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Abstract
The bandwidth-free tests for a multi-dimensional parameter have attracted considerable attention in
econometrics and statistics literature. These tests can be conveniently implemented due to their tuning-
parameter free nature and possess more accurate size as compared to the traditional heteroskedasticity
and autocorrelation consistent-based approaches. However, when sample size is small/medium, these
bandwidth-free tests exhibit large size distortion when both the dimension of the parameter and the
magnitude of temporal dependence are moderate, making them unreliable to use in practice. In this paper,
we propose a sample splitting-based approach to reduce the dimension of the parameter to one for the
subsequent bandwidth-free inference. Our SS–SN (sample splitting plus self-normalisation) idea is broadly
applicable to many testing problems for time series, including mean testing, testing for zero
autocorrelation, and testing for a change point in multivariate mean, among others. Specifically, we propose
two types of SS–SN test statistics and derive their limiting distributions under both the null and alternatives
and show their effectiveness in alleviating size distortion via simulations. In addition, we obtain the limiting
distributions for both SS–SN test statistics in the multivariate mean testing problem when the dimension is
allowed to diverge.
Keywords: fixed-b asymptotics, hypothesis testing, long run variance, self-normalisation, time series

1 Introduction
Hypothesis testing for a multi-dimensional parameter is often encountered in the analysis of
economic time series. Classical approaches involve conducting consistent estimation of the
variance–covariance matrix of the parameter estimate non-parametrically using spectral methods
[e.g. heteroskedasticity and autocorrelation consistent (HAC) estimators] and constructing
standard tests based on the asymptotic normality of the parameter estimate and consistency of
HAC estimator. The use of HAC estimator has been extensively analysed in econometrics litera-
ture; see Andrews (1991), Andrews andMonahan (1992), Gallant (2009), Hansen (1992), Newey
and West (1987), and Robinson (1991, 1998) for important contributions. It has become a long
tradition in time series analysis and econometrics to use HAC estimator, and it has been imple-
mented in many statistical and econometrics softwares.
Since the pioneering work of Kiefer et al. (2000) (KVB thereafter), bandwidth-free inference has

become an important alternative, due to the difficulty of choosing the optimal bandwidth in the
use of HAC estimator, and good statistical property of the KVB test. Specifically, the KVB test
was developed for linear regression model with dynamic regressors and heteroscedastic and
serially correlated errors. Their test statistics have non-standard asymptotic distributions that
only depend on the number of restrictions being tested, and critical values are easy to simulate us-
ing standard techniques. The main advantage of the KVB approach compared to standard
HAC-based counterpart is that estimates of the variance–covariance matrix are not explicitly re-
quired so the sensitivity of HAC estimator with respect to the choice of bandwidth (or truncation
lag) is avoided, as no bandwidth is involved in the KVB test.
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In statistics literature, Lobato (2001) proposed a bandwidth-free test for the uncorrelation at
topK lags of a time series and described the principle of bandwidth-free inference using the simple
mean testing example, which can be viewed as a special case of KVB test. Inspired by Lobato
(2001) and Kiefer et al. (2000), Shao (2010) proposed the self-normalisation (SN, hereafter) tech-
nique for the inference (testing and confidence region construction) of a general parameter, includ-
ing marginal means, quantiles, and autocorrelation at specific lags, in the setting of stationary time
series. Shao and Zhang (2010) further extended self-normalisation to testing for a change point in
a parameter associated with a weakly dependent time series and modified the self-normaliser to
adapt to the change-point testing problem. For many follow-up work on self-normalisation for
time series, we refer the reader to the review by Shao (2015). A major message from this line of
literature is that no tuning parameter (i.e. bandwidth or truncation lag) is needed in conducting
hypothesis testing or confidence interval construction as we can use an inconsistent estimator of
asymptotic variance–covariance matrix (or long run covariance matrix) and the resulting studen-
tised statistic is asymptotically pivotal. Both theoretical and empirical research suggest that the size
associated with bandwidth-free test is typically more accurate as compared to the classical
HAC-based method with some degree of power loss (Jansson, 2004; Kiefer & Vogelsang, 2005;
Sun et al., 2008; Zhang & Shao, 2013).
Despite the implementational convenience and size accuracy of bandwidth-free tests, it has been

empirically observed that the size can still be quite distorted when the dimension of the parameter
is moderate and the temporal dependence is moderate/strong; see Figure 1 for an illustration in the
mean testing context. This phenomenon is not superising in view of the theoretical work by Sun
(2014c), where the impact of dimensionality and serial dependence on the size distortion was care-
fully investigated via edgeworth expansion for a class of F-test statistics under both small-b
and fixed-b asymptotics (Kiefer & Vogelsang, 2005). Note that in the mean testing problem,
the SN test statistic corresponds to fixed-b asymptotics with b = 1 and the use of Bartlett kernel
(Kiefer & Vogelsang, 2002).
Moderate dimensional time series with moderate/strong temporal dependence are prevalent in

practice. Therefore, there is a strong need to develop new testing methods that can control the size
when the dimension of the parameter is moderate and the temporal dependence is moderate/
strong. When the time series is very strongly autocorrelated, Müller (2014) and Sun (2014a) pro-
posed methods to control the size in a near unit root model and focused on the univariate setting.
In contrast, the temporal dependence in our framework is relatively weak compared to those ex-
amined in their work as the focus is more on reducing the size distortion due to the moderate
dimensionality.
In this article, we develop a sample splitting-based approach (called SS–SN, sample splitting plus

self-normalisation) to reduce the size distortion associated with bandwidth-free inference. The

Figure 1. Empirical size for traditional SN test on multivariate mean.
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basic idea is to split the full sample into two parts, with one part used to reduce the dimension of
the parameter to one, and the other part used to perform bandwidth-free testing for the dimension-
reduced (i.e. one-dimensional) time series. We show that this SS–SN approach is generally applic-
able to testing for the multivariate mean, uncorrelation at a finite number of lags, regression
coefficients in linear regressionmodels with time series regressor/error and a change point inmulti-
variate mean, among others. Using the orthogonal increment property of Brownian motion and a
novel conditioning argument, we obtain the limiting null distributions of ourL∞-type andL2-type
SS–SN test statistics when the dimension is fixed, which is pivotal and is independent of the sample
splitting proportion.We also derive the asymptotic power function for our proposed test and com-
pare to its bandwidth-free counterpart. By using a recent result on sequential Gaussian approxi-
mation for time series in a growing-dimensional environment (Mies & Steland, 2023), we show
the asymptotic validity of our SS–SN test statistics in a multivariate mean testing problem
when the dimension diverges as sample size grows to infinity. Under the same setting, we further
obtain the asymptotic independence of L∞-type and L2-type SS–SN test statistics under the null,
which justifies the Bonferroni test that combines the L∞-type and L2-type tests in achieving all-
round power against dense and sparse alternatives. The theoretical tools we develop for the
growing-dimensional setting are of independent interest.
The idea of sample splitting-based inference is not new, and there is a large literature in statistics

and machine learning; see Shafer and Vovk (2008), Wasserman and Roeder (2009), Rinaldo et al.
(2019), Wasserman et al. (2020), and Du et al. (2023) among others. However, it seems that sam-
ple splitting is mostly used for the inference of independent data. In the context of time series, sam-
ple splitting was used for the post-selection inference in Lunde (2019), for the identification testing
for structural VARmodels inMaciejowska (2022) and for unit root testing in Chang et al. (2022).
These are the only references we are aware of. The scope and property of our proposed SS–SN in-
ference are substantially different from these papers and have no overlap with the existing
literature.
The rest of this paper is organised as follows. Section 2.1 describes the SN method in a multi-

dimensional mean testing problem and illustrates its large size distortion due to moderate dimen-
sion and temporal dependence. Then, we propose our SS–SN test statistics and investigate their
asymptotic properties under the null and local alternatives in Sections 2.1 and 2.2. In Sections
2.3–2.5, we present the asymptotic theories for the two SS–SN test statistics when the dimension
is allowed to diverge. In Section 3, we present several extensions, including testing for zero auto-
correlation in a time series, linear hypothesis testing in a regression model and testing for a change
point in multivariate mean. Simulation results are provided in Section 4 and Section 5 concludes.
Proofs for main results and auxiliary lemmas are gathered in the online supplemental material,
which also contains some variants of SS–SN test statistics based on different rescaling methods,
corresponding simulation results, and a real data illustration.

2 Methodology and theory
In this section, we introduce our L∞-type SS–SN test statistic in the case of testing the mean of a
multivariate stationary time series in Section 2.1, and we develop an L2-type SS–SN statistic which
targets the dense alternative in Section 2.2. We present the asymptotic theories for the two SS–SN
test statistics in the growing-dimensional setting in Sections 2.3–2.5, respectively.

2.1 Hypothesis testing on multi-dimensional mean
Let Xt = (X1

t , X
2
t , . . . , Xpt )

⊤ be a p-dimensional stationary time series with mean
E(Xt) = μ = (μ1, μ2, . . . , μp)⊤ ∈ Rp. We want to test the null hypothesis H0:μ = μ0 =
(μ10, μ20, . . . , μp0)

⊤ against HA:μ ≠ μ0. Denote Sa,b =
􏽐b
t=aXt, S

j
a,b =

􏽐b
t=a X

j
t, the autocovariance

matrix Γ(k) = E[(Xt − μ)(Xt+k − μ)⊤] and let Γ =
􏽐∞
k=−∞ Γ(k) be the long run covariance matrix

with the (i, j) element being Γij. Also denote the ith row of Γ1/2 as Γ⊤
i , so we have Γij = Γ⊤

i Γj.
The following functional central limit theorem (FCLT) is needed in deriving the asymptotic prop-
erties. Here, we letDd[0, 1] (when d = 1, we omit the superscript and just useD[0, 1]) denote the
space of Rd valued functions on [0, 1] which are right continuous and have left limit, endowed
with the topology induced by the multi-dimensional Skorokhod metric (Billingsley, 2013).
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Assumption 1 (Functional central limit theorem). We assume that

n−1/2(S1,⌊nr⌋ − ⌊nr⌋μ)⇒ Γ1/2Bp(r) on Dp[0, 1], (1)

where Bp(r):[0, 1]→ Rp is a p-dimensional vector of independent
Brownian motions (we omit the subscript and use B(r) when p = 1), and
‘⇒’ signifies weak convergence in Dp[0, 1] (Billingsley, 2013).

