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Critical Phenomena in the Collapse of Gravitational Waves
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Fine-tuning generic but smooth spherically symmetric initial data for general relativity to the threshold
of dynamical black hole formation creates arbitrarily large curvatures, mediated by a universal self-similar
solution that acts as an intermediate attractor. For vacuum gravitational waves, however, these critical
phenomena have been elusive. We present, for the first time, excellent agreement among three independent
numerical simulations of this collapse. Surprisingly, we find no universality, and observe approximate self-
similarity for some families of initial data but not for others.
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Critical phenomena in gravitational collapse were first
reported in the seminal work of Choptuik [1]. Specifically,
Choptuik considered a massless scalar field minimally
coupled to general relativity in spherical symmetry. For
different families of initial data, each parametrized by some
p, he noted that each one can be fine-tuned to a critical
parameter p, that separates subcritical data, i.e., those that
disperse and leave behind flat space, from supercritical data
that form black holes. In the vicinity of p,, Choptuik
observed critical phenomena with remarkable similarity to
those observed in other fields of physics. In particular, the
mass of black holes formed in the collapse of supercritical
data scales with

M1|P_P*|y’ (1)

where the critical exponent y is universal to the matter
model considered, and hence independent of the family of
initial data. Fine-tuning to p,, the dynamical evolution
approaches a self-similar critical solution that is again
universal.

Choptuik’s original announcement triggered a large
body of work that established critical phenomena in
gravitational collapse for different matter models, dimen-
sions, symmetry assumptions, and asymptotics (see Ref. [2]
for areview), resulting in a thorough understanding of these
phenomena at least in the context of spherical symmetry.
Depending on the matter model, the critical solution can
feature either a discrete self-similarity (DSS, for example
for the scalar field considered by Choptuik), or a continuous
self-similarity (CSS, for example for radiation fluids [3]).
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The critical exponent y is the inverse of the Lyapunov
exponent of the single unstable perturbation mode of the
critical solution [4,5], relating the universality of the critical
exponent to that of the critical solution. In spherical
symmetry the accumulation point, the spacetime event
towards which the self-similar solution contracts, must be
located at the center of the symmetry.

Abrahams and Evans ([6,7], hereafter AE) presented
evidence for critical phenomena in vacuum (gravitational-
wave) collapse very soon after Choptuik’s announcement,
specifically in twist-free axisymmetry with an additional
reflection symmetry through the equator. Fine-tuning two
families of initial data to the onset of collapse, they reported
a scaling exponent y ~ 0.36 and echoes in the gravitational
field, “lending support to the contention” that there exists a
unique critical solution with a DSS [7].

Though a number of authors (e.g., [8—12]) have per-
formed simulations of nonlinear gravitational waves using
a number of different approaches, it has been difficult to
reproduce the results of AE. Some of these attempts were
hampered by numerical problems, others found some
evidence for scaling but with different scaling exponents,
and none have been able to establish the existence of a
universal self-similar critical solution.

In this Letter, we suggest that the expectation of a
universal critical solution with an exact DSS in the collapse
of gravitational waves—and therefore in the absence of
spherical symmetry in general—is not supported by the
currently available numerical results. Rather, different sets
of initial data may result in different threshold solutions.
Some of these show an approximate DSS in our simu-
lations, but others do not.

© 2023 American Physical Society
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We start by briefly summarizing recent numerical
evidence for the absence of a universal critical solution
in the collapse of gravitational waves, based on indepen-
dent simulations. The authors of [13] use two common
approaches for constructing gravitational-wave initial data.
One such approach, similar to that adopted by AE, starts
with Teukolsky wave [14] solutions to the linearized
Einstein equations, and solves Einstein’s constraint equa-
tions in order to obtain valid nonlinear initial data. A
second, Brill wave, family instead adopts the procedure of
[15]. (See also [16] for a comparison of the two approaches
at the linear level.) Both approaches involve choosing a
seed function that determines the shape and location of the
initial wave package; in particular, this seed function can be
positive or negative, and can describe a “centered” or “off-
center” wave. Reference [13] found different critical
exponents y for these different families. Similar results
were found by [17,18] for different families of Brill waves.
Finally, [19] compared quadrupolar and hexadecapolar
Teukolsky waves (see the generalization of [20] for
arbitrary multipole moments) and found both quantitative
and qualitative differences in the corresponding threshold
solutions. For quadrupolar Teukolsky wave initial data,
both [13] and [19] found results that are consistent with
those of AE.

For generic nonspherical initial data, one expects a single
accumulation point of echoes (for a given threshold value
P+), whose location is not known a priori. For generic
axisymmetric data, this must be on the axis. For generic
axisymmetric data with an additional equatorial reflection
symmetry, there could be one accumulation point at the
center, or two located symmetrically on the axis.

