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ABSTRACT: In a recent paper [JCTC, 2020, 16, 6098], we
introduced a new approach for accurately approximating full CI
ground states in large electronic active-spaces called Tensor
Product Selected CI (TPSCI). In TPSCI, a large orbital active
space is first partitioned into disjoint sets (clusters) for which the
exact, local many-body eigenstates are obtained. Tensor products of
these locally correlated many-body states are taken as the basis for
the full, global Hilbert space. By folding correlation into the basis
states themselves, the low-energy eigenstates become increasingly
sparse, creating a more compact selected CI expansion. While we
demonstrated that this approach can improve accuracy for a variety
of systems, there is even greater potential for applications to excited
states, particularly those which have some excited-state character.
In this paper, we report on the accuracy of TPSCI for excited states, including a far more efficient implementation in the Julia
programming language. In traditional SCI methods that use a Slater determinant basis, accurate excitation energies are obtained only
after a linear extrapolation and at a large computational cost. We find that TPSCI with perturbative corrections provides accurate
excitation energies for several excited states of various polycyclic aromatic hydrocarbons with respect to the extrapolated result (i.e.,
near exact result). Further, we use TPSCI to report highly accurate estimates of the lowest 31 eigenstates for a tetracene tetramer
system with an active space of 40 electrons in 40 orbitals, giving direct access to the initial bright states and the resulting 18 doubly
excited (biexcitonic) states.

1. INTRODUCTION
Electronic excited states play an important role in a vast number
of technologically relevant processes ranging from solar cells to
sensing, artificial photosynthesis, and beyond. Theoretical
simulations are key for the interpretation and prediction of
spectra, lending detailed support to experiments. However, not
all excited states can be easily simulated computationally.
Traditional theoretical methods that depend on single
excitations (common to all linear-response methods) like
time-dependent density functional theory (TDDFT)1−3 often
fail to properly describe charge-transfer (CT) states4−6 and
require an additional doubly excited component to capture the
presence of doubly excited states.7−9 Even more sophisticated
methods like equation of motion coupled cluster with singles
and doubles (EOM-CCSD)10,11 can fail for doubly excited states
with errors of around 1 eV,12,13 requiring higher excitations to
produce accurate results. In order to provide qualitatively
correct descriptions of two-electron excitations, multireference
methods, such as complete active space self-consistent field
(CASSCF),14 complete active space second-order perturbation

theory (CASPT2),15,16 or multireference configuration inter-
action (MRCI),17,18 are required. However, these methods
cannot be used for active spaces larger than about 20 orbitals
with 20 electrons. It is also very difficult to select active orbitals
for state averaging when the ground and excited states differ
significantly in dipole moment, usually seen in cases with charge-
transfer excitations.
Selected configuration interaction (SCI)19-based approaches

have been recently used to calculate accurate estimates for
vertical excitation energies,20−23 double excitations,13 doublet−
doublet transitions in radicals,24 and excited-state dipole
moments and oscillator strengths.25 Motivated by the fact that
low-energy eigenstates often have most of their weight on a
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relatively small subspace of determinants, SCI techniques
attempt a bottom-up discovery of this space of “important”
Slater determinants. For weakly correlated systems, SCI
provides an incredibly efficient approach for obtaining near-
FCI estimates of the ground and excitated state energies.
However, the computational cost of SCI approaches is heavily
dependent on the amount of correlation present, as this
necessarily increases the dimension of the important subspace
of determinants. Although these cited applications have been on
small to medium molecules, the SCI variational spaces for these
systems are already in the tens of millions. For larger systems, the
problem will quickly become intractable for SCI-based
approaches.
Fortunately, the dimension of the important variational space

is not an intrinsic characteristic of a given Hamiltonian but is
rather a basis-dependent quantity. For a trivial example, consider
the case where one first rotates the basis into the exact
eigenbasis. In this basis, the relevant variational space has a
dimension equal to one. As such, it is possible to decrease the
size of the variational space by “simply” choosing a more
appropriate basis in which to represent the problem. With
orbital rotations being the simplest change of basis possible
where the many-electron transformation is parametrized by
simple one-electron functions, SCI calculations are often
performed using the natural orbitals computed from either a
cheaper SCI calculation or other single reference methods like
CCSD orMP2. Even though this does generally lead to a smaller
variational dimension compared to using canonical Hartree−
Fock orbitals, the improvements are often rather limited to a
factor of 2 or so.26,27 Recently, orbital optimization has also been
proposed to improve the SCI energies with respect to the
number of determinants in a given orbital space.27−30

Along this direction, we recently introduced a new method
called Tensor Product Selected Configuration Interaction
(TPSCI)31 which defines a SCI algorithm not in a Slater
determinant basis but rather, in a basis of tensor product states of
locally entangled many-body wave functions. This amounts to a
change of basis, where many-body rotations are applied locally
to the basis of Slater determinants, folding in local electron
correlation into the basis functions themselves.
Traditional Selected CI methods are memory limited due to

the size of the variational space needed to reach a target
accuracy. In TPSCI, our goal is to trade off some run time
(TPSCI calculations are significantly slower than Slater
determinant methods) for reduced memory requirements
(TPSCI variational spaces are generally much smaller than
those of Slater determinant methods).
Other methods such as active space decomposition

(ASD)32,33 and rank-1 matrix product states34,35 also have a
similar framework, operating in a similar tensor product space.
In ASD, the rapid growth of the Hilbert space was controlled
with a low-rank matrix product state (MPS) approximation
instead of the sparsity-based approximation used in our current
work. While an MPS approximation can be effective for
compressing a state, it does impose an often artificial one-
dimensional entanglement structure. In the rank-1 matrix
product state method, the global states are written as a linear
combination of entangled states, similar to TPSCI but mainly
focusing on disjointed molecular units. A broad list of methods
exists which focuses on forming the wave function of the full
system in this clustered framework, including Block Correlated
Coupled Cluster (BCCC)36 and the related Tensor Product
State Coupled Electron Pair-Type Approximations (TPS-

CEPA),37 the cMF-based coupled cluster,38 the ab initio
Frenkel−Davydov model,39,40 the renormalized exciton model
(REM),41,42 the Block Interaction Product State (BIPS),43 the
comb-Tensor network states based approach by Li,44 and the
generalized and localized active space methods.45−47

In this work, we extend our recently proposed TPSCI
methodology31 to provide near-FCI approximations to relatively
large manifolds of excited states in a limited basis of active
orbitals.

