
222 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Parallel Successive Learning for Dynamic
Distributed Model Training Over Heterogeneous

Wireless Networks
Seyyedali Hosseinalipour , Member, IEEE, Su Wang , Student Member, IEEE,

Nicolò Michelusi , Senior Member, IEEE, Vaneet Aggarwal , Senior Member, IEEE,
Christopher G. Brinton , Senior Member, IEEE, David J. Love , Fellow, IEEE, and Mung Chiang, Fellow, IEEE

Abstract— Federated learning (FedL) has emerged as a popular
technique for distributing model training over a set of wireless
devices, via iterative local updates (at devices) and global aggrega-
tions (at the server). In this paper, we develop parallel successive

learning (PSL), which expands the FedL architecture along
three dimensions: (i) Network, allowing decentralized cooperation
among the devices via device-to-device (D2D) communications.
(ii) Heterogeneity, interpreted at three levels: (ii-a) Learning:
PSL considers heterogeneous number of stochastic gradient
descent iterations with different mini-batch sizes at the devices;
(ii-b) Data: PSL presumes a dynamic environment with data
arrival and departure, where the distributions of local datasets
evolve over time, captured via a new metric for model/concept

drift. (ii-c) Device: PSL considers devices with different com-
putation and communication capabilities. (iii) Proximity, where
devices have different distances to each other and the access point.
PSL considers the realistic scenario where global aggregations
are conducted with idle times in-between them for resource effi-
ciency improvements, and incorporates data dispersion and model

dispersion with local model condensation into FedL. Our analysis
sheds light on the notion of cold vs. warmed up models, and model
inertia in distributed machine learning. We then propose network-

aware dynamic model tracking to optimize the model learning
vs. resource efficiency tradeoff, which we show is an NP-hard
signomial programming problem. We finally solve this problem
through proposing a general optimization solver. Our numerical
results reveal new findings on the interdependencies between
the idle times in-between the global aggregations, model/concept
drift, and D2D cooperation configuration.

Index Terms— Cooperative federated learning, device-to-
device communications, network optimization, dynamic machine
learning.

Manuscript received 9 February 2022; revised 27 September 2022 and
13 March 2023; accepted 25 May 2023; approved by IEEE/ACM TRANS-
ACTIONS ON NETWORKING Editor S. Ioannidis. Date of publication 10 July
2023; date of current version 16 February 2024. This work was supported in
part by Cisco Inc., in part by NSF under Grant CNS-2146171 and CNS-
2129615, in part by ONR under Grant N000142212305, and in part by
DARPA under Grant D22AP00168-00. (Corresponding author: Seyyedali
Hosseinalipour.)

Seyyedali Hosseinalipour is with the Department of Electrical Engi-
neering, University at Buffalo-SUNY, Buffalo, NY 14228 USA (e-mail:
alipour@buffalo.edu).

Su Wang, Christopher G. Brinton, David J. Love, and Mung Chiang are
with the School of Electrical and Computer Engineering, Purdue University,
West Lafayette, IN 47906 USA (e-mail: wang2506@purdue.edu;
cgb@purdue.edu; djlove@purdue.edu; chiang@purdue.edu).

Nicolò Michelusi is with the School of Electrical, Computer, and Energy
Engineering, Arizona State University, Tempe, AZ 85287 USA (e-mail:
nicolo.michelusi@asu.edu).

Vaneet Aggarwal is with the Schools of Industrial Engineering and Electrical
and Computer Engineering, Purdue University, West Lafayette, IN 47906
USA (e-mail: vaneet@purdue.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2023.3286987, provided by the authors.

Digital Object Identifier 10.1109/TNET.2023.3286987

I. INTRODUCTION

D ISTRIBUTED machine learning (ML) over wireless net-
works has attracted significant attention recently, for

applications ranging from keyboard next word prediction to
autonomous driving [1], [2]. Distributed ML is an alternative
to centralized ML, which requires a central node, e.g., a server,
coexisting with the dataset. This alternative is of particular
interest since in many applications the dataset is collected in
a distributed fashion across a set of wireless devices, e.g.,
through their sensing equipment or the users’ input, where
the transfer of data to the cloud incurs significant energy
consumption and long delays.

