule

leaves Bob holding a double state radical, identical to Alice’s
original qubit.

Figure 1. (a—c) Schematic flow of the operations that teleport a qubit from the right side of the supramolecular complex to the
left side. Adapted from Rugg et al. [12].

in turn, leaves Bob holding a qubit (the doublet hole state) that is identical to the qubit that was
previously hosted by Alice’s radical.

This is a good example of how molecular systems can demonstrate quantum operations.
We see an intuitive physical manifestation of a quantum phenomenon masked as well-studied
supramolecular photophysics. The process that turns a pair of sequential electron transfer
reactions into teleportation is the set-up of the initial state of the unpaired electron on the molecule
labelled R. The teleported state was read out, and thus characterized, using electron paramagnetic
resonance (EPR) spectroscopy. The example shows how radical states will likely be important for
chemical quantum information.

The molecular system also serves an example of how to think about the distance range for
practical teleportation using chemical systems. The range will be limited by decoherence of the
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entangled spins, which becomes difficult to preserve as the molecular fragments get further apart.
That general concept is discussed in a later section.

4, Quantum states

Chemistry focuses on states, which are especially prominent in spectroscopy. We know that
the better resolved a set of states is in a spectrum, then the quantum mechanical origin and
properties of those states are more obvious. For example, when detailed electronic, vibrational
and even rotational levels of a molecule are resolved in specialized gas phase spectroscopies,
then the quantum mechanical description of the molecule is required to quantitatively and
incisively explain the spectrum. Whereas, in solution at ambient temperature, the electronic
absorption spectrum of a solute chromophore is sufficiently broadened by stochastic solute-
solvent interactions that the quantum mechanical levels are mixed and obscured. As a
consequence, the spectrum can be modelled reasonably well using a classical correlation function,
and we find that interchromophore quantum mechanical states and dynamics are unlikely to be
observed.

These well-known examples show that quantum states display clear and robust quantum
properties when their eigenvalues are well resolved in the spectrum of all the states being
measured in the spectral window of interest. Here we explain some pedagogical examples to
provide insight and intuition for how ensemble averaging can diminish the quantum mechanical
nature of a state.

(a) Averaging obscures phase

We perform measurements by projecting a state onto our measuring apparatus. The measurement
is the average over a sequence of outcomes. In the case of a classical system, our ensemble yields
properties of the probability distribution with respect to an appropriate random variable. For
example, the distribution of energy states of a gas gives the probability that a molecule chosen at
random will have a kinetic energy within a certain energy interval.

The challenge for measurements on quantum systems is to construct an analogous map from
the set of states to a probability distribution [13] such that we account for the phase encoded in
superpositions. These states are given by the density matrix p, or density operator [14,15]. The
idea of p is that it provides expectation values of all bounded operators on the relevant Hilbert
space—that is, the results of measurements on our ensemble of quantum systems. This works
because the eigenvalues of p reflect the probability distribution of the states.

The density matrix comprises an average, at the amplitude level, over the distribution of states
that are measured. A key consequence of that average is that quantum correlations disappear
unless the phases of each state in the distribution are more-or-less in lock-step. We can get a sense
of that by considering an explicit example.

The density matrix for a system with a finite number of basis states can be constructed as
follows. We average over a sequence of N measurements, where each measurement gives us a
state | %) for system j in the ensemble:

N
p=>_ pil¥) ¥l (4.1)
j=1

where p; is the probability of measuring |¥j). The density matrix is written in terms of the
expansion of [¥;) in the chosen basis

1) =cijyn +eopr + -+, (4.2)

where ¢;,j are complex coefficients. Then, assuming our measurement solely resolves states j (e.g.
the lowest energy eigenstate or those that carry the oscillator strength), the mn entry of the density
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(a) an eigenstate as a vector (b) effect of disorder on the coefficients

V=10, ,0, T 303+ ¢u0,
/ V= (6‘3, c4)

u= (cp Cz)
weak disorder strong disorder

Figure 2. (a) Coefficients were calculated fora4 x 4 Hamiltonian matrix with off-diagonal couplings according to the nearest-
neighbour coupling model. Random off-sets to the four site energies were added for each copy of the system before each
matrix is diagonalized. The phase of each eigenstate is represented by a double vector that shows direction, not magnitude,
of the coefficient. (b) An ensemble of eigenstates generated with different ratios of electronic couplings to standard deviation
of the distribution of diagonal disorder. Notice that the coefficients fan out in the phase space (constrained by symmetry of the
eigenstate) as disorder dominates over electronic coupling.

matrix is N

Pmn = ZPICmJCZ] (4.3)
j=1

Equation (4.3) shows how we can calculate the density matrix in practice. Considering each
eigenstate |¥j) in our ensemble in turn, we construct its contribution to the density matrix,
multiply by the probability p; and add that to the accumulating ensemble average. If we
consider N eigenstates selected at random from the ensemble, then every p; =1/N. Sometimes
our measurement might probe a specific energy window or interval, so then we only include in
our average those eigenstates whose eigenvalues lie in that window.

The off-diagonal values in the density matrix (written in an appropriate basis) indicate how
well the eigenstate phases are correlated within the ensemble. An example is shown in figure 2,
discussed in more detail in Scholes [16]. Here we consider the single-excitation subspace (not
the complete tensor product space) of four interacting qubits. Further, we focus on the lowest-
energy eigenstate only. The coefficients were calculated for the lowest-energy eigenstate of a 4 x 4
Hamiltonian matrix with nearest-neighbour off-diagonal electronic couplings [17]. Random off-
sets to the four site energies were added for each copy of the system before each matrix was
diagonalized. In figure 2, we show a diagram that depicts the distribution of lowest-energy
eigenstates in the ensemble by plotting the four coefficients as a pair of vectors, u and v. Notice
how u equates the first two coefficients of the eigenstate as (x,y) coordinates, while v does that
for the last two coefficients. Thus, in figure 2b, we can see how the wavefunction coefficients for
the eigenstate corresponding to the lowest energy eigenvalue in an ensemble of wavefunctions
become more loosely locked in phase as the disorder in the frequency of each site becomes
larger—the coefficient vectors fan out because their relative phases lose correlation from one
matrix to the next.

