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Abstract

Earth’s inner core is predominantly composed of solid iron (Fe) and displays intriguing properties
such as strong shear softening and an ultrahigh Poisson’s ratio. Insofar, physical mechanisms to
explain these features coherently remain highly debated. Here we have studied longitudinal and
shear wave velocities of hcp-Fe (hexagonal close-packed iron) at relevant pressure-temperature
(P-T) conditions of the inner core using in-situ shock experiments and machine learning molecular
dynamics simulations. Our results demonstrate that the shear wave velocity of hcp-Fe along the
Hugoniot in the premelting condition, defined as 7/T, (T»: melting temperature of iron) above
0.96, is significantly reduced by ~30% while Poisson’s ratio jumps to approximately 0.44.
Machine learning molecular dynamics simulations at 230-330 GPa indicate that collective motion
with fast diffusive atomic migration occurs in premelting hcp-Fe primarily along [100] or [010]
crystallographic direction, contributing to its elastic softening and enhanced Poisson’s ratio. Our
study reveals that hcp-Fe atoms can diffusively migrate to neighboring positions, forming open-
loop and close-loop clusters in the inner core conditions. Hep-Fe with collective motion at the
inner core conditions is thus not an ideal solid previously believed. The premelting hcp-Fe with
collective motion behaves like an extremely soft solid with an ultralow shear modulus and an
ultrahigh Poisson’s ratio that are consistent with seismic observations of the region. Our findings
indicate that premelting hcp-Fe with fast diffusive motion represents the underlying physical

mechanism to help explain the unique seismic and geodynamic features of the inner core.

Significance

Earth’s solid inner core exhibits intriguing characteristics such as an exceptionally low shear-wave
velocity and an ultrahigh Poisson's ratio that significantly deviate from our understanding for
normal solid metals. In this study, we have used high pressure-temperature experiments and
machine learning calculations with extremely large supercells to examine the dynamics and sound
velocities of iron at the extreme pressure-temperature conditions of the inner core. Our research
results reveal a drastic reduction in shear wave velocity when hcp-Fe approaches the melting point
induced by shock. Our advanced machine learning calculations show that iron atoms undergo
collective motion with fast diffusion in the premelting regime, leading to the ultralow shear

modulus and ultrahigh Poisson's ratio. These results are consistent with seismic observations and

\]



67  geodynamics of the inner core. We thus propose that collective motion in hep-Fe is the underlying

68  physical mechanism for the soft inner core very close to the melting curve of constituent iron alloy.
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Introduction

Seismology and mineral physics studies over the past century reveal that Earth’s inner core is
mainly made of solid iron (approximately 96 wt% iron) (1, 2). The inner core only accounts for
less than 1% of the planet’s total volume but plays a key role in its dynamics, thermal evolution,
core convection, and habitability. Of particular example is its nucleation and light element release
to provide thermochemical energy sources powering the geodynamo, the generation of the
magnetic field, and subsequent geological processes (3-5). Recent seismological investigations
from modern J wave (6) and preliminary reference Earth model (1) have shown that the inner core
has a shear wave velocity 30-40% lower than expected from solid hcp-Fe alloy at similar pressure,
while the compressional wave velocity is overall consistent with that of the constituent Fe alloy
(7, 8). This indicates an ultralow shear modulus in the inner core, with a Poisson’s ratio (v) as high
as 0.44-0.45, analog to that of soft metals such as lead and thallium (9) and close to that of molten
iron (v = 0.5). The Poisson’s ratio of the inner core is much larger than that of hcp-Fe estimated at
the core’s pressure and room temperature (v = ~0.35) (10, 11). These seismic observations,
therefore, suggest the existence of an extremely soft solid iron alloy with low rigidity in the inner
core (12). This raises the fundamental question about the main underlying physical mechanism
responsible for the unique seismic and geodynamic features in the region. Understanding the
atomistic dynamics and its influence on the longitudinal (V}), bulk (¥V3), and shear (V) sound
velocities of iron at inner core conditions can greatly enhance our knowledge of the inner working
of our planet (13-15).

Driven by the continuous cooling of the planet, the solidification of the inner core occurs when
its adiabat intersects the melting curve of the constituent iron alloy at the inner-core boundary
(ICB) (16). Using the melting curve of pure iron as a reference, the melting temperature (7,,) at
the ICB is determined to be ~6200(300) K at 330 GPa by experiments (17-21) and theories (22,
23). Addition of~4 wt.% light element(s) in iron is expected to depress the melting temperature by
several hundreds of K (24). According to an isentropic modeling, the temperature gradient across
the inner core radius (7), d7i/dr, is expected to be approximately -0.17 K/km (16). This suggests
that the temperature increase is only 100-200 K from the ICB to the center across the radius of
~1200 km. As a result, the inner core adiabat is expected to be within the temperature regime 73/ 7,
exceeding 0.95. As the temperature approaches 7y, a previous study has suggested that solid metals
can commonly show premelting behaviors with collective motion and fast atomic diffusion (25).

Some simulations have predicted that unusual elastic and rheological properties occur in several
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metals like Cu, Al, Ta, and Ca at the premelting temperature (26-28). This raises the possibility
that premelting iron at 7/7, above 0.95 and inner-core pressures can exhibit unique elastic and
rheological characteristics manifested in the aforementioned seismic observations.

To date, several hypotheses have been proposed to explain the observed seismic features in
the inner core (7, 29-32). A pioneering study on the elasticity calculations of hcp-Fe predicted a
strong shear softening at high P-T prior to melting (30), suggesting that premelting hcp-Fe may
exhibit distinct behavior from ideal hcp-Fe. However, the simulation was conducted using
relatively short simulation time and small cell size under homogeneous melting with superheating
effects (> 7500 K at the ICB pressure where iron is expected to be molten) (30). On the other hand,
first-principles DFT calculations showed that the shear modulus of hcp-Fe decreases quasi-linearly
with temperature at a given density and agrees with the seismology and free oscillation data for
the inner core without the requirement of premelting behavior (33, 34). Numerous high P-T
experiments and modeling studies on the strength and plastic deformation have suggested that hep-
Fe is rheologically weak with a low shear strength due to pressure-induced slip and creep and its
shear strength could be reduced by the elevated temperature (35-39). However, these experiments
were conducted at P-T conditions far below from those of the inner core. Furthermore, some high-
pressure experiments and molecular dynamic (MD) computations indicate that iron carbide (e.g.,
Fe;C3 compound (31)) or iron-hydrogen superionic alloy (32, 40) can reduce the shear wave
velocity of the inner core. However, it is still highly controversial whether C and/or H light
elements exist in Earth’s inner core (24). Bcc-Fe has also been proposed as a possible explanation
for the origin of the low shear wave velocity in the inner core (41-43), but in situ x-ray diffraction
(XRD) experiments did not observe its existence at the relevant P-T conditions (19, 20, 44).
Possible presence of melt pockets in the inner core has been suggested as an explanation for the
high Poisson’s ratio (45), although the inner core growth models indicate that interstitial liquid
would have been squeezed out during its complete solidification and compaction below the solidus
(46). Insofar, these existing hypotheses could help address some aspects of the inner-core’s unique
properties, but a comprehensive physical model incorporating direct experimental elasticity data
and theoretical simulations with large supercells remains lacking.

Iron is believed to be stable in the hep structure under the inner core P-T conditions as revealed
by both static (18, 44) and dynamic (19, 20) experiments. In previous elasticity studies of iron,
several experimental investigations of the sound velocities and Poisson’s ratio of hcp-Fe have been

carried out (29, 47-49); however, some experiments were conducted at relatively low P-T
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conditions (e.g., up to ~73 GPa and 1700 K (29); up to ~300 GPa at room temperature (50, 51)) or
did not reach to the temperature prior to melting points (e.g., static (49) and shock (47, 48)
experiments). In this study, we have performed direct shock-wave measurements and machine
learning-enhanced simulations with supercell sizes of more than 10,000 atoms to investigate the
Vo, Vb, and Vs of compressed hep-Fe near the premelting temperature at the core pressure. Our
theoretical results suggest that collective atomic motion occurs in premelting hep-Fe, causing a
strong sound velocity softening and enhanced Poisson’s ratio. The collective motion-induced
elastic softening in hcp-Fe is proposed to be the underlying physics to explain the unique seismic
features of the inner core, including its ultralow shear wave velocity, low rigidity, and ultrahigh

Poisson’s ratio.

