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ABSTRACT
Arti�cial Intelligence (AI) brings advancements to support pathol-
ogists in navigating high-resolution tumor images to search for
pathology patterns of interest. However, existing AI-assisted tools
have not realized this promised potential due to a lack of insight
into pathology and HCI considerations for pathologists’ navigation
work�ows in practice. We �rst conducted a formative study with
six medical professionals in pathology to capture their navigation
strategies. By incorporating our observations along with the pathol-
ogists’ domain knowledge, we designed N���P��� — a human-AI
collaborative navigation system. An evaluation study with 15 med-
ical professionals in pathology indicated that: (i) compared to the
manual navigation, participants saw more than twice the number
of pathological patterns in unit time with N���P���, and (ii) partic-
ipants achieved higher precision and recall against the AI and the
manual navigation on average. Further qualitative analysis revealed
that navigation was more consistent with N���P���, which can
improve the overall examination quality.
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1 INTRODUCTION
One crucial step of cancer diagnoses is the pathologists’ examina-
tions of tumors through an optical microscope. With the recent
development of digital pathology [55, 59], tumor specimens can
be scanned into high-resolution digital scans, allowing medical
professionals to access, analyze, and share these scans with digital
interfaces [35, 53, 64]. However, literature has suggested that it
might take longer for pathologists to examine digital scans com-
pared to when using microscopes [36, 77]. The main culprit is the
di�culty in navigation — pathology scans usually have extremely
high resolutions ((⇠ 106)2 pixels) compared to commercial o�-the-
shelf computer displays (⇠ 8.3 ⇥ 106 pixels for 4K UHD resolution).
Therefore, pathologists are required to frequently manipulate (i.e.,
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zooming, panning) the viewport to gather necessary information
for diagnoses [63].

Research has long realized the di�culty in navigating high-
resolution images and proposed various interface designs to as-
sist users with general navigation tasks (e.g., map exploration)
[6, 20, 34, 65, 86]. However, we believe necessary adaptations should
be considered to enable seamless integration into pathologists’
work�ows, because of three problems in human navigation of
pathology scans: (i) pathologists’ navigation is usually substantially
complicated because some pathology patterns (e.g., mitosis in low-
grade meningiomas [49]) have a low prevalence rate (<100/scan)
and have extremely small dimensions compared to pathology scans
(ratio up to 1:2000) [3]; (ii) pathologists require speci�c domain
knowledge and navigation strategies [54, 63] to facilitate their ex-
aminations, which current navigation systems for general use rarely
consider; (iii) although AI can be used to accelerate navigation,
the lack of consideration towards integrating AI into pathologists’
work�ows might discourage them from using human-AI systems
in practice, as suggested in previous studies [33, 85]. Fortunately,
recent HCI-AI-Health works have demonstrated prototypes and
designs to close the gap between medical professionals and AI,
which has facilitated human-AI communication and was viable to
improve doctors’ works in various medical application domains,
such as general medicine [44, 66, 84], radiology [16, 17] and pathol-
ogy [12, 33, 47]. Motivated by the success of these advancements,
this work continues to build integrable systems by taking doctors’
domain knowledge into account, with a focus on supporting the
navigation process in pathology.

To this end, we conducted a formative study with six medical
professionals in pathology from two medical centers to enrich our
understanding of their navigation processes. Speci�cally, we ob-
served how they navigated pathology scans to search for mitoses1,
a critical pathology pattern that relates to cancer malignancy and
patient prognosis [23]. We summarized three observations that
cross-validate the �ndings in previous research [30, 54, 63, 68]:

(1) Overview �rst, then detail: Pathologists followed this pat-
tern of interacting with visual data as found in earlier works
[30, 68]: they started with an overview of the scan using
low magni�cation, then selected a few regions of interest
(ROIs) and studied each ROI in detail using higher magni�-
cations (see Figure 1(a));

(2) Using macroscopic patterns to locate ROIs in the low
magni�cations: Pathologists referred to macroscopic pat-
terns visible in low magni�cations that were associated with
occurrences of mitoses (see Figure 1(b)) to locate ROIs in low
magni�cations;

(3) Low throughput in high magni�cations: Pathologists
adopted a cautious and comprehensive navigation strategy
(see Figure 1(c)) [54] to avoid missing crucial pathology pat-
terns, causing low throughput under high magni�cations.

After accumulating the empirical evidence to verify existing
knowledge in pathologists’ navigation, we designed N���P��� —
a human-AI collaborative navigation system that bridges the gap

1The mitosis is selected because (i) the size of mitoses is small (⇠ 10`<) compared
to the size of pathology scans; (ii) the prevalence of mitoses is low (< 0.2/(1, 600)2
pixels in speci�c carcinomas) [3].

between AI and pathologists by integrating doctors’ domain knowl-
edge. Currently, we focus on pathologists’ practices of examining
mitosis as a showcase for N���P���. Mirroring the three observa-
tions mentioned above, we propose three design components of
N���P���:

(1) Hierarchical AI Recommendations: As shown in Figure
1(d), N���P��� employs AI to generate hierarchical recom-
mendations across multiple magni�cation levels to support
pathologists’ “overview �rst, then detail” work�ows. Specif-
ically, the “Local” recommendation helps pathologists to
quickly focus on a rough interest area in low magni�cation;
the “High-Power Field” recommendation allows pathologists
to narrow down and examine in detail using a median magni-
�cation level; and the “Cell” recommendation assists pathol-
ogists in adjudicating whether a suspected cell is mitotic in
the highest magni�cation.

(2) Customizable Recommendations by Multiple Criteria:
N���P��� generates hierarchical AI recommendations with
three criteria that pathologists usually consider to localize
ROIs in practice (i.e., cellular count, proliferation probability,
and mitosis count). Furthermore, N���P��� permits pathol-
ogists to customize AI recommendations according to their
examination preferences by a group of slide-bars (Figure 1(e),
top �gure).

(3) Cue-Based Navigation for HighMagni�cations: To cope
with pathologists’ low throughput under high magni�ca-
tions, N���P��� adapts the notion of existing cue-based
navigation designs [86] and places short-cut navigation cues
on the edge of the viewport (Figure 1(f)). This design enables
users to jump to remote AI recommendations without man-
ual panning, which can improve pathologists’ navigation
e�ciency.

We recruited 15 medical professionals in pathology from �ve
medical centers across two countries to validate N���P���. We
discovered that, compared to traditional manual navigation:

(1) Participants’ navigation e�ciencies were signi�cantly im-
proved (?=0.002, A=0.579, fromWilcoxon rank-sum test) with
N���P���: they saw more than twice the number of the tar-
get pathology pattern (i.e., mitosis) in unit time on average;

(2) Both participants’ precision and recall on identifying the
target pathology pattern were signi�cantly improved (pre-
cision: ?<0.001, recall: ?<0.001, from post-hoc Dunn’s test)
with N���P���. Meanwhile, compared to the AI, partici-
pants’ average recall and precision were improved by 20.21%
and 21.51% by N���P���, respectively;

(3) Participants reported signi�cantly lessmental e�ort (?<0.001,
A=0.658, from Wilcoxon rank-sum test, same following), had
higher con�dence (?=0.004, A=0.530), and were more likely
to use N���P��� in the future (?=0.001, A=0.594), based on a
post-study questionnaire.

1.1 Contributions
We propose and validate the implementation of an AI-assisted
tool in pathology — N���P��� — to enhance the navigation for
pathologists by incorporating domain knowledge and considering
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Figure 1: Comparison between pathologists’ manual navigation in practice vs. N���P���’s designs. Observations on pathologists’
manual navigation: (a) Pathologists usually overview a pathology scan with low magni�cations, followed by switching to
higher magni�cations to examine regions of interest in detail; (b) Pathologists might refer to macroscopic patterns to locate
ROIs in the low magni�cation; (c) Pathologists employ a systematical searching strategy in high magni�cations. N���P���’s
designs: (d) N���P��� harnesses AI to generate hierarchical “Local”, “High-Power Field”, and “Cell” recommendations, covering
multiple magni�cation levels; (e) N���P��� utilizes AI to calculate three criteria that pathologists usually consider to generate
recommendations; (f) Once in high magni�cations, N���P��� places navigation cues on the edge of the interface, enabling
pathologists to jump to remote AI recommendations without manual panning.

work�ow integration in practice. N���P��� could reduce patholo-
gists’ burdens by automating navigation with an AI-assisted algo-
rithmwhile its collaborativework�ow augments pathologists’ work.
Throughout a user evaluation study with medical professionals, we
demonstrated that our human + AI system could improve doctors’
navigation e�ciencies and lead to a higher examination quality.
Instead of imposing an end-to-end, black-box AI into their work-
�ows, this work closes the gap between medical professionals and
AI by embedding doctors’ domain knowledge and enabling them
to delegate tasks to AI according to their preferences. Although
majorly focused on mitosis in pathology, we further provide design
insights for HCI researchers on how AI and medical professionals
can work collaboratively to support medical decision-making in
light of our observations in the evaluation study.