Throughout, p is held fixed except for Sections 2.3–2.5, where p = pn is diverging as n→∞.
When p is fixed, the above FCLT holds under mild moment and weak dependence assumptions;
see Lobato (2001) for discussion on the primitive assumptions for FCLT. The SN (self-normalised)
test statistic is

Tpn = n−1(S1,n − nμ0)
⊤(Vpn)

−1(S1,n − nμ0),

where Vpn = n−2􏽐n
t=1 {S1,t − (t/n)S1,n}{S1,t − (t/n)S1,n}⊤. Under the null, Tpn converges in distribu-

tion to Up = Bp(1)⊤V−1
p Bp(1), where Vp= ∫10 [Bp(r) − rBp(1)][Bp(r) − rBp(1)]⊤dr. Since the distri-

bution of Up is pivotal and its upper critical values have been tabulated in Lobato (2001), we
reject the null hypothesis at level ζ if Tpn is larger than the 100(1 − ζ)% upper critical value of
Up, denoted as Up,ζ .
One major drawback of this SN testing procedure is that there is large size distortion under the

null when n is small/moderate, and when p is moderately large or the autocorrelation is moderate/
strong. To show numerically how large the size distortion is, we test the null hypothesis μ = 0,
where 0 is a vector inRp with all elements being 0, and simulate the data from the VAR(1) process
Xt = ρIpXt−1 + ϵt, where Ip is the p-dimensional identity matrix and ϵt∼

iidN(0, Ip). We set the nom-
inal level at 5% and repeat the mean test 5,000 times with the length of time series n = 100 and
p ∈ {5, 10}. As shown in Figure 1, the size distortion for the above SN test when p = 10 is much
larger than when p = 5 and the test is severely oversized when ρ is close to 1 and severely under-
sized when ρ is close to −1.
Next, we introduce an SS–SN test statistic to reduce the size distortion. The SS–SN procedure

consists of two steps: (a) we split the sample into two parts: P1: = {X1, . . . , X⌊nα⌋} and
P2: = {X⌊nα⌋+1, . . . , Xn}, where α ∈ (0, 1) is the splitting ratio. For i = 1, 2, . . . , p, denote
σ2i = Var(Xi1), σ̂

2
i = 1

⌊nα⌋
􏽐⌊nα⌋
t=1 (Xit − Si1,⌊nα⌋/⌊nα⌋)

2 and based on the first part P1, define

ĵ = argmax
j=1,2,...,p

n−1(Sj1,⌊nα⌋ − ⌊nα⌋μj0)
2

σ̂2j
, (2)

which represents the coordinate that corresponds to the largest deviation from the null. Note that ĵ
bears the signal and is solely determined by the difference between sample mean and true mean,
rescaled by the sample variance of each component time series in P1. Under the alternative, ĵ es-
timates the coordinate with the strongest deviation from the null as scaled by its corresponding
marginal variance, see Theorem 1 below. Note that there are other sensible ways of rescaling in
determining ĵ in equation (2). We refer the reader to Remark 4 in Section 2.2 and online
supplementary Appendix A. (b) Then we construct a SN test statistic based on the ĵth dimen-
sion/component of the second part P2, or the projected sample {e⊤

ĵ
X⌊nα⌋+1, . . . , e⊤

ĵ
Xn}, where ej

is a vector in Rp with jth element being 1 and all other elements being 0. So the SS–SN1 statistic
is defined as

T(M)
n (α, ĵ) =

(n − ⌊nα⌋)−1(Sĵ⌊nα⌋+1,n − (n − ⌊nα⌋)μĵ0)
2

V(M)
n (ĵ)

(3)
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where V(M)
n (j) = (n−⌊nα⌋)−2

􏽐n
k=⌊nα⌋+1 (S

j
⌊nα⌋+1,k−

k−⌊nα⌋
n−⌊nα⌋ S

j
⌊nα⌋+1,n)

2. To derive the limiting distribu-

tions of T(M)
n (α, ĵ) under both null and alternative, we introduce another assumption on σ2i and σ̂2i .

Assumption 2 σ2i > 0 and σ̂2i→
p
σ2i for i = 1, 2, . . . , p.

Assumption 2 is mild and can be verified by imposing suitable moment and weak dependence
assumptions on {Xt}t∈Z. As shown below, the limiting null distribution of T(M)

n (α, ĵ) is U1, so the
level ζ test is 1(T(M)

n (α, ĵ) >U1,ζ ). The following theorem shows the asymptotic properties of
T(M)
n (α, ĵ) under the null and alternatives.

Theorem 1 Suppose Assumptions 1 and 2 hold. Then (i) under H0, we have

T(M)
n (α, ĵ)→

D
U1, (4)

where ‘→
D
’ signifies convergence in distribution. (ii) Under HA, let the true

mean be μ = μn and denote ‖μn − μ0‖∞ = maxj=1,2,...,p |μjn − μj0|.

1. If
��
n
√
‖μn − μ0‖∞ →∞, then T(M)

n (α, ĵ)→
p

∞, thus the limiting power is 1.
2. If

��
n
√

(μn − μ0)→ c: = (c1, c2, . . . , cp) and ‖c‖∞ ≠ 0, then we have

ĵ→
D
argmax
j=1,2,...,p

􏼈
B(j)(α) + αcj

􏼉2

σ2j
=d j∗,

T(M)
n (α, ĵ)→

D
U∗,

where B(j)(r) = Γ⊤
j Bp(r) is mean zero Brownian motion with covariance

Cov(B(i)(u), B(j)(v)) = min {u, v}Γij and the conditional distribution of U∗

given j∗ = j is

U∗
􏼌
􏼌
j∗=j =

d

􏼨

B(1) +

�������
1 − α
Γjj

􏽳

cj
􏼩2

∫10
􏽮
B(r) − rB(1)

􏽯2
dr
.

Since the non-central chi-square distribution is statistically larger than chi-
square distribution and {B(r) − rB(1)}r∈[0,1] is independent of B(1), our test
has non-trivial power asymptotically.

3. If
��
n
√
‖μn − μ0‖∞ → 0, then T(M)

n (α, ĵ)→
D
U1, so our test has trivial power

asymptotically.

The limiting null distribution U1 is the same as the one in Lobato (2001) when p = 1 and the
critical values are already tabulated there. Also it is interesting to note that the limiting null distri-
bution does not depend on the sample splitting proportion α ∈ (0, 1). We shall study the impact of
α on size accuracy and power later.

2.2 L2-type SS–SN statistic
The SS–SN1 test statistic is expected to have good power when the alternative is sparse and strong,
as only the ĵth component time series is used in the testing after dimension reduction. As will be
shown in Figure 2a later, SS–SN1 test has more power loss under the dense alternative (i.e. a sub-
stantial portion of coordinates of μ − μ0 is non-zero) than under the sparse alternative (i.e. a small
portion of coordinates of μ − μ0 is non-zero), as compared to the traditional SN test. This
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motivates us to propose another SS–SN statistic which can preserve the power under the dense al-
ternative. To be specific, on P1, define

P̂ = diag
1
���

σ̂21
􏽱 , . . . ,

1
���
σ̂2p

􏽱

⎧
⎪⎨

⎪⎩

⎫
⎪⎬

⎪⎭

1
��
n
√ (S1,⌊nα⌋ − ⌊nα⌋μ0). (5)

Note that under the alternative, P̂ estimates the direction with the strongest deviation from the null
asmeasured by the squaredL2 norm of the rescaled signal (μ − μ0)

⊤diag{ 1
σ21
, . . . , 1

σ2p
}(μ − μ0). Then

the L2-type SS–SN statistic (i.e. SS–SNP) is defined as

Q(M)
n (α) =

(n − ⌊nα⌋)−1
􏽮
P̂

⊤􏼂
S⌊nα⌋+1,n−(n−⌊nα⌋)μ0

􏼃􏽯2

Vn(α)
, (6)

where Vn(α) = (n − ⌊nα⌋)−2
􏽐n
k=⌊nα⌋+1 {P̂

⊤
[S⌊nα⌋+1,k − k−⌊nα⌋

n−⌊nα⌋ S⌊nα⌋+1,n]}
2. Instead of constructing the

test statistic using the ĵth coordinate of the second partP2 as done for SS–SN1, we construct the SN

statistic based on the projected sample {P̂
⊤
X⌊nα⌋+1, . . . , P̂

⊤
Xn}. The following theorem shows the

asymptotic properties of Q(M)
n (α) under the null and alternatives.

Theorem 2 Suppose Assumptions 1 and 2 hold. Then (i) under H0, we have

Q(M)
n (α)→

D
U1. (7)

(ii) Under HA, let the true mean be μ = μn and denote

‖μn − μ0‖ =
������������������
􏽐p
i=1 (μin − μi0)

2
􏽱

.

1. If
��
n
√
‖μn − μ0‖ →∞, then Q(M)

n (α)→
p

∞, thus the limiting power is 1.