Results and Discussion

High P-T shock compression experiments were conducted on high purity polycrystalline iron
(>99.98%) using hypervelocity reverse-impact technique in two-stage light-gas guns (see
Materials and Methods and SI Appendix Fig. S1). Iron was shock-compressed to pressures ranging
from 82-231 GPa and temperatures ranging from 1600-5220 K along its Hugoniot P-T curve,
where the shock Hugoniot temperature has been well determined by both experiments and
simulations (17, 19, 23, 52) (see SI Appendix Table S1 and Fig. S8). The most recent shock
compression experiments coupled with in situ XRD indicate that the hcp-Fe should be the only
phase present at pressures between 200 and 1000 GPa prior to melting (19, 20). In this work, we
targeted a maximum single shock pressure just below the pressure at which shock-induced melting
occurs (~242 GPa) (19). Therefore, iron should be in the hcp structure at the present investigated
P-T range. We then obtained the (Eulerian) sound velocities of hcp-Fe including V), V5, and Vs
under shock compression by solving the relationship among time interval, wave speed, and
distance (see S/ Appendix Figs. S2-S4).

Analysis of the shock experimental results indicates that the V), of hcp-Fe linearly increases
with increasing shock pressure (Py) between 80-160 GPa (Fig. 1a). After further shock pressure
increase, the rate of change in V), with respect to Py (dV,/dPn) gradually decreases and eventually
changes to a negative slope above ~206 GPa. Additionally, the Vs in shock-compressed iron shows
a monotonous increase from 82 to 231 GPa. Our measured V), are generally consistent with those
of shock-compressed iron in Refs. (48, 53), while we did not observe a sharp discontinuity of V),

at 200-220 GPa as reported earlier that was explained as a solid-solid phase transition from hcp to
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a new phase (47). Our V), results at relatively low P-T conditions agree well with an earlier report
(49) on hep-Fe up to ~163 and 3000 K using inelastic x-ray scattering (IXS) in laser-heated
diamond anvil cells (LH-DACs) (Fig. 1a). Both sets of results support the notion that the V), of
hcp-Fe exhibits a quasi-linear relationship with density in this P-T range (49). However, our results
suggest that as the P-T conditions approach the region of shock-induced melting, the sound
velocity of hcp-Fe has a nonlinear relation with density and does not follow the quasi-linear sound
velocity-density relationship (see S/ Appendix Fig. S9). Our measured Vs of iron under shock
compression shows a gradual increase with pressure and density from ~80 to 160 GPa but stops to
increase above 160 GPa. At shock pressures above 200 GPa, the Vi of iron displays a dramatical
drop from 4.2 km/s to zero as iron melts along the Hugoniot (Fig. la and S/ Appendix Fig. S9).

Under shock compression, both P-T is simultaneously elevated along the Hugoniot, which
could affect the sound velocities of hcp-Fe in a different way. Previous experiments using a LH-
DAC has shown that the V), and Vi of hcp-Fe generally increases with pressure but decreases with
temperature (29, 54). Therefore, we have further investigated the effect of the shock Hugoniot
temperature (7x) on the sound velocity of hcp-Fe using the recently developed optical pyrometry
technique (17). These results show that 7y in hep-Fe increases monotonously from approximately
1600 to 5220 K as pressure increases from 82 to 231 GPa (see S/ Appendix Fig. S8). Based on a
consensual melting curve of hcp-Fe (17-21), we calculated its ratio of shock Hugoniot temperature
to the melting point, 7#/Tm, which gradually increases from 0.44 to 0.96 with shock pressure from
82-231 GPa (see ST Appendix Table S1). We note that the V' stops to increase at shock pressures
above approximately 160 GPa, where the T#/T,, approaches ~0.74. At P-T conditions further up to
~230 GPa, with a solid Hugoniot temperature close to the melting point (74#/T» ~ 0.96), the V
values drastically drops by approximately 30% (Fig. 1a). Our shock results reveal that the Vs of
hep-Fe at Tw/Tn ~ 0.96-1.00, which we define as the premelting region, displays a strong
temperature-dependent reduction. This dramatic drop in the measured Vs agrees with some
previous theoretical predictions by ab initio molecular dynamics (AIMD) simulations (30), which
shows a strong nonlinear elastic constant weakening in hcp-Fe just before melting.

Based on our measured V), V5, and Vs along the Hugoniot, the derived Poisson’s ratio of iron
increases from ~0.34 to 0.43 as shock pressure increases from ~82 GPa (1600 K) to 231 GPa (5220
K), as shown in Fig. 1b. At conditions below ~160 GPa and 3450 K (with T#/T,, less than ~0.74),
the Poisson’s ratio appears to be comparable to that of hcp-Fe at high pressure and room

temperature (~0.35), as observed in DAC experiments (10, 11) (Fig. 1b), suggesting that
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temperature has only a minor effect at relatively low values of 7x/T,. Furthermore, static high-
pressure experiments demonstrate that the Poisson’s ratio of iron does not significantly change
with increasing pressure to the core’s at room temperature (10, 11), indicating that the rise in
shock-compressed iron up to 230 GPa should be mainly due to shock-induced high temperatures.
When compared to seismic observations, the Poisson’s ratio of 0.43 in hep-Fe at 74/T, ~ 0.96 and
Py ~ 230 GPa is generally consistent with the ratio of ~0.44-0.45 in the inner core (the striped
rectangle area in Fig. 1b).

To gain insight into the atomistic behavior and lattice dynamics of premelting hcp-Fe, we
developed a machine learning potential with density-functional-theory (DFT) accuracy, using the
deep concurrent learning method (see Materials and Methods and SI Appendix Figs. S5-S7).
Equilibrium and non-equilibrium molecular dynamics simulations (EMD and NEMD) were
conducted at pressures ranging from 230-330 GPa and at various temperatures, up to the
nanosecond simulation scale. At temperatures close to the melting point (7/7, > ~0.96), we
observed the spontaneous emergence of atomic collective motion in hcp-Fe, along its [100] or
[010] crystallographic orientation, where Fe atoms diffuse collectively in both intralayer and
interlayer directions (Fig. 2a and S/ Appendix Movie S1). Specifically, most atoms exhibit a one-
dimensional (1-D), longitudinal wave-like behavior in open-loop (chain-like) diffusions, wherein
one atom jumps out of its equilibrium position and pushes its neighboring atoms along specific
crystallographic directions, such as [100] or [010] in the a-b plane (Fig. 2b). This collective motion
generates a wavefront of diffusion, moving randomly forward until it meets a vacancy and releases
the compression. This phenomenon was detailed proposed in cubic Ca within the premelting
regime under high pressure and has been indicated as a possibly prevalent high-temperature feature
in metals under extreme conditions (28). The longitudinal-wave-like behavior could dissipate
shear in the system at the atomistic level, which was also observed in the premelting bee-Ta (55)
and fcc-Al (56) at ambient pressure.