2 RELATEDWORK
This section introduces three domains of work related to N���P���:
(i) interface designs to support pathologists’ navigation, (ii) AI

technologies for pathology, and (iii) human-AI collaboration to
support medical decision-making.

2.1 Supporting Pathologists’ Navigation with
Interface Designs

Because the resolution of commercial o�-the-shelf displays is sig-
ni�cantly lower than pathology scans (up to 1012 pixels), intensive
navigation is usually required for pathologists to search for features
and make diagnoses [63]. Since the issue roots in resolution di�er-
ences, one intuitive solution is to introduce displays with larger
physical sizes and resolutions to pathologists [28, 61, 76, 82]. Liter-
ature has validated this solution, suggesting that pathologists uti-
lized less pan and zoom interactions when using higher-resolution
displays [52]. However, improving hardware requires purchasing
costly, bulky, and specialized devices. And we believe that inter-
face designs that can aid pathologists to work with high resolution
digital scans are more closely related to what NaviPath achieves.
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A recent study suggests that employing appropriate interface
designs can accelerate pathologists’ examination processes compa-
rable to those of using the optical microscope [19]. Studies have
well-explored designs to support navigating high-resolution images
with limited size screens or displays [6, 34, 62, 65, 86]. Cockburn et
al. summarized these into four categories: focus + context (F+C),
overview + detail (O+D), zooming, and cue-based [20].

In digital pathology, the main-stream open-source [4, 21, 57, 67]
and commercial [39] interfaces combine zooming and O+D designs,
which include a zoomable canvas showing pathology scan details
and an overview window that displays the thumbnail. Users can
navigate high-resolution images with “pan and zoom” [29] interac-
tions. However, criticisms suggest that such design demands a high
mental e�ort and might be time-consuming [41, 63]. To compensate
for the limitation, Randell et al. improved the design by enlarging
the overview to detail scale di�erence, enabling pathologists to pan
more e�ciently bymoving the cursor in the ‘overview’window [63].
Apart from O+D designs, Jessup et al. proposed an F+C interface
for pathology image exploration [41]: a focal lens that magni�es
the screen center and supports users’ close-up examinations and
explorations of multi-channeled pathology scans.

However, we argue that solely enhancing interface designs does
not realize the full potential of digital scans. Because existing in-
terface designs (without AI) lack support in assisting pathologists’
visual searches [58], their navigation work�ow can be substan-
tially challenging while searching for small-sized, low-prevalence
pathological patterns. Building upon the traditional O+D interface,
the system proposed by this work adds AI and cue-based naviga-
tion, allowing pathologists to e�ciently review AI �ndings with
navigation cues.

2.2 AI Technologies for Pathology
Pathology has become an “attractive target” for applying AI be-
cause there exists a high variance in human diagnoses (i.e., the
problem of consistency) and a shortage of trained pathologists (i.e.,
the issue of speed or e�ciency) [71]. Driven by high demand, the
past decade has experienced a burst of publicly annotated datasets
that cover a broad range of pathology practices, from conducting
high-level diagnostic tasks (e.g., identifying breast cancermetastasis
[48], classifying kidney transplant biopsies [43]) to seeing low-level
histopathological patterns (e.g., mitoses [3, 8, 50, 78]). Following
the enrichment of datasets, numerous works have proposed deep
learning models to perform pathology image analysis, with some
achieving in-lab performance comparable to human pathologists
[18, 24]. Furthermore, multiple works have applied deep learning
models for mitosis detection, which include Convolution Neu-
ral Networks (CNNs) [31, 74], detection models (e.g., RetinaNet
[3]), or a combination of both [45, 51]. However, unlike humans,
research has indicated that current deep learning models have a
generalizability limitation — their performance would deteriorate
on the images with a domain shift (e.g., a shift caused by a di�erence
in the data handling procedure in medical centers) [2, 70].

Setting aside the generalizability issue, the HCI problem of
pathology using AI is its poor work�ow integration: pathology
is highly specialized domain in medicine, requiring speci�c expert
knowledge and navigation strategies [54, 63] to facilitate doctors’

examination. As state-of-the-art AI focuses on pushing the perfor-
mance with data-driven, ‘end-to-end’ models, pathologists’ needs
for an AI’s work�ow integration is more or less ignored, which dis-
incentives them from accepting and using AI in practice [85]. In this
work, instead of employing AI to replace pathologists, we adapt AI
closely to doctors’ domain knowledge of navigation, enabling them
to work collaboratively with AI. Our validation study shows that
our human + AI approach is recognized to have a better work�ow
integration and can help pathologists achieve higher precision and
recall on average compared to start-of-the-art AI.

2.3 Human-AI Collaboration for Medical
Decision-Making

Similar to how humans work with others, the human-AI collabora-
tion envisions humans and machines working symbiotically [46]
to achieve mutual goals [79]. With the recent advancement of deep
learning techniques, previous literature has established foundations
of human-AI collaboration in the general domain (e.g., design [40]
and content creation [25]). Furthermore, a number of HCI works
have studied principles [38], guidelines [1], design recommenda-
tions [32], and information needs [13] to facilitate humans to work
collaboratively with AI.

Following these pioneering works, research has investigated
the broader applicability of human-AI collaboration for medi-
cal decision-making. For example, Beede et al. discovered socio-
environmental factors that can in�uence AI performance, nurses
work�ows, and patient experiences while deploying a deep learning
model to detect diabetic retinopathy [7]. Wang et al. concluded the
challenges of applying a clinical diagnostic support system in rural
clinics [81]. Lee et al. proposed a human-AI collaboration system
for therapists’ practices of rehabilitation assessments, and reported
that the system can increase the consistency of decision-making
[44]. More recently, Fogliato et al. have studied the in�uence of
human-AI work�ows on veterinary radiologist readings of X-ray
images, and revealed that doctors’ �ndings were more aligned if AI
suggestions were shown from the beginning [27]. Schaekermann
et al. discovered that implementing ambiguity-aware AI was more
e�ective in guiding medical experts’ attention to contentious por-
tions while reviewing sheep EEG data, compared to conventional AI
[66]. Calisto et al. extended the designs of multi-modality radiology
image viewing tools [14, 15]. They built clinician-AI work�ows for
breast cancer image classi�cation, suggesting that the human + AI
approach could bring improvements in false-positives and false-
negatives in diagnosis, user satisfaction, and time consumption
[16, 17].

Narrowing down to the pathology domain, promising works
have employed a human + AI approach to support pathologists’
examinations, bringing improvements in human errors [56, 80],
between-subject agreements [11], time consumption [47], and men-
tal workload [33]. For example, Lindvall et al. adapted the notion
of Rapid Serial Visual Presentation (RSVP) [69] and developed
a rapid assisted visual search system, allowing pathologists to see
and adjust the AI-generated ROIs by sensitivity [47]. Gu et al. iden-
ti�ed pathologists’ challenges in practice and proposed a human-AI
collaborative diagnosis system to perform multi-criteria, scan-level
analysis for meningioma grading [33]. Notably, Cai et al. built a
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pathology content-based image retrieval (CBIR) system with
an imperfect model — pathologists could adjust the retrieved ROIs
according to pathologist-de�ned concepts (e.g., stroma) to cope
with AI imperfections [12].

Extending the exciting success of human-AI collaborative sys-
tems in pathology, this work continues to explore user-centered,
integrable designs to embed AI assistance into pathologists’ navi-
gation processes. Speci�cally, going beyond presenting AI results
to inform pathologists [12, 33], this work focuses on supporting
the process with AI using designs that enable pathologists and
AI to work symbiotically to navigate and gather information for
diagnoses. Compared to previous human-AI navigation systems
in pathology [47], N���P��� incorporates the domain knowledge
of pathologists’ navigation, which can improve the work�ow inte-
gration and better augment pathologists’ routines of using AI as a
companion.