Figure 2. Asymptotic power under the dense (a) and sparse (b) alternativeswhen testing hypothesis onmultivariate
mean.
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2. If
��
n
√

(μn − μ0)→ c := (c1, c2, . . . , cp) and ‖c‖ ≠ 0, then we have

P̂→
D
diag

1
���

σ21
􏽱 , . . . ,

1
���
σ2p

􏽱

⎧
⎪⎨

⎪⎩

⎫
⎪⎬

⎪⎭

􏼂
Γ1/2Bp(α) + αc

􏼃
=d P∗,

Q(M)
n (α)→

D
U∗∗,

and the conditional distribution of U∗∗ given P∗ = P is

U∗∗
􏼌
􏼌
P∗=P =d

􏼨

B(1) +
�������
1 − α
P⊤ΓP

􏽲

P⊤c

􏼩2

∫10
􏽮
B(r) − rB(1)

􏽯2
dr

.

In this case, our test has non-trivial power asymptotically.

3. If
��
n
√
‖μn − μ0‖ → 0, then Q(M)

n (α)→
D
U1, so our test has trivial power

asymptotically.

Remark 1 For the traditional SN statistic, the computational cost is of orderO(p2n + p3),
which scales quadratically in p and isO(p2n) if p≪ n. In contrast, the compu-
tational cost for both our SS–SN statistics are of orderO(pn), which is linear in
p. This could result in substantial saving in computation when p is moderate.

Remark 2 To understand how SS–SNP statistic can reduce power loss incurred by SS–SN1

under dense alternative, we shall focus on the local alternative as in part (ii).2 of
Theorem 2 with c = c1 and Γ = diag{σ21, . . . , σ2p} = Ip, where 1 is a vector in Rp

with all elements being 1. According to Theorem 6 in Magnus (1986),
E P⊤cc⊤P

P⊤P
= pc2, so on average, the non-central constant for the numerator of

U∗∗ is (1−α)pc2, which is p times the non-central constant for the numerator
of U∗. Hence, SS–SNP statistic is expected to outperform SS–SN1 statistic in
power under dense alternative when the same α is used.

Remark 3 Under the null, the limiting distribution U1 is pivotal and does not depend on
the splitting ratio α. Under the local alternative

��
n
√

(μn − μ0)→ c, the limiting
distributions of our SS–SN1 and SS–SNP test statistics depend on α, c, {σ2j }

p
j=1,

andΓ. According to Lemma 4 in Lobato (2001), the limiting distribution of the
traditional SN test statistic is [Bp(1) + Γ−1/2c]⊤V−1

p [Bp(1) + Γ−1/2c], which de-
pends on c and Γ.
To understand the power behaviour of SS–SN1 and SS–SNP statistics, as

compared to the traditional SN test, we set p = 10 and calculate the asymptotic
power P(U∗>U1,0.05), P(U∗∗>U1,0.05), and P([B10(1) + Γ−1/2c]⊤V−1

10 [B10(1) +
Γ−1/2c]>U10,0.05) under the sparse alternative c = ce1 and dense alternative
c = c1. Here, Γ = diag{σ21, . . . , σ2p} = I10 andU1,0.05,U10,0.05 are the 95th upper
percentile ofU1 andU10, respectively.We plot the asymptotic power as a func-
tion of c. Here, we approximate the asymptotic power by approximating the
p-dimensional Brownian motion with standardised partial sum of 5,000 iid
N(0, Ip) random vectors and setting the number of replications as 3,000.
As shown in Figure 2a and b, both SS–SN1 and SS–SNP statistics have power

loss compared with the traditional SN test by Lobato, which is expected since
only the second part of data (i.e. P2) is directly used in constructing the SN
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statistics. This is a price we have to pay to achieve more accurate size and lower
computational cost. For dense alternative, the power loss of SS–SN1 statistic
appears substantially larger than that of SS–SNP statistic for all α, which is con-
sistent with the theoretical finding (cf. Remark 2). It appears that when
α = 0.3, 0.5, the SS–SNP statistic achieves the best power as compared to other
SS–SN counterparts, and the power loss relative to Lobato’s test is moderate.
In contrast, the optimal α for SS–SN1 is 0.15, suggesting that the optimal α in
general depends on which SS–SN statistic we use. For sparse alternative, the
optimal power corresponds to SS–SN1 with α = 0.3, 0.5, which outperforms
other SS–SN counterparts and the power loss is very small comparedwith trad-
itional SN statistic. It is worth noting that there is no advantage to set α > 0.5,
as that is always dominated by α = 0.5 in power.

As shown in Figure 2, SS–SNP outperforms SS–SN1 under dense alternative and SS–SN1 outper-
forms SS–SNP under sparse alternative. In practice, if the practitioner has the prior knowledge
about the type of alternative, then he/she is recommended to choose the one of SS–SN test statistics
accordingly. In the absence of such knowledge, we recommend to combine the two SS–SN test sta-
tistics via a simple Bonferroni procedure. Since when α = 0.5, SS–SN1 have almost best power
against sparse alternative and SS–SNP have almost best power against dense alternative, we com-
bine SS–SN1 and SS–SNP with α = 0.5 and name it SS–SNb. To be specific, the test using SS–SNb
rejects the null at 5% level if either the test using SS–SN1 with α = 0.5 or the test using SS–SNP with
α = 0.5 rejects the null at 2.5% level. In Section 4, we show through simulation that the power for
SS–SNb is close to the best of two SS–SN statistics with overall good performance under both
sparse and dense alternatives.

Remark 4 As pointed out by one of the reviewers, the projection P̂ defined in equation (5) is
not necessarily the optimal direction of projection in terms of power maximisa-
tion. To see that, assume μ0 = 0 and the truemean is μn ≠ 0 under the alternative.
For any fixed P ∈ Rp, we project the data in the second subsample along the dir-
ection P and construct a one-dimensional SN statistic. Then similar to part (ii).2
of Theorem 2, the statistic approximately follows the same distribution as

Un =
B(1) +

�������
1 − α
P⊤ΓP

􏽲

P⊤ ��
n
√

μn

􏼨 􏼩2

∫10
􏽮
B(r) − rB(1)

􏽯2
dr

for large enough n. Note that the numerator and denominator of Un are inde-

pendent and conditioning on ∫10 {B(r) − rB(1)}2dr, {B(1) +
�����
1−α
P⊤ΓP

􏽱
P⊤ ��

n
√

μn}
2 fol-

lows non-central chi-square distribution with one degree of freedom and

non-central constant n(1−α) P
⊤μ⊤
n μnP

P⊤ΓP . Following similar argument as in Theorem
3.4.1 of Huang (2015), we can show the optimal direction of projection which
maximise P(Un ≥ t) for all t > 0 is the one that maximise the
non-central constant. According to A.4.11 in Seber and Lee (2003), it is propor-
tional to P∗n = Γ−1/2μn. The projection P̂ defined in Section 2.2 of the paper is an
estimator of P̃n = diag{σ21, σ22, . . . , σ2p}

−1/2μn, which is not the optimal direction
in theory.
To pursue the optimal projection, we need to provide a consistent long run

covariance matrix estimator, which is hard for moderate dimensional time ser-
ies when the sample size is small/medium. This point was also expressed in
Korkas and Fryzlewicz (2017) for a one-dimensional change-point detection
problem, where the authors state that estimating long run variance is a difficult
problem in time series analysis and the estimation error would likely not make
it worthwhile and they opt to rescale using marginal sample variance. This
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might suggest we estimate Γ(0)−1/2μn instead of Γ−1/2μn, whereΓ(0) is the mar-
ginal covariance matrix. However, the moderate and possibly growing dimen-
sionality (see Sections 2.3–2.5) further adds complication to the estimation of
Γ(0)−1/2, which is well recognised in high-dimensional mean testing for iid
data; see Srivastava and Du (2008) and Srivastava et al. (2013). The latter au-
thors propose to use the diagonal elements of the covariance matrix to replace
Γ(0) in their testing to avoid the error accumulation due to high dimensional-
ity. Based on these considerations, we opt to use an estimator of the simple pro-
jection vector P̃n, which does not involve any bandwidth parameter and
appears to work well in finite sample.
In Appendix A of the online supplementary material, we compare different

SS–SN statistics where the projection vectors are defined using different rescal-
ing methods, and we show that for the SS–SN statistics rescaled by the long run
covariance matrix estimator (SSSN-L1 and SSSN-LP), the power loss are larger
compared with most marginally rescaled SS–SN statistics when there is no or
weak cross-sectional dependence (see online supplementary Figures S1a, b
and S3a, b), which confirmed the claim made in Korkas and Fryzlewicz
(2017) (see the discussion before Section 4.1 therein).

2.3 Asymptotic theory for SS–SN1 when the dimension is diverging
In this subsection, we justify the asymptotic validity of the SS–SN1 statistic in the multivariate
mean testing problem, when the dimension is diverging as sample size grows to infinity. This is
consistent with themain theme of this work, that is, to address the large size distortion due tomod-
erate dimensionality of the parameter we test.We shall use a set of notations with their dependence
on n being explicit. Specifically, for t = 1, 2, . . . , n, let Xnt = (X1

nt, X
2
nt, . . . , Xpnnt )

⊤ be a stationary
time series with mean E(Xnt) = μn = (μ1n, μ2n, . . . , μpnn )

⊤ ∈ Rpn and with long run covariance matrix
Γn =

􏽐∞
h=−∞ Cov(Xnt, Xn(t+|h|)) = (γnij)

pn
i,j=1. For any i = 1, 2, . . . , pn, let σ2ni and σ̂2ni be the variance

of Xin1 and its sample version calculated on {X
i
n1, . . . , Xin⌊nα⌋} and let γni = γnii be the ith diagonal

element of Γn. For two functions p(x) and q(x) we write p ≲ q if there exist constant C > 0 such
that lim supx→∞ |

p(x)
q(x) | ≤ C and we write p ≍ q if p ≲ q and q ≲ p. In this section, we allow the di-

mension pn to growwith n and we want to test the sequence of null hypothesesHn0:μn = 0 against
HnA:μn ≠ 0.
We use the physical dependence measure of Wu (2005) to describe the dependence structure of
Xnt. Let ϵi, ϵ̃i, i ∈ Z be iid U[0, 1] random variables and denote ϵt = (ϵt, ϵt−1, . . . ) ∈ R∞, ϵ̃t,j =
(ϵt, . . . , ϵj+1, ϵ̃j, ϵj−1, . . . ) ∈ R∞ and ϵ̅t,j = (ϵt, . . . , ϵj+1, ϵ̃j, ϵ̃j−1, . . . ) ∈ R∞. For some measurable
function Gn = (G1

n, . . . , Gpnn )
⊤:R∞ → Rpn , define

θn,j,q = (E‖Gn(ϵ0) −Gn(ϵ̃0,−j)‖q)
1
q, j = 0, 1, 2, . . . ,

where ‖ · ‖ is the Euclidean norm on Rpn . The following assumption is needed to derive a strong
approximation result for the partial sum process of Xnt.