The distribution of iron atomic displacements is also investigated within a given lag time (up
to 0.1 ns) using time-dependent van Hove self-correlation functions P(Ar, ¢) (57, 58). At the Vs
softening regime (e.g., 7/Tm ~ 0.98), hcp-Fe atoms migrate collectively to their neighboring lattice
points. This migration leads to a non-Gaussian multiple-peak distribution of P(Ar, ) (horizonal
dashed-line in Fig. 2c). However, in solid hcp-Fe at a relatively low temperature below the region
(e.g., T/Tw ~ 0.92), P(Ar, t) exhibits a stable Gaussian distribution over time in the nanosecond-

scale simulation, indicating the absence of collective motion (see S/ Appendix Fig. S11).
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Furthermore, we computed the mean square displacements (MSD) for hcp-Fe at different
temperatures and found that the MSD of premelting hep-Fe at 230 GPa and 5300 K (7/T5, ~ 0.98)
steadily increases throughout 250 picosecond (ps) simulation time. This means that collective
motion contributes to significant diffusion of atoms (Fig. 3a). Notably, the average diffusion in the
a-b planes of premelting hcp-Fe spreads faster than that along the c-axis. Conversely, at a relatively
low temperature of 4000 K (7/T:» ~ 0.74) at 230 GPa, the MSD of hcp-Fe atoms remains nearly
constant during the simulation time, indicating no observable diffusion (Fig. 3a).

For a deeper understanding of the collective atomic motion in premelting hcp-Fe, we have
theoretically investigated its finite-temperature phonon dispersions including the anharmonicity
and enthalpy at 230 GPa and various temperatures (Fig. 3b). Our calculations show abnormal
softening in some high symmetry points at high P-T (Fig. 3b), corresponding to the relative
vibrations between close-packed planes along the c-axis in hcp structures (Fig. 3c). These
softening reflect temperature effects as a dynamical driving force for collective atomic motion,
which mostly diffuses between the close-packed planes of hcp-Fe. From an energetic perspective,
the mixture of solid and liquid near melting promotes disorders and increases the system’s
potential energy compared to an ideal hcp-Fe crystal. However, the directional priority of
collective motion pushes atoms to diffuse along the lowest energy paths, which only slightly
increases the system’s enthalpy compared to ideal hcp-Fe without collective motion (Fig. 3d).
Given the complexity of the potential energy surface at high temperatures and the large entropy
induced by the collective motion, hep-Fe with collective motion may be dynamically stable in the
premelting P-T conditions.

To investigate how collective atomic motion affects physical properties of hcp-Fe, we
conducted calculations on its elastic constants and Poisson’s ratio at high P-T. It should be noted
that traditional elastic modulus calculations using EMD method for single crystal hcp-Fe are
susceptible to superheating effects. To overcome this, we employed a solid defective structure
quenched from the two-phase model in NEMD simulations to mitigate the impact of superheating
in order to accurately calculate the high P-T elastic constants (see Supplementary Material).
Results from both the ab initio method and the constructed machine learning model show that a
significant shear elastic softening occurs in hcp-Fe at 230 GPa as the temperature approaches the
melting point, consistent with the present experimental observations (Fig. 4). The present
calculations and experiments indicate that the shear modulus of hcp-Fe at 230 GPa and 7/T ~

0.96-0.98 agrees overall with the seismically observed low shear modulus of the inner core (Fig.

9
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4). Furthermore, the calculated Poisson’s ratio using NEMD increases from 0.36 to 0.42 as the
temperature rises from 300 to 5000 K (7/7, ~ 0.92) at 230 GPa (Fig. 1b). When the temperature
continues to rise from 5000 K to the melting point at 5400 K, the Poisson’s ratio of hcp-Fe
increases dramatically from 0.42 to 0.5. Our computations reveal that the Poisson’s ratio in hep-
Fe with collective motion is approximately 0.45 at 230 GPa and 5200 K (7/7: ~ 0.96), which is
overall consistent with our experimental value at similar P-T conditions (Fig. 1b).

We conducted more calculations at pressures ranging from 230 to 330 GPa and temperatures
between 4000 and 7000 K to determine the P-T regime of hcp-Fe with collective motion at relevant
inner core conditions. Our results reveal the dynamic phase boundary between ideal hep-Fe and
hcp-Fe with collective motion, as well as the boundary between hep-Fe and liquid Fe (Fig. 5). We
found that the temperature for hep-Fe with collective motion (7¢) extends approximately 500 K
below its 7}, at inner core pressures. Comparison between our predicted dynamic phase of hcep-Fe
with collective motion and a typical adiabat of iron core indicates that the inner core adiabat is
slightly below the T, and falls within the temperature region of premelting hcp-Fe with collective
motion (Fig. 5 and S7 Appendix Fig. S13). As mentioned in the Introduction, the 7/7,, of the inner
core is expected to be between 0.95-0.99 (16, 59). Our results indicate that the dynamics of
collective motion in the premelting hcp-Fe at the conditions relevant to the inner core may be the
primary physical mechanism behind the observed seismic properties, such as the ultralow shear
wave velocity, low rigidity, and ultrahigh Poisson’s ratio (6).

Earth’s inner core also contains ~5 wt.% Ni and ~4 wt.% light element(s) alloyed with iron,
though the exact identity of the major light element remains uncertain (24). Here we consider Si
as a candidate light element as an example to understand light element effects on 7, depression
and associated elasticity. Addition of 4 wt.% of Si in Fe or Fe-Ni alloy would lower the melting
temperature to a 7, of ~5800 K (60) and overall increase the V), by 3-5% (50, 54, 61, 62).
Meanwhile, Fe alloyed with ~5 wt.% Ni and a few % of Si would retain the hcp structure at relevant
inner-core P-T conditions (63-65). Using a temperature gradient of 100-200 K in the inner core,
we estimated that the expected inner core adiabat for iron alloyed with a few wt.% light elements
would have a 7/T;, of ~0.97-0.98, which falls within the premelting region (7¢/T,, > ~0.95). These
results suggest that such an Fe-Ni-light element alloy can also exhibit collective atomic motion,
resulting in the ultralow shear wave velocity and ultrahigh Poisson’s ratio of the inner core.

Our research into the effects of collective atomic motion on premelting hcp-Fe has yielded

exciting results regarding its shear softening and ultrahigh Poisson’s ratio. These findings provide
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a novel physical mechanism to explain the unique seismic and geodynamic features of Earth’s
solid inner core. The ultralow shear modulus in premelting hcp-Fe suggests that the inner core may
have relatively low shear viscosity, making it susceptible to deformation and convectively
instability (66). Future exploration into the atomistic dynamic behavior and high pressure-
temperature sound velocities of iron alloyed with approximately 5 wt.% nickel and 2-4 wt.% light
elements at the inner-core conditions is necessary to shed more light on the geophysics and
geodynamics of both the inner and outer cores. Together with previous research on premelting
metals (26-28), a scenario beyond the perspective of classical nucleation theory together with its
potential effects on material properties such as the elasticity need to be further clarified in future

works.
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Fig. 1. Sound velocities and Poisson’s ratio of iron along the shock Hugoniot conditions. (a) Measured

sound velocities V), (red squares), V5 (blue squares), and V; (green squares) of iron under shock compression.
Solid (48) and open (47) circles are the measured V), under shock compression from the literature results.
Diamonds, diamonds with bottom half black, and diamonds with top half black represent the measured V),
Vs, and Vi, respectively, under shock compression by Ref. (53). The triangles and inverted triangles
represent the measured V), of hcp-Fe at given pressures and ~3000 and 2300 K, respectively, using IXS in
LH-DAC:s (49). The blue line represents the calculated ¥} of iron using a thermodynamic equation under
shock compression. The red dashed line in V), was fitted to the measured data using a third-order polynomial
and is meant as a guide for the eye. The green dashed line through the experimental data in V; are derived
from the V), and V. The vertical grey bar represents the pressure range for iron melting to occur along the
shock Hugoniot. (b) Measured and calculated Poisson’s ratio of hcp-Fe as a function of the ratio of
temperature to the melting point of iron (7/7,,). By definition, the Poisson’s ratio reaches 0.5 at 7/7,, of 1.0
in molten iron (horizontal dashed black line). The Poisson’s ratio of the inner core constrained by seismic
observations falls within the range of 0.44-0.45 (striped rectangle region) (1, 6), which is located at 7/T,, ~
0.96 for hep-Fe at high pressure. The difference in Poisson’s ratio between experimental and computational
results at relatively low 7/7,, may be attributed to the pressure difference between Hugoniot conditions in
experiments and isobaric conditions in calculations. The light-green region indicates a significant shear
softening and ultrahigh Poisson’s ratio induced by collective atomic motion in hcp-Fe at shock pressures