3 FORMATIVE STUDY & SYSTEM
REQUIREMENTS

We conducted a formative study with six medical professionals in
pathology (referred to as FP1 – FP6) from two medical centers to
study how pathologists examine digital scans for mitosis evaluation
(see the supplementary material for the demographic information
of participants). The participants were recruited using �yers sent
in mailing lists and word-of-mouth. For each participant, we �rst
introduced the mission of the project. Then, we presented a pathol-
ogy scan selected from [3], and asked participants to assess the
activity of mitosis (a pathological pattern). We followed up with
a semi-structured interview and inquired how they navigated the
scan to �nd mitoses. Finally, we presented a series of candidate
mock-ups of N���P��� and collected participant feedback. The
length of the semi-structured interview was about 30 minutes, and
the average duration of each study was about 60 minutes.

3.1 Observations
We analyzed the transcribed interview recording using the follow-
ing approach: �rst, two researchers summarized the observations
individually; then, a third researcher reviewed the observations and
addressed the disagreements. We concluded three observations of
how pathologists navigate pathology scans (without AI) in their
practice, which cross-validated �ndings from previous work on
humans’ navigation patterns in high-dimensional visual data.

• O1: Overview �rst, then detail. To search for mitoses,
pathologists would �rst stay in low magni�cations to get
an overview of the scan, then select a few ROIs and study
each ROI in greater detail using higher magni�cations. Such
a routine was also described in previous works in the gen-
eral domain of information searching [30, 68] and pathology
[63]. Pathologists adapted the searching strategy because of
the size di�erence between mitoses and pathology scans —
mitosis is a small-sized pathology feature and can hardly be
observed without high magni�cations (i.e., ⇠ ⇥400 magni-
�cation). However, scanning the entire slide systematically
in ⇥400 [54] can be substantially time-consuming because
the �eld of view under ⇥400 is small compared to the pathol-
ogy scan: a �eld of view under ⇥400 has a size of 0.16<<2,

while a typical ⇥400 pathology scan usually has a size of
⇠ 100<<2. In our study, all six participants searched for
mitoses more e�ciently: �rst, they rapidly covered the scan
in low magni�cations (<⇥50) as an overview. After that, they
selected a few ROIs to proceed: for each ROI, they switched
to medium-magni�cation (⇠ ⇥200) to maximize their �elds-
of-view while preserving cellular details. If a suspected cell
was found, they would dive into high-magni�cation (⇥400)
and make an adjudication.

• O2: Using macroscopic patterns to locate ROIs in the
lowmagni�cation. To locate the mitosis, pathologists used
not only the microscopic features (only visible in ⇥400) but
also referred to macroscopic patterns (visible even in <⇥50)
that were associated with the occurrences of mitoses. Specif-
ically, pathologists located ROIs in low-magni�cation by
evaluating the cell density — “if it (an ROI) is more cellular, it
is more likely to have mitoses” (FP3).

• O3: Low throughput in higher magni�cations. While
pathologists relied on the cell density to select ROIs from
low magni�cations, they were likely to ‘get lost’ once they
had switched to higher magni�cations. This is because there
was a lack of visual landmarks under high magni�cations
in tumor scans (i.e., the ‘desert fog’ problem [42]). From the
study, we observed that some participants preferred to use
a cautious and comprehensive navigation strategy [54] (see
Figure 1(c)) to avoid missing critical �ndings that might over-
turn the diagnosis. However, because not all areas under the
high magni�cations include mitoses, the navigation strategy
might be less e�cient and more prone to causing fatigue.

3.2 System Requirements
Based on our observations, we propose the following three system
requirements for human-AI navigation systems for pathologists:

• R1: Covering multiple magni�cation levels. In accor-
dance with pathologists’ “overview �rst, then detail” naviga-
tion processes, the system should provide AI support across
multiple magni�cation levels. For example, recommenda-
tions in low magni�cations can draw pathologists’ attention
by pointing out rough areas of interest, while those in higher
magni�cations should o�er more precise guidance in locat-
ing ROIs.

• R2: Incorporating pathologists’ domain knowledge. To
bridge the gap between pathologists and AI, instead of em-
ploying end-to-end, black-box AI, the system should adapt
AI closely to pathologists’ domain knowledge and involve
criteria that pathologists use in practice to generate AI rec-
ommendations. Moreover, because pathologists might have
diverse preferences and AI can be imperfect [2, 70], the sys-
tem should allow users to customize AI recommendations
by emphasizing or ruling-out speci�c criteria.

• R3: Accelerating navigation in high magni�cations.
To address the low-throughput issue, the system should of-
fer interface designs that enable users to navigate e�ciently
among the AI recommendations in highmagni�cations, with-
out getting lost.
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4 DESIGN OF NAVIPATH
In this section, we �rst introduce four design components used in
N���P���. We then describe howN���P��� augments pathologists’
navigation by describing an example work�ow.

4.1 Design Components
Corresponding to the three system requirements, we propose three
key designs in N���P���: Hierarchical AI Recommendations,
Customizable Recommendations by Multiple Criteria, and
Cue-Based Navigation for High Magni�cations. Furthermore,
we employ the design of Explaining Each Recommendation to
help pathologists comprehend AI �ndings.

4.1.1 Hierarchical AI Recommendations. Following pathologists’
navigation processes for mitosis searching, N���P��� o�ers AI rec-
ommendations of three sizes2 to provide assistance across multiple
magni�cation levels (system requirement R1):

(1) The “Local” recommendation (size=10,080⇥10,080 pixels3)
simulates pathologists’ overviewing processes in low mag-
ni�cation. As shown in Figure 2(a), the recommendations
are red boxes visible in the pathology scan without zoom-
ing. Local recommendations can provide rough directional
guidance for pathologists; users can prioritize their exami-
nation on AI-selected regions without evaluating the scan
manually.

(2) There are multiple “High-Power Field” (HPF) recommen-
dations (size=1,680⇥1,680 pixels) within a Local recommen-
dation (Figure 2(b), red boxes). The HPF recommendation
gives more precise ROIs at a higher magni�cation level, al-
lowing users to examine them in detail. It has the same �eld
of view as ⇥400 in optical microscopes that pathologists
use in practice, freeing them from spending extra e�ort on
adapting to the digital interface.

(3) The “Cell” recommendation (size=240⇥240, Figure 2(d))
points out the most precise location of each suspected mi-
tosis reported by AI. It augments pathologists’ mitosis eval-
uations by transforming a visual search task (i.e., �nding
where mitoses are) into the adjudication (i.e., whether a Cell
recommendation includes mitosis).

For all three levels, users can select a recommendation by double-
clicking on it, andN���P���will automatically zoom and center the
viewport to the selected recommendation. Therefore, with hierarchi-
cal AI recommendations, users can proceed through magni�cation
levels by selecting recommendations on the next level (e.g., Figure
2(a)!(b), (b)!(c), (c)!(d)). Users may ignore the recommendation
if an undesired one appears.

4.1.2 Customizable Recommendations by Multiple Criteria.
NaviPath embeds pathologists’ domain knowledge and employs
three deep learning models (Figure 3(c)) to calculate three
criteria for obtaining Local and HPF recommendations (system
requirement R2):

(1) Cellular Count: Similar to how pathologists leverage
the cell density to locate ROIs in the low magni�cation,

2Speci�c sizes were justi�ed by consulting with a board-certi�ed pathologist (experi-
ence = 10 years)
3The size of one pixel is 0.25`m.

N���P��� employs a state-of-the-art nuclei segmentation
model (i.e., HoVer-Net) to count cell numbers and capture
cellular areas from the pathology scan.

(2) Proliferation Probability: Mimicking pathologists’ judge-
ments of whether an area needs further attention in ⇥400
from ⇥200 views, N���P��� uses an E�cientNet-b3 model
[73] to predict the proliferation probability — a criterion that
relates to whether an ROI is likely to include mitosis, based
on AI’s impressions from ⇥200 magni�cation.

(3) Mitosis Count: Corresponding to pathologists’ mitoses
searching in ⇥400, N���P��� utilizes a classi�cation model
(i.e., E�cientNet-b3) to detect mitotic �gures from the high-
est magni�cation.

As for Cell recommendations, N���P��� directly pulls the posi-
tive results from the mitosis AI and visualizes them on the interface.

Since pathologists might use the three criteria di�erently in prac-
tice, N���P��� supports users to customize AI recommendations
by emphasizing or ruling out speci�c criteria with a group of slide-
bars, as shown in Figure 4(a). For example, giving the “Proliferation
Probability” and “Mitosis Count” higher weight by moving the
slide-bar to the right will force N���P���’s recommendations to
lean on these criteria. N���P��� will then re-calculate and update
recommendations based on the user’s input. What’s more, users
can also adjust the sensitivity of recommendations. For example, if
users wish to see more recommendations, they could tune up the
“Mitosis Sensitivity” slide-bar (see Figure 5(f), the fourth slide-bar).