Federated learning (FedL) is the most recognized distributed
ML technique, with the premise of keeping the devices’
datasets local [3], [4]. Its conventional architecture resembles
a star topology of device-server interactions (Fig. 1). Each
model training round of FedL consists of (i) local updating,
where devices update their local models based on their datasets
and the global model, e.g., via stochastic gradient descent
(SGD), and (ii) global aggregation, where the server aggre-
gates the local models to a new global model and broadcasts it.

A. Related Work
Researchers have considered the effects of limited/imperfect

communications in wireless networks (e.g., channel fading,
packet loss) on the performance of FedL [5], [6], [7], [8], [9].
Also, quantization [10] and sparsification [11] techniques have
been studied to facilitate FedL implementation.

Researchers have also considered the computation aspects
of FedL over wireless networks [6], [7], [12], [13], [14].
Part of this literature has focused on the impact of straggler
nodes, i.e., when some nodes have low computation capability,
on model training [6], [12], [14], [15]. Another emphasis has
been reducing the computation requirements of model training,
e.g., through coding techniques [13], intelligent data offloading
between devices [14], and device sampling [16].

Other research has focused on extending the star topology
of FedL. Hierarchical FedL has proposed a tree struc-
ture between edge devices and the main server, e.g., [17].
This literature has mostly focused on specific use cases
of two-tiered network structures above wireless cellular
devices, e.g., with edge clouds at base stations. Additionally,
there is a literature on fully decentralized FedL over mesh
network architectures without a centralized server, where
device-server communications are replaced with device-to-
device (D2D) communications [18], [19]. Building upon
this, semi-decentralized architectures for FedL have also
been proposed, where D2D communications are exploited in

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4266-4000
https://orcid.org/0000-0002-7550-1120
https://orcid.org/0000-0002-5521-6496
https://orcid.org/0000-0001-9131-4723
https://orcid.org/0000-0003-2771-3521
https://orcid.org/0000-0001-5922-4787

HOSSEINALIPOUR et al.: PSL FOR DYNAMIC DISTRIBUTED MODEL TRAINING 223

Fig. 1. “Star” learning topology architecture of conventional FedL.

conjunction with device-server interactions to improve the
model training performance [20], [21]. In this literature, D2D
communications are solely used for distributed model param-
eter aggregation across the nodes.

B. FedL Shortcomings and Solution Overview
1) Limitations of FedL Over Heterogeneous Wireless Net-

works: Consider a wireless network consisting of a set of
battery limited devices, e.g., smart phones or sensors. Assume
that a base station (BS) aims to train an ML model using the
data gathered by the devices. There are multiple challenges
faced in utilizing conventional FedL in this environment:

1) There might exist some devices with high data quality/
quantity that suffer from low computation capability,
resulting in their data being neglected during training.

2) There might exist some devices with high computation
capability suffering from low data quantity/quality, result-
ing in idle processing resources.

3) There might exist some devices with high computation
capability and good data quality/quantity, but poor chan-
nel conditions to the BS, making their participation in the
model aggregation step challenging.

4) There might exist some devices with low computation
capability and low data quality/quantity that have good
channel conditions to the BS, which will be unused.

Hence, there are several conditions under which conventional
FedL will result in poor performance. Roughly speaking,
FedL models are biased towards devices with good channel
conditions that have large amounts of data, which might
encompass only a small portion of the overall network.

2) Enabling Data Sharing in FedL: Most of the FedL
literature to date has assumed that users have strict data privacy
concerns and never share their data. While this is true in
some applications, e.g., healthcare systems, there are also
applications where the data privacy is not strictly regulated,
e.g., model training over sensor networks to detect abrupt envi-
ronmental changes. Also, economic incentives (e.g., rewards,
gas credit, or cash back) can be developed to encourage data
sharing in many applications such as autonomous driving. Fur-
ther, research on privacy preserving representation learning,
which aims to obfuscate sensitive attributes of raw data, can
expand the types of data which can be shared [22], [23]. These
factors have motivated recent initial investigations of data
offloading in FedL. Specifically, the recent work [24] proposes
data offloading for edge-assisted FedL in vehicular networks.
Also, researchers in [25] use data offloading to alleviate the
impact of non-i.i.d. data in FedL. Finally, works [26], [27]
introduce data offloading for federated and distributed learning
in heterogeneous networks.