2. METHODS
The core strategy in TPSCI is to build a localized representation
that increases the sparsity of the target global eigenstates. Let us
start by assuming that our orbital active space permits
partitioning into smaller, disjoint active spaces (referred to as
“clusters” throughout). While clusters can be defined through
different considerations (locality, orbital entanglement,48
symmetry etc.), the general guideline is that intracluster
interactions should be stronger than intercluster interactions.
Within each cluster, we want to define a many-body

transformation49 that accounts for all relevant local correlations.
In principle, one can obtain such a transformation by simply
diagonalizing the local Hamiltonian (the terms that remain after
the removal of operators that act outside of the cluster).
However, this explicitly neglects the influence of neighboring
clusters on the composition of our many-body transformations.
We instead include the influence of intercluster interactions in a
mean-field fashion by adopting the cluster Mean Field (cMF)
method that was introduced by Scuseria and co-workers38,50 and
explored by Gagliardi and co-workers.51,52
This mean-field treatment arises (analogously to the

Hartree−Fock theory) by variationally minimizing the energy
of a single tensor product state (TPS) with respect to both
orbital and local many-body rotations (defined by a set of local
configuration interaction coefficients). As such, cMF can be
understood as a CASSCF problem with multiple active spaces,
similar to generalized active space or occupation-restricted
active space methods.45,46,53 We will express the cMF ground-
state wave function as

(1)

where I, J, ... label clusters, and |0I⟩ is the lowest energy eigenstate
of the cMF effective Hamiltonian on cluster I

(2)

where ( ) are the Fermionic annihilation (creation)
operators on orbital p, γqsJ is an element of the one-particle
reduced density matrix (1RDM) on cluster J, and hpq, ⟨pq|rs⟩,
and ⟨pq∥rs⟩ are the one-electron, simple two-electron, and
antisymmetrized two-electron integrals, respectively. The local
cMF effective Hamiltonian (arising naturally from tracing out
the remaining clusters) commutes with , Ŝz, and Ŝ2, and as
such, the cluster states, |αI⟩, automatically preserve particle
number and spin symmetries. Because the ĤI

eff depends on all
other clusters via the 1RDM, this must be solved self-
consistently. The similarities between and the traditional
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Fock operator also extend to our ability to define a perturbation
theory, as introduced in ref 50, and discussed later. For small
clusters, this many-body transformation can simply be defined
through the exact diagonalization (FCI) of although
approximate eigenstates would be needed for larger clusters.
In order to span the full Hilbert space of the global system, we

must separately diagonalize eq 2 in all possible sectors of the
cluster’s local Fock space. The global states can then be
represented in the tensor product basis of cMF eigenstates

(3)

where cα,β,···,ω is the coefficient tensor, and |αI⟩ is an eigenvector
of eq 2.
The focus of this paper is to develop and test an excited-state

generalization of our selected CI procedure (TPSCI)31 which
algorithmically builds a sparse approximation to eq 3. The
remaining theory section is organized as follows: In Section 2.1,
we discuss clustering and how to generate initial cluster states by
diagonalizing local Hamiltonians, Section 2.2 provides details
about the matrix element evaluation, and finally, in Section 2.3,
we explain in detail the steps of the TPSCI algorithm.
2.1. Generating Initial Cluster States. 2.1.1. cMF Orbital

Optimization. Because the cMF orbitals are optimized in
addition to the cluster state coefficients, the final definition of
the clusters is ultimately determined uniquely by the variational
principle. However, a good initial guess is often necessary for the
reliable orbital convergence of cMF, similar to CASSCF. There
are several ways to generate an initial guess for orbital clusters,
and the best choice is often system dependent. The most
straightforward (yet tedious) approach would be to localize the
active space orbitals and manually put them into clusters.
Alternatively, one could use more automated strategies (based
on graph theoretic algorithms or embedding-inspired ap-
proaches). Exploring and comparing these options will be the
focus of future studies.
In this work, we use a simple DIIS procedure to optimize the

orbitals,54,55 where the orbital rotation gradient is taken as the
error vector. For each set of orbitals, the local CI coefficients are
optimized self-consistently, and the optimized 1RDMs and
2RDMs are used to construct the new orbital gradient. As such,
our optimization is a two-step procedure consisting of an inner
“CI” optimization and an outer “orbital” optimization. Inclusion
of the orbital Hessian and directly coupling orbital and CI
coefficient degrees of freedom would significantly improve the
convergence. However, for this paper, the cMF is not the
computational bottleneck, so we defer this to future work.
2.1.2. Initial Computation of the Local Cluster State Basis.

The result of the cMF calculation is not only the variationally
best tensor product state but also a set of cluster-local effective
Hamiltonians dressed in the mean-field interactions of the other
clusters. We chose the eigenvectors of these effective
Hamiltonians as our initial cluster state basis. While the default
setting in our Julia implementation includes all possible electron
numbers for a given cluster, functionality has been added to
allow the user to define a net change (δe) in particle number for
each cluster. This removes the cost associated with Fock sectors
that will ultimately be insignificant in the final TPSCI wave
function. Once the allowed particle number subspaces (Fock
sectors) are defined, the eigenvectors of the local cMF effective
Hamiltonians are obtained in each cluster. A total ofM (a user-
defined parameter) eigenvectors are computed for each Fock

sector and saved in memory as basis vectors. Because these
eigenvectors diagonalize a local Hamiltonian, all of the local
correlations are folded into the basis vectors.

2.1.2.1. Spin Completeness of the Basis. In our initial TPSCI
paper,31 we computed the lowest M states for each requested
sector of Fock space, treating each ms block independently.
Because the different ms blocks have different dimensions,
truncating with a fixed M necessarily introduces spin-
contamination into the global basis. While this was not a
significant problem in our first paper focusing on ground states,
for excited states, spin-contamination can become more
significant. To reduce this spin-contamination in the final
TPSCI state (and to save both computational time and
memory), in this newer implementation, we simply generate
the high- and low-ms components by directly applying the spin
raising and lowering operators, S+ and S−, to the ms = 0 (even
number of electrons) and (odd number of electrons)
eigenstates. This ensures that allms components are included for
each cluster state computed, such that M state truncation does
not break the symmetry. Figure 1 shows a depiction of this
process.

While this approach ensures that truncatingM does not create
spin-contamination, there is still the possibility of creating spin-
contamination in the SCI selection. This is a direct analogy to
the situation with spin-contamination in determinant-based
selected CI codes. We have added the ability to add the
important TPS needed for achieving spin-complete wave
functions by simply adding the dominant contributions from
the residual vector, . However, for
future work, we will likely attempt to generalize the recent work
from Scemama and co-workers to also reduce the variational
dimension.56

2.2. Matrix Element Evaluation. Diagonalization directly
on the basis of tensor product states requires us to evaluate
Hamiltonian matrix elements between arbitrary tensor product
states. To save on time-complexity during the Hamiltonian
evaluation, we precompute the representation of all the relevant
local operators in the cluster basis. Following the relevant
notation used in the ASD work,32 we refer to them as Γ tensors.
To aid in the explanation of these tensors, we first introduce the
standard electronic Hamiltonian in second quantization

Figure 1. Comparison between the (a) previous approach and (b) new
approach for obtaining cluster states across different ms sectors. Gray
(discarded states). Solid orange (states obtained via diagonalization).
Dashed orange (states obtained by application of ladder operators).
Here, we have an example of where a user selected to keep 2 states (M =
2), and a cluster which has a singlet, triplet, singlet, and triplet state
ordering. In the old approach (a), our truncation would have
incomplete treatment of the second triplet state, whereas the new
approach (b) is spin-complete.
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(4)

where and q̂ are the Fermionic creation and annihilation
operators, and hpq and ⟨pq|rs⟩ are the one and two electron
integrals, respectively. We partition the electronic Hamiltonian
into one, two, three, and four cluster contributions, defined by
the number of distinct clusters being acted upon