N���P��� ranks all recommendations according to the current
customization setting. Based on the ranking result, it assigns each
AI recommendation an index (e.g., Figure 5(a), the number on the
top-left corner of the recommendation). The smaller the index, the
greater the importance and need to be examined with high priority.
The index number gives users “actionable” advice [32] and can
help them focus on critical areas in limited time. Please refer to
the supplementary material for the implementation details of AI
models and the recommendation ranking algorithm.

4.1.3 Improving Navigation in High Magnifications. Following sys-
tem requirementR3,N���P��� uses two designs to optimize pathol-
ogists’ navigation in high magni�cations:

First, N���P��� enables pathologists to pan discretely in high
magni�cations. Speci�cally, after examining each HPF recommen-
dation, users can double-click on the screen’s edge to pan discretely
to an adjacent one. Compared to the conventional manual panning
with mouse-dragging, this design can accelerate users’ interaction
speeds: according to Fitt’s Law [26], screen edges have in�nite
width, so it follows that.

Moreover, to increase pathologists’ e�ciency in seeing remote
recommendations, N���P��� adapts the notion of citylight [86] by
placing navigation cues on the edge of the interface (Figure 4(b),
pointed by arrows). The location of the navigation cue indicates
the relative direction between the remote HPF recommendation
and the current viewport, while the number represents the ranked
index of each recommendation. With navigation cues, users can
become aware of the spatial distribution and importance of o�-
screen targets. They can also click on navigation cues to hop to
remote HPF recommendations without manual panning.
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Local Recommendations

A Local Recommendation with 
HPF Recommendations inside A Cell RecommendationAn HPF Recommendation with 
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Figure 2: N���P��� generates hierarchical AI recommendations across multiple magni�cation levels: (a) Local recommendations
(red boxes) lie in the lowest magni�cation, and can be seen directly on the pathology scan without zooming; (b) there are
multiple High-Power Field (HPF) recommendations (red boxes) inside one Local recommendation (gray box); (c) once in an
HPF recommendation (the gray box), users can select and see (d) a Cell recommendation with the highest magni�cation.
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HPF #N: 
• Cell Count: 978 
• Proliferation  Prob.: 0.27 
• Mitosis Count: 1
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Figure 3: Generating Local and HPF recommendations with multiple criteria: (a) a pathology scan is �rst (b) split into non-
overlapping tiles. Then, N���P��� uses (c) three AI models to analyze each tile to obtain (d) scores of cellular count, proliferation
probability, and mitosis count. N���P��� will (e) aggregate scores from multiple tiles to generate Local recommendations, or (f)
directly use these scores for HPF recommendations.

g
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HPF #1: 
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Current Viewport

Figure 4: (a) N���P��� supports users to customize AI recommendations with a group of slide-bars: users can emphasize or rule
out each of the three criteria (i.e., cellular count, proliferation probability, mitosis count) for N���P���’s recommendations;
(b) N���P��� places navigation cues (pointed by arrows) that enable users to hop to remote recommendations. The �gure on
the right provides an overview of o�-screen recommendations; (c) An example of N���P���’s verbal dialog explanation for
Local/HPF recommendations; (d) An example of the explanation card for N���P���’s Cell recommendations.
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Figure 5: Overview of N���P���’s interface. (a) A Local recommendation (red box) with an explanation dialog. The number on
the top-left corner represents the index of the recommendation (same for HPF and Cell recommendations); (b) An example
of an HPF recommendation; (c) An example of a Cell recommendation; (d) An explanation card for a Cell recommendation,
including the AI probability, con�dence level, and a saliencymap; (e) Users can switch on and see each level of recommendations
on-demand; (f) Users can customize the recommendations with a group of slide-bars; (g) A navigation cue that allows users to
jump to a remote recommendation. The number indicates the index of the remote recommendation.

4.1.4 Explaining Each Recommendation. Since one criticism of
deep learning models in pathology is that there is a lack of in-
terpretability [72], explainable AI (XAI) techniques have been
utilized to make AI “transparent, understandable and reliable”
to pathologist users [60]. In N���P���, we followed the sugges-
tions from [32] and attached an explanation for each AI rec-
ommendation. Speci�cally, for Local and HPF recommendations,
N���P��� presents users with a verbal dialog, which includes qual-
itative descriptions of AI results on the cellular count, proliferation
probability, and mitosis count (Figure 4(c)). The dialog helps users
decide whether they should select and study recommended areas.
Moreover, N���P��� adapts the design of a previous human-AI
pathology system [33] and explains each Cell recommendation with
an explanation card (Figure 4(d)). The explanation card demon-
strates the classi�cation probability, the con�dence level, and a
saliency map for a positive mitosis classi�cation result, which pro-
vides information from AI’s perspective to assist pathologists’ mi-
tosis adjudications. Detailed procedures of explanation generation
are described in the supplementary material.

4.2 Navigating with N���P���
A typical page of N���P��� is shown in Figure 5. A user’s work�ow
in N���P��� starts by switching on (Figure 5e) and seeing Local

recommendations (Figure 5a). The number on the top-left corner
of each recommendation box is the ranking index, and users may
view recommendations by ascending index order. In each Local
recommendation, users can continue to drill down and see HPF
recommendations (Figure 5b). In each HPF recommendation, users
can continue to see Cell recommendations (Figure 5c) that show
the precise locations of detected mitoses. For each Cell recommen-
dation, users can view an explanation card on-demand (Figure 5d).
After examining each HPF recommendation, users may click on the
numbered navigation cue (Figure 5g) to hop to a remote HPF rec-
ommendation. During users’ examination, they may customize the
recommendations by interacting with a group of slide-bars (Figure
5f). Users’ work�ow ends when they are con�dent of signing out
the case.

5 TECHNICAL EVALUATION
We conducted a technical validation study and reported the per-
formance of the three AI models in N���P���. Speci�cally, we
applied classi�cation models for mitosis and proliferation probabil-
ity on the eight test scans selected from [3]. We cross-referenced
the AI results and ground-truth labels to calculate F1 scores. The
ground-truth labels for mitosis detection and proliferation proba-
bility calculation were acquired/generated from the annotations
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provided in [3]. For the cellular count calculation, we applied the
model to 50 randomly-picked areas (size=512 ⇥ 512 pixels under
⇥400 magni�cation) from pathology scans. Then we compared the
AI result with the cellular count reported by a graduate student,
who had been brie�y instructed by a pathologist (experience = 10
years).

The results showed that the mitosis detection model achieved
an F1 score of 0.673 (precision: 0.703, recall: 0.650) when using a
probability threshold of 0.85. The F1 score for the proliferation prob-
ability model was 0.472 (precision: 0.544, recall: 0.416, probability
threshold: 0.77). The average error rate of the cell counting model
was 14.95%.

Although we tried to train the model for mitosis detection fol-
lowing a recent work [31], the performance of the mitosis AI was
still not perfect: tuning down the threshold and setting the recall as
0.85 caused the precision score to drop to 0.216. That is, the number
of false-positive instances would have been 3.62⇥ the true-positive
ones. The proliferation probability model performance was also not
satisfactory, likely due to the misalignment in label distribution be-
tween train/validation and test sets: while 15.0% of train/validation
data were positive, only 4.7% of test data were positive.

6 WORK SESSIONS WITH PATHOLOGISTS
We conducted work sessions with medical professionals in pathol-
ogy to validate N���P���, studying three research questions:

• RQ1: Can N���P��� (as a human + AI approach) increase
pathologists’ precision and recall in identifying the patho-
logical features (in this case, mitosis)?

• RQ2: Can N���P��� save pathologists time and e�ort?
• RQ3: Compared to manual navigation, what is the bene�t
of using N���P���?

We designed three testing conditions to support the system
validation on the three RQs:

• C1 (Human Only): Participants navigate a pathology scan
viewer without any AI assistance;

• C2 (Human + AI): Participants navigate the pathology scan
with N���P���;

• C3 (AI Only): AI-automatic reporting without humans;

6.1 Participants
We recruited 15 medical professionals in pathology from �ve med-
ical centers across two countries, including 13 residents, one fel-
low (P7), and one attending (P15). The participants were recruited
through �yers sent in mailing lists and word-of-mouth. The demo-
graphic information of the participants is shown in Table 1. All
participants had received at least two years of pathology residency
training to be quali�ed for the study (average experience `=3.47
years, (C3=0.88 years). 14/15 participants had experience in seeing
pathology scans before the study (daily: 3, weekly: 6, bi-weekly:
3, monthly: 1, within one year:1). The primary purpose for using
pathology scans was for learning, and the most mentioned digital
pathology interface was Aperio Imagescope [39].