Evidence for two separate “centers of collapse” was first
provided by [21], who considered aspherical deformations
of scalar fields and observed a “bifurcation” of the collapse
region for large departures from spherical symmetry and
exquisite fine-tuning (see also [22]). Similarly, [13,17,18]
observed that fine-tuning equatorially symmetric families
of Brill wave initial data to the onset of collapse resulted
in two separate centers of collapse. The two centers,
one above and one below the center on the symmetry
axis, are identified both by extrema of the Kretschmann
curvature scalar

I = RabcdRade (2)

and, for supercritical data, by the formation of two separate
apparent horizons. (For vacuum spacetimes, the Riemann
tensor R,,.; 1s identical to the Weyl tensor C,p.4 In
axisymmetry and on the axis, [ is related to the Weyl
scalar ¥, by I = 48%3.) Similar findings were reported by
[19] for hexadecapolar Teukolsky waves, but not for
quadrupolar Teukolsky waves, for which the maxima of
I occur at the center. (See also [23] and [24] for similar

behavior observed in the gravitational collapse of dipolar
versus quadrupolar electromagnetic waves.)

If there are two “centers,” in the sense of the location of
recurring curvature maxima, they could arise from DSS
with a single accumulation point (with two locations of
local curvature maxima in a single critical solution meeting
at the accumulation point), but with equatorial reflection
symmetry they could also arise from two separate accu-
mulation points located symmetrically, with the same p,, by
symmetry. The former was reported by [19] for hexade-
capolar Teukolsky waves.

Here we employ three different formulations, gauges, and
codes to further analyze this situation. prague [13] is a
finite-difference code based on the Einstein Toolkit [25] that
solves the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
formulation of Einstein’s equations [26-28] using a “qua-
simaximal” slicing condition (see Ref. [29]). bamps [30,31]
is a pseudospectral code that solves Einstein’s equations in a
first-order generalized harmonic formulation [32] with gauge
conditions and refinement strategy as discussed in [30,33].
Finally, sphGR [19] is a finite-difference BSSN code in
spherical polar coordinates (see Ref. [34]), and uses the
shock-avoiding slicing condition suggested by [35] (see also
[36] for a comparison with 1 4 log slicing). While prague
and bamps use mesh refinement to resolve increasingly
small features, sphGR is less well suited for attaining the
necessary resolution away from the center (see Ref. [19] for
a discussion). Accordingly, we do not include results from
sphGR for initial data close to the black-hole threshold.

Throughout this Letter we focus on axisymmetric Brill
waves [15], for which the extrinsic curvature of the initial
data vanishes, and the initial spatial metric

dPP = yte*(dp? + dz*) + p*de’] (3)
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FIG. 1. The maximum [/, of the Kretschmann scalar (2)
encountered in subcritical evolutions of Brill waves with the seed
function (4), as a function of the amplitude A (see also Fig. 1
in [13] and Fig. 5 in [18]). The faded data for A > 0 with
A, —A = 0.2 mark maxima that occur in the initial data.
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FIG. 2. Color plots of the Kretschmann scalar I'/4 on the symmetry axis, for a near-critical evolution of Brill initial data with the
(negative A) seed function (4). The two panels on the left show bamps results with A = —3.509 09, and the two on the right prague
results with A = —3.509 062 5. The two top panels show results along the time slices of each code, as a function of proper distance z,
along the slice from the center and proper time 7 at the center on that slice. This presentation is still slicing dependent. The inset in the top
left shows log I at the center versus proper time 7 for both the bamps (solid black line) and prague (dashed blue line) data. The two
bottom panels are for the same simulations, but show the rescaled Kretschmann scalar (z, — 7)I'/* along null slices emitted from the
center, against the similarity-adapted retarded time coordinate 7', and the similarity-adapted affine parameter 4. We chose 7, = 5.4 for
both datasets. To relate the top and bottom panels, the dotted line in the top right panel represents T,,;; = 0 in the bottom right panel, and
the dashed line in the top right panel represents 1 = 0.5 in the bottom right panel.

is constructed from the seed function

r’sin’0
q=A—g—e I, (4)

where A is the amplitude (which can be positive or
negative), p = (x> +y?)"/? = rsin@ the distance from
the symmetry axis, and ¢ a constant with dimension of

length. In the following we report all dimensional quantities
in units of ¢. Given ¢, we compute the conformal factor y
by solving

w (0°q  dq
vzl//:—z<a—p2+a—zz s (5)

where V2 is the flat-space Laplace operator.
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As a quantitative, gauge-independent comparison
between our three codes we show in Fig. 1 the maximum
value I, of the Kretschmann scalar (2) encountered in
subcritical evolutions as a function of A. For a critical
solution with a CSS, one would expect I, =~ |A — A, |~
[37], with the same y as for the black hole mass, compare
(1), while, for a critical solution with a DSS, this simple
power law would have superimposed a “wiggle” that is
periodic in In |[A — A, | [38,39]. For A < 0 data, which result
in oblate geometries [12], we adopt A, = —3.509 144 for the
prague code, A, = —3.509091 for bamps, and A, =
—3.508 8 for sphGR in Fig. 1 and find very good agreement,
demonstrating that all three codes predict very similar values
for the critical amplitude A, ~ —3.509. The resulting curves
do display a wiggle about an approximate power law, but
without clear periodicity, suggesting that the threshold
solution does not tend to exact DSS at least at our level
of fine-tuning.