(5)

where HI has all creation and annihilation operators in cluster I,
HIJ has operators in both clusters I and J and so on. The full set of
terms for each of these n-cluster interactions is included in the
Supporting Information. At most, we can only have four cluster
interactions since we have at most four Fermionic operators.
Each of these terms involves a contraction of the two-electron

integrals with the appropriate Γ tensors. Therefore, we can
precompute these terms and store them in a dictionary in
memory for later access. For example, if we have a local state β in
cluster I where operators and act on cluster I, its
associated Γ tensor is the following

(6)

This is also an example of the largest rank Γ tensor that our
implementation will store in memory. For large clusters and
largeM values (number of local cluster states), these can become
a memory bottleneck. It is, in principle, possible to avoid the
storage of these five-index tensors since they can only contribute
to two-cluster terms; however, we have not found the need yet.
These gamma tensors are contracted with the integrals during

the computation of each Hamiltonian matrix element. For
example, the following term would provide the following
contribution to the matrix element

(7)

where χ = ∑K=I
J−1NK and accounts for the sign by summing over

the number of electrons in each cluster between the two active
clusters, and arises from the orthonormality between
states ω and ω′ on clusterK. There is an additional negative sign
that arises from the anticommutator relationship when you
switch the two annihilation operators and since the operators
must be adjacent to the cluster they are acting upon.
The orthonormality of the cluster states creates sparsity in the

Hamiltonian, such that we only need to compute contributions
between tensor product states that have identical inactive
clusters states. Analogous to the Slater−Condon rules, only
tensor product states that differ by less than 5 clusters can be
coupled by the Hamiltonian.
2.3. Algorithm. We start by first listing the overall steps for

the TPSCI algorithm (which can also be seen in Figure 2) and
then follow with a more detailed discussion of each step. We also

include a table of the required user-defined parameters for a
TPSCI calculation in Table 1.

Steps of a TPSCI calculation for computing R states:
1 Define a reference -space with dimension of at least R.
(Section 2.3.1)

2 Diagonalize the Hamiltonian in the -space and collect
lowest R eigenstates. (Section 2.3.2)

3 Search -space perturbatively and expand -space. If
converged, continue, else return to step 2. (Section 2.3.3)

4 Update cluster basis with sparse higher-order singular
value decomposition (HOSVD) decomposition. If
converged, continue, else return to step 2. (Section
2.3.4)

5 Compute a state-specific PT2 energy correction. (Section
2.3.5)

2.3.1. Define a Reference Space. For ground-state TPSCI
calculations, the cMF wave function often serves as a sufficient
initial space. However, for excited states, it is often helpful to
specify an initial space that qualitatively describes the target
states.
If the system were to be fully decoupled such that there were

no interactions between clusters, then the full Hamiltonian
would be diagonal in the TPS basis. Additionally, the low-energy

Figure 2. Flowchart of the TPSCI algorithm including the HOSVD
loop.

Table 1. Table of Definitions of Parameters Used to Define a
TPSCI Calculation

N number of clusters
R number of global eigenvectors requested
M maximum number of cluster states in any given sector of Fock space

for any cluster
δe range of Fock sectors for each cluster to include; for example, if cluster

I has 10 electrons in the cMF reference, then compute cluster states
for 10 − δe → 10 + δe

ϵCIPSI threshold for discarding first-order TPS coefficients; coefficients
larger than this value will be included in the variational space

ϵFOIS threshold for screening when computing the first-order interaction
space; values larger than this will be included when computing the
first-order wave function
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spectrum would be dominated by “excitonic” states, those states
where every cluster is in its ground state except for a single (or
pair) that is excited. However, as the clusters become more
strongly interacting, the low energy spectrum can develop
greater weight on higher exciton-rank tensor products. For
weakly to moderately interacting clusters, the excitonic basis
provides a qualitatively correct description of the target excited
states and thus is an excellent initial space for starting the
TPSCI procedure. The single excitonic basis for a given cluster
can be written as

(8)

where cluster L is in its singly excited-state λ. For very weakly
interacting systems, one would expect the low-energy states to
be primarily represented as linear combinations of these single
excitonic states. For comparative purposes, we will refer to such
amethod as the TPS-single exciton (TPS-SE). This is equivalent
to the so-called Block correlated CI method described by Li and
co-workers.36 Although the TPS-SE results will not generally be
accurate since it lacks all interactions with higher excited
configurations (e.g., charge-transfer excitations), the TPS-SE
method provides a very effective way to initialize the TPSCI
calculation with a qualitatively correct initial space. Further,
for situations where we expect biexcitons to contribute to the
final wave functions (see Section 3.2), the user can also directly
add these configurations to the starting wave function.
We provide a comparison of the TPS-SE with TPSCI for one

of the systems we studied (P1) in the Supporting Information,
which demonstrates that one does generally need to go beyond
TPS-SE for accurate excited states.
2.3.2. -Space: Diagonalization.Once the variational space

is defined, we build the Hamiltonian from eq 5 in the space
and diagonalize. As described above, the required matrix
element evaluation is much more expensive than traditional
Slater determinant methods due to two main reasons: (i) the
loss of sparsity of the Hamiltonian matrix and (ii) the need to
contract the integrals with the precomputed Γ tensors
mentioned in Section 2.2. Because the Hamiltonian matrix
storage usually constitutes a memory bottleneck, we have
implemented the option for either a full matrix build or a matrix-
vector product build for use in a Krylov solver. However, while
the matrix-vector algorithm significantly reduces the memory
requirements, it is much slower because it recomputes thematrix
elements for each Lanczos iteration. As such, if allowed by
memory, our current implementation defaults to the full
Hamiltonian matrix build. After we build and diagonalize the
Hamiltonian, we have a set of variational states that are a sum of
tensor product states, and a variational energy,
E0.
2.3.3. -Space: Search. To obtain the first-order interacting

space (FOIS), we calculate the action of the Hamiltonian on the
set of tensor product states, , in the current variational space.

(9)

The states, , run over all tensor product states that can be
reached by the Hamiltonian from the current variational space,
excluding the variational space. Since the Hamiltonian is not
sparse on the TPS basis, the action of the Hamiltonian on the
TPS states can become very costly. Therefore, we have

implemented a series of screening and prescreening techniques
based on a user-defined threshold, ϵFOIS, where we delete
components , if . We then collect the

resulting non-negligible configurations that lie in the space.
Consistent with the original Slater determinant Configuration

Interaction Perturbatively Selected Iteratively (CIPSI)19
method, we compute the first-order correction to our current
variational state(s) to determine which new degrees of freedom
should be added to our variational space. In our work, we use a
generalization of the Barycentric Møller−Plesset19 (MP)
perturbation theory using the cMF effective Hamiltonian (eq
2), which is explicitly described in Appendix A.
Once the first-order coefficients are computed for each state,

(10)

any space configuration with a perturbative coefficient greater
than ϵCIPSI is added to the space.57 If no

additional TPS states are added to the variational space, then the
TPSCI protocol is considered converged.