Assumption 3 Assume that Xnt − μn =Gn(ϵt), and for some constant q > 4, β > 2 and
Θn > 0, we have

θn,j,q ≤ Θn
1

(j ∨ 1)β
, j = 0, 1, 2, . . . (8)

(E‖Xn1 − μn‖
q)

1
q ≤ Θn. (9)

Also, assume that there exist 0 < γmin < γmax < ∞, 0 < σ2min < σ2max < ∞
such that γmin ≤ γni ≤ γmax, σ2min ≤ σ2ni ≤ σ2max for any n = 1, 2, . . . and
i = 1, 2, . . . , pn.
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Define

ξ =

q − 2
6q − 4

, β ≥ 3

(β − 2)(q − 2)
(4β − 6)q − 4

3+2/q
1+2/q < β < 3

1
2

−
1
β
, 2 < β ≤ 3+2/q

1+2/q .

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Mies and Steland (2023) provided a sequential Gaussian approximation result for non-stationary
time series in high dimension. Here, we provide a slightly refined version of Theorem 3.1 in Mies
and Steland (2023) for stationary time series in the following proposition.

Proposition 1 Suppose Assumption 3 holds, then on a potentially different probability
space, there exist random vectors {X′nt}

n
t=1 =d {Xnt}nt=1 and a standard

pn-dimensional Brownian motion Bpn (r) such that for any small ϵ > 0,

E sup
r∈[0,1]

1
��
n
√

􏽘⌊nr⌋

t=1
(X′nt − μn) −Wn(r)

􏼍
􏼍
􏼍
􏼍
􏼍

􏼍
􏼍
􏼍
􏼍
􏼍

2

≤ C Θ2
nlog (n)

pn
n

􏼐 􏼑2ξ
+
pnΘ2

n

n1−ϵ

􏼚 􏼛

, (10)

whereWn(r) = (Wn1(r),Wn2(r), . . . ,Wnpn (r))
⊤ = Γ1/2

n Bpn (r) and C > 0 is a
generic constant.

Note that in equation (10), the term Θ2
nlog (n)(

pn
n )

2ξ comes from Theorem 3.1 in Mies and

Steland (2023) and the term pnΘ2
n

n1−ϵ quantifies the difference betweenWn(
⌊nr⌋
n ) andWn(r). The right-

hand side of equation (10) converges to 0 if Θn =O( ���
pn
√

) and pn ≍ nψ for some 0 < ψ < ξ
ξ+1

2
and

under these two conditions the first term Θ2
nlog (n)(

pn
n )

2ξ dominates.
As in Section 2.1, we define the test statistic as

T(D)n (α, ĵn) =
(n−⌊nα⌋)−1[Snĵn⌊nα⌋+1,n]

2

V(D)
n (ĵn)

, (11)

where

ĵn = argmax
j=1,2,...,pn

n−1[Snj1,⌊nα⌋]
2

σ̂2nj
, (12)

Snja,b =
􏽐b
t=a X

j
nt and V(D)

n (j) = (n − ⌊nα⌋)−2
􏽐n
k=⌊nα⌋+1 (S

nj
⌊nα⌋+1,k − k−⌊nα⌋

n−⌊nα⌋ S
nj
⌊nα⌋+1,n)

2. We derive the

asymptotic properties of T(D)n (α, ĵn) under two sets of assumptions on the matrix Γn and
dimensionality.

Assumption 4 (a) γnij = ρnij
������γniγnj
√ with |ρnij| < ρ̅ ∈ (0, 1) for any i, j = 1, 2, . . . , pn and

n = 1, 2, . . ..
(b) Θn =O( ���

pn
√

).
(c) pn ≍ nψ for some 0 < ψ < ξ

ξ+9
2
.

Assumption 5 (a) Γn is diagonal.
(b) Θn =O(

���
pn
√

).
(c) pn ≍ nψ for some 0 < ψ < ξ

ξ+1
2
.
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Note that by Minkowski inequality, a sufficient condition for (b) in previous two assumptions is
that E|Xjn1 − μjn|

q is uniformly bounded for n = 1, 2, . . . and j = 1, 2, . . . , pn. The following the-
orem shows the asymptotic distribution of T(D)n (α, ĵn) under the null.

Theorem 3 Suppose either Assumptions 3, 4 or Assumptions 3, 5 hold. Then under Hn0,
we have

T(D)n (α, ĵn)→
D
U1. (13)

The following theorem shows the consistency of our test under alternatives.

Theorem 4 UnderHnA and Assumption 3, denote ‖μn‖∞ = maxj=1,2,...,pn |μjn|. Assume that
pn ≍ nψ for some 0 < ψ < ξ

ξ+1
2
and there exists κ > 0 such that

��
n
√
‖μn‖∞
pκn
→∞.

Then we have T(D)n (α, ĵn)→
p

∞.

2.4 Asymptotic theory for SS–SNP when the dimension is diverging
In this subsection, we justify the asymptotic validity of the SS–SNP statistic in the multivariate
mean testing problem, when the dimension is diverging as sample size grows to infinity. As in
Section 2.2, we define the test statistic as

Q(D)
n (α) =

(n − ⌊nα⌋)−1
􏽮
P̂

⊤
nS⌊nα⌋+1,n

􏽯2

V(2)
n (α)

, (14)

where

P̂n =
Sn11,⌊nα⌋
��
n
√

σ̂n1
, . . . ,

Snpn1,⌊nα⌋
��
n
√

σ̂npn

􏼠 􏼡⊤

, (15)

V(2)
n (α) = (n − ⌊nα⌋)−2

􏽐n
k=⌊nα⌋+1 {P̂

⊤
n [S⌊nα⌋+1,k − k−⌊nα⌋

n−⌊nα⌋ S⌊nα⌋+1,n]}
2 and Sa,b = (Sn1a,b, . . . , Snpna,b )

⊤=

(
􏽐b
t=a X

1
nt, . . . ,

􏽐b
t=a X

pn
nt )

⊤.

The following theorem shows the asymptotic distribution of Q(D)
n (α) under the null.

Theorem 5 Suppose Assumptions 3 and 5(b,c) hold. Then under Hn0, we have

Q(D)
n (α)→

D
U1. (16)

Note that no restrictions on the correlation between different coordinates ofXnt are imposed, so
both weak and strong cross-sectional dependence are allowed. The following theorem shows the
consistency of our test under alternatives.

Theorem 6 UnderHnA and Assumption 3, denote ‖μn‖ =
������������􏽐pn
j=1 (μ

j
n)2

􏽱

. Assume that pn ≍
nψ for some 0 < ψ < ξ

ξ+1
2
and there exists κ > 0 such that

��
n
√
‖μn‖

p1/2+κ
n
→∞. Then we

have Q(D)
n (α)→

p
∞.
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The asymptotic validity for the original SN test statistic Tpn has only been provided for the
fixed-p case, and whether it works under the diverging p setting is unknown. Therefore, we
view the justification for SS–SN test statistics in the growing p setting an interesting theoretical
contribution to the literature.
With that being said, it is worth noting that self-normalisation has been extended to do inference

for high-dimensional time series via the use of U-statistics; see Wang and Shao (2020) and Wang
et al. (2022). In particular, Wang and Shao (2020) adopted a trimmed U-statistic and developed a
new SN test statistic to test for the mean of high-dimensional stationary time series. The restriction
on the growth rate of the dimensionality in their work is minimal and they require p→∞ but
allow p≫, and in some special cases, p can grow exponentially. In contrast, we are focusing on
the testing problem where the dimension of parameter is moderate, and the regime corresponds
to either p is fixed or growing p with p≪ n. So the applicability of the tests developed in Wang
and Shao (2020) and ours are fairly different. The test in Wang and Shao (2020) targets the dense
alternative and requires weak cross-sectional dependence, whereas our two SS–SN test statistics
together can capture both dense and sparse alternatives, and can accommodate both weak and
strong cross-sectional dependence. The technical tools involved are also very different. Here, we
rely on the strong approximation for partial sum process and a careful analysis of the maximum
spacing for an independent but not identically distributed chi-square random variables, whereas
the theory in Wang and Shao (2020) is built on the weak convergence of sequential U-statistic
of high-dimensional dependent observations.

2.5 Asymptotic independence of SS–SN1 and SS–SNP

In the literature, there has been a sizeable amount of work on the asymptotic independence be-
tween the sum and maximum of a weakly dependent sequence (Hsing, 1995; Peng &
Nadarajah, 2003) and between the sum-of-squares type test statistic and the maximum-type
test statistic in high-dimensional testing problems; see Li and Xue (2015), Xu et al. (2016), and
He et al. (2021), among others. It is natural to ask whether our L2-type and L∞-type SS–SN sta-
tistics are asymptotically independent in the growing-dimensional setting. We shall provide an
affirmative answer to this question below.
As in the proof of Theorem 5, denoteDg =Diag{ 1

σn1 , . . . , 1
σnpn

} and Λn = Γ1/2
n DgΓ

1/2
n Γ1/2

n DgΓ
1/2
n

with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λpn . The following assumption is needed to prove the asymp-
totic independence.