3) Parallel Successive Learning (PSL): Motivated by the
above challenges, we propose a novel methodology for
distributing ML over wireless networks that leverages the
following properties, which constitute the pillars of parallel
successive learning (PSL). PSL is a foremost realization of
fog learning paradigm introduced by us in [26], which enables
both parameter and data offloading among the devices.

1) Modern wireless devices are capable of device-to-device
(D2D) communications [26], [28], [29], which are often

considerably low power consuming. D2D communica-
tions can also be carried out in the out-band mode
that does not occupy the licensed spectrum. There is
an existing set of literature on D2D communications for
various ad-hoc networks [30], [31], [32]. Motivated by
this, we exploit D2D communications among the edge
devices in PSL.

2) Devices with high data quantity/quality and low computa-
tion capability can transfer a portion of their data to those
with better computation resources via D2D communica-
tions. Then, the devices with more computation resources
will train on larger datasets, while the rest train on smaller
datasets. To accomplish this, in PSL, we introduce a data
dispersion mechanism among the devices.

3) Devices with high computation capabilities and bad chan-
nel conditions to the BS can execute model training and
offload their trained models/gradients to those with better
channels. Thus, we introduce a model/gradient disper-
sion mechanism in PSL to transfer the models/gradients
among the devices through D2D communications. Fur-
ther, given the heterogeneity among the devices and
time-varying nature of datasets, in PSL, we consider local
model training via non-uniform SGD with stratified data
sampling with various mini-batch sizes and number of
iterations across the devices.

4) Devices with good channel conditions to the BS and low
computation capability can act as aggregators, receiv-
ing models from neighboring devices and conducting
a local aggregation followed by uplink transmission to
the BS. Subsequently, we introduce a local condensation
method in PSL for conducting these device-side model
aggregations.

C. Summary of Contributions
Our main contributions can be summarized as follows:
• We develop PSL, a distributed ML technique that intro-

duces a new degree of freedom into model training, which
is idle times in between global aggregations. PSL further
extends FedL in the following three dimensions:

I. Network: PSL considers the local D2D network
among the devices and allows direct device coopera-
tion for data and parameter dispersion. This migrates
away from the star topology of FedL and paves the
road to more decentralized distributed ML archi-
tectures. This approach is complementary to recent
works that utilize D2D in distributed ML to conduct
model consensus [18], [19], [20], [21].

II. Heterogeneity: PSL considers and addresses three
types of heterogeneity in wireless distributed ML:

- Device: PSL assumes different computation and
communication capabilities across devices. This
is reflected in different CPU cycles ranges, chip-
set coefficients, and transmit powers in D2D vs.
uplink transmissions.

- Learning: PSL adapts device participation in
model training according to their capabilities.
In particular, it considers heterogeneous number
of local SGD iterations with various mini-batch
sizes at the devices.

- Data: PSL considers a dynamic environment with
data arrival and departure at the devices, where
the distribution of the local datasets are non-i.i.d
and evolving over time. We interpret this as the
drift of the local loss over time.

Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

224 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

III. Proximity: PSL considers D2D and device-to-server
proximities to determine efficient transfers of both
ML models and data across the network.

• We introduce resource pooling, where device resources
are cooperatively orchestrated to facilitate ML model
training. This is realized through a sequence of steps we
develop and analyze: data dispersion, local computation,
and model/gradient dispersion with local condensation.

• We analytically characterize the convergence behavior of
PSL, through which we quantify the joint effect of (i)
SGD with non-uniform local data sampling, (ii) non-
uniform numbers of local SGD iterations across the
devices, and (iii) dynamic data at the devices captured
via model/concept drift. We leverage this to formulate the
network-aware PSL problem, which optimizes over the
tradeoffs between energy consumption, delay, and model
performance for heterogeneous wireless networks.

• We show that network-aware the PSL problem is
highly non-convex and NP-hard. We then propose a
tractable approach based on posynomial approximation
and constraint correction to solve the problem through a
sequence of convex problems, which enjoys convergence
guarantees. The proposed optimization transformation
technique, given the generality of the analysis and the
problem formulation, sheds light on the solution of a
broader range of problems under the umbrella of network-
aware distributed learning.