above ~230 GPa and 7/T,, greater than ~0.96.
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Fig. 2. Collective atomic motion of compressed hcp-Fe at near melting point and 230 GPa. (a)
Dynamic behavior of hep-Fe atoms at 230 GPa and near melting temperature (777, ~ 0.98) using machine
learning molecular dynamics. Iron atoms are colored with time over a 30 picosecond (ps) period in the
snapshot. (b) Top- and side-view dynamical snapshots of a single close-packed a-b (x-y) plane during 30
ps in premelting hcp-Fe with collective motion. Iron atoms predominantly diffuse along [100] or [010]
directions of the hep structure. This diffusion leads to the formation of open-loop strings and a few closed-
loop shapes such as triangular. The open-loop diffusion behavior propels iron atoms to form a 1-D
longitudinal wave-like pattern. Snapshots in (a) and (b) were smoothed within a 1 ps time window to
eliminate thermal noises. (¢) Self van Hove correlation function P(Ar, t) of premelting hep-Fe. Iron atoms
migrate to neighbors during collective atomic motion, which induces multiple-peak non-Gaussian
distribution vs. time in the correlation functions. The P(Ar, t) represents the probability of finding an atom
at distance Ar after a time interval £. Vertical bar represents the logarithm form of the P(Ar, ¢) to highlight

the diffusion of collective motion (marked by the black dashed line as the nearest neighbor distance).
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Fig. 3. Dynamical properties of hcp-Fe at ~230 GPa and representative temperatures. (a) Calculated

-0.4

Relative enthalpy (eV/atom) =

mean square displacements (MSD) of hcp-Fe atoms at 230 GPa and varied temperatures. The atoms in
premelting hep-Fe diffuses with the simulation time. The diffusion of hcp-Fe atoms primarily occurs in the
a-b planes as they migrate to neighboring atoms. Diffusion in the z-direction is usually triggered by the
vacancies’ migration between different a-b planes, of which vacancies were made by the collective motion
in a-b planes. (b) Phonon spectra of hcp-Fe at 230 GPa and three given temperatures (0 K, 3000 K, and
5000 K). Anharmonicity is taken into consideration in the calculations. Black arrows highlight some modes
in the phonon spectra that show strong softening as the temperature increases. (¢) Schematic diagram of the
softening direction of hcp-Fe at high P-T. Blue arrows through orange atoms show a strong phonon
softening in the I" point of hep-Fe reduced from ~12 THz at 0 K to ~7 THz at 5000 K and at 230 GPa, where
the vibrational direction is between adjacent a-b close-packed planes. Magenta arrows through green atoms
show a similar softening direction in the A (0, 0, 0.5) point, where the softening happens between non-
adjacent planes. (d) Enthalpy of iron in hcp, hep with collective motion, and liquid states, respectively, at
230 GPa as a function of simulation time. Systems evolve from the initial solid-liquid mixture to hcp crystal
at 5000 K (7/7,,~0.92), to hcp with collective motion at 5300 K (7/7,, ~ 0.98), and to liquid at 5500 K (7/T,
~ 1.02), respectively. The horizontal dashed line represents the initial enthalpy of the solid-liquid mixture
(see SI Appendix Fig. S7).
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Fig. 4. Elastic constants, sound velocities, and shear modulus of hcp-Fe at high pressure-temperature
conditions. (a) Calculated clastic constants of hcp-Fe as a function of the ratio of temperature to its melting
point (7/7,) at 230 GPa. The elastic constants were calculated using both the DFT-AIMD and machine
learning (ML) method. (b) Comparisons of sound velocities of hcp-Fe between theoretical and experimental
results at high temperatures and 230 GPa. Solid and open symbols represent the results from the DFT-
AIMD and ML calculations, respectively, in this study. The melting point 7,, of iron at 230 GPa is calculated
to be ~5400 K by two-phase methods (see SI Appendix Fig. S8). The region between vertical dashed lines
covers the premelting condition. The calculated longitudinal and shear wave velocities are consistent with
our experimental results at ~230 GPa and 7/7,, ~ 0.96. The shear softening emerges near melting, which
accompanies by collective motion in the large spatiotemporal machine learning molecular dynamics (See
SI Appendix Movie S1). (¢) Calculated (black curve) and measured (open star) shear modulus of hcp-Fe at
high temperatures and 230 GPa. The shear modulus of premelting hcp-Fe at the relevant conditions of the

core can overall match with the seismic observation of 149-176 GPa (red region) in the inner core (red bar)
(1, 6).
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Fig. 5. Predicted dynamic phase boundary of hcp-Fe with collective atomic motion at high pressure-
temperature conditions relevant to the Earth’s core. The dashed line represents the melting curve (7,,)
of iron at high pressures in this study fitted by Simon-Glatzel law with 7,, = T, (P/11.8+1)%3%", where T =
1811 K is the melting point of iron at ambient pressure. Our calculated melting points of iron is generally
consistent with recent experimental results as shown in S/ Appendix Fig. S8 (17-21), in which the melting
point is ~6200 K at the pressure of the inner-core boundary (~330 GPa). The dash-dotted line represents
the dynamic phase boundary between ideal hcp-Fe and hep-Fe with collective motion (7¢) in this study
fitted by a second-order polynomial. The light-blue area represents the predicted P-T conditions of hcp-Fe
with collective motion. The red curve represents a typical adiabat of iron anchored at the inner core
boundary. The adiabat gradient across the inner-core boundary is approximately 0.17 K/km based on

isentropic modeling (16).
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Materials and Methods

Starting Materials. High-purity polycrystalline bulk iron with a purity greater than 99.98% was used as
the starting material. The iron sample were prepared into 0.662-1.480-mm-thick disks with a diameter of
~24 mm, and their surfaces were polished to a mirror finish with a roughness of ~15 nm (17).

Sound velocity measurements and Poisson’s ratio of hep-Fe at high P-T. Reverse-impact experiments
(see SI Appendix Fig. S1) were carried out at both Sichuan University and Institute of Fluid Physics in
China. We employed both lithium fluoride (LiF) crystal with <100> orientation and sapphire Al,O; crystal
with <0001> orientation as window materials, respectively. The interface particle velocity profile was
measured using photon Dopler velocimetry (PDV) with a laser wavelength of 1550 nm and a time resolution
of less than 1 nanosecond. The impact velocity was measured using an electromagnetic method with an
uncertainty of ~0.5%. In the first series of runs, we used LiF crystals with <100> orientation as the
transparent window, where the particle velocity profile was recorded at the sample/window interface. This
allowed us to generate P-T conditions up to ~156 GPa and ~3400 K with the highest impact velocity being
7.472(37) km/s. To achieve higher pressures, we employed Al,Os crystals with <0001> orientation as the
window material in the second series of runs because it is denser than LiF crystal and can generate much
higher P-T on reverse impact. Even after the phase transformation to CalrOs, Al,Os3 crystal remained
transparent up to at least 210 GPa, and its refractive index under shock compression was recently
determined (67). Iron was shocked to Al,Os crystal up to the impact velocity of 7.695(30) km/s, reaching
in the highest P-T of ~230.8 GPa and ~5220 K in this study. The particle velocity wave profiles for these
shots are shown in S/ Appendix Fig. S2.