Assumption 6 There exist ϵ > 0 such that λpn/p1−ϵ
n → 0 as pn→∞.

Let B(R) be the Borel σ-algebra on R, we now state asymptotic independence of T(D)n (α, ĵn) and
Q(D)
n (α), the proof of which is deferred to Appendix C.10 in the online supplementary material.

Theorem 7 UnderHn0, suppose Assumptions 3, 6 and either Assumption 4 or Assumtion
5 hold, then T(D)n (α, ĵn) and Q(D)

n (α) are asymptotically independent in the
sense that

􏼌
􏼌
􏼌P
�
T(D)n (α, ĵn) ∈ A; Q(D)

n (α) ∈ B
􏼁

− P
�
T(D)n (α, ĵn) ∈ A

􏼁
P
�
Q(D)
n (α) ∈ B

􏼁􏼌􏼌
􏼌→ 0

for any A, B ∈ B(R).

A few remarks are in order. Note that the largest eigenvalue of Γ1/2
n DgΓ

1/2
n is λ1/2pn . Denote the

largest eigenvalue of Γn as γ̃n, then according to online supplementary Lemma 2, if Assumption
3 holds, Assumption 6 is equivalent to γ̃n/p(1−ϵ)/2

n → 0 as pn→∞. According to the Gershgorin
Circle Theorem (see Bell, 1965), γ̃n is upper bounded by the largest absolute row sum of Γn, so
Assumption 6 holds if, under Assumption 3, Γn is diagonal or γnij = c|i−j| for some c ∈ ( − 1, 1)
[i.e. AR(1) type correlation]. This suggests that when the p components are independent or weakly
correlated in the long run, Assumption 6 is satisfied and asymptotic independence between our
L2-type and L∞-type SS–SN statistics holds.
On the other hand, if γnij = c ∈ (0, γmin) for all i ≠ j, then we have Γn =

Diag{γn1−c, . . . , γnpn−c} + c1n1⊤
n where 1n is a vector in Rpn with all elements being 1. Under
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Assumption 3 all eigenvalues of Diag{γn1−c, . . . , γnpn−c} are non-negative and the largest eigen-
value of c1n1⊤

n is cpn, so we have γ̃n ≥ cpn and Assumption 6 does not hold. This corresponds
to the case with strong correlation among the pn components in the long run. We conjecture
that the asymptotic independence between our L2-type and L∞-type SS–SN statistics does not
hold for this case, which is confirmed in our unreported simulations.

3 Extensions to other testing problems
In this section, we generalise the SS–SN approach to testing for zero autocorrelation in a time series
in Section 3.1, linear hypothesis testing in a regression model in Section 3.2 and testing for a
change point in multivariate mean in Section 3.3. For simplicity, we only consider the SS–SN1 stat-
istic and similar results for SS–SNP statistic can be obtained in an analogous fashion.

3.1 Testing for zero autocorrelation
Let {Xt} be a univariate stationary time series with mean E(Xt) = μ. Testing for white noise is an
important problem in time series analysis and there is a rich literature; see Horowitz et al.
(2006), Shao (2011a, 2011b), and Liu et al. (2022) and cited references therein. To be specific,
we shall test the null hypothesis H0:r1 = r2 = · · · = rp = 0 against HA:ri ≠ 0 for some
i = 1, 2, . . . , p, where p is a positive integer and ri = E[(Xt − μ)(Xt+i − μ)] is the autocovariance
at lag i.
We now apply the SS–SN approach to test H0. Define Zt = (Z1

t , Z
2
t , . . . , Zpt )

⊤ and
Ẑt = (Ẑ1

t , Ẑ
2
t , . . . , Ẑpt )

⊤ where Zit = (Xt − μ)(Xt+i − μ), Ẑit = (Xt − X̅n)(Xt+i − X̅n) and
X̅n = (1/n)

􏽐n
i=1Xi. The null hypothesis is equivalent to the hypothesis that {Zt} is a

p-dimensional mean zero stationary time series. We prove the following proposition about
the FCLT for {Ẑt}.

Proposition 2 If Assumptions 1 and 2 hold for {Xt} and {Zt}, then (i) Assumption 1 also
holds for {Ẑt} and (ii) for i = 1, 2, . . . , p, the sample variance of {Ẑ

i
t} con-

verges in probability to the variance of Zit.

By Proposition 2, we can use {Ẑt} to construct a similar test statistic as in equation (3) to test the
zero autocorrelation hypothesis. The asymptotic property of this statistic is stated in the following
proposition.

Proposition 3 Suppose Assumption 1 holds for {Xt} and {Zt} and the δth moment of |Xt| is
finite for some δ > 2. Define the test statisticT(A)n (α, ĵ) = T(M)

n′ (α, ĵ) according
to equations (3) and (2), with {Xt} replaced by {Ẑt}, μ0 replaced by 0 and n
replaced by n′ = n − p, then we have under H0

T(A)n (α, ĵ)→
D
U1. (17)

At level ζ, we rejectH0 if T(A)n (α, ĵ) >U1,ζ . In Section 4.2, we show that our test has accurate size
even when the white noise process is not independent over time (i.e. contains higher order depend-
ence) and when the sample size is small.

3.2 Testing linear hypotheses in a regression model
Kiefer et al. (2000) pioneered the bandwidth-free test for general linear hypotheses of the param-
eters in a time series regression model.We now show that SS–SNmethod is also applicable to their
setting. Consider the regression model

yt =X⊤
t β + ϵt, t = 1, 2, . . . , n, (18)

where β is a p-dimensional parameter, Xt is a p-dimensional regressor and ϵt is a mean zero (con-
ditional on Xt) random process. Let vt =Xtϵt and Ω =

􏽐∞
k=−∞ E(vtv

⊤
t+k), we assume that the fol-

lowing condition from Kiefer et al. (2000) holds.
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Assumption 7 (i) n−1/2􏽐⌊nr⌋
t=1 vt ⇒ Ω1/2Bp(r) on Dp[0, 1].

(ii) 1/n
􏽐⌊nr⌋
t=1 XtX

⊤
t→
p
rQ for all r ∈ [0, 1] and Q−1 exists.

Suppose we are interested in testingH0:Rβ = s againstHA:Rβ ≠ s, where s ∈ Rd and R is a (d × p)
matrix of rank d. The test statistic proposed by Kiefer et al. (2000) is
An = n(Rβ̂ − s)⊤V−1

n (Rβ̂ − s)/d, where

Vn = R
1
n

􏽘n

t=1
XtX⊤

t

􏼠 􏼡−1
1
n2
􏽘n

k=1

􏽘k

t=1
Xt ϵ̂t

􏼠 􏼡
􏽘k

t=1
Xtϵ̂t

􏼠 􏼡⊤
⎡

⎣

⎤

⎦
1
n

􏽘n

t=1
XtX⊤

t

􏼠 􏼡−1

R⊤,

β̂ is the OLS (Ordinary Least Squares) estimator of β and ϵ̂t is the residual. The limiting null dis-
tribution of An is Ud/d. As shown in Kiefer et al. (2000), the size distortion for their test 1(An >
Ud,ζ/d) increases as d increases, and our SS–SN1 test tackles this problem by focusing on the single
hypothesis among d hypotheses which deviatesmost from the null. Let β̂a:b be theOLS estimator of
β based on (yt, X⊤

t ) for t = a, a + 1, . . . , b and define

ĵ
(R) = argmax

j=1,2,...,d

n[e⊤j (Rβ̂1:⌊nα⌋ − s)]2

⌊nα⌋−1
􏽐⌊nα⌋
t=1 (gjt −

1
⌊nα⌋

􏽐⌊nα⌋
k=1 g

j
k)

2
,

where (g1t , . . . , gdt )
⊤ = R( 1

⌊nα⌋
􏽐⌊nα⌋
t=1 XtX

⊤
t )

−1Xt(yt −X⊤
t β̂1:⌊nα⌋) for t = 1, 2, . . . , ⌊nα⌋. So ĵ(R) repre-

sents the coordinate ofRβ − s that deviatesmost from 0 at the sample level. The following assump-
tion on (g1t , . . . , gdt )

⊤ is needed to derive the asymptotic properties of our test statistic.

Assumption 8 For j = 1, 2, . . . , d, ⌊nα⌋−1
􏽐⌊nα⌋
t=1 (gjt − 1

⌊nα⌋
􏽐⌊nα⌋
k=1 g

j
k)
2→
p
Υj > 0.

We then find the OLS β̂⌊nα⌋+1:n on the second part of the data and the residual is
μ̂t = yt −X⊤

t β̂⌊nα⌋+1:n. Define

ŝt = (ŝ1t , ŝ
2
t , . . . , ŝdt ) = R

1
n − ⌊nα⌋

􏽘n

t=⌊nα⌋+1
XtX⊤

t

􏼠 􏼡−1

Xtμ̂t,

and S̃
j
a,b =

􏽐b
t=a ŝ

j
t for ⌊nα⌋ + 1 ≤ a ≤ b ≤ n, j = 1, . . . , d. Our test statistic can be defined as

T(R)n (α, ĵ(R)) =
(n − ⌊nα⌋)e⊤

ĵ
(R) (Rβ̂⌊nα⌋+1:n − s)(Rβ̂⌊nα⌋+1:n − s)⊤e

ĵ
(R)

V(R)
n (ĵ

(R)
)

, (19)

where V(R)
n (j) = (n − ⌊nα⌋)−2

􏽐n
k=⌊nα⌋+1 (S̃

j
⌊nα⌋+1,k − k−⌊nα⌋

n−⌊nα⌋ S̃
j
⌊nα⌋+1,n)

2. The following proposition

shows the asymptotic property of T(R)n (α, ĵ(R)).