II. SYSTEM MODEL

PSL in a nutshell. PSL is a general distributed ML
paradigm, with its cornerstone built on FedL. It conducts
distributed model training via resource pooling and coordi-
nates device resources to operate in a cooperative manner.
It conducts each round of model training via five steps:
(i) global model broadcasting, (ii) data dispersion, (iii) local
computation, (iv) model/gradient dispersion with local conden-
sation, and (v) global model aggregation, which are illustrated
in Fig. 2.

Henceforth, we present the PSL model tracking in Sec. II-A,
describe the data management of PSL in Sec. II-B, and discuss
the local model training of PSL in Sec. II-C. We then introduce
model training phases experienced through PSL in Sec. II-D,
and model the device orchestration in PSL in Sec. II-E.

A. Dynamic/Online Model Tracking Problem in PSL
We consider a network of N devices N = {1, 2, · · · , N}

coexisting with a server located at a BS, where ML model
training is conducted through a series of global aggregations
indexed by k 2 N. In contrast to most existing works in
FedL that assume a stationary data distribution, PSL considers
dynamic ML characterized by data variations. In particular,
in PSL, the size and distribution of devices’ datasets are
assumed to be time-varying, i.e., changing across global aggre-
gations. This is more realistic for real-world applications of
distributed ML. For instance, in online product recommenda-
tion systems, user preferences may change from day to night
and from season to season [33], and in keyword next word
prediction, word choices are affected by trending news [34].

At global iteration k, each device n 2 N is associated with
a dataset D(k)

n , which has D
(k)
n , |D

(k)
n | data points. Each

data point d 2 D
(k)
n contains a feature vector, denoted by d,

and a label. For example, in image classification, the feature

Fig. 2. A schematic of the learning architecture of PSL with five steps:
(i) global model broadcasting, where the devices receive the global parameter
from the server, (ii) data dispersion, where the devices conduct partial dataset
offloading, (iii) local computation, where the devices compute their local
models, (iv) model/gradient dispersion with local condensation, where devices
conduct partial model/gradient transfer and perform local aggregations,
(v) uplink transmission, where some devices transmit their models to the BS.

may be the RGB colors of all pixels in the image, and the
label may be the location where the image was taken.

In PSL, the model training is started with an initial global
model broadcast among the nodes, i.e., w(0)

2 RM , where M

is the model dimension. For each data point d 2 D
(k)
n , the ML

model is associated with a loss function f(w, d) that quantifies
the error of parameter w 2 RM . We refer to Table I in [7] for a
list of ML loss functions. For an arbitrary w, during the k-th
global aggregation, let F

(k)
n (w) , Fn(w|D

(k)
n) denote the

local loss at node n, Fn(w|D
(k)
n) =

P
d2D(k)

n

f(w, d)/D
(k)
n .1

Then, the global loss of the ML model is given by

F
(k)(w) , F (w|D

(k)) =
1

D(k)

X

n2N
D

(k)
n F

(k)
n (w), (1)

where D
(k) , |D

(k)
| is the cardinality of D(k), the collection

of data points across devices. We model the evolution of
data through a new definition of model drift in Sec. III
(Definition 2).

Due to the temporal variations in the distributions of local
datasets, the optimal global model is time varying. In particu-
lar, for a training duration of K global iterations, the optimal
global models can be represented as a sequence

�
w(k)? K

k=1
,

where

w(k)?

= arg min
w2RM

F
(k)(w), 8k, (2)

which may not be unique in the case of loss functions which
are not strongly convex, e.g., neural networks.

B. Data Heterogeneity and Management in PSL
We propose partitioning the dataset of each device into

a disjoint set of sub-datasets, called stratum (see Fig. 3).2
At global iteration k, we assume that dataset of device n

consists of set S
(k)
n , {S

(k)
n,1,S

(k)
n,2, · · · } of S

(k)
n , |S

(k)
n |

strata, each with size S
(k)
n,j , |S

(k)
n,j |. We also let e�(k)

n,j =
r

1

S(k)
n,j
�1

P
d2S(k)

n,j

kd� eµ(k)
n,jk

2
2

and eµ(k)
n,j =

P
d2S(k)

n,j

d/S
(k)
n,j

denote the sample (total) standard deviation and the mean
of data inside stratum S

(k)
n,j . We will exploit the means of

1Note that since the same ML model (e.g., neural network) architecture is
trained across the node, f is not indexed by n.