6.2 Data & Apparatus
We collected eight pathology scans of canine mammary carcinoma
from a public dataset [3]. The average size of these scans was 7.15
giga-pixels. We acquired the ground-truth mitosis annotations from
the same dataset [3]. Overall, the averagemitotic rate (i.e.,MR, mi-
totic count per unit area4) was 1.022/mm2 (0.164/HPF). We selected
two scans for tutorial purposes, leaving the other six for testing
(Scan 1-6 in Table 1). To generate AI detections, the scans were
pre-processed with a local server with a 24-core CPU, 64 GB mem-
ory, and an Nvidia RTX-3090 graphics card. After that, we loaded
the pre-processed results into N���P��� (C2). For a comparison,
we developed a baseline pathology scan viewer with a basic O+D
design, where pathologists were required to navigate manually to
evaluate mitosis activity (C1). During the study, we referred to the
manual baseline system as ‘system 1’ and N���P��� as ‘system 2’
to avoid bias.

6.3 Task & procedure
All sessions were conducted online over Zoom. Participants were
�rst shown a tutorial video (⇠10 minutes) of the manual baseline
system and N���P���. After they had watched the video, they
were given links to both systems, which were accessed through the
web browser. Next, each participant was instructed to perform a
pathology task of assessing the mitotic activity of one pathology
scan using system 1/system 2, and another with system 2/system 1.
During the formative study, we discovered that pathologists might
memorize the hot-spot areas of a pathology scan that they had
examined before by recognizing tumor contours, even after several
months. Therefore, instead of letting a participant see the same
scan after a wash-out period, we instructed participants to read dif-
ferent scans in the work sessions (see Table 1). The order of seeing
the scans in each session was counterbalanced across participants.
During each session, participants were required to evaluate the
mitotic activity following the College of American Pathologists
(CAP) cancer protocol5, which is similar to how pathologists exam-
ine the scan in practice. Finally, participants entered a post-study
structured interview that included a set of Likert questions and
short answers. The average duration of each study was about 65
minutes.

6.4 Measurements
We collected three sources of responses from users during the
work session: �rst, we recorded participants’ interactions with both
systems. Second, after they had �nished examining each scan, we
saved participants’ reportings of mitoses. Third, from the �nal
interview, we collected participants’ responses to the questionnaire.
Following previous HCI research on pathology navigation [63] and
pathology AI [12], we investigated the research questions with the
following measurements:

For RQ1, we obtained the participants’ mitosis reportings with
the baseline C1, N���P��� (C2), and AI (C3). We then cross-
referenced them with ground-truth mitosis labels and calculated
precision and recall scores. Because each participant may visit di�er-
ent ROIs in each trial, we individually calculated the AI’s precision
4https://www.cancer.gov/publications/dictionaries/cancer-terms/def/mitotic-rate
5https://documents.cap.org/protocols/cp-cns-18protocol-4000.pdf.

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/mitotic-rate
https://documents.cap.org/protocols/cp-cns-18protocol-4000.pdf
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Table 1: Demographic information & arrangements of the participants in the work sessions. The number ‘1’ indicates that the
scan was examined with system 1 (baseline manual system), while ‘2’ was with system 2 (N���P���). MC1-3 are located in one
country, and MC4-5 are in another.

ID Years of
Experience

Frequency of Seeing
Pathology Scans

Medical
Center Scan 1 Scan 2 Scan 3 Scan 4 Scan 5 Scan 6

P1 4 Weekly MC1 2 1

P2 3 Never MC2 1 2

P3 4 Bi-Weekly MC3 2 1

P4 4 Weekly MC3 1 2

P5 3 Daily MC4 2 1

P6 2 Weekly MC1 1 2

P7 5 Daily MC3 1 2

P8 4 Bi-Weekly MC3 2 1

P9 4 Daily MC3 1 2

P10 3 Weekly MC4 1 2

P11 2 Bi-Weekly MC4 2 1

P12 3 Weekly MC4 2 1

P13 3 Monthly MC4 1 2

P14 3 Within One Year MC4 2 1

P15 5 Weekly MC5 2 1

and recall scores (C3) within the areas visited by each participant
in C2. Therefore, we can study whether the improvements in C2
are brought by NaviPath’s AI or its human-AI work�ow.

For RQ2, we �rst calculated participants’ average time cost on
each scan. We also evaluated each participant’s navigation e�cien-
cies by counting the number of ground truth mitosiswithin the areas
visited by participants in each trial and divided it by the time length.
After that, we averaged the results across the participants for C1
and C2 individually. Here, we did not count the mitosis reported
by participants as in RQ1 to rule out the di�erence in participants’
capabilities in locating mitoses. Finally, to evaluate the cognitive
workload of using both systems, we asked the participants to an-
swer two seven-scaled Likert NASA TLX questions (i.e., mental
demand and frustration dimensions, Table 2 Q1, Q2)) [37].

For RQ3, we �rst analyzed the interaction logs and summarized
participants’ interaction frequencies with both systems (i.e., zoom,
pan, selecting recommendations). What’s more, we inquired about
participants’ ratings on system’s capabilities for mitosis searching
(Table 2 Q3), their con�dence in the mitosis reportings (Table 2 Q4),
attitudes toward using the system in the future (Table 2 Q5), and
overall preference of system 1 vs. system 2 (Table 2 Q6).

Last but not least, to �gure out whether each N���P��� com-
ponent is useful for pathologists, we asked the participants to rate
each component (Figure 7) with a seven-scaled Likert question:
(i) “Is this feature useful to your examination?” (1= Not useful at
all! 7=Very useful); (ii) “Compared to System 1, does this feature
require extra e�ort?” (1=No e�ort at all! 7=A lot of e�ort).

7 RESULT & FINDINGS
In this section, we �rst answer our initial research questions based
on the information collected from work sessions. We then summa-
rize the qualitative �ndings on pathologists’ navigation traces.

7.1 Results for Research Questions
7.1.1 RQ1: CanN���P��� increase pathologists’ precision and recall
in identifying the pathological features? We calculated the preci-
sion and recall (sensitivity) of participants’ mitosis reportings with
manual navigation (C1), N���P��� (C2), and AI-automated report-
ings (C3) (Figure 6(a)-(b)). The median precision under C1, C2,
and C3 were 0.33, 0.82, and 0.69, respectively (average `=0.40, 0.78,
0.64, standard deviation (C3=0.22, 0.17, 0.31). And the median recall
under the three conditions was 0.14, 0.60, and 0.56, respectively
(`=0.18, 0.61, 0.51, (C3=0.19, 0.24, 0.28). An initial Kruskal-Wallis
H-test indicates that precision and recall under the three conditions
were signi�cantly di�erent (precision: ?=0.002, e�ect size [2�=0.407,
recall: ?<0.001, [2�=0.5116). A post-hoc Dunn’s test with Bonferroni
correction (U=0.05) showed that recall was improved signi�cantly
when comparing C3 vs. C1 and C2 vs. C1 (Figure 6(c)). As for
precision, C2 was signi�cantly higher than C1, while there was
no su�cient proof to observe C3 was higher than C1. We further
analyzed the di�erence between C2 and C3. On average, pathol-
ogists achieved 20.21% higher recall and 21.51% higher precision
with N���P��� than AI. However, there was no su�cient proof to

6The e�ect size of Kruskal-Wallis H-test [2� was calculated according to [75].
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Figure 6: Boxplot visualizations of the (a) precision and (b) recall (sensitivity) from mitosis reportings under the conditions of
C1, C2, and C3. The colored lines and the �gures above indicate the median values of each condition. The dots are the outliers. (c)
The results of pair-wise signi�cance comparison among C1, C2, and C3 using a post-hoc Dunn’s test with Bonferroni correction
(U=0.05). The values marked with ⇤ indicates that the Null hypothesis can be rejected because the ? < U/2. (d) Participants’
zoom interaction frequencies under C1 and C2. (e) Participants’ pan interaction frequencies under C1 and C2; (c) Frequencies
of participants’ selecting Local, HPF, and Cell recommendations under C2. Note that one participant might select the same
recommendation multiple times in each trial.

observe that the precision and recall were signi�cantly higher in
C2 compared to C3.