When the phases of the eigenvector coefficients are entirely uncorrelated from one member of
the ensemble to the next, then the off-diagonal part of the density matrix is zero, and the state is
said to be a perfectly mixed state—there is no coherence in this basis. For example, by inspecting
equation (4.3) we can see that if the relative phases of basis states in each |¥}) in the ensemble are
random, so that in the case of real coefficients, cmjc;. are sometimes positive, sometimes negative,
then the off-diagonal values of p vanish once we take the average. You can compute that easily if
you write out the concrete example of the density matrix for a 50-50 mixture of the two Bell states
|¥) and [¥_). The lack of quantum correlations in a perfectly mixed state is independent of the
basis chosen to define p or the measurement. When p is diagonal, its eigenvalues correspond to
the classical probabilities of a measurement returning an expectation value for each of the basis
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states. That is the case because p has unit trace (the sum of its diagonal elements equals 1) and it
is positive semi-definite.

Now, with a sense for what constitutes a quantum state, we can discuss entanglement and
how it differs from classical correlation. The way we usually think about quantum correlations
is by gauging how far from a fully mixed state is the state of interest [18]. That is, we can
compare mixedness of a state, which we will address later in the paper. A deeper issue is that
it is difficult to pinpoint a general state as being entangled. Not being able to detect whether
or not an arbitrary state is entangled is a problem, because we are looking for states with the
property of entanglement. As a starting point, instead we define an entangled state as a state that
is ‘not separable’.

(b) Separable states

A state is separable in the Hilbert space comprising the tensor product of the Hilbert spaces of the
subsystems A and B, H = H4 ® Hp if it can be written [19,20]

N
p=Y pir] ®p’. (4.4)
i=1

If two subsystems, A and B, are entangled, then we cannot construct the composite state using
only what we know about the subsystems separately, unlike separable states. This is because the
superpositions of product states introduce non-additive correlations into the quantum probability
distribution that are encoded in the density matrix of the composite system, but hidden to
measurements performed on each subsystem separately.

The concept of separable versus non-separable states is explained by some examples. The
general procedure we will use in the examples is as follows. Consider two arbitrary qubits, ¥4
and yp. Let us say we know the density matrix p for the composite system. How can we find out
if A and B are separable or entangled? Our approach is to see if p satisfies equation (4.4), in which
case it is separable. To do that, we perform a sequence of measurements on the qubit A, and find

its density matrix to be
CA d A
= , 45
PA [ 4, C:J (4.5)

where cy4, etc., are values in the real or complex field. We see from p4 that 4 is sometimes in the
state |0) 4, sometimes in |1) 4 and sometimes in the superposition of those states. We do the same

for B, to find
CB dB
= . 4.
PB [ ) C}J (4.6)

Now evaluate pg ® pp, noting that the result has the form of a matrix of matrices, thus giving the
result

CACB CAdB dACB dAdB
cady  cacy  dadg  dacg

PA ® pp = (4.7)

d;‘CB d;‘dB quCB qudB
!’ g/ [y /! /A
dydy  dycg  chdp e

In our purely academic setting we can ask, does this predicted density matrix match the p we
measured for the composite system? If so, then the qubits are separable.

The first example is very simple. We perform a sequence of measurements on the product state
of our composite system comprising the qubits A and B. We find that 25% of the time we measure
|0)410)B, 25% of the time we measure |1)4]0)p, 25% of the time we measure |0)4|1)p and 25% of
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the time we measure |1) 4|1)g. The density matrix is diagonal, with values of p;; = 1/4. We write it
with rows and columns indexed as |0)4]0)g, [0)a|1)5, [1)410)B, [1)4]1)5:

1
P 000
0 7 0 O
= = 4 4.8
PAB=PA®PBE= | 1 (4.8)
00 0 %

This is a fully mixed (classical) state which, of course, is separable.

It is not so straightforward to display more general examples. Peres [19] devised a clever
technique to write a guaranteed mixed state, and this provides a good model for us. Consider a
pure singlet state (|&_)). This singlet state will make up a fraction x of our mixed state, while the
remaining (1 — x) fraction is a ‘random fraction’, comprising an equal admixture of the singlet and
three triplet states to produce a fully mixed fraction of the state. The random fraction contributes
a value of (1 — x)/4 to each diagonal element of ppixeqd:

2 9 0 0
0 (1+x) _x 0
4 2
Pmixed = (4.9)
(1+x)
o -3 @2 9
1-x)
0 0 o L2

If we consider ppixeq With x = 0, then the state is fully mixed, by design, and the density matrix
is diagonal, like the previous example. If x =1 the state should not be separable. Indeed, there is
obviously no way to write it as prescribed by equation (4.7) because we would require either
ca =0or cg =0 to set the first (top left) diagonal element to zero. But that contradicts that fact that
the middle two diagonal elements are both non-zero. It is known [19], see appendix A, that this
state is separable only if x < %, defining a cross-over between these extreme cases of separability
and non-separability.