2We use “stratum” as singular form and “strata” as plural form.

Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

HOSSEINALIPOUR et al.: PSL FOR DYNAMIC DISTRIBUTED MODEL TRAINING 225

Fig. 3. A schematic of the data stratification for PSL. The figure represents
the dataset at a device. The device faces two dilemmas: (i) how to assign the
arriving data to the strata, and (ii) which data points to choose to offload.

the strata for data management as explained in the following,
and the variance for optimal local data sampling for SGD in
Sec. III (Proposition 1). We assume that data points in each
stratum possess the same label.

This data partitioning has three advantages: (i) it pro-
vides effective data management upon data arrival/departure,
(ii) it leads to tractable techniques to track the local dataset
evolution, (iii) it opens the door to effective non-uniform data
sampling to reduce the noise of SGD. We describe the first
two advantages below and defer the explanation of the third
one to Sec. II-C.

PSL considers two types of data movement: (i) inter-node
data arrival/departure and (ii) intra-node data arrival/departure.
In case (i), the arrival/departure of data at the devices is
due to local data offloading, facilitated by device-to-device
(D2D) communications. In case (ii), arrival/departure is caused
by devices collecting and abandoning data. When new data
arrives, the device has control on how to assign it to the
existing strata. Also, in case (i), the devices have control on
which data points from which strata to transfer (see Fig. 3).

Data arrival. If data points with new labels arrive, the
device will form new strata and assign the respective data
points to them. Otherwise, the device assigns each arriving
data point to the stratum with the closest mean among those
with the same label. In particular, given the current means
of the strata at device n, eµ(k)

n,j , 8j, the arriving data point
d, with feature vector d, gets assigned to stratum S

(k)
n,j? ,

where S
(k)
n,j? = arg minS(k)

n,j
2S(k)

n

keµ(k)
n,j � dk. This promotes

homogeneity among the data points within each stratum. After
the size of a stratum reaches a predefined maximum size smax,
the stratum is further partitioned into two strata with equal
sizes.3 In addition, if the size of the stratum falls bellow a
threshold smin, the stratum is assumed to merged with the strata
containing data with the same label if such strata exists.

Data offloading. When a device offloads data, we can
imagine two potential strategies for data point selection:
(i) choosing from strata with higher variances, which results
in a smaller sampling error for SGD, and (ii) choosing from
strata with more data points, which reduces local model bias.
Since data across the devices is non-iid in PSL, strategy
(i) can increase the divergence across local datasets, which
can significantly reduce the performance of the global model.
We thus rely on strategy (ii), where for offloading a data
point, device n chooses the stratum S

(k)
n,j? with largest size

and offloads the data point d that has the closest distance to

3smax is assumed to be an even number without loss of generality.

the mean of strata, i.e., d = arg min
d2S(k)

n,j?

keµ(k)
n,j�dk. In this

way, we minimize the impact an offloading device experiences
on its local data distribution.

Remark 1: In general, the optimal data offloading strategy
may be a hybrid of the two mentioned strategies, since the
impact of data offloading on the divergence of the local models
from the global model is difficult to quantify in environments
with unknown local data distributions. In this work, we pro-
pose the first steps towards smart data management and leave
further investigations to future work.

Tracking of local data statistics. To cope with the dynam-
ics of local datasets, we exploit an online data statistics
tracking technique. We assume that each device has computed
or otherwise gained knowledge of the initial mean and variance
of its local data strata. Upon arrival or departure of each data
point (or groups of data points), the device updates the mean
and variance of its strata in an online manner through the
following lemma.

Lemma 1 (Online Tracking of Strata Mean and Variance):
Let S denote a set of |S| (vector) data points with mean
µold and sample variance �

2
old. Let A denote a set of new

data points that are added to S with mean and variance of
µA and �

2
A, respectively, and D denote a set of data points

departing from S with mean and variance of µD and �
2
D,

respectively. Then, the new mean and variance of S are given
by (3) and (4), as shown at the bottom of the next page.

Proof: The proof is provided in Appendix A.
The method described in Lemma 1 requires the computation

of mean and variance over the entire local dataset of each
device only once at the beginning of ML model training.