It is noteworthy that participants’ recall in identifying mitoses
using the manual navigation is low. Upon further analysis of navi-
gation traces, we found that the average mitotic rate in the areas
participants visited with the manual navigation was 0.167/HPF
(which is comparable to the average mitotic rate). As a compari-
son, the average mitotic rate with N���P��� was 1.196/HPF, which
is 6.17⇥ higher. We believe such a signi�cant increase (?<0.001,
A=0.851, Wilcoxon rank-sum test) in the prevalence rate of the tar-
get (i.e., mitosis) is the main factor why N���P��� could increase
participants’ recall: as described in [83], the low target prevalence
would cause shifts of decision criteria that lead humans to miss
targets in the visual search. N���P��� harnesses AI to recommend
highly-mitotic areas for users, which brings up the prevalence rate
of the visual search targets, thus helping participants achieve higher
recalls (even compared with AI).

High variances in precision and recall were observed when com-
paring C2 and C3. We believe this was caused by two factors:
(i) variation in user interaction: in C2, participants chose a di�erent
recommendation customize settings and select a di�erent amount
of recommended ROIs in each trial (Figure 6(f)-HPF). Variations
in users interactions may also result in high variance in C3 be-
cause the precision/recall in C3 was calculated within the areas
that participants visited in C2; (ii) Variation in user’s experience:
di�erent participants might adapt di�erent thresholds to call a cell
as positive.

To conclude, N���P��� achieved signi�cantly higher precision
and recall in identifying mitoses compared to manual navigation.
Moreover, N���P���, as a human + AI approach, might bring im-
provements compared to the AI-only condition:N���P��� achieved
higher precision and recall on average. However, we did not observe
that such an improvement was statistically signi�cant.
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Table 2: Summary of participants’ questionnaire responses for the baseline and N���P��� with seven-scaled Likert questions. ?
indicates the p-value of Wilcoxon test, and A stands for the e�ect size. The numbers on the right indicate the averaged scores
with their standard deviations. For Q1 – Q5, 1=Not at all . . . 4=Neutral, . . . 7=Very. For Q6, 1=Very strongly prefer system 1 over
system 2, 2=Strongly prefer system 1 over system 2, 3=Slightly prefer system 1 over system 2, . . . 4=Neutral, . . . , 7=Very strongly
prefer system 2 over system 1.

ID Question Baseline N���P��� ? A

Q1 How hard did you have to work mentally to accomplish the tasks? 5.13(1.30) 2.93(1.10) < 0.001 0.658

Q2 How would you describe your frustrations during the tasks? 4.07(1.91) 2.40(1.06) 0.024 0.412

Q3 How capable is the system at helping count mitosis? 2.79(1.63) 6.43(0.65) < 0.001 0.704

Q4 How con�dent do you feel about your accuracy? 4.21(1.42) 5.93(0.73) 0.004 0.530

Q5 Would you like to use the system in the future? 4.13(1.92) 6.47(0.64) 0.001 0.594

Q6 Overall Preference 6.33(0.82) N/A

7.1.2 RQ2: Can N���P��� save pathologists’ time and e�ort? On
average, participants spent 10min27s in each trial with the base-
line system, and 13min8s with N���P���. A Wilcoxon rank-sum
test indicated no su�cient proof to conclude that participants’ ex-
aminations were signi�cantly longer (?=0.09, e�ect size A=0.3067,
Wilcoxon rank-sum test, same following). We further calculated
each participant’s navigation e�ciency. The results showed that par-
ticipants saw signi�cantlymoremitoses in unit timewithN���P���
compared to manual navigation (manual: `=0.012 mitoses/second,
N���P���: `=0.028 mitoses/second, ?=0.002, A=0.579). Speci�cally,
N���P���’s Local recommendations served as a shortcut that
guided participants directly to highly-mitotic areas without manual
searching: “The local recommendations have more mitosis inside, and
I can focus on this area. I can start counting from there and I do not
need to �nd one myself.” (P1) “It (N���P���) tells you which ones are
the highest areas. And then you just go from there and decide. With
system 1, you still have to review the whole slide.” (P3)

In the post-study questionnaire, participants reported signif-
icantly less mental e�ort with N���P��� (manual: ` =5.13,
N���P���: ` =2.93, ?<0.001, A=0.658) compared to the manual navi-
gation (Table 2 Q1). Furthermore, participants expressed less frustra-
tion using N���P��� (manual: ` =4.07, N���P���: ` =2.40, ?=0.024,
A=0.412, Table 2 Q2). Speci�cally, participants valued N���P���’s
Cell recommendations as the key to reducing the workload — “It
(N���P���) takes away the burden of seeing and hunting for mitosis...
it can tell you where is most likely to have mitosis and you decide
‘yes’ or ‘no’.” (P3)

In sum, although participants spent longer time using
N���P��� on average, their navigation e�ciency was improved
signi�cantly by N���P���’s Local recommendations — they could
see more than twice the number of mitosis in unit time. More-
over, according to the questionnaire response, participants reported
signi�cantly less e�ort when using N���P���. N���P���’s Cell
recommendations contribute the main improvement: they could

7The e�ect size of the Wilcoxon Test A is calculated as A = /p
#
, where / is z-score

from the Wilcoxon Test, and # is the number of observations (30 in this study).

highlight speci�c cells from a large background, freeing patholo-
gists from tedious manual visual search.

7.1.3 RQ3: Compared to manual navigation, what is the benefit of
using N���P���? We answer this question by �rst comparing the
patterns of interactions (e.g., pan, zoom) while participants use
N���P��� (C2) vs. with the manual navigation (C1). In sum, zoom-
ing and panning made up most of participants’ interactions under
C1, while “selecting AI recommendations” took the majority of
interactions underC2 (N���P���). The median frequencies of zoom
interactions under C1 and C2 were 37 and 6 (Figure 6(d)). And the
median pan interaction frequencies under C1 and C2 were 95 and
1 (Figure 6(e)). A Wilcoxon test showed that zoom and pan interac-
tions were signi�cantly reduced under C2 (zoom:?<0.001, A=0.651;
pan: ?<0.001, A=0.784). Furthermore, with N���P���, participants
selected a median of 6 Local, 27 HPF, and 8 Cell recommendations
in each trial.

According to the questionnaire responses, participants believed
that N���P��� was more capable of assisting in detecting mitosis
(manual: `=2.79, N���P���:`=6.43, ?<0.001, A=0.704, Table 2 Q3).
Pathologists’ con�dence in mitosis reportings was improved signif-
icantly by N���P��� (manual: `=4.21, N���P���:`=5.93, ?=0.004,
A=0.530, Table 2 Q4). Speci�cally, participants expressed that the AI
recommendations would serve as a second opinion while they made
justi�cations — “I was kind of like 90% sure ... but then if AI was 100%
sure, I felt more con�dent in saying that it was real mitoses.” (P3). “It’s
kind of like having a second set of brains.” (P6). Finally, participants
expressed that they were more likely to use N���P��� in the future
(manual: `=4.13, N���P���:`=6.47, ?=0.001, A=0.594, Table 2 Q5).
Overall, as shown in Table 2 Q6, participants indicated a preference
for system 2 (N���P���) over system 1 (baseline pathology scan
viewer): based on the questionnaire, 8/15 of the participants rated
a score 7 (very strongly prefer system 2 over system 1), 4/15 rated
a score 6 (strongly prefer system 2 over system 1), and 3/15 rated a
score 5 (slightly preferred system 2 over system 1).

In sum, users could navigate the pathology scans by selecting
AI recommendations from N���P���. Meanwhile, their pan and
zoom interactions were signi�cantly reduced. Overall, they believed
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N���P��� was more capable of �nding mitosis, had higher con�-
dence while using N���P���, and preferred to use it in the future.

7.2 Ratings on N���P���’s Components
To further understand whether each N���P��� component was
useful for pathologists, we asked participants to rate each (see
Figure 7). Here, we report the participants’ ratings and discuss
qualitative �ndings, organized by the categories of components:

7.2.1 Hierarchical AI Recommendations. Participants rated average
useful ratings of 5.93/7, 6.53/7, and 6.53/7 for Local, HPF, and Cell
recommendations, respectively. Speci�cally, participants expressed
that Local and HPF recommendations helped them narrow down
from a large region without manual navigation — “The entire slide
might have thousands of high-power �elds, and the Local recommen-
dations picked the highest 36 for me ... the HPF recommendations
continued to pick about 20 high-power �elds from the Local recom-
mendation ... it helps me rule out regions and focus on the important
areas.” (P14)

Notably, Cell recommendations received the highest useful rat-
ing among N���P���’s components. Participants expressed that
Cell recommendations transformed the task of visual search into
adjudication, which can save their mental e�ort. Speci�cally, they
used Cell recommendations as an additional layer to quickly lo-
cate and adjudicate suspected cells: for most scenarios, participants
directly reported the mitosis after glancing at the Cell recommen-
dations. If they were not con�dent, they continued to select a Cell
recommendation and examine it closely with a higher magni�ca-
tion. This explains why Cell recommendations were rated most
useful, although they were not selected frequently in practice (as
reported in Section 7.1.3).