(c) Classical correlations

To start, let us write out the density matrix for the product state of our two qubits, A and B in the
Hilbert space H a5 =Ha @ Hp, using the same basis as above, assuming no correlations at all.
In other words, we find the subsystem A to be in the state |0) 4 with probability p4 and the state
|1) o with probability g4 =1 — pa, similarly for B. Further, joint measurements find no correlations
between the state of A and B. Thus, the resulting separable, fully mixed state is

paps 0 0 0
0 PAGB 0 0
0 0 JAPB 0
0 0 0 qAqB

PAB = PA & PB = (4.10)

Now let us add a strong classical correlation, whereby if we measure qubit A to be in the state
|0) 4, then qubit B is certain to be in the state |1)p, whereas if qubit A is found to be in the state
[1)a, then qubit B is certain to be in the state |0)p. Despite the strong correlation between the
measured outcomes on A and B—similar to outcomes of related measurements on the Bell states—
the density matrix remains separable, and completely mixed. All that changes is that p4 =¢p and
ga = pg, so that

PAB = PA ® pB = (4.11)

cooo
o oo
oSvo o
oo oo

Thus, as anticipated above, the quantum correlations, like entanglement, defy explanation by
classical correlations. Moreover, it is clear now how the quantum correlations come hand-in-hand
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with classical-like correlations. That is, classical correlations like those evidenced in equation
(4.11) are present, together with quantum correlations, in equation (4.9) with x = 1. Physically, this
is the same idea as interference, like seen in the double slit experiment. First-order interference is
insufficient evidence for uniquely quantum correlations, even though it demonstrates wave-like
properties.

There are many examples of classical correlations exhibited by chemical systems. These include
synchronization produced by feedback loops, oscillating reactions, or any switched system under
kinetic control. Although these are interesting phenomena, they are not directly relevant for
quantum information science.

(d) Mixedness of quantum states

It is sometimes helpful to compare how mixed one state is compared with another. As a basic
introduction to this idea, here we examine a quantity known as purity, computed as Tr p?.

We have explained in Wu & Scholes [9] that the set of density matrices is a convex set, where
the pure states are the extreme points in the set. That is, a state is a pure state if and only if it
cannot be expressed as a linear combination of other states in the set, but with the coefficients
constrained to the interval [0, 1]. Moreover, a density matrix is a pure state if and only if Tr p?=1,
where Tr means trace.

To illustrate these points, we can use the Peres [19] state again. Let us compare the density
matrices and Tr p? for the pure singlet (opure) and pmixed-

0 0 0 0
o L 1o
2 2
Ppure = 1 1 (4.12)
0 © 0 0
and it is easily computed that Tr p%ure = 1. Whereas, pmixed, defined in equation (4.9), gives
A 0 0 O
0 B C O
2
Tr ppixed = 1T o c B ol (4.13)
0 0 0 A
where
_(1—-x)? C(14x?  o? —x—x?
A_T' B—T—l—z and C_T, (4.14)

then Tr ,oKzn ixed = 2A + 2B <1, with equality holding only if x =1, that is, the state is a pure singlet
state. Notice that when x =0, Tr prznix od = %. In general, a fully mixed state of a density matrix of
dimension 7 has Tr prznixed =1/n.

The quantity Tr p? is called the purity of a state because it is a measure of mixedness. We end
this section with some explanation of how it works; that is, why Tr p? <1, with equality only
when p is a pure state. The result is based on Kadison’s inequality [21], which states that for a

positive and unital map ¢, then for every Hermitian matrix A
H(A) < (A7), (415)

Now, take the map to be ¢ = (1/n) Tr. A unital map means that it maps the unit to the unit, ¢(I) =1.
To ensure this condition for TrI,, where I, is the n x n unit matrix, we need the prefactor 1/n.
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By the spectral theorem, the spectral decomposition of A is given in terms of its n eigenvalues A;
and the projection operators Py = o Moy, where v; are the eigenvectors of A. Thus [22],

A= APy 4+ APy, (4.16)

and

AZ=33P;, 4+ -+ 2P, (4.17)

where we used the fact that projection operators are idempotent (P = P?). For a finite-dimensional
system, we can see that A% <A1, A% <2 and so on, because each 2; <1. So that }_ Ajz <> iA=L
More generally, it is evident that

o= Y () @1s)
and
A = 3 2P (4.19)

and for our map ¢ = (1/n) Tr with A identified with p, we see that > 2j=1Dby definition of p and
the limiting cases of )»]2 are n x (1/n?) for a fully mixed state and unity for a pure state by the
normalization of the wavefunction. Hence

1 2 9
(f Tr p> < - Trp? (4.20)
n n

because we found that ((1/1) Tr p)> = 1/n and (1/n) Tr p? can take values in the range [1/n2,1/n),
where [- - - ] means a closed interval.

Now, because we have just proven that Trp <nTr p2, and we established that Tr p2 can only
take values in the interval [1/n, 1], then it follows that

Trp?<Trp=1. (4.21)

A final point to note is that Tr p2 is a useful gauge of the mixedness of a state, and because it
provides a partial ordering on density matrices, it can compare mixedness. However, it cannot
compare the mixedness of density matrices that have different dimension. For example, if we
randomly generate molecular aggregates containing different numbers of molecules, we cannot
use Tr p? to compare the mixedness of these systems. You can see this immediately by comparing
2 x 2 and 3 x 3 fully mixed states, which have Tr p? values of 1/2 and 1/3, respectively.

Instead of purity, it is more generally useful to use a measure such as von Neumann entropy,
defined with respect to the density matrix for state A as:

S(A) = —Tr(pa log, pa)- 4.22)

Noting that we use logarithm to base 2, then the units of entropy are ‘bits’. A pure state has S=0,
while a mixed state has a von Neumann entropy less than or equal to the classical (Shannon)
entropy. We discuss entropy in [9] and see also [23].