2.3.4. Update Cluster Basis with HOSVD Decomposition.
Once the TPSCI wave function has converged (i.e., no
additional TPS states are required in the variational space), we
can optionally update the cluster basis using a quantum number-
preserving Tucker decomposition called a higher-order SVD
decomposition (HOSVD)

(11)

where α, β, ..., γ are each specific to a cluster, and is the
core tensor which is formed by a change of basis from α to i, β to
j, etc. Because we are using theHOSVD to only rotate the cluster
basis and not truncate the space,31,58 eachU is a unitary matrix in
the vector space of its specified cluster. These unitary matrices
are local many-body rotations which can be directly obtained
from individual singular value decompositions (SVD) along the
associated axis, e.g.,

(12)

or equivalently, by diagonalizing the cluster reduced density
matrix (cluster-RDM) which is obtained by tracing out the
remaining clusters from the converged TPSCI wave function.

(13)

where c(α, β,..., γ) is the TPS coefficient vector. We note that, in
practice, we want to preserve certain local quantum numbers
(particle number and spin projection). As such, we only block-
diagonalize the cluster-RDM within each quantum number
subspace. This ensures that the global wave function retains the
proper eigenstates of both and
When moving to a multistate problem, there are various ways

to complete this HOSVD to obtain the tucker factors (U). One
option is to decompose each state into its own basis. However,
this state-specific approach would be extremely complex, making
it difficult to reliably compute energy differences and transition
properties between states. Instead, we compute a single global
basis in a state-averaged way. To create this global basis, we
simply average the cluster-RDMs from each TPSCI eigenvector
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where s is denoting the state. We can then diagonalize ραα′ to
obtain the tucker factors for cluster α

(15)

We view the use of the HOSVD as optional, analogous to the
use of natural orbitals in conventional Slater determinant
selected CI calculations. As such, it is obtained iteratively, where
cheaper calculations provide states that are decomposed to
produce more compact representations for subsequent calcu-
lations with tighter thresholds, ϵCIPSI. We refer to this
computational protocol of systematically tightening the thresh-
olds after one (or more) HOSVD steps as “HOSVD
bootstrapping” in the Results and Discussion section.
2.3.5. Batched PT2 Energy Correction. Even though the

Selected-CI algorithm captures most of the static correlation
with the CI expansion, it does not capture the dynamic
correlation efficiently enough to produce near FCI accuracy
results. The inclusion of the missing dynamic correlation is
usually carried out using a state-specific PT2 correction. It is
important to note that we are only referring to dynamical
correlation inside of the active space; out-of-active space
correlations would still need to be accounted for (through
either downfolding, PT2, or adiabatic connection type schemes)
to enable direct comparison to the experiment. As mentioned in
Section 2.3.3, in the cMF basis, we choose a BarycentricMøller−
Plesset19 (MP) type partitioning in this work. Whereas
computing the first-order wave function can quickly become a
memory bottleneck due to the vast size of the space, the
energy computation has no inherent memory demand.
For computing the PT2 energy correction, we have

implemented a parallelized batched algorithm, where we
compute a small segment, or batch, of the first-order wave
function, then contract it to evaluate the energy, discarding the
state before moving to the next segment. Our current
implementation batches over what we refer to as FockCon-
fig’s or unique distributions of particles across clusters. This
approach is analogous to the determinant-based approach
described in ref 59. While this does offer system-dependent
speedups, the scaling is far from optimal. The reason is that by
parallelizing over Fock space configurations, we have rather poor
load balancing due to the fact that some Fock space
configurations have many more configurations than others.
Improvements to our batching will be the focus of future work.

3. RESULTS AND DISCUSSION
We investigated the efficiency of the TPSCI approach for excited
states by mainly focusing on polycyclic aromatic hydrocarbons
(PAH). These systems have been chosen for three reasons: (i)
they provide a straightforward approach to orbital clustering,
allowing us to defer the more complicated clustering patterns to
focused future work, (ii) we have already begun to understand
the ground-state behavior in our previous paper,31 and (iii)
because they are chemically interesting in terms of novel
material in synthesizing chiral nanographenes,60 twisted carbon
nanobelts,61 and carbon-based electronic devices62 etc.
Benchmarking a wider variety of chemical systems will be the
focus of follow-up papers.
The first few systems (Section 3.1) constitute a set of π

conjugated systems that can be grouped into clusters of six
orbitals which simply differ in their connectivity. The last

example is a tetracene tetramer, which is noncovalently bound
and supports interesting multiexcitonic states. For all systems,
we compute accurate estimates of both the ground state and a
large number of excited states.
For the PAH systems, we use geometries optimized at the

B3LYP/cc-pVDZ63 level of theory. The active space for each
PAH system P1−P5 is generated by extracting the molecular
orbitals that have a significant 2pz atomic orbital character, then
localized using the Boys64 localization method. We use the 6-
31G*65 basis for the singlet fission tetracene tetramer
calculations. The active space for the tetracene tetramer system
is generated by first obtaining a set of natural orbitals obtained
by diagonalizing a state-averaged CIS density (CIS-NO),66 then
these are localized using the Pipek-Mezey67 localizationmethod.
All semistochastic heat-bath CI (SHCI) calculations were
performed with Arrow.68−71 The integrals for all calculations
were generated using the PySCF package,72 and the cMF and
TPSCI calculations were performed with our open-source
Julia73 packages ClusterMeanField.jl74 and FermiCG.75 The
geometries for all of the systems are included in the Supporting
Information.
It is important to note that the calculations reported in this

section are not capable of being directly compared to
experiments. While we believe they are highly accurate inside
the active spaces, more work is needed to provide direct
comparisons with experiments. In particular, it will be necessary
to include the missing sigma-bond correlation,76 dynamic
correlation outside of the active space, larger basis set effects,
and vibronic effects to make sure that our calculations are
directly comparable to the experiment.
We note that the thresholding used in the original ground-

state TPSCI work31 pruned by using the probability and hence
was square of the ϵCIPSI in this work. The current work prunes on
the absolute value of the first-order coefficients to be more
consistent with other selected CI codes.

3.1. PAH Systems. We present four medium sized PAH
systems (P1−P4) and one larger system (P5) (Figure 3). Taking
the π space as the active space, P1−P4 have an active space of
size 24 electrons in 24 orbitals (4 clusters), and P5 has an active
space of 36 electrons in 36 orbitals (6 clusters). Considering that
the low-energy excited states of benzene consist of one singlet
state and three triplet states, in our calculations on P1−P4, we
compute 16 total excited states, while for P5 we compute 24
excited states (i.e., four states per cluster).

3.1.1. Smaller PAH Systems (P1−P4). In Figure 4, we present
the extrapolation of the ground and 16 excited states for systems
P1−P4 using TPSCI where the ground state is shown in navy
blue, triplets in blue, and singlets are colored orange.
As is commonly done in selected CI calculations, we assume a

linear relationship between the PT2 energy correction and
variational energy (i.e., the larger the cutoff, the cheaper the
selected CI calculation, therefore more energy correction will be
required). The extrapolated results in Figure 4 were computed
by first converging to the tightest ϵCIPSI possible (4× 10−4 for P1,
P3, and P4 and 6 × 10−4 for P2) through the HOSVD
bootstrapping approach. The additional cheaper points for
extrapolation were obtained by deleting TPSs with a coefficient
smaller than a specified epsilon value and then recomputing the
eigenvectors and PT2 corrections in these successively smaller
variational spaces. We note that the same cluster basis is used for
each point in the extrapolations, i.e., we do not perform any
additional HOSVD for the extrapolation points. This allows us
to track states and monitor if any root flips are observed across
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extrapolation points. The point where the extrapolated lines
cross the y-axis (i.e., where the variational energy is predicted to
have a zero PT2 correction) is our best estimate of the FCI
energies. Therefore, the closer the variational energies are to the
extrapolated result (y-axis), the more reliable the calculation.