7.2.2 Recommendation Customization by Multiple Criteria.
Amongst the three criteria that N���P��� used to generate
recommendations, participants gave the “mitosis count” the
highest usefulness rating (`=5.93/7), followed by the “proliferation
probability” (`=5.73/7) and “cellular count” (`=5.47/7). Although
most participants expressed that all three criteria should be
considered in general, some (P2, P4, P15) believed it was not
challenging for human pathologists to pick cellular areas, and it
was not highly motivated to employ AI as such.

We also found that participants did not frequently interact with
the slide-bars to change the recommendation customization set-
tings for the three criteria. Instead, they picked a custom set-up
at the beginning of each trial and left them unchanged. Upon fur-
ther analysis, we found that N���P���’s recommendations might
not change after users moved the slide-bars under certain circum-
stances, which disincentives users’ interactions — I don’t see it (the
recommendation) changing much when I set the ‘cellular count’ as
‘high’.” (P1) What’s more, adjusting the customization settings dur-
ing the examination might incur extra workload, and P14 suggested
N���P��� give pre-set values for the three criteria — “It would be
great if the system could give me default values for the three criteria
... changing the criteria is a lot of work if I see hundreds of slides.”

Furthermore, participants had diverse opinions on how much a
criterion should be considered in AI recommendations. One par-
ticipant only gave “mitosis count” a high weight while giving zero

weight for the other two criteria: “I want AI to go straight to the
mitoses, not like just predict for me based on the cell count where
there are more mitoses elsewhere.” (P4) However, others thought
N���P��� should also include other criteria for recommendations.
For example, P6 gave both “cellular count” and “mitosis count” a
high weight — “I would like to include the cellular counts ... this is
how we see tumors every day.” (P6)

As for the sensitivity slide-bar, participants usually set it as “high”
to see more recommendations, although this may produce false
positives: “I move it all the way to the right, it will detect more mitosis
... not all of them will be real mitosis, but it has more sensitivity. So
then I can decide if the real to me or not.” (P3) Pathologists’ prefer-
ences of recall (sensitivity) over precision was also reported in a
previous study [33]. We believe such preferences are rooted from
the imbalance risks in pathology decision making: while a prolif-
eration of false-positive results (from low threshold) may cause
longer time in examination, false-negative results (due to using a
high threshold) might make the diagnosis unreliable because of the
failure to acknowledge critical pathological features.

7.2.3 Cue-Based Navigation. Surprisingly, the navigation cue re-
ceived the lowest usefulness ratings by participants, with an average
score of 4.93/7. Participants’ opinions were split into two groups
when asked how they used the navigation cue during work sessions.
On one hand, some participants (P5, P10, P14) used cue-based navi-
gation during their examination, and treated the navigation cue as a
short-cut to access possible mitosis areas — “It allows me to quickly
locate the area where the next possible (mitosis) is located.” (P5). On
the other hand, some participants expressed that the cue-based
navigation might be incompatible with a medical guideline: “I some-
times did not know where these cues would guide me to ... because we
need to see (mitoses in) 10 consecutive areas. And I didn’t know if I
was jumping from one to the other at the end they wouldn’t be really
consecutive” (P1) Regarding how participants might navigate under
the high magni�cations with N���P���, we will discuss in more
detail in Section 7.3.2.

7.2.4 Explanations for Recommendations. Participants gave aver-
age ratings of 5.13/7 in usefulness and 2.40/7 in e�ort for the verbal
explanation dialog. P5, P6, P7, P11, and P12 expressed that the verbal
dialog assisted them in prioritizing the examination of HPF recom-
mendations — “Here (pointing at one HPF recommendation), it (the
verbal dialog) says ‘very cellular’ and ‘moderately likely’. And then
here (pointing at another HPF recommendation), it says ‘very cellular’
and ‘very likely’. So I might pick this box (the latter one) to see �rst
... it will be helpful to my selection.” (P6) However, four participants
(P10, P13, P14, P15) ignored the verbal dialog during the examina-
tion and used the ranking indexes to select HPF recommendations
instead — “I think the verbal dialog and the recommendation rankings
are redundant ... the rule says the lower the (ranking) number, and
more important the box is ... I feel that the ranking numbers are more
straightforward.” (P15)

As for the explanation card, participants gave a usefulness rating
of 5.87/7. If participants were not con�dent about whether a Cell
recommendation was mitosis, they would refer to the explanation
card as a con�rmation: “I just took it as con�rmatory that my assess-
ment was correct.” (P8) It is noteworthy that the explanation card
also received the highest e�ort score (3.00/7) among N���P���’s
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Category Items
Is this feature useful to your examination? 

(1: not useful at all → 7: very useful)
1 2 3 4 5 6 7 Mean Std

Hierarchical AI 
Recommendations

Local 2 1 1 3 8 5.93 1.49

HPF 1 5 9 6.53 0.64

Cell 1 4 10 6.53 0.83

Customizable 
Recommendation 

by Multiple Criteria

Cellular Count 2 2 3 3 5 5.47 1.46

Proliferation Probability 1 2 3 3 6 5.73 1.33

Mitosis Count 1 1 2 5 6 5.93 1.22

Mitosis Sensitivity 2 2 5 6 6.00 1.07

Cue-Based Navigation Navigation Cue 1 2 8 4 4.93 1.39

Explanation for Each 
Recommendation

Verbal Dialog 2 4 2 4 3 5.13 1.41

Explanation Card 2 2 7 4 5.87 0.99

Compared to system 1, does this feature require extra effort? 
(1: not effort at all → 7: a lot of effort)

1 2 3 4 5 6 7 Mean Std

8 5 1 1 1.67 0.90

5 8 1 1 1.87 0.83

5 8 1 1 2.00 0.13

7 5 1 2 1.87 1.06

7 5 1 2 1.87 1.06

7 5 3 1.93 1.16

7 5 2 1 2.00 1.49

6 6 2 1 1.87 0.92

5 5 4 1 2.40 1.40

3 5 2 4 1 3.00 1.73

Figure 7: Participants’ ratings on whether each component in N���P��� is useful to pathologists’ examination (left) / requires
extra e�ort compared to the manual baseline system (system 1) (right).

components because participants spent extra e�ort comprehending
the explanations.

7.3 Qualitative Findings on Participants’
Navigation Traces

We analyzed participants’ navigation traces on the pathology scans
and report the qualitative �ndings on pathologists’ navigation
traces with the manual baseline system and N���P���.

7.3.1 Navigating the scan manually vs. with N���P���. One notori-
ous issue of the pathology examination is the low between-subject
consistency, which is usually caused by the randomness in patholo-
gists’ navigation. We also observed such randomness during our
user study. For example, Figure 8(a) visualizes the 2D projections of
three (P5, P11, P12) participants’ navigation traces with the manual
navigation. It is noteworthy that all three traces barely overlap,
which might result in inconsistencies in the medical decision mak-
ings. Also, all three participants did not examine a tissue session on
the bottom-right corner of the scan (pointed by the arrow). How-
ever, according to the ground-truth mitosis density heatmap (Figure
8(b)), the unexamined tissue session has aggregations of mitoses
(shown as hotspots, pointed by the arrow). Therefore, the decisions
made with the manual navigation might be biased because one
important area was missed.

In contrast, participants’ traces are more consistent with
N���P���. Figure 8(c) illustrates three other participants’ naviga-
tion traces (P9, P10, P13) within the same scan with N���P��� nav-
igation. The boxes indicate the approximate areas of Local recom-
mendations generated by N���P���. Thanks to AI recommenda-
tions, participants’ navigation traces are more consistent within
the three Local recommendations. Also, P10 and P13 examined the
tissue session that had been missed in the manual navigation.

Therefore, N���P��� can improve participants’ consistency and
also increase the exploration of their navigation.

7.3.2 Moving from one HPF recommendation to another with
NaviPath. From the formative study, we learned that pathologists

searched systematically in high magni�cations with manual naviga-
tion. Here, we study whether our participants’ navigation patterns
in high magni�cations with N���P��� are di�erent: speci�cally,
we analyzed participants’ navigation traces and summarized three
navigation patterns of how our participants moved to another HPF
recommendation after examining one:

• Diving: Participants �rst moved to the Local recommenda-
tion, then overviewed remainingHPF recommendationswith
low magni�cation, and selected an HPF recommendation to
examine in higher magni�cation (Figure 9(a)). During work
sessions, P8 and P15 mainly used the diving navigation, and
would switch the magni�cations by selecting N���P���’s hi-
erarchical recommendations without getting lost. As shown
in Figure 9(a), the bottom �gure, the diving navigation left
a ‘spoke-like’ navigation trace (the blue line) within each
Local recommendation (red boxes).