(e) Delocalization versus mixing in molecular excitons

Often we need the entire state space to perform quantum processing, like computing. However,
that can be impractical for chemical systems because the states tend to be organized on an energy
‘ladder’. For example, double-excitations of molecular excitons are higher in energy than the
single-excitation subspace. The main problem is that these higher excitation subspaces are short-
lived. If we populate them, say by optical absorption, they decay rapidly to the single-excitation
states. Nevertheless, these single-excitation states alone can be a useful resource. Coherent states,
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Figure 3. (a) The absorption spectrum of a single molecular chromophore in solution (left) compared with a dimer constructed
so that the electronic coupling exceeds the line broadening [30]. Note the splitting of the spectral band (by twice the electronic
coupling) to form the two excitonic eigenstates. (b) Absorption spectra of rigidly linked dinaphthyl molecules DN-2 (black line),
DN-4 (red line) and DN-6 (aqua line), where nin DN-nindicates the number of bonds spanning the norbornane bridge, compared
with the model chromophore N-2 (black dotted line). Adapted from Scholes et al. [31].

that include excitons, are potentially useful because they provide a resource for allowing quantum
operations [23-25].

Molecular excitons are examples of coherent states that have been widely explored in the
chemical context. Molecular excitons are collective electronic states that span several molecules
[26-28]. The idea is that an excited state molecule couples to a nearby ground state molecule
by a resonant interaction between transition densities, often well-approximated as the resonant
interaction between transition dipoles [29]. The interaction produces new eigenstates for the
electronic excited states of the pair of molecules, as explained in figure 3. The excitonic
delocalization produces entangled states in the single-excitation manifold, which in the case of
a dimer (two interacting molecules) are the Bell States ¥y and ¥_.

Excitonic delocalization is not limited to span only two molecules, but may extend over
several molecules, at least, if the electronic coupling is large enough compared with spectral
line broadening. The obvious question arises, can we design chemical systems that are more
resistant to this decoherence that localizes the state? If so, what are possible design strategies? One
obvious way forward is simply to design systems where the molecules interact more strongly. The
approach works to some extent, but still allows only relatively short coherence lengths [32].

Anidea we explored recently is to exploit emergent states to ensure molecular excitons become
more robust to decoherence as they become larger (i.e. comprise more coupled molecules) [16].
The concept is illustrated by some model calculations based on a procedure where we average
over site disorder (a distribution of molecular transition energies) in the molecular exciton
Hamiltonian to produce density matrices. We calculate the spectrum of the density of excited
states by ensemble averaging over the site energy offsets (¢;). To calculate these averages, a form
of random matrix theory is used. Random matrix theory for molecular excitons [16,17] is a simple
way to calculate ensemble properties of a disordered system.

Examples of calculations produced by the method are shown in figure 4. The properties
of various connectivities between absorbing molecules, or sites, are represented by graphs.
The nodes of a graph denote the molecules as two-level systems (or qubits), while the edges
indicate pairwise electronic couplings. In figure 4a—c, we compare three kinds of graphs—nearest
neighbour, star, circulant—and graphs comprising 17 or 85 nodes (molecules). The density of
excited states are plotted, see Scholes [16] for details. We focus on the state with the lowest
eigenvalue, indicated by the arrow.

In the case of nearest neighbour coupling, the von Neumann entropy increases as the number
of molecules increases, and the delocalization length of the exciton decreases. Both these factors
are consistent with an increase in mixedness of the state for the larger system. The reason for
that is the eigenvalues are constrained to lie within the strict bound, relative to zero mean,
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Figure 4. (a) lllustrations of the nearest-neighbour, star and circulant graphs. (b) Comparison of the density of excited states
and coherence metrics for nearest-neighbour, star and circulant graphs for systems containing 17 molecules. (c) As for part b,
but for 85 molecules. (d) Predictions of von Neumann entropies for the lowest eigenstates of disordered systems comprising
various numbers of molecules. The entropy remains low for the systems that exhibit an emergent state. Adapted from
Scholes [16].

[-2V,2V], where V is the nearest-neighbour electronic coupling. By contrast, notice how the
lowest eigenstate in the cases of the star and circulant graphs splits away from the other states,
and its separation gets larger when there are more molecules in the system. That state therefore is
more resilient to mixing with the other eigenstates, and its mixedness consequently decreases as
the system becomes larger.

These remarkable structures show emergent properties. That is, at some threshold, an
eigenvalue splits always from the main density of states, and that splitting increases as the system
size increases. Therefore, counterintuitively, larger systems become more robust. It seems that
these kinds of structures should be targets for large systems that retain quantum properties
in the lowest eigenstate. Figure 4d compares the von Neumann entropy with the classical
information expected for a system of various sizes. Notice how some graphs scale with the
classical information, these states are strongly mixed. Whereas some graphs, like the circulant
and star (among others) stabilize with size. See also that the classical information is a strict upper
bound for the quantum information measured by the von Neumann information.
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5. A chemical perspective of entanglement

We have seen that the state of an entangled system cannot be decomposed into a product of
states assigned to the subsystems, that is, states living exclusively and independently in each
qubit’s Hilbert space. The form of the superpositions in an entangled state enables new ways to
correlate the states of the subsystems, which are not possible for classical systems. The correlations
in quantum systems are richer than classical wave superpositions or interferences. A main
advantage of the quantum systems is that it takes only a linear amount of classical resources
to construct an exponentially large superposition. The way to think about this fact is that in a
classical superposition we need to control each bit independently. But for a quantum system, we
leverage the tensor product space to provide a set of ‘pre-correlated” product states that serve as
building blocks from which we can produce the superpositions. We only need to lock the product
basis states into some phase relationship, not every qubit within each product state.