For each of the P1−P4 systems, the ground-state variational
estimate converges much faster than the excited states, as seen
from Figure 4. In future work, we plan to investigate the use of
iso-PT2 selection schemes to help improve the convergence of
excited states.77,78
The TPSCI results for the singly connected systems, P1 and

P3, converge much faster than those for the P2 and P4 systems.
This is to be expected given the fact that each cluster is
connected by two bonds instead of one, leading states in the P2
and P4 systems to develop significantly more intercluster
entanglement.
Overall, we see that qualitatively, the low-energy electronic

structure of the clusters is retained when the system is more
weakly coupled than otherwise. For instance, for P1, P3, and P4,
there are three triplets for every singly excited benzene unit (4
singlets and 12 triplets). This is the same ratio as that found in
the isolated benzene structure. In contrast, for the P2 system, we
observe 7 singlets and 9 triplets within the lowest 16 states. We
interpret this increase in singlet contribution to arise from the
increased interactions between the clusters, which provides
more ability for the electronic structure to delocalize between
clusters.
Although P4 also has clusters which are connected by two

bonds, the nonlinear geometry prevents the qualitative
reorganization of the electronic structure such that there are
still 4 singlets and 12 triplets. Further, unlike P2, the singlet−
triplet gap is not significantly lowered compared to that of P1 or
P3.
We note that in the P2 extrapolated graph, we observe a very

steep slope for one of the states around 4.0 eV. This could
indicate that this state was not converged tightly enough for
extrapolation. Alternatively, this might have arisen from the

Figure 3. PAH systems used for the excitation energies. Each gold
highlighted region corresponds to a separate cluster.

Figure 4. Extrapolation of the ground state and 16 excited states for the medium-sized PAH systems: (a) P1, (b) P2, (c) P3, and (d) P4, studied using
TPSCI (with HOSVD bootstrapping). After the bootstrapping, the TPSCI wave function coefficients are clipped at the larger thresholds to obtain the
additional points in the extrapolation to plot against the PT2 energy correction with root tracking. All energies are shifted by the extrapolated ground-
state TPSCI energy, so the ground state converges to 0 eV. Variational energy fit (solid lines). PT2 energy fit (dashed lines). (ϵCIPSI = n× 10−4 with n =
4, 6, 8 for P1, P3, and P4. ϵCIPSI = n × 10−4 with n = 6, 8, 10 for P2).
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manner in which we apply perturbation theory. As mentioned
above, we are currently using a nondegenerate PT2 formalism,
which can create problems in cases of near degeneracy. In the
follow-up work, we plan on implementing a quasi-degenerate
formalism,79−84 following a strategy similar to our recent
work,85,86 to better understand the current results and to
safeguard against such issues in the future.
3.1.2. Larger PAH (P5). As a larger example of a π-conjugated

system, we also consider P5, which has an active space of 36
electrons in 36 orbitals that is partitioned into 6 clusters. Similar
to the case before, we expect three triplets and one singlet for
every singly excited cluster, giving a total of 25 states. We present
the extrapolations of both TPSCI and semistochastic heat bath
CI (SHCI) in Figure 5. The linear extrapolation has been shown

previously in the literature to generate overestimated energies.20
A quadratic fit is recommended in these cases, but for
comparison, we use a linear fit for both methods.
In order to label the eigenstates, we compute the expectation

value of for each of the TPSCI states. Although the TPSCI
results are rather tightly converged, nearly degenerate states can
mix arbitrarily, leading to a few instances of nontrivial spin-
contamination. However, the extent of this is generally small
enough that it does not prevent us from labeling the states.87
Using SHCI, we were not able to compute all 25 states because
the variational space grew to be too large to fit in memory. The
largest calculation we were able to obtain was for 13 roots.
Further, we did not have access to ⟨ ⟩ values for SHCI, so we
were not able to label the resulting states, and thus they are
simply left gray in Figure 5.
In addition to the plots in Figure 5, we also present these

results in Table 2. Here, we report the variational excitation
energies (ωVar), magnitude of the PT2 correction to the
excitation energies (ΔωPT2 = ωPT2 − ωVar), and the extrapolated
excitation energies (ω∞). To better highlight the accuracy of the
perturbatively corrected results, we also present the extrap-

olation corrections (Δω∞ = ω∞ − ωPT2) for the excitation
energies.
For all excited states computed, the TPSCI variational energy

is closer to its extrapolated result than the corresponding
variational HCI result. This is a consequence of folding local
correlations directly into the TPS basis. Not only do the TPSCI
results have smaller PT2 corrections (ΔωPT2) compared to
SHCI, but more importantly, the extrapolation correction is
significantly smaller than the PT2 correction for each state,
ΔωPT2 > Δω∞. In contrast, this is not the case for the SHCI
results, where the extrapolation corrections are consistently
larger than the PT2 corrections. For all excitation energies, the
magnitude of ΔωPT2 for SHCI is around a factor of 3 times that
of TPSCI.
The fact that the TPSCI variational (and perturbative) results

are closer to the extrapolated values lends greater confidence to
the extrapolated values. This is extra important in situations
where different methods yield extrapolations that differ
nontrivially, as seen in Figure 5. While the overall features are
similar between SHCI and TPSCI, the extrapolated values differ
by a non-negligible amount (up to around 100meV). Because of
the fact that our extrapolation is smaller, we expect that the
TPSCI extrapolations are closer to the exact FCI results than are
the SHCI extrapolations.88

3.2. Singlet Fission: Tetracene Tetramer. Singlet fission
is a multichromophoric process in which a bright singlet excited
state is converted into two lower energy triplets. Themechanism
involves an entangled multiexciton singlet state, 1(TT).89 While
the 1(TT) state is likely the first multiexciton state to be
accessed, due to spin conservation, it has been recently shown
that the triplet and quintet multiexcitons, 3(TT) and 5(TT), also
play an important role in the separation process.90 Because of
the intrinsic two-electron nature of the multiexcitonic state, it is
difficult to compute all three spin states of the multiexciton, the
initial singlet excitation, and the final triplet states on equal
footing. However, because of the underlying product structure
of the target states,91 tensor product state methods offer unique
advantages. Since the chromophores are naturally partitioned
into different clusters, a diabatic basis can be naturally formed
using the cluster states.33 Here we test our tensor product-based
method on a tetracene tetramer taken from a tetracene crystal
that exhibits this singlet fission process.
To construct an orbital active space that accurately represents

the targeted states, we performed a CIS calculation for the first
four singlets and triplets, then built a state-averaged one particle
reduced density matrix (1RDM) and diagonalized to obtain the
natural orbitals.92 Using the eigenvalues of the state-averaged
1RDM, we take the 40 most correlated orbitals (those with the
most fractional occupations) as our active space. While a larger
active space would have been possible in principle, this is the
largest active space that was tractable when treating each
chromophore (10 electrons in 10 orbitals) with an exact FCI
cluster solver. In future work, we will report on a restricted active
space configuration interaction (RASCI) cluster solver to
increase the size of the clusters (and thus active spaces)
treatable. After defining the (40o, 40e) orbital active space, we
constructed an initial guess through localization, then variation-
ally optimized the cluster orbitals with cMF, defined by 4
clusters each with 10 electrons (5α + 5β) in 10 orbitals.