To ensure experimental accuracy, we used four PDV probes to simultaneously measure the particle
velocity profiles at four different locations of the sample in a shot (see S/ Appendix Fig. S3): one probe was
positioned at the center of the impact surface, while the other three were located at the outer ring with a
diameter of 5 mm. The wave profiles recorded by multiple probes almost overlapped in one shot, indicating
low uncertainty in the sound velocity measurements (< 3%). The Lagrangian longitudinal sound velocity
of iron, C;, can be directly obtained using the measured time interval (Af) and the thickness of the sample
(0):

5 8

G = (t1-to)—-6/Us  At—5/Us

(1)

Then, the Eulerian longitudinal sound velocity, ¥, which accounts for the change of sample thickness due
to shock compression (68), is:

_Pop _Po___ 8
% = o C = oy et-o705 @

where py and py are the starting and compressed densities of iron, Uy represents the shock wave velocity in
shock-compressed iron. The time interval is represented by Af =, - ¢;. t; and ¢ is the time of impact and
the arrival of the release wave at the impact interface, respectively, which can be obtained from the
measured interface particle velocity profile (see S/ Appendix Figs. S2-S3). The Lagrangian bulk sound
velocity (C») at the Hugoniot state can be determined by linearly extrapolating the plastic unloading part of
the C; line to the Hugoniot state (see S/ Appendix Fig. S4). The elastic-plastic transition point at time ¢, can
be identified by calculating the derivative of particle velocity with respect to time (see S/ Appendix Fig.
S3). The Eulerian bulk sound velocity ¥} is obtained by substituting t; with t; in equation (2) (53). By using
V, and V3, the shear wave velocity, V, can be obtained using the following relation:
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V2 =2(n2-V3) (3)

The reverse-impact experiments (69-71) do not require the fitting of the overtake ratio of sample plate
thickness to impactor plate thickness, which differs from symmetric impact experiments previously used
(47, 48). Instead, this method directly measures the shock and rarefaction fronts in iron samples, which
leads to a significant improvement in the accuracy of sound velocity measurements.

On the other hand, the bulk sound velocity (V}) of iron under shock compression can be calculated
using a thermodynamic equation:

R L NOE S ALY

Py = poC§(1— po/p)/[1—2(1 = po/p)]? 5

where po(Vy) and p(V) are the density (specific volumes) of iron at ambient and shock compression,
respectively; y is the Griineisen parameter of iron along the Hugoniot state (17, 72); Cy and 4 are the
Hugoniot parameters, where U (km/s) = 3.935 + 1.578 with py = 7.850(2) g cm™ for iron (73). The V), of
hcp-Fe is significantly reduced by elevated temperature, especially above 7/7,, > ~0.74 (Puy ~ 160 GPa).
We used a third-order polynomial to fit the measured V, with pressure as V, (km/s) = 6.9 + 0.011 Py +
1.15E-4 Py’ - 4.61E-7 Py’ in the investigated pressure range. The fitted curve gives a maximum V), of
~10.02 km/s at ~206 GPa.

The Poisson’s ratio of iron can be determined from the measured V), V;, and ¥ in the present work
using the following equation:

v=%[1—;2]=1—;2 (6)

(Vp/Vs) -1 3(Vp/Vp) +1

The uncertainty of the measured sound velocities under shock compression were estimated through
the uncertainty propagation using;:

b= (L0t (5Los+ Gfou)t + (2o, ) ™

oy= \/(W oy )+ (W oy,)? (®)

The uncertainties in the sample thickness (J) and the travel time of shock wave in the sample (4¢) were
measured to be ~0.1% and ~1%, respectively. As shown in S/ Appendix Fig. S3, the measured 4¢ has a
generally small error of 1-2 ns, with a total time interval of 120-330 ns. Based on the equations (2) and (7),
the uncertainties of V), and V are estimated to be ~2%. The uncertainty of V is estimated to be between 5%
and 15% by using the equations (3) and ().

DFT calculations at finite temperature and AIMDs. In this study, DFT calculations, including structure
optimizations and AIMD simulations, are carried out by using the Vienna ab initio simulation (VASP) code
(74). The projector augmented-wave (PAW) potentials (75) and the Perdew-Burke-Ernzerhof (PBE)
Exchange-correlation functional (76) were employed in the calculations. Considering extreme P-T
conditions, a 750-eV energy cutoff potential with 16 valence electrons was used, which sufficiently avoided
any overlapping of core states. To ensure accuracy, all necessary tests were conducted and the electronic
energy was converged within 1 meV per atom. The optimization of hcp-Fe at 0 K was achieved using a
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primitive cell with a grid density of 0.025x2IT A™! for k point sampling in the Brillouin zone at 230 GPa. A
series of ab initio NPT (constant number of atoms, pressure, and temperature) molecular dynamics (77)
with Langevin thermostat (78) were performed with a time step of 1 fs to access the proper c/a ratio of hep-
Fe at 230 GPa and finite temperature up to melting (3000-10000 K). The NPT AIMD simulation cells
consisted of a 4x4x3 supercell for the 4-atom C-centered cell in hcp structure with orthogonal axes and
used I'-point sampling. These data were utilized to train the initial machine learning model during the
Concurrent machine learning.

Concurrent machine learning. In this work, we utilized an end-to-end deep learning model called Deep
MD (79, 80) to build a potential energy surface (PES) using a dataset generated by DFT calculations. This
model has been applied to various systems and has demonstrated credible results, including high-pressure
calcium (28) and water (81). In addition, it is important to note that a high-quality dataset is crucial for
effectively training the model and achieving a more accurate representation of the phase space. Recently, a
novel learning procedure with on-the-fly properties was proposed (82), which has been dubbed concurrent
learning as the data is generated in real-time as the training progresses.

We have leveraged our workflow and DFT results to construct a deep learning potential. The
construction process involves three parts, as illustrated in S/ Appendix Fig. S5. Initially, we employed data
comprising energy, atomic force, and stress from AIMD simulations of perfect hcp-Fe and hcp-Fe with
vacancies to train three initial models with different initialized parameters. Subsequently, we utilized these
models to explore a much broader phase space, thereby expediting the process. We then applied an error
indicator to identify configurations that were inadequately predicted by the initial models. Those
configurations were subjected to DFT self-consistent calculations, and the results were integrated into the
dataset. With the aid of this improved dataset, we developed new models with enhanced predictive
capabilities that could better anticipate the phase space. This procedure was iterated several times (in our
study, three times) until we had acquired a reliable potential with DFT accuracy, as demonstrated in S/
Appendix Fig. S6. Additionally, in step 2, we investigated various hcp-Fe structures, including perfect
crystal, vacancies, twin crystals, grain boundaries, and a mixture of solid and liquid as depicted in S/
Appendix Fig. S7. This rigorous examination guarantees that our models are practical for a variety of
applications.

Machine learning molecular dynamics. Machine Learning Molecular Dynamics (MLMD) were carried
out using the LAMMPS code, employing periodic boundary conditions and a time step of 1 fs (83). The
simulations comprised a range of particle number from 6912 to 80640 and were conducted for up to ns-
scale durations. We tested the fluctuations in temperature and diagonal stress tensors of iron at 230 GPa
and various temperatures using machine learning simulations with different supercell cell sizes ranging
from 144 atoms (a typical size in ab initio simulations) to 31104 atoms (see S/ Appendix Fig. S14).

Melting point calculation by the two-phase method using machine learning. Theoretical determination
of the melting point typically involves comparing free energies of solid and liquid phases or employing
direct molecular dynamics (MD). One method for determining the melting point of a substance involves
directly heating it from the low-temperature phase until it transforms into a liquid. The temperature at which
this transition occurs is typically considered to be the melting point. However, this method tends to
overestimate the melting temperature due to the superheating effect. Using this one-phase method, the
melting point of iron at 230 GPa was calculated to be ~6600K, which is much higher than the experimental
value. Various factors may contribute to this superheating issue, such as the simulation cells with only a
small number of atoms compared to real systems, particularly in DFT calculations. Consequently, in finite-
time simulations, this method often lacks the full distribution of phase space, causing the melting of the
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system to lag behind the temperature rise. Additionally, heating from a perfect solid to melting is an
idealized process, with a transition barrier much higher than in real systems with interfaces.