Here we aim to provide a few select examples to illustrate how and where quantum
information science intersects chemical science. It is not a review, and many other relevant,
wonderful examples have been reported that are not included here. The reader is urged to seek
them out in the literature. The goal for the present paper is to make a few succinct points using
the examples.

(a) Spin eigenstates and singlet fission

A canonical molecular example of states exhibiting quantum correlations is spin eigenstates.
In particular, the four spin eigenstates of a two-electron, two-orbital system—the singlet and
three triplet states—are equivalent to the four Bell states. Eigenstates comprising more than two-
electrons and orbitals provide a rich variety of states that are probably non-separable. The states
produced by a process known as ‘singlet fission” are a good example of such states. The states
relevant for singlet fission have a clear physical attribution, which we describe below to illustrate
physically how an entangled state can become approximately separable through mixing [33].

Singlet fission is a process where an initial singlet photoexcitation splits into a four-electron,
four-orbital singlet excited state shared across two molecules [34], figure 5a. The state thus formed
is called the correlated triplet pair. It serves as a good example for how to think about spin
correlation that entangles two molecules. The spin eigenfunction of the correlated triplet pair
state is given by [33,36,39]

1
V3
where the ‘spin up” and ‘spin down’ states are indicated as « and g, respectively. Each product is
written in a simple form, but it represents the Slater determinant. Note that the key point is we
cannot associate any electron to a specific molecule.

The overall entanglement arises physically because the electrons are somewhat delocalized
across the molecules (the relevant orbitals overlap) and we cannot distinguish which electrons
are associated with which molecule. Our chemical intuition for the correlated triplet pair state is
that it comprises two triplet states, one located on each molecule, but with the spins correlated so
the overall spin is a singlet. Following this intuitive prescription, if we insist that two electrons are
associated with molecule A and the other two electrons with molecule B, then the entanglement
across the molecules is destroyed because we can factorize the state into a product of two local
states. To show that, let us make the approximation and simplify equation (5.1) by forcing
the first two electrons to be associated with molecule A and the second two with molecule B.
The state becomes a linear combination of products of local triplet states

1
1X1) = [Iaaﬁﬂ) + |Bpaa) — E(Iaﬂaﬂ) +|Baap) + appa) + Iﬁaﬁa))], (5.1)

1
1X1) ~ = laa)4lBB)5 + 1B) aloca)s — 5 (1eB) + 1) , (1B) + Ber) - (5.2)

1
V3
This association of groups of electrons to specific molecules is a reasonable approximation
when the molecules interact weakly and decoherence has localized the state. A formal approach
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Figure 5. (a) Schematic of the different singlet fission intermediates and singlet exciton fission energy level diagram. Adapted
with permission from [35]. Copyright 2016 American Chemical Society. (b) Energy spacing of the lowest-lying correlated pair
levels of TIPS-pentacene dimers estimated using DMRG electronic structure calculations. Adapted with permission from [36]
for details. Copyright 2020 American Chemical Society. (c) Comparison of time-resolved ESR spectra recorded at 300 K (left) and
10K (right) of equilibrated correlated pair states in TIPS-tetracene. The new lineshape seen at 10 K is assigned to the quintet
correlated pair states. Adapted from [37] based on data at doi:10.17863/CAM.1634. (d) Kinetic scheme elucidated from transient
absorption spectroscopic studies of TIPS-pentacene films that detected separation of the correlated triplet pair by decay of a
spectral signature assigned to the closely separated pair state. Adapted with permission from [38]. Copyright 2018 American
Chemical Society.

of electron groups was proposed by McWeeny [40,41], but the relationship of that approximation
to loss of quantum correlations spanning the electron groups has not been much explored.

Entanglement across the triplet pair state has been of interest. Researchers have asked how
long it lasts, with the answer being many nanoseconds [35,38,42]. The overall-singlet correlated
triplet pair is the lowest energy state, but lying close above it in energy are overall-triplet
correlated pair states and, above those states, the overall-quintet correlated pair states [36,43,44].
The decoherence mechanism is dominantly population relaxation to these other correlated pair
state levels. That equilibration is especially favoured at larger intermolecular separations because
the exchange splitting diminishes and all these nine states become closely spaced. Quantum
chemical calculations give an estimate of the magnitude of the energy separations between the
states [36], figure 5b.

Evidence for the equilibration among the states at 300ns after production of the correlated
triplet pair has been ascertained from electron spin resonance (ESR) spectroscopy [37]. For
example, figure 5c shows that at low temperature the ESR spectrum of the quintet states
is comparable in amplitude with that of the triplet correlated pair states [37]. Equilibration
among these states produces a mixed state, thereby lessening the entanglement. This is an
important observation for quantum information from the chemical perspective: as the separation
between molecular subsystems increases, the states become more closely spaced, facilitating
thermalization of the population, and thus it becomes difficult to preserve entanglement.
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Figure 6. (a) Multi-qubit system hosted in a molecular framework. The molecule contains three individually addressable,
weakly interacting, spin centres: Cu(ll), a Cr;Ni ring and a nitroxide group, which are circled for clarity. See Rogers et al. [56].
Free to read and use from: [56]. Copyright 2022—The Authors. Angewandte Chemie International Edition published by Wiley-
VCH GmbH. (b) Summary of the electronic excited states and photophysical decay pathways for Ni(ll) aryl halide complexes.
Adapted with permission from: [64]. Copyright 2018 American Chemical Society. (c) Structures of a series of vanadyl complexes
used to study electron spin decoherence. The spin qubit is located on the vanadium centre, as indicated. Decoherence is caused,
predominantly, by coupling to a ‘bath’ of spin-active protons positioned at various distances from the qubit. EPR spectroscopy
showed how the spin decoherence can be controlled by the distance between the qubit and the spin bath. Adapted with
permission from [65]. Copyright 2017 American Chemical Society.