3.2.1. Extrapolation. We used the same technique that was
used for the PAH systems to obtain the extrapolated plots seen
in Figure 6. In subplot (a) of Figure 6, we show 31 states that
were calculated using TPSCI. We label the states based on the

Figure 5. Extrapolation for the P5molecule using the (a) SHCI and (b)
TPSCI methods, respectively. R denotes the number of roots: 13 for
SHCI and 25 for TPSCI. (TPSCI ϵCIPSI = n × 10−4 with n = 4, 6, 8 and
SHCI ϵCIPSI = n × 10−5 with n = 5, 7, 10).
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Table 2. Excitation Energies (eV) and Wavefunction Dimension for the Most Accurate Calculation Reported for the P5 System
Using TPSCI and SHCI (ϵCIPSI = 4 × 10−4 for TPSCI and ϵCIPSI = 5 × 10−5 for SHCI)a

TPSCI SHCI

dimension: 112,788 dimension: 1,741,084

state ωVar ΔωPT2 Δω∞ ω∞ ωVar ΔωPT2 Δω∞ ω∞

1 3.22 −0.09 −0.02 3.10 3.68 −0.25 −0.39 3.04
2 3.43 −0.09 −0.02 3.32 3.86 −0.24 −0.37 3.25
3 3.43 −0.09 −0.02 3.32 3.93 −0.27 −0.43 3.22
4 3.91 −0.08 −0.02 3.80 4.37 −0.25 −0.38 3.74
5 3.91 −0.08 −0.02 3.80 4.40 −0.27 −0.44 3.69
6 4.28 −0.11 −0.03 4.15 4.82 −0.30 −0.44 4.09
7 4.46 −0.11 −0.04 4.31 4.94 −0.22 −0.34 4.38
8 4.52 −0.04 −0.01 4.46 5.00 −0.26 −0.40 4.34
9 4.52 −0.11 −0.03 4.38 5.03 −0.31 −0.29 4.43
10 4.58 −0.11 −0.03 4.44 5.07 −0.27 −0.40 4.39
11 4.58 −0.11 −0.04 4.44 5.11 −0.30 −0.47 4.34
12 4.59 −0.10 −0.03 4.45 5.15 −0.29 −0.29 4.57
13 4.59 −0.10 −0.03 4.46
14 4.74 −0.08 −0.04 4.62
15 4.74 −0.08 −0.04 4.62
16 4.77 −0.09 −0.01 4.67
17 4.78 −0.09 −0.01 4.68
18 4.83 −0.10 −0.03 4.70
19 4.83 −0.10 −0.03 4.70
20 4.87 −0.09 −0.03 4.74
21 4.97 −0.09 −0.03 4.85
22 5.00 −0.07 −0.02 4.91
23 5.00 −0.07 −0.02 4.91
24 5.09 −0.07 −0.02 5.01

aLineally extrapolated results were obtained from PT2 energy corrections. ωVar is the variational excitation energy; ΔωPT2 is the PT2 energy
correction to the excitation energy; Δω∞ is the extrapolation correction; and ω∞ is the extrapolated excitation energy.

Figure 6. Extrapolated results using HOSVD bootstrapping then clip at larger thresholds to obtain extrapolation for tetracene tetramer singlet-fission
example with root tracking. (a) Full spectra with 31 roots shown. (b)Middle section of the energy spectra with 4 triplet excited states and cluster labels
of the tetracene tetramer. (c) Top portion of the spectra with the remaining 26 roots shown.
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expectation value of the operator and the dominant Fock
space configurations in each eigenstate. The singlet ground state
is denoted in navy blue; triplets are in blue, singlets (bright
states) are in orange, and the biexcitons are in red. The
orientation of the tetracene tetramer is shown in a herringbone
lattice where the chromophores are stacked and then shifted
slightly from one another. We observe faster convergence for the
lower excited states compared to the biexcitons and higher single
excitons, which follows the intuition that the higher excited state
manifold is generally more entangled, thus requiring more TPS
configurations to converge. In subplot (b) of Figure 6, we reduce
the energy scale to highlight the four lowest energy triplet states.
Because these states are largely “singly excitonic” in nature, their
rate of convergence is similar to that of the ground state.
In subplot (c), the energy scale is changed to highlight the

higher energy states, and all 18 biexcitons, four singlets, and four
higher excited triplet states (primarily superpositions of T2
single excitons) are shown. As expected, the biexciton spectrum
(shown in red) is relatively dense compared with the higher
energy states.
Due to the fact that we have used a fixed orbital active space of

40 orbitals and neglected external correlation, our excitation
energies are expected to be significantly overestimated
compared to the experiment. For example, the experimental
value of the bright state lies at 2.35 eV.93 The significant
difference between the experimental value and our computed
results is primarily due to both the inadequate composition of
our active space and missing vibronic effects, not from errors
within the active space.
In the future, we would plan to use TPSCI as a CASSCF

solver, allowing us to use state averaging so that our active space
orbitals treat the ground and excited states on an equal footing.
We note that the orbital optimization during the cMF
calculation only mixes the active 40 orbitals among themselves,
but this could be extended to mix all of the orbitals. In addition
to orbital optimization, we will also consider the inclusion of
dynamical correlation via an operator downfolding (e.g.,
DUCC94,95) or by doing a PT2 type correction. Finally, we
can also increase the size of our active space beyond this 40
orbital example. This will require a more efficient cluster state
solver to allow us to exceed the 10 orbitals per cluster used in this
calculation. A RASCI cluster solver enabling larger clusters will
be reported in a subsequent article.
3.2.2. Wave Function Analysis. To analyze the TPSCI wave

function, we have access to the expectation value of number
of important configurations in each Fock space, and the
associated weight of that Fock space in the overall TPS wave
function. In Table 3, we present a summarized version of the
wave function analysis. For each state, we list the state label, ⟨
⟩, the variational excitation energies, the PT2 corrections, and
the overall percent charge-transfer character.
The state label is defined by the ⟨ ⟩ and the dominant Fock

space configurations. While the states were generally easy to
label, the presence of near-degeneracies between states of
different spin multiplicities creates difficulties in resolving spin
states accurately, as our variational space would need to be
converged to within the energy gap between the states. While we
could always “un-mix” themmanually by just diagonalizing the 2
× 2 matrix, we have not investigated that in this study.
By analyzing the total weight of Fock sectors having clusters

with different numbers of electrons, we can quantify the amount

of charge transfer present in a given state. Following this
approach, we observe a significant amount of charge transfer
present in the first bright state (state 24) with 10.8% charge
transfer. We analyze this charge-transfer character in the first
singlet excited state more carefully in Table 4, where we list
charge-transfer Fock space contributions that are overall greater
than 0.001 in the final TPSCI wave function. As shown in this
table, the localized representation of the TPSCI method makes
the analysis more direct. Not only can we quantify the amount of
CT character, but we can also further decompose it into
individual CT contributions. For example, in Table 4 we can see
that while charge transfers between clusters 1 and 2 are of a
“charge resonance” type, where the transfers are equal in both
directions, the CT interactions between clusters 1 and 4 are
more asymmetrical, with more electron density moving from 1
to 4 than in the opposite direction.