• Adjacent Panning: Participants clicked on the edge of
N���P���’s interface to move discretely to an adjacent HPF
recommendation (Figure 9(b)). The adjacent panning is the
closest to current pathologists’ navigation practices (with-
out AI), and �ve participants (P2, P3, P4, P7, P11) employed
the adjacent panning in the study. The navigation trace is
more regular with the adjacent panning (see Figure 9(b), the
bottom �gure).

• Cue-Based Hopping: Participants clicked on the naviga-
tion cue to hop to a remote HPF recommendation (Figure
9c). P5, P10, and P14 mainly used it during the study. With
cue-based hopping, participants were able to see the HPF
recommendations in ascending order based on ranking index
to maximize navigation e�ciency — “My preference is to click
on the navigation cue and jump to the next important HPF.
For example, after I have seen number 1 (HPF recommenda-
tion), I will see number 2.” (P10) As shown in Figure 9(c), the
navigation trace is more irregular with cue-based hopping.
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Figure 8: 2D projections of participants’ traces with manual and N���P��� navigation on a pathology scan (zoom ignored).
(a) Trace projections of P5, P11, and P12 with manual navigation. Note that all three participants did not examine the tissue
on the bottom-right corner of the scan (pointed by the arrow). (b) The heatmap visualization of mitosis density of the scan.
(c) Trace projections of P9, P10, and P13 with the N���P��� navigation. The boxes highlight the approximate areas of Local
recommendations generated by N���P���.
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Figure 9: Three patterns of how our participants move to another HPF recommendation after examining one: (a) “Diving”: �rst
returned to the Local recommendation, overviewed the remaining HPF recommendations from the low magni�cation, and
then dived down by selecting an HPF recommendation. The bottom �gure shows 2D projections of participants’ navigation
traces during the work sessions; (b) “Adjacent Panning”: directly pan to an adjacent HPF recommendation by clicking on the
edge of N���P���’s interface; (c) “Cue-Based Hopping”: directly hop to a remote HPF recommendation with the navigation cue.
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8 DISCUSSION
8.1 Limitations
8.1.1 Limitations of the evaluation study.

• User Sampling: The majority of participants are pathol-
ogy residents with relatively less experience, making the
conclusions for RQ1 inevitably speculative due to a lack of
participation of more-experienced attending pathologists;

• Study Set-Up: The work sessions were relatively brief be-
cause of the scarce availability of participants, and no clinical
experiments were conducted because of strict regulations
from US Food and Drug Administration (FDA);

• Materials: All pathology scans used in the study have the
same tumor type because of the rare availability of public
datasets. Therefore, they lack variability to re�ect the real-
world distribution of pathology data;

• Choice of Baseline: No comparison betweenN���P��� and
other human-AI systems was conducted because there is a
lack of open-source systems for mitosis detection. There was
also no comparison conducted with the optical microscope,
pathologists’ primary approach to see tumor specimens, due
to the COVID-19 pandemic.

Therefore, future works should concentrate on conducting larger-
scaled, longer-termed, in-the-wild studies to evaluate the in�uence
of implementing a human-AI collaborative navigation system for
pathologists.

8.1.2 Limitations of NaviPath.

• The two deep learning models for the proliferation probabil-
ity andmitosis classi�cation were trained from images of one
tumor, and their performance on other tumors is unknown;

• The current cue-based navigation design used in
N���P��� (i.e., citylight) cannot provide the distance
information of o�-screen recommendations, and might be
incompatible with speci�c medical guidelines;

• The current recommendation customization algorithm was
not predictable under certain circumstances;

• N���P��� does not support users to add their own ROIs for
examination. Thus, users need to examine manually if an
area was not recommended.

As such, future work should train AI models from various tumors
to improve the model’s generalizability. And future systems might
consider other cue-based navigation designs (e.g., Wedge [34] or
Halo [5]) that can o�er both distance and directional information
of o�-screen targets, which can support navigation according to
medical guidelines. Another improvement direction is modifying
the overview map in the O+D design: by demonstrating where
the pathologist is looking and all recommended ROIs to enhance
humans’ spatial awareness of o�-screen targets (e.g., [9]). Future
works should also consider utilizingmachine intelligence to support
the examination of user-de�ned ROIs: for example, a user can select
an area of interest manually, and the system can recommend all
salient AI �ndings inside for the user to examine [22]. Finally, we
also suggest future works to improve the predictability of medical
AI, which we will discuss next.

8.2 Implications for Human-AI Designs in
Medical Decision-Making

8.2.1 Making AI-Enabled Systems Predictable. Previous work sug-
gests that the disruptive behavior of AI might discourage medical
professionals from using it in practice [85]. In our study, we discov-
ered that participants did not change the customization settings
frequently because the outcomes were less predictable: for exam-
ple, tuning the “Cellular Count” slide-bar would simultaneously
change recommendations’ locations and rankings. In some scenar-
ios, tuning the slide-bar would not change the recommendations at
all.

It is challenging for doctors to be aware of whether the change
is bene�cial or the no change is caused by malfunction. As such,
we suggest future human-AI systems in medicine to present intu-
itive clues that aid doctors in evaluating changes made by AI. For
instance, future systems can justify why changes are happening
or not – text explanations generated by NLP agents (similar to
[81]) can be implemented to explain the AI status and help patholo-
gists comprehend the recommendation reasoning process. Another
future direction might include making the recommendation AI
less disruptive: for example, recommendations based on human-
understandable medical concepts can make the algorithm more
predictable for medical users [12].

8.2.2 Balancing Simplicity and Informativeness. Doctors prefer sim-
ple, straightforward designs [32]. From the evaluation study, we
found that some participants preferred to use the ranking index
number over the verbal explanation dialog. However, simpler de-
signs usually mean “lossy” information compression, and might not
be su�ciently informative for medical decision-making. Therefore,
we suggest future HCI research to study what information should
be preserved vs. discarded through empirical studies. For instance,
Gu et al. indicated that pathology AI systems could provide levels of
AI explanations for doctors: a simple, visual explanation was shown
by default, while more detailed explanations could be retrieved on
demand [33]. By balancing simplicity and informativeness, doctors
can rapidly inquire about the most salient information with less
confusion.

8.2.3 Decoupling Doctors and AI. Recent research has reported
that utilizing AI may cause doctors’ diagnoses to align with that
of AI’s [27]. However, it is still unknown whether the alignment
is bene�cial or catastrophic because the performance of AI is sub-
ject to be in�uenced in clinical settings [7]. Moreover, previous
research suggests that the domain gap in pathology image data
will harm AI performance [2, 70]. Therefore, doctors only exam-
ining within the AI-recommended areas would put physician-AI
collaboration into a dilemma: on one hand, they may miss critical
�ndings if the model’s recall (sensitivity) is less than 1.00; on the
other hand, seeing all areas comprehensively can barely reduce hu-
man workload. To tackle this problem of speed and accuracy, future
improvements might consider re-designing the human-AI collabo-
rative work�ow: doctors might �rst overview a medical image and
generate an overall impression of the case, then a human-AI collab-
orative system can be engaged to enable doctors to verify or re�ne
their initial hypotheses [10]. What’s more, providing additional
sources of information might be an improvement: for example,
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attaching immunohistochemistry tests along with conventional
pathology scans can let pathologists justify whether AI recommen-
dations are reliable [33]. Another unresolved question in this work
is, since various pathological patterns might co-exist in a scan,
are pathologists required to see other pathological patterns after
examining one with N���P���? In short, it depends on whether
the criterion (in this work, mitosis) is deterministic for diagnoses
according to the medical standard, and we suggest readers see [33]
for more detailed discussions.

9 CONCLUSION
This work introduces N���P��� to enhance pathologists’ naviga-
tion e�ciency in high-resolution tumor images by integrating do-
main knowledge and taking account of a practical work�ow based
on an empirical study with medical professionals. N���P��� could
save pathologists from repetitive navigation in high-resolution tu-
mor images through its AI-enabled designs. In contrast to prior
work, we center on pathologists and adapt AI tools into their work-
�ow to facilitate navigation processes. N���P���mainly focuses on
mitosis in pathology, which represents a class of highly challenging
problems on domain-speci�c navigation with high-resolution im-
ages. We hope insights provided by our solution can shed light on
solving navigation challenges for other medical decision-making
tasks.
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