Proposition 4 Suppose Assumption 7 holds, then (i) under H0, we have

T(R)n (α, ĵ(R))→D U1. (20)

(ii) Under HA, denote ‖Rβ − s‖∞ = maxj=1,2,...,d |R
⊤
j β − sj| where R⊤

j is the

jth row of R. Let the jth row of RQ−1Ω1/2 be h⊤
j ∈ Rp, then we have

1. If
��
n
√
‖Rβ − s‖∞ →∞, then T(R)n (α, ĵ(R))→

p
∞, thus the limiting power

is 1.
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2. If
��
n
√

(Rβ − s)→ c = (c1, c2, . . . , cd)⊤ and ‖c‖∞ ≠ 0, then we have

ĵ(R)→
D
argmax
j=1,2,...,d

􏼈
B̃
(j)
(α) + αcj

􏼉2

Υj
=d j(R) and T(R)n (α, ĵ(R))→

D
U(R),

where B̃
(j)
(r) = h⊤

j Bp(r) are mean zero Brownian motions with covari-

ance Cov(B̃
(i)
(u), B̃

(j)
(v)) = min {u, v}h⊤

i hj and the conditional distribu-
tion of U(R) given j(R) = j is

U(R)
􏼌
􏼌
j(R)=j =

d

􏼨

B(1) +
�������
1 − α
h⊤
j hj

􏽳

cj
􏼩2

∫10
􏽮
B(r) − rB(1)

􏽯2
dr
.

3. If
��
n
√
‖Rβ − s‖∞ → 0, then T(R)n (α, ĵ(R))→

D
U1, so our test has trivial

power asymptotically.

In Section 4.3, we show that our test has less size distortion, at the cost of a small loss of power,
compared with the test used in Kiefer et al. (2000) when the number of restrictions under the null
is moderate and strong autocorrelation is present in the data. We do not provide proofs for
Propositions 3 and 4 since they are trivial in view of the proofs we provided for Theorems 1 and 2.

3.3 Testing for a change point in multivariate mean
Let Xt = (X1

t , X
2
t , . . . , Xpt )

⊤ be a p-dimensional time series and let E(Xt) = μt:=
(μ1t , μ2t , . . . , μpt )⊤ ∈ Rp. Suppose we want to test the null hypothesisH0:μ1 = μ2 = · · · = μn against
HA:μ1 = · · · = μk∗ ≠ μk∗+1 = · · · = μn where k∗ = ⌊nr0⌋ for some unknown r0 ∈ (0, 1). As in Section
2.1, define the autocovariancematrix asΓ(k) = E[(Xt − μt)(Xt+k − μt+k)

⊤], and letΓ =
􏽐∞
k=−∞ Γ(k)

with (i, j) element being Γij. The following assumption is needed in deriving the asymptotic distri-
bution of our test statistic.

Assumption 9 Assume that (a)

n−1/2
􏽘⌊nr⌋

t=1
(Xt − μt)⇒ Γ1/2Bp(r) on Dp[0, 1]. (21)

(b) ⌊nb⌋ + 1 ≤ k∗ ≤ n − ⌊nb⌋ − 1 for some b ∈ (0, 0.5)

Under this assumption, the change point cannot lie in the first and last ⌊nb⌋ sample points. Here,
b is usually called a trimming parameter, see Andrews (1993). For k = 1, 2, . . . , ⌊nb⌋, defineW1,k=
(W1

1,k, . . . ,Wp
1,k)

⊤ =Xk −Xn−⌊nb⌋+k, M1,k = (M1
1,k, . . . ,Mp1,k)

⊤ =
􏽐k
t=1W1,t and ϑ2j = Var(Wj

1,1),

ϑ̂2j = ⌊nb⌋−1
􏽐⌊nb⌋
t=1 (Wj

1,t − 1
⌊nb⌋

􏽐⌊nb⌋
k=1 W

j
1,k)

2 for j = 1, 2, . . . , p. We use the difference between the
first and last ⌊nb⌋ points of the data to find the coordinate of Xt that has the strongest signal of a
mean change, thenwe apply the SN test statistic used in Shao andZhang (2010). To be specific, define

ĵ = argmax
j∈{1,2,...,p}

n−1[e⊤j M1,⌊nb⌋]
2

ϑ̂2j
.
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Then we apply the SN-based test statistic used in Shao and Zhang (2010) on {Xt,ĵ}
n−⌊nb⌋
t=⌊nb⌋+1. Define

Sja,b =
􏽐b
t=a X

j
t. Let

Gn = sup
k=⌊nb⌋+1,⌊nb⌋+2,...,n−⌊nb⌋−1

Tn(ĵ, k)
2

Vn(ĵ, k)
,

where

Tn(j, k) =
1

������������
n − 2⌊nb⌋

􏽰
􏽘k

t=⌊nb⌋+1
Xjt −

Sj
⌊nb⌋+1,n−⌊nb⌋

n − 2⌊nb⌋

􏼠 􏼡

,

Vn(j, k) =
1

(n − 2⌊nb⌋)2
􏽘k

t=⌊nb⌋+1

􏽮
Sj
⌊nb⌋+1,t −

t − ⌊nb⌋
k − ⌊nb⌋

Sj
⌊nb⌋+1,k

􏽯2
􏼢

+
􏽘n−⌊nb⌋

t=k+1
Sjt,n−⌊nb⌋ −

n − ⌊nb⌋ − t + 1
n − ⌊nb⌋ − k

Sjk+1,n−⌊nb⌋

􏼚 􏼛2
􏼣

.

The following theorem shows the asymptotic properties of Gn under the null and alternative.

Theorem 8 Suppose Assumption 9 holds and ϑ̂2j→
p
ϑ2j > 0 for j = 1, 2, . . . , p, then (i) under

H0, we have

Gn→
D
G=d sup

r∈[0,1]

􏽮
B(r)− rB(1)

􏽯2

∫r0
􏽮
B(s)−

s
r
B(r)

􏽯2
ds+ ∫1r

􏽮
B(1)−B(s)−

1− s
1− r

(B(1)−B(r))
􏽯2
ds
,

(22)

(ii) under HA, denote Δn = (Δ1
n, Δ

2
n, . . . , Δpn)

⊤ = E(Xk∗+1) − E(Xk∗ ) and
‖Δn‖∞ = maxj=1,2,...,p |Δpn|, we have

1. If
��
n
√
‖Δn‖∞ →∞, thenGn→

p
∞, thus the limiting power of the level ζ test

1(Gn >Gζ ) for ζ ∈ (0, 1) is 1, whereGζ is the 100(1 − ζ)th upper percent-
ile of G.

2. If
��
n
√

Δn→ c:= (c1, c2, . . . , cp) ∈ Rp and ‖c‖∞ ≠ 0, then we have

ĵ→
D
argmax
j∈{1,2,...,p}

􏽨
B(j)(b) −

�
B(j)(1) − B(j)(1 − b)

􏼁
− bcj

􏽩2

ϑ2j
=d j∗,

Gn→
D
G∗,

where B(j)(r) are mean zero Brownian motions with covariance
Cov(B(i)(u), B(j)(v)) = 2min {u, v}Γij. The conditional distribution of G∗

given j∗ = j is

G∗
􏼌
􏼌
j∗=j=

d
sup
r∈[0,1]

􏽮
B′(r)−rB′(1)

􏽯2

∫r0
􏽮
B′(s)−

s
r
B′(r)

􏽯2
ds+∫1r

􏽮
B′(1)−B′(s)−

1−s
1−r

(B′(1)−B′(r))
􏽯2
ds
,

(23)
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where the process B′(r) is defined as B′(r) = B(r) + 1�����
1−2b
√ Hj((1−2b)r + b)

with Hj = 1��
Γjj
√ e⊤j H(r) and H(r) = (r − r0)c1r≥r0 where 1r≥r0 = 1 if r ≥ r0

and 0 otherwise.

3. If
��
n
√
‖Δn‖∞ → 0, then

Gn→
D
G,

so our test has trivial power asymptotically.

Interestingly, the limiting null distributionG is pivotal and is identical to the one for the SN test
in Shao and Zhang (2010), who has tabulated its critical values. In Section 4.4, we show that our
test has substantially smaller size distortion than the test used in Shao and Zhang (2010) when the
dimension of Xt is moderate and there is strong autocorrelation in the data.

4 Simulation studies
In this section, we examine the size and power properties of our SS–SN test statistics in finite sam-
ple. Specifically in Section 4.1, we examine the empirical size and power of our test statistics in
testing hypotheses on multivariate mean and compare with the traditional SN statistic proposed
in Lobato (2001). In Section 4.2, we show the favourable size performance of our test statistics
when testing for uncorrelation in a univariate time series. In Sections 4.3 and 4.4, we present
the size and size-adjusted power of our test statistics for testing linear hypotheses in a regression
model and the existence of a change point in multivariate mean, respectively.