4. CONCLUSIONS
In this work, we generalize our Tensor Product Selected
Configuration Interaction algorithm to enable the computation
of excited states. TPSCI has the ability to provide extremely

Table 3. Results for all 31 Eigenstates of Tetracene Tetramer
with Associated Labels Based on Expectation Values of the
Operator ⟨ ⟩, Variational Excitation Energies (ωVar), PT2
Energy Corrections (ωPT2) for Excitation Energies in eV, and
Percentage of Charge Transfer (% CT) for all 31 Eigenstates
in the TPSCI Wavefunction

state label ⟨ ⟩ ωVar ωPT2 % CT
1 S0 0.000 0 0 0.09
2 T1 2.000 1.811 0.002 1.36
3 T1 2.000 1.833 0.002 0.17
4 T1 2.000 1.847 0.002 0.40
5 T1 2.000 1.860 0.002 0.36
6 1(TT) 0.001 3.631 0.007 3.81
7 1(TT) 0.091 3.642 0.006 1.95
8 3(TT) 1.919 3.643 0.006 1.53
9 5(TT) 5.945 3.648 0.006 1.36
10 1(TT) 0.234 3.649 0.006 4.23
11 3(TT) 1.811 3.650 0.006 3.02
12 3(TT) 1.838 3.661 0.005 3.01
13 1(TT) 0.163 3.661 0.006 0.98
14 3(TT) 2.000 3.672 0.006 0.65
15 5(TT) 5.999 3.678 0.005 1.21
16 5(TT) 5.998 3.685 0.005 0.79
17 5(TT) 5.995 3.691 0.005 0.52
18 1(TT) 0.302 3.692 0.005 0.52
19 3(TT) 1.718 3.693 0.005 0.50
20 5(TT) 5.986 3.696 0.005 0.39
21 1(TT) 0.050 3.704 0.005 0.96
22 3(TT) 1.961 3.705 0.005 0.89
23 5(TT) 5.989 3.711 0.004 0.42
24 S1 0.000 3.807 0.008 10.80
25 S1 0.000 3.883 0.005 1.92
26 T2 2.000 3.898 0.004 2.03
27 T2 2.000 3.915 0.003 0.36
28 S1 0.001 3.917 0.006 2.55
29 T2 2.000 3.923 0.003 0.98
30 T2 2.000 3.927 0.003 2.32
31 S1 0.000 3.950 0.005 5.03
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accurate (near-exact FCI) results for strongly correlated systems
that would otherwise be intractable for Slater determinant-based
methods. We use our own extrapolated results within the limited
basis of active orbitals as a benchmarking tool for our TPSCI
method, as no experimental or FCI results can be obtained for
the numerous excited states computed.
We demonstrated the accuracy of TPSCI for excited states on

a series of small PAH molecules with active spaces of 24
electrons in 24 orbitals. The excitation energies are within 1
kcal/mol or 0.043 eV once the state-specific PT2 correction is
added for the P1, P3, and P4 systems when compared to our
nearly exact extrapolated results. The P2 system was a very
challenging system due to the additional connectivity that
increased intercluster interactions. Nonetheless, all but four
higher energy excited states were within 0.043 eV of the
extrapolated results. We see from the extrapolated results for P2,
one of the higher excited states has an extreme slope, suggesting
the further development of a quasidegenerate PT2 formulation.
We then extend TPSCI to one larger PAH system, P5, with an
active space of 36 electrons in 36 orbitals, and compare it to a
semistochastic heat bath CI (SHCI). All TPSCI excitation
energies for P5 are extremely close to the nearly exact
extrapolated result. When we compare TPSCI to SHCI for the
P5 system, we are able to calculate an additional 12 states with
TPSCI. Furthermore, all variational excitation energies with
TPSCI are closer to their respective extrapolated results
compared to how far away the HCI excitation energies are
from their extrapolated values. TPSCI also has smaller PT2
corrections when compared with SHCI for all states.
After testing TPSCI on smaller PAH systems and comparing

it to SHCI, we investigated TPSCI’s ability to compute “beyond-
dimer model” singlet fission excited states of a tetracene
tetramer cluster. We chose an activated space of 40 electrons in
40 orbitals with a total of four clusters (one for each tetracene).
Our model has all three spin states of the dark multiexciton state
as well as the singlet excited states. We calculated the ground
state and 30 excited states (eight triplets, four singlets, and 18
biexcitons). All variational excitation energies are extremely
accurate and even closer to exact results with the PT2 energy
correction (only a 0.001 eV difference). We are able to label our
states from both the ⟨ ⟩ values and TPS wave function analysis.

In addition to accurately solving large active spaces for several
roots, the TPSCI wave function further allows analysis of charge-
transfer characteristics and multiexciton states. This analysis will
be extended to produce quantitated diabatic bases and
subsequent effective Hamiltonians. The TPS representation
also makes analysis in terms of quantum information quantities,
such as von Neumann entropy, very natural. These directions, in
addition to the construction of properties and RDMs, will be the
focus of future work.
In order to extend TPSCI to larger active spaces, it will be

necessary to use an approximate solver within the cluster, like
the restricted active space approach, which will be the focus of a
future article. In addition to improved cluster solvers,
automation of the orbital clustering is also needed to minimize
the amount of user input needed to setup a calculation. Even
though we report excitation energies near the exact limit within
the active space, we have not yet included any influence from the
higher lying virtual orbitals, which is necessary for recovering
dynamic correlation. Including this external dynamic correlation
will be the focus of future work through either downfolding or
PT2 treatments. Orbital optimization with the TPSCImethod is
also a possible future direction to provide CASSCF values for
large active spaces. Even without these suggested future
directions, TPSCI has the ability to study ground states, excited
states, charge-transfer states, and multiexciton states for large,
strongly correlated systems and hopes to serve as an accurate
method to benchmark against systems that are intractable with
FCI.