To address this issue, an improved MD method was proposed, called the two-phase method or
coexistence melting method. This method involves simulating a mixture of solid and liquid at different
temperatures, allowing solid and liquid to compete with each other. The addition of liquid broadens the
phase-space distribution of the system. As melting occurs, their free energy becomes equal, allowing the
solid and liquid to coexist. However, this method requires a larger cell to accommodate two states and is
not commonly used in AIMDs. With the aid of machine learning potential, it’s now feasible to construct a
large box and simulate the melting behavior of hep-Fe in nanosecond scale. Initially, we heated the perfect
hep-Fe with orthogonal axes until it turned into a fully melted liquid. We then integrated it with an initial
solid to form a larger supercell, containing up to 80640 atoms. To avoid any unreasonable structures, like
the occurrence of atoms that are too close to each other at the solid-liquid interface, we added a vacuum
layer with a thickness of 1 A to the interface (as illustrated in S/ Appendix Fig. S7), which could be relaxed
during the following NPT simulations. Using this coexistence box, a series of NPT machine learning
molecular dynamics simulations were conducted, and the length of the simulations was up to 0.5 ns to
ensure proper systems convergence. We then calculated the free energy of the solid and liquid iron at
constant pressure and different temperatures. The temperature at which the free energies of solid and liquid
iron are equal is known as the temperature of solid-liquid coexistence or the melting point. The melting
point of hcp-Fe at 230 GPa was determined to be 5350-5400 K at 230 GPa and 6200-6300 K at 330 GPa
(asterisks in S/ Appendix Fig. S8), below which the collective atomic motion occurs at 7/7,, ~ 0.96. Our
calculated melting point of high-pressure hcp-Fe are in close to the previous work using the similar two-
phase method(23) and are also consistent with recent high P-T experiments (17-21).

Van Hove self-correlation functions. The van Hove self-correlation function P(Ar, f) gives the probability
of an atom at distance Ar after a time interval ¢. It is defined as,

P(Ar,t) = %(Z?’:l §(r—Iri(to +1t) — Fi(to)D)to ©)

where 7;(t,) is the position of ith atom at a time to, N is the number of atoms, and (... ), is the average of

time ensemble. In our simulations, we used 0.1 ns trajectories as the lag time ¢ and 0.05 ns trajectories as
the time window of ensemble average.

Finite-temperature lattice dynamics. To obtain the 0 K phonon dispersions, lattice dynamics calculations
were performed using the phonopy package (84). A 4x4x3 hcp-Fe supercell, comprising a 2-atom primitive
cell and a grid of 0.025X2IT A" for k points was utilized in the simulation. The renormalized phonon
spectra including anharmonicity and temperature-dependent phonon properties were determined at finite
temperature using the dynaphopy package (85). The same iron supercell (4x4x3) was used to perform the
MLMDs at varying temperatures with a 1-fs timestep and the 50-ps simulation time. The velocity-
autocorrelation functions via MD were analyzed by projecting them onto the harmonic modes, which were
calculated in the 0 K phonon calculations. Further theoretical details can be found in Ref. (85). The lattice
dynamics calculated using DFT and ML at 0 K are compared in S/ Appendix Fig. S6e.

Calculation for Poisson’s ratio in hcp-Fe near melting. When stretching or compressing a material, it
can undergo changes in both axial and transverse directions, which is referred to as the Poisson effect.
Poisson's ratio (v) quantifies this phenomenon and is defined as follows:

Eaxial = Aaxiar/laxial
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Etrans = Alerans/lerans

V= —&trans (10)

Eaxial

where /, d/, and ¢ are length, changes in length and strain along transverse and axial (subscript: trans and
axial) directions under certain axial stress.

Non-equilibrium machine learning molecular dynamics (NEMLMD) calculations were conducted to
directly simulate the Poisson effect. The NEMLMD simulations were performed using the LAMMPS code,
employing periodic boundary conditions and a time step of 1 fs (ref. (83)). In these calculations, tensile
stresses were incrementally applied to completely relaxed equilibrium states, derived from two-phase
equilibrium molecular dynamics, to achieve a strain €,,;4; 0f 0.05 (see S/ Appendix Fig. S10). Throughout
the deformation process, the temperature was regulated using a Nose-Hoover thermostat, while the pressure
on those two dimensions perpendicular to the deformation direction remained fixed at 230 GPa. These
deformations encompassed the Poisson effect, and the change in volume under the deformation is given by:

2 2
AV _ laxiaiXltrans® (1 +eaxia) (L+Etrans)® ~laxiatXErans (11)

2
4 laxialXltrans

Combining the definition in equation (10), for a very small value of strain (here 0.05 scale), the first-order
approximation yields:

dv
7 = Eaxial T 28 rrne = Sl = 2) = @l s UL = 200) (12)

When the Poisson's ratio v equals 0.5, the volume remains unchanged by applied stress, rendering the

. . . . . av dlayi
system an incompressible state, such as a liquid. By examining the correlation between > and —222L 2t 230

axial

GPa and various temperatures (see S/ Appendix Fig. S10), we can ascertain the value of v through a linear
fitting. Utilizing this approach at room temperature, the Poisson’s ratio of hcp-Fe at 230 GPa is
approximately 0.36, aligning with some previous experimental findings (10, 11). At temperature 7/7,, of
approximately 0.96-0.98, the Poisson’s ratio of hcp-Fe at 230 GPa is determined to be approximately 0.44,
and the value derived from the calculated elastic constants using the Voigt average scheme (32) at 7/7,, ~
0.98 is 0.447.

Movies and Snapshots of deep learning simulations. Movies and snapshots of deep learning simulations
are rendered using visual molecular dynamics (VMD) (86) and OVITO (87).
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Supplementary Text

Text S1. Solid to liquid phase transition of iron under shock compression. In previous studies,
longitudinal sound velocity ¥V, of iron under shock compression had been reported to display sharp
discontinuities at around 200 GPa and 220 GPa (47, 48). The discontinuity observed at 200 GPa was
initially interpreted as indicative of an unknown solid-solid phase transition (47); however, subsequent
experiments has refuted this observation (48). In this study, the measured V), and V; did not show any sharp
discontinuity up to the shock pressure of 230 GPa. Instead, our new experiments showed significant sound
velocity softening because the shock Hugoniot temperature gradually approaches to the melting point of
iron with increasing shock pressure above 200 GPa. This suggests that there was no first-order phase
structural transition according to the changes in the measured sound velocity in the pressure range of 200-
230 GPa, which further confirmed that only single hcp phase structure without obvious embedded melting
was present in solid iron before shock-induced melting using in situ XRD measurements under well-
characterized shock compression (19, 20). The gradual reduction in sound velocity observed with increasing
shock pressure is thought to be caused by the collective atomic motion of premelting hep-Fe through the
atomistic simulations. Notably, when iron was shocked to ~260 GPa, the measured V), drops down to V5,
indicating complete melting above this pressure (48). Furthermore, static high P-T experiments also suggest

that hcp was the only phase observed in solid iron at conditions relevant to the inner core (44).

Text S2. Dynamical behaviors of iron in hep solid and liquid state. At 230 GPa and 5000 K (with 7/7,
~0.92), iron has an ideal hcp structure without any collective motion, as revealed by our ns-scale two-phase
simulations (Fig. S11a). Upon further heating to 5500 K using the two-phase method, the system transforms
into a liquid state (Fig. S11b). In addition, the van Hove self-correlation functions P(Ar, £) in hcp crystal at
230 GPa and 5000 K displays a stable Gaussian distribution over time, indicating that the atoms vibrate
around their equilibrium positions (Fig. S11c). However, in liquid iron at 5500 K, P(Ar, {) diverges over
time due to the disorderly diffusion of atoms (Fig. S11d), and its mean square displacements (MSD) of
atoms increases rapidly with the whole simulation time (Fig. S12). Furthermore, the collective motion of
premelting hep-Fe at Earth’s inner core conditions (approximately 330 GPa and 6000 K with 7/7,, ~ 0.97)

was computed and illustrated in Fig. S13.