4.1 Finite sample size and power for multivariate mean tests
In this subsection, we examine the empirical size and power of our test statistics in testing hypoth-
eses on multivariate mean. Under the null, we assume the data comes from the following VAR(1)

model: Xt = ρIpXt−1 + ϵt, where ϵt∼
iidN(0, Ip). We set the nominal level at 5%. The experiment is

repeated 5,000 times with the length of time series n ∈ {100, 300}, ρ ∈ { −0.7, −0.5, 0.2,0.5, 0.7}
and p ∈ {5, 10}. We compare the empirical sizes for T(M)

n (α, ĵ) (denoted as SS–SN1), Q(M)
n (α)

(denoted as SS–SNP), their Bonferroni combination when α = 0.5 (denoted as SS–SNb), and the test
statistic used in Lobato (2001) (denoted as Lobato) for different combinations of n, p, and ρ.
As Table 1 shows, SS–SN1, SS–SNP, and SS–SNb have more accurate size than Lobato when
|ρ| is close to 1 and the sizes for SS–SN1 and SS–SNp are very similar, while the size of SS–SNb
is often slightly more distorted compared with these two. The distortion for Lobato gets more
severe when p increases from 5 to 10, whereas for our tests the impact of the dimension on the
size is minimal. When we increase the sample size from n = 100 to 300, we see noticeable improve-
ments in size distortion for all tests. For both SS–SN1 and SS–SNP, the choice of α seems to have little
impact on the size distortion and no particular value of α dominates others in size accuracy.
Furthermore, our SS–SN tests exhibit more size stability across the range of ρs as compared to
Lobato, especially at n = 300. This stability, which is achieved by dimension reduction step in-
volved in the SS–SN procedure, is attractive since in practice the amount of temporal dependence
is usually unknown.
For the size-adjusted power, we generate the data from the process:Xt − μe1 = ρIp(Xt−1 − μe1) +

ϵt under the sparse alternative and from the process:Xt − μ1 = ρIp(Xt−1 − μ1) + ϵt under the dense
alternative, where ϵt∼

iidN(0, Ip). We set n = 300, ρ = 0.2, p = 10 and the experiment is repeated
2,000 times at nominal level 5%. As Figure 3a and b shows, SS–SN1 has relatively larger power
loss than SS–SNP, as compared with Lobato under the dense alternative. The power loss is rela-
tively smaller under sparse alternative and in this case SS–SN1 outperforms SS–SNP. Note
that under both dense and sparse alternatives, the power curve of SS–SNb is close to that of the
SS–SN statistic which performs better. Hence, the SS–SNb can have good all-round power against
both types of alternatives. The power loss of SS–SNb relative to Lobato is moderate, but its gain in
size stability and accuracy can be substantial, especially when p is moderate and temporal
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dependence is strong. We also tried other settings (e.g. n = 300, ρ = 0.7, p = 10) for the
size-adjusted power and the results are quantitatively similar so are skipped.

4.2 Finite sample size for testing zero autocorrelation
In this subsection, we present the empirical size of T(A)n (α, ĵ) statistic (denoted as SS–SN1), its
L2-type counterpart (denoted as SS–SNP), and their Bonferroni combination (denoted as
SS–SNb) in testing zero autocorrelation at nominal level 5%. Under the null hypothesis, we assume

the data comes from the samemodels used in Lobato (2001). Let ut ∼i.i.dN(0, 1) and the eight models
are (a) i.i.dN(0, 1); (b) t(6); (c) demeaned standard log normal; (d) 1-dependent process
Xt = utut−1; (e) the heteroscedastic process Xt = stutut−1, where st is the infinite repetition of the
sequence {1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 4, 6}; (f) the uncorrelated non-martingale difference process
Xt = ut−2ut−1(ut−2 + ut + 1); (g) the GARCH(1,1) model Xt = δtut, where δ2t = 0.001+
0.02X2

t−1 + 0.8δ2t−1; (h) the bilinear model Xt = ut = 0.5ut−1Xt−2. The experiment is repeated
5,000 times with n ∈ {100, 500} and the results are shown in Table 2. The size for our tests and
the Ljung-Box test are close to the nominal level for N(0,1), t(6) and GARCH(1) models, while
Lobato test is severely undersized when n = 100 or p = 20. For the bilinear model, our test statis-
tics have accurate size, while Ljung-Box test is oversized. For LogNormal model, SS–SN1 and
Ljung-Box have slightly more accurate size than SS–SNP and the Lobato test is noticeably under-
sized for all cases. For the RT,Hetero, andNo-MDSmodels, Lobato and Ljung-Box test both have
severe size distortion, while our tests are mildly undersized. In addition, for different splitting ratio
α and p, the size for our two SS–SN tests does not change much. Overall it is fair to say that our
SS–SN tests have the most accurate and stable sizes across all DGPs. Note that the size for SS–SNb
is generally slightly more distorted than SS–SN1 and SS–SNP but the difference is small.

Table 1. Empirical rejection rate (in percentage) under the null when testing hypothesis on multivariate mean

n p ρ SS–SN1 SS–SNP SS–SNb Lobato

α = 0.15 α = 0.3 α = 0.5 α = 0.15 α = 0.3 α = 0.5

100 5 −0.7 3.22 2.94 2.20 2.96 2.72 2.40 1.52 0.62

−0.5 3.88 3.84 3.38 4.02 3.80 3.48 2.60 1.88

0.2 6.00 5.72 5.72 5.40 5.90 5.38 5.14 7.08

0.5 6.56 6.94 7.14 6.28 6.78 7.12 6.54 11.90

0.7 7.92 8.62 9.40 7.46 8.24 9.68 10.12 21.04

10 −0.7 3.10 2.92 2.10 2.80 2.92 2.28 1.44 0.06

−0.5 3.80 3.88 2.94 3.84 3.73 3.42 2.42 0.64

0.2 5.20 5.70 5.52 5.18 5.50 5.48 5.16 10.42

0.5 6.02 6.92 7.44 6.18 7.08 7.34 7.42 26.00

0.7 7.38 8.42 10.48 7.16 8.78 9.52 10.62 52.78

300 5 −0.7 4.34 3.80 3.74 4.04 3.62 3.84 2.84 2.26

−0.5 4.50 4.10 4.48 4.34 4.18 4.30 3.64 3.28

0.2 5.12 4.52 5.32 4.98 4.96 5.18 4.98 6.18

0.5 5.22 4.74 5.56 5.44 5.20 5.92 5.54 7.18

0.7 5.82 5.54 6.32 5.82 5.96 6.72 6.38 9.42

10 −0.7 4.64 3.92 4.06 3.84 3.86 3.92 3.36 0.56

−0.5 4.92 4.42 4.60 4.22 4.36 4.16 4.08 2.18

0.2 5.28 5.40 5.06 4.98 5.00 5.12 4.88 6.42

0.5 5.62 5.74 5.52 5.46 5.50 5.60 5.54 10.68

0.7 5.96 6.22 6.46 5.90 6.04 6.38 6.28 18.34
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Figure 3. Size-adjusted power for testing hypothesis onmultivariatemean (first row), in a regressionmodel (second
row) and the existence of a change point (last row) under the dense (left column) and sparse (right column)
alternatives.
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4.3 Finite sample size and power for testing linear hypotheses in a regression
model
In this subsection, we report the result of a simulation experiment to compare the finite sample size
and power of the statistic T(R)n (α, ĵ(R)) (denoted as SS–SN1) defined in equation (19), its L2-type
counterpart (denoted as SS–SNP), their Bonferroni combination (denoted as SS–SNb), and the
test statistic used in Kiefer et al. (2000) (denoted as KVB). For p ∈ {5, 10, 20}, n ∈ {300, 600}
and ρ ∈ {−0.7, −0.5, 0.2, 0.5, 0.7}, we assume the data is generated from the following model

yt =
􏽘p

i=1
Xitβi + ϵt, t = 1, 2, . . . , n,

where {Xit} and {ϵt} come from (p + 1) independentAR(1) processes ηt = ρηt + et with et ∼i.i.dN(0, 1 − ρ2)
so that the marginal distribution of ηt isN(0, 1). The null hypothesis isH0:β1 = β2 = · · · = βp = 0.
The empirical rejection rate based on 5,000 Monte Carlo replications under H0 is shown in
Table 3. In general SS–SN1, SS–SNP, SS–SNb, and KVB have relatively accurate size when p = 5
and ρ = 0.2, i.e. when the dimension and temporal dependence is small, and are oversized for other
parameter combinations. When n = 300, as p and |ρ| increases, the size distortion for KVB in-
creases drastically, while the size distortion for SS–SN1 and SS–SNP are small when |ρ| < 0.7 for
all values of p. When n = 600, the size for all SS–SN statistics are less than 10% for all but one par-
ameter combination, while KVB still have large size distortion when p = 10, 20 and |ρ| = 0.7.
Overall, the improvement of size stability and accuracy across the dimension and range of ρs
from KVB to SS–SN is apparent, and this is mainly due to the dimension reduction step in our
SS–SN procedure.
Next, we examine the power of our SS–SN statistics under two alternative hypotheses. For the

sparse alternative, we assume β = βe⊤
1 for some β > 0, so only the first component of β deviates

from H0. For the dense alternative, we assume β = β1⊤. We assume the same model as in Section
4.3 with n = 300, p = 10 and ρ = 0.2. We repeat the experiment 2,000 times and the curve for
size-adjusted power against β for the dense and sparse alternatives is shown in Figure 3c and d. The
findings here are qualitatively similar to those reported in Figure 3a and b. Under dense alternative,
the power loss of SS–SNP compared with KVB is significantly smaller than that of SS–SN1. Under
sparse alternative, the power curve of SS–SN1 is very close to that of KVB. Overall, we recommend
the user to employ SS–SNb, which achieves good all-round power and exhibits moderate power
loss as compared to KVB under both alternatives.