■ APPENDIX A

Definition of Perturbation Theory
The perturbation theory used in this work is defined by using
Löwdin’s partitioning theory.We seek a correction to the zeroth-
order wavefunction for state s, which is constructed as a linear
combination of TPSs that lie within the space. We refer to this
reference state as . To partition the Hamiltonian for
perturbative treatment

(A1)

we wish to choose a partitioning where the zeroth-order
contribution contains the full Hamiltonian in the space but an
approximate, diagonal Hamiltonian in the space. This is
achieved by the following partitioning

where Ĥ = + , and

(A4)

and where the subscript D ( ) indicates the diagonal of the
operator (this is only consequential if one is working in the
HOSVD basis because the cMF effective Hamiltonian is already
diagonal in the cMF basis). This is referred to as “barycentric”
partitioning because the zeroth-order Hamiltonian contains the

Table 4. Charge-Transfer Wavefunction Analysis for First
Singlet Excited Statea

Fock space (α, β) #configs weight CT character
(5,5)(5,5)(5,5)(5,5) 11,157 0.87 no CT
(4,5)(5,5)(5,5)(6,5) 1150 0.018 1 → 4 (α)
(5,4)(5,5)(5,5)(5,6) 1135 0.018 1 → 4 (β)
(5,4)(5,6)(5,5)(5,5) 856 0.017 1 → 2 (β)
(4,5)(6,5)(5,5)(5,5) 897 0.016 1 → 2 (α)
(6,5)(4,5)(5,5)(5,5) 843 0.015 2 → 1 (α)
(5,6)(5,4)(5,5)(5,5) 876 0.015 2 → 1 (β)
(6,5)(5,5)(5,5)(4,5) 922 0.004 4 → 1 (α)
(5,6)(5,5)(5,5)(5,4) 865 0.004 4 → 1 (β)
(5,5)(6,5)(4,5)(5,5) 1114 0.004 3 → 2 (α)
(5,5)(5,6)(5,4)(5,5) 1099 0.004 3 → 2 (β)
(5,5)(4,5)(6,5)(5,5) 951 0.003 2 → 3 (α)
(5,5)(5,4)(5,6)(5,5) 938 0.003 2 → 3 (β)

aThese are the charge-transfer Fock space configurations that
contribute with a weight of >0.001 and are in descending order by
their contributions.
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reference state expectation value of the “Fock-like” cMF
Hamiltonian.
With this partitioning, the expression for the first-order

coefficients becomes

(A5)

While other partitionings are likely to work better (Epstein−
Nesbet96,97 or even a quasidegenerate formulation of the above
approach85,86), we defer consideration of different partitionings
to future work.

■ APPENDIX B
Computing the First-Order Wavefunction
The first-order correction shows up in two distinct places in the
TPSCI algorithm: Step 3 and Step 5 in Section 2.3. In Step 5, the
state-specific PT2 energy correction is computed, but since we
only compute the final second-order energy, we do not actually
ever need the full first-order wavefunction. Consequently, we
obtain only small batches of the first-order wavefunction
(external configurations that share the same FockConfig),
then compute a batch’s contribution to the energy, then
immediately discard the corresponding first-order amplitudes.
In this way, computing the PT2 correction in Step 5 does not
really create a memory bottleneck. However, in Step 3 when we
perturbatively search the -space to expand our -space, we do
need to compute the first-order wavefunction. To do this, we use
prescreening to reduce the number of terms we have to consider.
To build the first-order wavefunction, we apply the

Hamiltonian to our variational space, but because the
Hamiltonian connects a single TPS with up to a quartic number
of new TPS’s , the first-order interaction space quickly
becomes intractable to store in memory. For example, consider a
single 4-body term in the Hamiltonian (i.e., each Fermionic
creation/annihilation operator is acting on a different cluster)
applied to state s, |Ψs⟩, is given below as

(B1)

(B2)

(B3)

(B4)
Because the variational states, |Ψs⟩, are always represented in a

sparse basis, this operation is performed element wise over the
configurations in the variational space. To denote this, we will
rewrite the above equation, highlighting the fact that the right-
hand side indices are specified

(B5)

where the * symbol is used to denote the full range of values of
the associated index. The above equation reveals the potential
bottleneck of computing the first-order wavefunction. Suppose
M = 400, (i.e., the number needed to keep all states for a six

orbital six electron cluster), a single TPS in the variational space
could couple to such a large number of configurations that it
would require 200 Gb of memory to simply store a single
contribution, σ****ϵ

s. To avoid this, we can perform a series of
screenings based on the following inequalities.
Assuming the following relationship

(B6)

FOIS screening inequality 1

(B7)

FOIS screening inequality 2

(B8)

Using inequality 1 allows us to determine if an entire block of
contributions will have values all smaller than a user-specified
threshold ϵFOIS, allowing us to avoid the computation altogether.
Inequality 2 allows us to predetermine which cluster state
indices are capable of contributing. This means that after
determining if the entire block is not negligible (by using
inequality 1), we can prune the number of cluster states, creating
a smaller, effective M value, so that the terms we actually
compute in eq B5 have a lower percentage of discarded values.
After prescreening the indices α′, β′, γ′, and δ′, we compute the
screened block of σ contributions. Finally, we filter out all values
with magnitudes less than ϵFOIS, before storing the contribution
to σ in memory. While the screening does incur some overhead
for tighter values of ϵFOIS, for the looser values that are often used
in Step 3 (e.g., ϵFOIS = 1e − 5 or 1e − 6), the screening can
significantly speed up a calculation without having a significant
impact on the results. In future work, we will study the interplay
of thresholds and performance to better understand how the
current screening procedure works and to potentially improve
on this rather straightforward approach.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpca.3c03161.

Tensor product state single exciton data analysis for the
P1 polyaromatic hydrocarbon system, TPSCI versus
TPSCI with HOSVD decomposition extrapolations for
the tetracene tetramer system, extrapolation plots to show
convergence of the user defined parameter: maximum
number of roots (M), variational extrapolations of
medium-sized PAH systems (P1−P4) on a smaller x-
axis, enumeration of all distinct hamiltonian terms (PDF)
xyz geometry coordinates for all systems (TXT)

■ AUTHOR INFORMATION
Corresponding Author

Nicholas J. Mayhall − Department of Chemistry, Virginia Tech,
Blacksburg, Virginia 24060, United States; orcid.org/
0000-0002-1312-9781; Email: nmayhall@vt.edu

Authors
Nicole M. Braunscheidel − Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24060, United States;
orcid.org/0000-0001-7555-9173

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.3c03161
J. Phys. Chem. A 2023, 127, 8179−8193

8190

https://pubs.acs.org/doi/10.1021/acs.jpca.3c03161?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.3c03161/suppl_file/jp3c03161_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.3c03161/suppl_file/jp3c03161_si_001.txt
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Nicholas+J.+Mayhall%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1312-9781
https://orcid.org/0000-0002-1312-9781
mailto:nmayhall@vt.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Nicole+M.+Braunscheidel%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7555-9173
https://orcid.org/0000-0001-7555-9173
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Vibin+Abraham%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.3c03161?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Vibin Abraham − Department of Chemistry, University of
Michigan, Ann Arbor, Michigan 48109, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpca.3c03161

Author Contributions
§N.M.B. and V.A. contributed equally.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation (Award no. 1752612).

■ REFERENCES
(1) Runge, E.; Gross, E. K. U. Density-Functional Theory for Time-
Dependent Systems. Phys. Rev. Lett. 1984, 52, 997−1000.
(2) Marques, M.; Gross, E. TIME-DEPENDENT DENSITY
FUNCTIONALTHEORY.Annu. Rev. Phys. Chem. 2004, 55, 427−455.
(3) Furche, F.; Ahlrichs, R. Adiabatic time-dependent density
functional methods for excited state properties. J. Chem. Phys. 2002,
117, 7433−7447.
(4) Dreuw, A.; Head-Gordon, M. Failure of time-dependent density
functional theory for long-range charge-transfer excited states: the
zincbacteriochlorin- bacteriochlorin and bacteriochlorophyll- spher-
oidene complexes. J. Am. Chem. Soc. 2004, 126, 4007−4016.
(5) Levine, B. G.; Ko, C.; Quenneville, J.; MartIńez, T. J. Conical
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