Text S3. Two-phase melting model and melting points of hcp-Fe at the core pressure. Collective atomic
motion in premelting hcp-Fe can result in significant softening of the shear modulus and an ultrahigh
Poisson’s ratio. However, the temperature in the shear softening regime calculated using the traditional
EMD method is ~1000 K higher than the determined melting point of hcp-Fe in experiments (30). This
discrepancy arises from the fact that homogeneous melting in the one-phase model is often accompanied
by superheating. The one-phase method does not take into account some subsistent impurities in solid iron

such as defects, grain boundaries, and interfaces, which could contribute to initial nucleation on melting.
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To accurately reproduce the measured melting points of typical d-block transition metals such as iron,
tantalum, and vanadium at high P-T, a two-phase melting model is usually more appropriate (88). For
instance, using machine learning simulations with the two-phase model, the melting point of hcp-Fe is
estimated to be approximately 5400 K at 230 GPa and 6200-6300 K at 330 GPa, respectively. These values
are consistent with experimental determinations of 5300-5500 K and 6000-6300 K obtained by both static
(18) and shock (17, 19) experiments (Fig. S8). Consequently, we adopted the two-phase method to
investigate the melting behavior and Poisson’s ratio of hcp-Fe at the P-T conditions relevant to the inner

core.

Text S4. Elastic modulus of hcp-Fe at high pressure-temperature. The elastic modulus of a single
crystal hcp-Fe was calculated at different temperatures and a constant pressure of 230 GPa using ab initio
molecular dynamics (AIMD) method, which was also used in Ref. (30). To create unit cells at different
temperatures, the average lattice parameters from NPT (constant number of atoms, pressure, and
temperature) AIMDs were employed., NVT (constant number of atoms, volume, and temperature) AIMDs
were then carried out on these unit cells and their distortional duplicates of hcp symmetry (+ 0.02 strain) to
compute stresses and corresponding distortions. Through a non-linear 2" fitting based on these outcomes,
the elastic modulus of the system at finite temperatures can be determined. The NVT AIMD simulation
cells were constructed of a 4x2x2 supercell of the 4-atom C-centered cell in hep structure with orthogonal

axes and 4 irreducible k-points.

The calculated elastic modulus of hcp-Fe exhibited a significant reduction before reaching to the
melting point (7/T, > ~0.95) (Fig. 4), consistent with the results predicted in Ref. (30). To confirm the
effect of collective motion on the shear modulus, we further employed the machine learning potential to
calculate elastic constants of hcp-Fe. Our results indicate that collective atomic motion in premelting hcp-
Fe provides a microscopic explanation of the temperature-induced strong shear softening. As a result, both
two-phase and one-phase simulations simultaneously revealed the temperature-induced shear softening in

premelting hep-Fe with collective motion in this study.

Text S5. Effect of the supercell size on the calculation. To assess the influence of supercell size on our
simulations, we conducted tests to examine the fluctuations in temperature and diagonal stress tensors of
iron at 230 GPa and various temperatures using machine learning simulations. We employed cell sizes
ranging from 144 atoms (a typical size in ab initio simulations) to 31104 atoms (Fig. S14). The results
revealed substantial thermodynamic fluctuations in simulations with smaller cell sizes, such as 144 atoms,
leading to relatively large errors in the calculations. However, as the number of atoms increased to
approximately 10000, the systems exhibited convergence to the target temperature and pressure, with
significantly reduced fluctuations. For instance, the standard deviations in temperature and pressure for

simulations with 144 atoms and 18000 atoms were estimated to be 380 K and 31 K, 9.53 GPa and 0.91
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GPa, respectively. As a result, the pressure and temperature fluctuations in our simulations were too small
to induce iron encompassing between the solid and liquid phases in each run. As our machine learning
simulations were based on cells with at least 10000 atoms, we are confident that our data and conclusions

are both valid and physically meaningful.

Text S6. Effect of nickel and possible light elements on the collective motion of hep-Fe in the inner
core. Our computations show that the collective atomic motion of hcp-Fe occurs at 330 GPa and a
temperature range of 5800-6200 K, which is slightly lower by 0-6% than its melting temperature. However,
our study here does not account for the effect of the presence of nickel (Ni) at ~5wt.% and light elements
at 2-4 wt.% in the inner core (2). Literature results have demonstrated that adding small quantities of light
elements, such as Si and O, to iron can decrease its melting temperature by several hundreds of K at core
pressures (60). It is important to note that the collective atomic motion happens in hep-Fe at a temperature
ratio of 7/T,, > ~0.95. Given this, the incorporation of light elements (such as Si, S, O, and C) into iron
should result in the occurrence of collective motion at a relatively lower temperature due to the reduced
melting point. For example, collective motion in hcp-Fe alloys could take place at ~5200-5500 K. As a
result, it is reasonable to expect that iron alloyed with ~5 wt.%Ni and 2-4 wt.% light elements could also
display shear wave softening and collective motion nearing melting at relevant P-T conditions of the inner

core.
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Fig. S1. Schematic diagram of the experimental setup for sound velocity measurements of iron at high
pressure-temperature using the reverse-impact method in a two-stage light-gas gun. (a) The reverse-impact
method was used to measure both the longitudinal and bulk sound velocities of iron. Photon Doppler velocimetry
was used to obtain wave profiles at the iron/window interface. We used <100> LiF or <0001> Al,Os3 crystals as
transparent windows. W (km/s) represents the impact velocity. A thin aluminum film (~1 um) was vapor-
deposited on the impact surface of the LiF and Al,O3 windows to efficiently reflect the laser light. (b) The
relationship between time and Lagrangian distance shows the propagation of shock and release waves in the
sample and window after impact.
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Fig. S2. Particle velocity profiles at the iron/window interface during shock compression. The wave profiles
were measured using PDV with a time resolution of ~1 ns. The used windows were LiF (left) and Al,O3 crystals
(right), respectively. The details of the reverse-impact conditions are listed in Table S1.
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Fig. S3. Typical particle velocity profiles at the interface between iron and windows by multiple pins. The
used windows were LiF crystal in shot No. 6 (left) and Al,O3 crystal in shot No. 11 (right). The derivative of
particle velocity with respect to time, dU/d¢, is used to help obtain the time #, ¢;, and ¢, that correspond to the
arrival times of shock wave front, rarefaction wave at the interface, and the elastic-plastic transition point.
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890  Fig. S5. Schematic illustration of concurrent machine learning procedure in our work. The learning
891  procedure was separated into several parts including initialization, exploration, model deviation, etc. Different
892  configuration types in phase space were considered and learned. More details can be found in Ref. (82).
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Fig. S6. Training errors of the machine learning (ML) and comparisons between DFT results and our
machine learning model. (a) Convergence of training errors (root mean square error) for energy, force, and
stress during the machine learning (ML) training. (b-d) Comparisons of energy, force, and stress (shear and
normal) between our ML model and DFT calculations. The comparisons show remarkable consistency among
these predicted quantities. The solid diagonal lines serve as visual aids to facilitate interpretation. (e-f)
Comparisons of lattice dynamics (phonon spectrum) and radial distribution functions g(r) of hcp-Fe at 330 GPa
and 0 K between DFT results and our ML model.
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Fig. S7. Initial configuration of iron in two-phase method (left) and its particle density along the x-axis
(middle), as well as the final configuration after 50 ps (right). The configuration contains 20160 iron atoms.
The NPT simulations were conducted at the melting point of 5350 K at the pressure of 230 GPa and at the
melting point of 6200 K at the pressure of 330 GPa, respectively. The initial interface between solid and liquid
was divided by a 1 A vacuum layer to prevent unreasonable structures. The coexistence of solid and liquid in
the right figure locates the melting.
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Fig. S8. Melting temperature of iron at high pressure and the ratio of shock Hugoniot temperature to
melting point. Top, Pressure vs. temperature relation in shock-compressed iron and the melting curve of iron at
high pressure. The % represents the present calculated melting points of hep-Fe at 230 GPa and 330 GPa by the
two-phase method using machine learning MD. The red dash-dot line represents the melting curve of iron at
high pressure from both experiments (17-19) and theoretical computations (22, 23). The blue short-dash line
represents the measured Hugoniot temperature in solid iron from literature (17, 19, 23, 52). The light-green
region represents the ratio of shock temperature to the melting point of iron above 0.96, where collective atomic
motion occurs in iron under shock compression. The temperature threshold for collective motion in solid iron is
significantly higher the temperature boundary at which fast recrystallization occurs in polycrystalline iron (black
dotted line). Bottom, The ratio of Hugoniot temperature of iron to its melting point (7x/T) as a function of
shock pressure. Open circles represent the 7x/T,, conditions in the present sound velocity measurements under
shock compression. The hep-liquid boundary of shocked-iron was determined by in situ XRD (19) and sound
velocity measurements (48) under shock compression, which happens at 247-260 GPa.
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Fig. S9. Sound velocity of hcp-Fe as a function of density under high pressure and temperature conditions
by static and shock compression. The V'» of hep-Fe up to 163 GPa and 3000 K was measured using inelastic
x-ray scattering from a laser-heated sample in a diamond anvil cell (49). The V), and ¥y was determined up to
231 GPa and 5200 K under shock compression in this study. At relatively low temperatures (e.g., up to 3000 K),
the density-velocity relation of hcp-Fe could be reasonably described by a quasi-linear Birch’s law. However,
as it approached the premelting region, the sound wave velocity is significantly softened so that the Birch’s law
is broken down. The quasi-linear dashed-line serves as a visual guide, representing a quasi-linear relationship
between the V; and density of iron at the relatively low P-T conditions.
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Fig. S10. Volume change vs. gradual deformation under axial strain in hcp-Fe at 230 GPa and different
temperatures. The Poisson’s effect could be simulated in this way. The volume change indicates different
responses of hep-Fe. For solid (< 5100 K), the system shows a strong elasticity with a linear increase under a
small deformation. For hcp-Fe at near melting point (> 5200 K), collective atomic motion induces the softening
and the slope of the volume response curve decreases rapidly. For liquid (> 5400 K), the volume would not