Other questions in the field concern how to detect and exploit the entanglement produced
by singlet-fission [33,45-50]. Good evidence that the correlated triplet pair state is entangled
across two (or more) molecules is the detection of that totally symmetric double-excitation state
in photoluminescence spectroscopy [51] together with the absence of phosphorescence emission
from either molecule in the pair.

The separation of the correlated triplet pair state in molecular films has been evidenced in
various experiments. It leads to increased distance of entanglement, but it is likely that this
also expedites mixing of the state, and loss of entanglement. The manifold of spin states is
compressed as the triplet pair becomes more separated, which allows for more effective thermal
equilibration and mixing. The correlations ensured by entanglement mean that the population
must evolve ‘state to state’; the local triplet states do not move independently, and therefore
there may be interesting, unexplored, correlations connected with migration of the triplet pair.
Experiments have shown that individual triplet states can be ‘harvested” from the correlated
triplet pair by energy transfer [52], but we do not know whether the harvested triplet excitation
remains entangled with its partner. Future work may identify interesting correlations or functions
involving the triplet pair state that arise because of entanglement.

(b) Spinsin molecules for entanglement

There is good evidence that molecules incorporating unpaired electrons in the ground state,
radicals, will serve as interesting resources for quantum processes and qubits [2,53-56]. The
teleportation example described earlier is a case in point, showing how spins can be controlled
and read out using EPR methods. New work is revealing a fascinating array of stable radical-
containing molecules that can be addressed optically [57-63]. In one series of papers [61-63], it has
been established that a radical, an unpaired electron serving as a qubit, can interact and entangle
with further unpaired spins that are produced upon photoexcitation. The spins exchange-
couple with the original spin qubit. In other work [56], a team of researchers synthesized a
molecular system serving as a multi-qubit framework. The molecule contains three individually
addressable, weakly interacting, spin centres. EPR techniques, again, enable the individual spin
qubits to be prepared and measured, figure 6a.

Photoswitching and photo-activating radical species can be a useful resource for molecular-
scale quantum information systems. However, there are chemical challenges that need further
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study. For example, the excited electronic states of radicals have been found to be short-lived,
in the range of tens of picoseconds [66,67]. In addition, there are many desirable molecules
that incorporate transition metals, where the manifold of excited electronic states is complex
and initially photo-excited states relax quickly to lower-lying states, figure 6b [64]. An approach
for suppressing ultrafast relaxation among excited states is to engineer molecular rigidity into
cage-like ligand shells [68].

A topic of importance is how long superposition states involving radical species in chemical
systems can survive. Freedman and co-workers designed a series of molecules where a spin qubit
is located on a vanadium atom, and a nuclear-spin ‘bath’ is incorporated in a molecular fragment
rich in H atoms that is positioned at various distances from the qubit using spacer ‘arms’ [65],
figure 6¢c. The main result of the work is that when the nuclear spin bath is positioned within a
critical radius from the vanadium centre, an abrupt jump in spin coherence time is observed. The
results show that within this critical radius, the bath becomes part of the ‘system” and no longer
exerts a decohering effect.

(c) Charge separation

The separation of charges, an electron and hole, from a photo-excited state has been extensively
studied. When the electron and hole remain closely separated, they are said to be ‘bound’,
meaning that they occupy a state—the charge-separated (CS) state. The initial spin eigenstate
of the CS state is the same as that of the photo-excited state, often a singlet state and the
spins are thus entangled. However, the exchange interaction that splits the singlet and triplet
spin manifolds [26] gets markedly smaller as the charges are more separated—because the
relevant integral depends on electron-hole overlap. Now, when the singlet and triplet states are
closely spaced, the rate of equilibration among the states increases, so the spin state becomes
mixed.

A good example of how the mixing of the spin state can be exploited is the concept of a
magnetic field sensor, implicated in avian navigation. It is clearly explained by the ‘chemical
compass’ [69]. The principle is to detect properties of a magnetic field through its influence on
the singlet-triplet mixing, figure 7a. The strategy is to compare the rate of charge separation
with the rate of recombination to the initial (singlet) state. At equilibrium, in the absence of
mixing, the ratio of rates will obey detailed balance. However, mixing with the triplet states
blocks the recombination, thus changing the ratio of rates from that expected by detailed balance.
Thus the mixing of the states, which is influenced by an external magnetic field, enables a
detector that works based on quantum principles. Interestingly, this example shows that mixing
of quantum states is not always a bad thing. The chemical compass described by Maeda et al. [69]
demonstrates this principle by separating the charges to molecular fragments in a supramolecular
triad, depicted in figure 7a.

The diminishment of the exchange interaction, and therefore singlet-triplet splitting, with
distance, also affects how free charges are generated in organic semiconductors. When the
electron and hole separate, but remain close, they collectively comprise the charge transfer state,
also termed the charge-transfer exciton, figure 7b. A key characteristic of the state is that it can be
a pure spin eigenstate, and the spins are entangled. The entanglement goes hand-in-hand with
the usual description of the state as comprising a bound electron-hole pair. Just like in the example
of the chemical compass, the charge-transfer exciton is more likely to recombine to the locally
excited state or the ground state when it is a less mixed state.