Brill waves with A > 0, which result in prolate geom-
etries, pose more of a computational challenge [12,13]. In
Fig. 1, the choice A, =4.696695 for all three codes
(consistent with [17]) again results in very good agreement.
It is difficult to identify a power law or a periodic wiggle,
however, in particular since for A, — A 2 0.2 the maxima
I« occur in the initial data, and hence provide no
information about the threshold solution. Our available
data are nevertheless consistent with curvature scaling.

In order to analyze the threshold solution for the A < 0
initial data directly, we show in the top row of Fig. 2 values
of the Kretschmann scalar / on the symmetry axis for a
near-critical evolution. We include results from both the
bamps (left panel) and the prague (right panel) codes,
which allowed us the best fine-tuning to the threshold
solution, displaying / as a function of proper distance z,,
from the center, along slices of constant coordinate time
which are labeled by proper time 7 at the center. Even
though the two codes employ different slicing conditions,
even these coordinate-dependent renderings show qualita-
tive agreement. In particular, we observe that regions with
increasingly large curvature appear closer to the center and
closer together in proper time at later times, suggesting a
self-similarity with an accumulation point at the center.

We next construct coordinates that allow us to explore
any tentative self-similarity about the center in a fully
gauge-invariant way. Specifically, we first introduce the
DSS-adapted retarded time coordinate

Tnull = - ]n(T* - T)! (6)

where 7, is the assumed proper time (at the center) of the
accumulation event. We then consider null geodesics
emitted from the center, parameterized by an affine
parameter . We normalize 4 by choosing 4 =0 and
dA/dr = (r, —7)~' at the center, so that, initially, 1
advances at the same rate as 7.

[ : B
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FIG. 3. Similar to the top left panel in Fig. 2, but for a near-
threshold A > 0 solution with A =4.69667. We also plot
log(1'/*) rather than I'/4, and show bamps data only (but note
that coordinate-independent measures agree well with our other
codes). Unlike for the A < 0 data of Fig. 2, there is no evidence
for a DSS with a single accumulation point at the center.

The bottom row of Fig. 2 shows the same data for the
Kretschmann scalar 7 as the top row, but as functions of
Tpan and A. The results from the two codes now agree very
well. Moreover, it is easy to identify patterns that repeat
approximately periodically, even though this periodicity is
not exact. We conclude that the threshold solution for Brill
waves with the negative A seed function (4) serves as an
example of a vacuum threshold solution with an approxi-
mate DSS and an accumulation point at the center. Other
examples include Teukolsky waves with seed functions
used by AE and [13,19]. From Fig. 2 we crudely estimate
the period to be A ~ 0.6, which is similar to the values
reported by AE (A ~0.5-0.6, see Table I of Ref. [7]) and
[19] (A ~0.53 for quadrupolar waves).

As a demonstration that the threshold solution is not
unique, however, we show in Fig. 3 the Kretschmann scalar
for a near-critical evolution of Brill initial data with the seed
function (4), but with A > 0. Even from this figure, which
should be compared with the top-left panel of Fig. 2, it is
clear that the solution does not feature an accumulation
point at the center, and hence is distinct from the one for
A < 0. Itis possible that this solution features accumulation
points away from the center but deciding this would require
better fine-tuning than can presently be mustered.

To summarize, the qualitative and quantitative agreement
among our three independent codes, together with the
previous results presented in [13,17-19], allows us to draw
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several conclusions on the nature of critical collapse of
vacuum gravitational waves. Most importantly, there is no
single, universal critical solution for the collapse of
gravitational waves. Rather, different families appear to
lead to different threshold solutions with different scaling
exponents and different locations of the accumulation
point. For some families, the threshold solution appears
to approach a spacetime with an approximately DSS and a
single accumulation point, consistent with the numerical
findings of AE. The fact that our three codes agree
quantitatively on the deviations from exact DSS, in
particular the lack of clear periodicity, suggests that these
are real, rather than numerical artifacts. We cannot rule out,
of course, that these threshold solutions approach exact
DSS with better fine-tuning. Conversely, in other families of
initial data there is no evidence for DSS at the level of fine-
tuning available to us. It remains to be explored whether the
complicated behavior we have begun to resolve numerically
can be explained by multiple solutions featuring a DSS with
one or more unstable modes, or whether vacuum collapse
requires a more fundamental departure from our under-
standing of critical collapse in spherical symmetry.
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