change with the deformation due to its incompressibility.
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Fig. S12. Calculated mean squared displacement (MSD) of atoms in hcp and liquid iron at 230 GPa. In
liquid iron, the MSD ascends steeply throughout the whole simulation time.
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Fig. S13. Collective atomic motion of premelting hcp-Fe at the inner core conditions (~330 GPa and 6000
K). (a) Dynamical snapshots of premelting hcp-Fe at ~330 GPa and 6000 K (7/7,,~0.97) relevant to the inner
core P-T conditions. The collective motion emerges in hcp-Fe at the relevant inner-core boundary conditions.
Iron atoms are colored with time progression during 50 ps. (b) Projected MSD of hep-Fe atoms at ~330 GPa and
near the melting point of 6000 K indicating the diffusivity. The diffusion is anisotropic and mostly appears in a-
b (x-y) planes.
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Fig. S14. Fluctuations in temperature and diagonal stress tensors of iron at 230 GPa and various
temperatures using machine learning simulations with different supercell sizes. The utilized

supercell configurations contained 144, 1152, 9216, 18000, and 31104 atoms, respectively. The diagonal
stress tensors along the xx, yy, and zz directions were denoted as Pxx, Pyy, and Pzz, respectively. In the

leftmost row, a specific temperature is represented, while the subsequent three rows indicate the three
respective diagonal stress tensors (pressure) at the corresponding temperatures.

Movie S1. Diffusions of atomic collective motion of hcp-Fe at high pressure-temperature (230 GPa
and ~0.98 7/T.). The collective motion emerges near melting in both two-phase simulations without

superheating and one-phase simulations with superheating. Diffusing iron atoms are marked by red.
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Table S1. Conditions of the reverse-impact experiments and the sound velocities of hcp-Fe at high pressure-temperature under shock compression.

Shot w Thickness | Window Us Up Py p Tu Ti/Tu Vo Vs Vi V/Vy v

No. (km/s) (6, mm) materials (km/s) (km/s) (GPa) (g cm™) K) at Py (km/s) (km/s) (km/s)
1 4.866(14) 1.466(2) LiF 6.485(14) 1.616(9) 82.4(5) 10.455(8) 1600(100) | 0.44(3) | 8.36(17) | 6.92(14) | 4.06(32) | 0.83(2) | 0.347(21)
2 5.680(17) 1.477(2) LiF 6.925(15) | 1.895(11) 103.1(5) 10.731(9) | 2090(120) | 0.53(3) | 8.62(18) | 7.23(14) | 4.06(34) | 0.84(2) | 0.358(20)
3 6.036(18) 1.480(2) LiF 7.119(16) | 2.018(12) 112.9(5) 10.956(10) | 2330(150) | 0.57(3) | 8.80(19) | 7.41(15) | 4.11(37) | 0.84(2) | 0.358(21)
4 6.195(18) 1.456(2) LiF 7.205(16) | 2.072(11) 117.4(5) 11.019(10) | 2450(150) | 0.59(3) | 8.97(20) | 7.62(15) | 4.10(39) | 0.85(2) | 0.368(20)
5 5.541(16) | 0.661(1) ALOs 7.738(14) | 2.410(10) 146.6(6) 11.401(10) | 3150(200) | 0.70(3) | 9.52(22) | 7.95(16) | 4.54(41) | 0.84(2) | 0.358(21)
6 7.472(22) 1.682(2) LiF 7.901(20) | 2.513(15) 156.0(8) 11.511(14) | 3400(200) | 0.74(3) | 9.72(21) | 8.15(16) | 4.59(40) | 0.84(2) | 0.358(20)
7 6.332(19) | 0.734(1) ALO;3 8.226(16) | 2.719(12) 175.8(8) 11.726(12) | 3840(200) | 0.79(3) | 9.87(19) | 8.44(17) | 4.43(40) | 0.86(2) | 0.379(18)
8 6.881(21) | 0.662(1) ALOs 8.560(18) | 2.931(13) 197.2(9) 11.937(13) | 4380(250) | 0.86(3) | 9.86(21) | 8.62(17) | 4.15(46) | 0.87(2) | 0.389(19)
9 7.411(22) | 0.662(1) ALO;3 8.882(19) | 3.135(14) | 218.8(10) | 12.132(14) | 4920(250) | 0.93(3) | 9.90(22) | 8.81(18) | 3.91(52) | 0.89(3) | 0.408(19)
10* | 7.673(24) | 0.736(1) ALO;3 9.040(20) | 3.235(15) | 229.9(10) | 12.225(15) | 5180(250) | 0.96(3) | 9.88(20) | 9.10(18) | 3.33(58) | 0.92(3) | 0.435(20)
11 7.695(23) | 0.664(1) ALOs 9.052(19) | 3.243(14) | 230.8(10) | 12.232(15) | 5200(250) | 0.96(3) | 9.98(20) | 9.05(18) | 3.64(54) | 0.91(3) | 0.426(19)

Note: Eleven shots were conducted, where the pressure in iron ranges from ~82 to 231 GPa. W is the impact velocity, Py and Ty is the shock Hugoniot pressure
and temperature of iron, respectively, p is the density at Hugoniot pressure, U and u, are the shock wave velocity and particle velocity of iron, respectively,
calculated from ¥ and the known Hugoniot relations of iron and windows, V), V5, and V; is the longitudinal, bulk, and shear velocity of iron under shock
compression, respectively. The Hugoniot relation (Us = Cp + Aup) used in this study are Us (km/s) = 3.935 + 1.578 u, with the initial density of pg=7.850(2) g
cm for iron (73), Us (km/s) = 5.215 + 1.351 u, with the initial density of py = 2.640(2) g cm™ for LiF (89), Us (km/s) = 8.740(44) + 0.957(10) u, with the
initial density of 3.988(2) g cm for sapphire Al,Os. The parameters in parentheses are standard deviations. The used LiF and Al,Oj; crystals are <100> and
<0001> orientation, respectively. The sapphire is denser than that of LiF crystal. Therefore, iron impacting onto sapphire can generate much higher pressures
than that by LiF. *In shot No. 10, only the longitudinal sound velocity was measured, the bulk and shear sound velocity were estimated from the thermodynamic
calculations.
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