When the electron and hole are more remote from each other, then their collective state rapidly
becomes mixed because the singlet and triplet charge transfer states are very close in energy—
the exchange splitting decreases sharply with distance between the electron and hole. When the
state is fully mixed, the charge carriers are independent, and they are considered free, or mobile,
charges. This provides an interpretation of the established photophysics of charge separation in
organic semiconductors [70], but with the additional concept of entanglement among the charge
carriers, figure 7b. There is a correlation between the concept of electron-hole ‘binding’ and the
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Figure 7. (a) Schematic of the reaction scheme that demonstrates the idea of the ‘chemical compass’ implicated in avian
navigation. The supramolecular system comprises three fragments. After the initial charge-separation steps produce a singlet
state, a mixed state of the radical pair gradually forms as the population equilibrates among the singlet and triplet states. This,
in turn, inhibits back electron transfer. See, for example, Maeda et al. [69]. (b) A related scheme for the dynamics of charge
carrier formation in a donor—acceptor blend of organic semiconductors. The acceptor molecules are shaded grey. This scheme
illustrates how mixedness goes hand-in-hand with binding of the electron-hole pair, finally leading to formation of the free
charge carriers, that comprise a fully mixed state. See, for example, Rao et al. [70] for specific background information.

propensity of the state to be non-separable, which is consistent with the concept of electron groups
discussed above. In turn, weakly bound electron-hole pairs comprise a strongly mixed state.
When the electron and hole are unbound, the associated electron groups are distinct, meaning
that the electrons are distinguishably associated with one group or the other. That necessarily
means that there is no exchange interaction because the Slater determinants are expanded only
for the basis functions within each group, then the overall spin eigenstate is a product of spin
eigenstates of each group. For example, let us label the electron occupying the highest occupied
molecular orbital of molecule A (the electron donor) as a. We label the electrons occupying the
highest occupied molecular orbital of molecule B (the electron donor) as b, and the electron in the
lowest unoccupied orbital &'. Then the electronic states of the charge-transfer exciton are [71]:

WByer = \%(lab?fﬁl F |abb'b|) (5.3)

Swer = |abb' b (5.4)

and Swer = |abb'b), (5.5)
where |---| means Slater determinant. However, for the fully mixed case, the electrons are

grouped into two doublet states, one associated with molecule A and one group with B. The
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state comprises a statistical mixture of each of the four distinct product states comprising up or
down spin of group A and up or down spin of group B. One of these four configurations is

YCT mixed = 14| |bb'b| . (5.6)
group A group B

The way that entanglement can be a characteristic of bound carrier pairs and mixedness is
a trait of mobile carriers that might be worth exploring further in future work. For example,
experiments have shown how a triplet intermolecular radical pair state can be produced in
solution, and subsequently the ions have been observed to diffuse apart [72]. Are these separated
charge-carrying molecules, in ambient temperature solvent, entangled?

(d) Measuring entanglement

These examples inspire the need to be able to detect entanglement so that the ideas can be tested
by experiments. Unfortunately, how to accomplish such measurements on arbitrary quantum
states in complex systems remains an open problem. The difficulties are evident by considering
how hard it is even to analyse an arbitrary density matrix, which was part of the motivation for
going through that process in the preceding sections. A likely way forward will be to devise a
witness, or sequence of witnesses, that will allow a subset of quantum correlations in the relevant
state space to detected. For an example and pertinent discussion, see Sifain et al. [73].

6. Conclusion

We hope that by revisiting some fundamentals of quantum information science, the reader will
be inspired to develop new examples where quantum phenomena, such as entanglement, are
exploited on the molecular scale. By considering the few chemical examples highlighted in the
present paper, it is evident that the immense structural and electronic diversity of molecular
systems will be the basis for interesting quantum effects. Molecules can host and organize spins
quite precisely on the nanoscale. Many of these systems can also be switched by optical excitation.
Excited states can also be readily delocalized across molecules.

Identification of spin eigenstates of molecular systems to entangled states allows connections
to be made readily between processes used in quantum information systems, allowing concrete
connections between the fields. Establishing these links also helps to reveal challenges facing
the application of molecular systems in quantum science. Entanglement can often be robust
when the spin eigenstates are well separated in energy, for instance the singlet and triplet
states of aromatic organic molecules [26] are separated by energies of the order of 1eV, and
singlet to triplet intersystem crossing happens on the nanosecond timescale. However, as the
molecular subsystems become more separated [69], or decoupled [74], the singlet-triplet splitting
diminishes, allowing population to equilibrate faster among the spin eigenstates, thus producing
a mixed state. This is a factor to consider, and address, when designing protocols where the
subsystems are entangled, then separated.

In other words, real systems based on molecules can serve as viable and interesting qubits, but
the preservation of entanglement across the molecular subsystems becomes more challenging as
the subsystems are separated. At the heart of the matter is the fact that the energy separation
between relevant states becomes compressed. That is caused by reduction of the exchange
interaction among electrons, which raises the interesting idea that entanglement of electron spins
requires the indistinguishability of the electrons. That is, the electron density must overlap across
the molecular subsystems.
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Appendix A. Positive maps and the Peres separability condition

We introduce here a way to identify quantum correlations by examining how a state transforms
under positive linear maps. This is a somewhat specialized topic, but gives insight into how
entangled quantum states get ‘messed up’ by certain maps that have no effect on separable states.
Thus the topic gives a deeper and potentially more rigorous viewpoint on entanglement from the
states perspective—that is, from the properties of the bounded operators on the Hilbert space,
the C*-algebra, rather than the states of the Hilbert space itself. The presentation is only partially
rigorous and complete so as to communicate the main, relevant ideas.