4.4 Finite sample size and power for testing a change point in multivariate mean
In this subsection, we calculate the empirical size of our proposed tests in testing the existence of a
change point in the mean of a VAR(1) process. As in previous simulations, the L∞-type, L2-type,
and the Bonferroni combination are denoted as SS–SN1, SS–SNP, and SS–SNb. Under the null hy-
pothesis, we assume the data comes from the VAR(1) processXt = ρIpXt−1 + ϵt, where ϵt∼

iidN(0, Ip)
and we set the trimming constant b in Assumption 9 to be 0.15, following the convention
(Andrews, 1993). The experiment, with nominal level at 5%, is repeated 5,000 times with the
length of time series n ∈ {300, 600}, ρ ∈ {−0.7, −0.5, 0.2, 0.5, 0.7} and p ∈ {5, 10, 20}. We
also calculate the empirical size for the test used in Shao and Zhang (2010) (denoted as SZ) and
compare them under different combinations of n, p, and ρ.
As shown in Table 4, when n = 300, our tests are slightly undersized when ρ = −0.7 and over-

sized when ρ = 0.7, but the size distortion does not get worse as p increases, which is not the case
for SZ. When n = 600, the sizes for our tests are more accurate than that for n = 300 and close to
the nominal level uniformly over p and ρ. For SZ, the size also gets more accurate, but there is still
large size distortion when p is large and |ρ| is close to 1. Again SS–SN improves the size stability
and accuracy across the dimension and ρs.
To examine the size-adjusted power, assume data Yt comes from the following model:

Yt = Xt, 1 ≤ t ≤ k0 = ⌊nr0⌋
Xt + μ k0 < t ≤ n,

􏼚
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whereXt is generated from themodel in the null hypothesis. For the sparse alternative, we let μ = μe1
and for the dense alternative, we let μ = μ1.We set n = 300, ρ = 0.2, p = 10, r0 = 1/2 and the experi-
ment is repeated 2,000 times. The results, as shown in Figure 3e and f, are qualitatively similar to
those reported in Figure 3a–d. Note that under sparse alternative, the power curve of SS–SN1 and
SS–SNb are very close to that of SZ and even slightly outperforms SZ when μ is large. The use of
SS–SNb is again recommended due to its overall good performance under both alternatives.
Based on the simulation results reported in Sections 4.1–4.4, we conclude that both SS–SN test

statistics offer very stable and relatively accurate size across a wide range of data generating proc-
esses for most combinations of (n, p, ρ) we examined, as compared to the traditional bandwidth-
free tests. The latter often yield very large size distortion in the case of small sample size and/or
large dimension when the magnitude of temporal dependence is moderate. The size stability
and accuracy with respect to the dimension and magnitude of dependence is a major gain of the
SS–SN procedures. As a consequence of the usual size-power trade-off, there is a power loss for

Table 3. Empirical rejection rate (in percentage) under the null at level 5% in a regression model

n p ρ SS–SN1 SS–SNP SS–SNb KVB

α = 0.15 α = 0.3 α = 0.5 α = 0.15 α = 0.3 α = 0.5

300 5 −0.7 6.80 7.58 8.62 7.26 6.96 8.08 8.34 10.62

−0.5 6.14 6.30 6.72 5.78 5.88 7.04 6.32 7.46

0.2 5.50 5.34 6.00 5.54 5.38 5.90 5.84 5.60

0.5 6.24 6.48 6.42 6.10 6.24 6.52 6.30 7.52

0.7 6.80 8.04 8.58 6.76 7.60 8.40 7.90 10.28

10 −0.7 7.58 8.80 9.58 7.90 8.62 10.50 11.00 20.18

−0.5 6.60 7.32 7.68 6.72 6.96 7.78 7.74 11.56

0.2 5.48 5.38 5.76 5.74 5.78 5.92 5.46 7.36

0.5 6.34 6.30 7.28 6.54 6.52 7.44 7.22 11.72

0.7 7.66 7.78 10.66 7.74 8.28 10.58 10.68 20.08

20 −0.7 9.64 10.74 12.52 9.16 11.16 12.14 14.00 49.20

−0.5 7.58 7.88 8.76 7.38 8.16 8.58 8.98 23.70

0.2 6.38 7.00 6.90 6.00 6.00 6.88 7.34 11.58

0.5 7.64 8.46 9.34 7.48 8.08 8.48 9.96 23.86

0.7 10.40 10.72 12.76 9.98 11.30 13.08 14.12 50.32

600 5 −0.7 6.24 5.56 6.60 6.88 6.26 6.66 6.26 7.96

−0.5 5.62 5.64 5.78 5.88 6.14 5.94 5.10 6.64

0.2 5.06 5.64 5.10 5.30 5.02 5.04 4.66 5.52

0.5 6.04 5.86 5.54 5.32 5.92 5.60 5.12 6.26

0.7 5.80 6.36 6.28 5.54 6.48 5.54 5.56 7.70

10 −0.7 6.92 6.80 7.62 6.40 6.50 7.28 7.70 12.66

−0.5 6.14 6.28 6.48 5.96 5.96 6.48 6.62 8.64

0.2 5.42 5.70 5.72 5.22 5.16 5.46 5.34 5.82

0.5 5.72 5.48 5.40 5.50 6.18 6.22 5.90 7.76

0.7 6.26 6.80 6.84 7.02 7.12 7.22 7.66 12.02

20 −0.7 7.46 7.80 9.18 7.84 8.60 8.86 9.86 27.26

−0.5 6.72 6.48 7.12 6.50 6.60 7.18 6.92 13.96

0.2 5.24 5.58 6.18 5.28 5.90 6.40 5.78 8.48

0.5 5.68 6.76 7.72 6.00 6.34 7.34 7.56 13.74

0.7 6.42 8.50 9.10 8.02 7.36 8.96 10.10 26.74
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SS–SN tests due to the use of sample splitting. However, when comparing the optimal SS–SN test
to the traditional bandwidth-free counterparts (e.g. SS–SNP for dense alternative, and SS–SN1 for
sparse alternative), the power loss is mild. In a sense, this is similar to the ‘more accurate size but
less power’ phenomenon when comparing tests based on fixed-b asymptotics versus small-b
asymptotics (Kiefer & Vogelsang, 2005). In practice, when there is no prior knowledge about
the type of alternative, we recommend the user to employ the Bonferonni test, i.e. SS–SNb by set-
ting α = 0.5. The asymptotic independence between L2-type and L∞-type SS–SN test statistics as
stated in Theorem 7 further lends theoretical support to the Bonferroni test as it is expected to be
non-conservative when the dimension of the parameter is moderate and sample size is large.

5 Conclusion
In this article, we propose a class of new tests for hypotheses on a multi-dimensional parameter
based on SN and sample splitting. Our two SS–SN statistics do not involve any bandwidth param-
eter and the asymptotic null distribution is pivotal and is independent of the sample splitting pro-
portion α. The construction of both SS–SN statistics are rather straightforward and the test
statistics applied to the second part of sample P2 after dimension reduction based on the first
part P1 are effectively targeting at parameter of dimension one. This sample splitting approach
is broadly applicable to many time series testing problems, and we only cover testing hypotheses
on marginal means, autocorrelations, regression parameter and a change point in multivariate
mean to illustrate its usefulness. Overall, the SS–SN methodology provides an important addition
to the existing SN toolbox owing to its superior ability of dealing with moderate dimensional par-
ameter in the inference of low or moderate dimensional time series.
Below we shall highlight several appealing features of our test statistics. (a) For a moderate di-

mensional parameter, the size of our test statistics is considerably more accurate than traditional
SN statistic, especially when temporal dependence is strong. As a price to pay, the SS–SN test loses
some power. However, the power loss is moderate as seen from both theoretical power analysis
and simulation studies. In practice, we recommend the practitioner to set α = 0.5, and use the
Bonferroni test that combines the two SS–SN test statistics so the power is adaptive to both sparse
and dense alternatives. Simulation results show that the Bonferroni test exhibits accurate size and

Table 4. Empirical rejection rate (in percentage) under the null at level 5% when testing for change point in
multivariate mean

p ρ n = 300 n = 600

SS–SN1 SS–SNP SS–SNb SZ SS–SN1 SS–SNP SS–SNb SZ

5 −0.7 2.94 3.30 2.50 1.10 3.38 3.70 2.98 2.80

−0.5 3.98 4.54 3.38 2.20 3.84 4.36 3.34 3.12

0.2 5.06 6.06 4.88 5.10 4.88 4.72 4.02 5.02

0.5 6.04 6.96 5.96 7.86 5.20 5.38 4.40 6.84

0.7 7.10 7.94 7.44 12.88 5.82 6.18 5.00 8.38

10 −0.7 3.10 2.90 2.50 0.22 4.28 4.06 3.80 1.26

−0.5 4.22 3.96 3.66 1.22 5.26 4.78 4.58 2.32

0.2 5.48 5.20 5.24 7.70 5.92 5.30 5.52 6.28

0.5 6.62 6.28 6.24 13.46 6.02 5.64 5.86 9.46

0.7 7.36 7.50 7.66 28.82 6.50 6.22 6.70 14.24

20 −0.7 2.82 3.12 2.56 0.00 4.52 4.30 4.00 0.18

−0.5 3.62 3.90 3.26 0.34 5.12 4.82 5.08 1.02

0.2 4.92 5.14 4.90 11.80 5.58 5.44 5.56 7.92

0.5 5.82 5.94 6.04 32.84 5.82 5.90 6.10 16.80

0.7 7.20 6.88 7.60 73.20 6.36 6.32 7.04 35.82
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all-round good power in all settings. (b) We managed to show the asymptotic validity of SS–SN1

and SS–SNP test statistics and their asymptotic independence under the null in multivariate mean
testing problem in a growing-dimensional setting, which is an interesting theoretical contribution
to the SN literature. The theory is consistent with the empirical observation that the size is robust
for SS–SN test statistics for a broad range of dimensions. (c) As a by-product of dimension reduc-
tion involved in SS–SN, there is substantial saving in computational cost as compared to tradition-
al SN test statistics. In the mean testing problem, the cost of our SS–SN test statistics scales linearly
in p, which is superior to that for the traditional SN statistic.
To conclude, we mention some possible extensions. The scope of this paper can be considerably

expanded by using the GMM (Generalized Method of Moment) framework of Kiefer and
Vogelsang (2005). Also one can regard KVB’s test as a special case of the so-called fixed-b asymp-
totics (Kiefer & Vogelsang, 2005) with b = 1 and the use of Bartlett kernel. It is expected that the
fixed-b-based tests and also other fixed-smoothing-based tests as advocated in Sun (2014b),
Hwang and Sun (2017), andWang and Sun (2020) will encounter the same size distortion problem
when the dimension is moderate and temporal dependence is moderate/strong. Hence, it would be
interesting to extend the SS–SN idea to fixed-smoothing methods and to GMM settings. These
topics are left for future research.
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