We will first establish a little background relevant to the theory of algebra of operators on
Hilbert space [75]. To start, note that each element A in the set of linear operators B(H) on the
Hilbert space H can be represented by an n x n matrix with complex entries. Positivity is an
important property of density operators, and p therefore is found in the positive cone of B(7). We
say that A is positive if [22]

(x,Ax) >0 forallxeH, (A1)

where the inner product is conjugate linear in the first variable (i.e. the regular physics
convention).
There are various conditions for a matrix to be positive, [22] which include:

(i) A is positive if and only if it is Hermitian (that is, A =A*) and all its eigenvalues are
non-negative.
(ii) A is positive if and only if A = B*B for some matrix B.
(iii) A is positive if and only if A = B2 for some matrix B. We write B=A1/2,

Now we can define a positive map. A linear map ¢ : M, — M is said to be a positive map if ¢(A) > 0
whenever A is positive. Note that M, means the set of all n x n matrices. The map we examined
in a previous section, (1/n) Tr A is positive (a positive linear functional). The transpose map of A,
where the row and column indices are switched, is a positive map. Another positive map used
often in quantum mechanics is ¢(A) = V*AV, where V is an n x k matrix, which maps A from M,
to M.

The matrix units Ej for an n x n matrix are the set of n matrices where each matrix contains 1
in the i,j entry and zeros everywhere else. There are some examples below. I, is the m x m unit
matrix (i.e. 1 at each diagonal entry, zeroes elsewhere). [[E;j]n]m is the set of n x n matrix units
indexed throughout an m x m block matrix, with block Ej; at entry i,j (1 <m <n). Similarly, we
define M, (M;;) = M,;; ® M, to be the space of m x m block matrices [[A];]n, whose i,j entry is an
element of M, (i.e. an n x n matrix).

Choi worked out a way to characterize maps as positive and completely positive [76]. The
main result we need is the way a map on the matrix M,(M},) can be distributed throughout the
matrix by acting on each M, block. The map can therefore affect the n part of the tensor product
M, ® M, relative to the m part. We will use that property to work out if a state is factorizable
with respect to the density matrices of the subsystems (indexed by n and m respectively).

Working through Choi’s method provides examples of the introductory points made so far, as
well as setting the scene for the remainder of this section. The Choi matrix for the map ¢ is

Cp =¢ @ Ip : Mp(My) > Mp(Mu) = ¢p([[Aln]p) = [[#(A)]] € My Q@M. (A2)

Choi showed that ¢ is completely positive if and only if Cy is positive for all 1 < p <m. That is, we
should check that Cy is positive for this entire set of block matrices up to M, (Mj,). As we enlarge
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the block matrix being considered, we include more of the tensor product structure in the map.
In practice, here, we are interested in the simplest example of two interacting qubits, so we only
need to consider p =1, 2 to check M (M>).

It is easiest to see how this works with a simple example; the transpose map on M. The
transpose maps of density matrices of our two-level subsystems, p4 and pp (elements of Mj),
are always positive, which can be demonstrated by considering the 2 x 2 matrix units:

el 3
_
SN
and Ex = :g 1: ,

which are all positive: the inner product (x, Ejjx) = (a,a), where a2 means «|0) or $|1) and, by
definition (a,a) > 0. By the way, hence also ps ® pg is positive (see Stermer [77] §6.4).
Now extending to M (M), we write out the full block matrix of units:

Enn Ennf _
Ey Ex

which is Hermitian and has all positive eigenvalues, so it is positive. Then compute Cy with p =2
by evaluating the transpose map,

/ (A3)

, (A4)

#(E11)  #(E12)
#(E21)  #(E)

which has one negative eigenvalue, so the transpose map is not completely positive in this case.

Recalling that our Hilbert space comprising two subsystems is H =H4 ® Hp, the idea to be
demonstrated is that if a state is separable, and therefore factorizable with respect to the density
matrices of the subsystems, then any positive map from a state of one subsystem to the other
subsystem will be positive. Specifically, Stormer [78], deepening the work of Peres [19] and
Horodecki et al. [79], proved that a state is separable if and only if

Cs(p) =0 for all normal positive maps ¢ : B(Ha) — B(Hp). (A5)

Here the set of bounded operators on the Hilbert space for subsystem A is B(H4), and for
subsystem B, B(Hpg). p is the density operator corresponding to a state on B(Ha) ® B(Hp) =
B(Ha ® Hp).

In other words, the state is separable if the Choi matrix is positive for all positive maps on
one subspace relative to the other. The density matrix must remain positive, so a map that is not
positive tells us that the subsystems are specially correlated—they are entangled. The general
difficulty to put this protocol into practice is the ‘all’. That is, we might need to check a lot of
maps before finding one that is not positive [80-82]. However, Peres [19] showed an example of a
map that illustrates the idea well.

The computation of the Peres condition is very similar to the example given above for the
transpose map on M. Index the density matrix along rows and columns as [0)4/0)p, 10)4|1)5,
[1)410)B, 11)al1)p. Writing purns indicates row indices in the form |m)4|r)p, and column indices
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[n)als)p for states of the A, B subsystems. Notice that the transpose map yields the matrix oy, s.
Now, for systems comprising a pair of qubits, if o is positive, then the state is separable, else it is
entangled.

To demonstrate, we use the density matrix introduced above that comprises a fraction x or pure
singlet ¥_ and a random fraction (1 — x). We put y = (1 — x)/4 for clarity. We show the partitions
of p into blocks that delineate the tensor product structure exhibited by a separable state:

y 0 0 0
0 y+5| -5 0
— A6
Tl e o "o
0 0 0 y
Then by applying the map ¢ : B(H4) — B(H3p) to each partition of p we find
y 0 0 =3
0 y+35| O 0
— A7
7 0 0 |y+i 0 A7
-3 0 0y

Notice that o has three eigenvalues of (1 + x)/4 and one that is (1 — 3x)/4. Hence the state
is separable only if x < % You can get a physical sense for how this transpose map breaks the
entanglement, and is therefore not an allowed map for the quantum state, by seeing how, for
example, it switches [0)4|1)g(1]4 (0| to [0)4]0)g (1|4 (1]p.
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