C. Local Data Sampling and Model Training Iterations
As compared to SGD with uniform sampling, commonly

used in FedL literature, we exploit SGD with non-uniform
sampling. Our technique, inspired by stratified sampling in
statistics [36], is advantageous to uniform sampling tech-
niques when the distribution of data in each stratum is
homogeneous while between strata is heterogeneous. The
initial allocation of data points across the strata in each device
can be conducted as in centralized SGD [37]; we are focused
on the benefits of this technique to distributed ML.

To solve (2) in a distributed manner, within each global
training round, devices conduct local model training through
successive mini-batch SGD updates. However, device hetero-
geneity leads to varying contributions to model training. PSL
assumes that devices utilize SGD with (i) different numbers
of local iterations, (ii) different mini-batch sizes, and (iii) non-
uniform data sampling. Formally, at global iteration k, device
n performs e

(k)
n iterations of SGD over its local dataset. The

evolution of local model parameters is then given by4

w(k),e
n = w(k),e�1

n �
⌘

k

D
(k)
n

S(k)
nX

j=1

X

d2B(k),e

n,j

S
(k)
n,jrf(w(k),e�1

n , d)

B
(k)
n,j

, (5)

where e 2 {1, · · · , e
(k)
n } denotes the local iteration index, ⌘

k

denotes the step-size, and w(k),0
i = w(k) is the previously

received global parameter from the BS. The nested sum in (5)
indicates the overall gradient is computed by calculating the

4The complexity of ML model training using different choices of neural
networks has been discussed in [38].

Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

226 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

gradient over samples from strata. In particular, B(k),e
n,j denotes

the data batch, sampled at the e-th iteration from stratum S
(k)
n,j .

We conduct data sampling uniformly at random within each
stratum, with the number of samples collected varying by
strata, leading to an overall non-uniform sampling procedure
(see Proposition 1). We assume that the number of sampled
data points from each stratum does not change during each
training interval, i.e., B

(k)
n,j = |B

(k),e
n,j |, 8e. We also define

B
(k)
n =

PS(k)
n

j=1 B
(k)
n,j as the SGD mini-batch size. Both B

(k)
n

and B
(k)
n,j are design variables that should be tuned according

to device capability and dataset heterogeneity, discussed in
Sec. III and IV.

After each device n performs its last iteration of local
model training, i.e., e

(k)
n , it computes the accumulated gradient

rF
(k)
n =

�
w(k)

� w(k),e(k)
n

n
��

⌘
k
, offloaded either to its

neighbors or to the BS. The global update is carried out at
the BS as

w(k+1) = w(k)
� ⌘

k
rF

(k)
, (6)

where rF
(k)

is the normalized accumulated gradient of the
devices, factoring in the heterogeneous number of local SGD
iterations [39], [40], given by

rF
(k) =

X

n02N

D
(k)
n0 e

(k)
n0

D(k)

X

n2N

D
(k)
n

D(k)e
(k)
n

rF
(k)
n . (7)

Global model w(k+1) will be then used to synchronize the
devices for the next round of local updates. The process of
recovering rF

(k)
at the server through gradient dispersion

and local condensation among the devices is discussed in
Sec. II-E.3.

D. Dynamic Model Training With Idle Times: “Cold” vs.
“Warmed Up” Model, and Model “Inertia”

Many distributed ML applications (e.g., keyboard next word
prediction or online cloth recommendation system) call for
model training to be executed across long time periods (e.g.,
multiple weeks or seasons). In such settings, it is unrealistic
to assume that the global aggregations are conducted continu-
ously back to back, where the devices are always engaged in
local model training, since this will require prohibitively high
resource consumption. Thus, as compared to current art, PSL
further introduces a new design parameter ⌦(k)

2Z+
[{0} that

captures the idle time between the end of global aggregation
k�1 and the beginning of k, during which the devices are not
engaged in model training (⌦(0) , 0). This parameter captures
the frequency of engagement of the devices in model training.

Initially, when the global model is launched from a “cold
start”, i.e., it is not well-trained, conducting model training
results in significant improvements in model performance,

calling for rapid global training rounds, i.e., small ⌦(k)-s.
After several global training rounds, the model training at the
devices starts with a “warmed up” model, which marginalizes
the reward in terms of model performance gains. In this
regime, if the data at the devices changes rapidly, to track
the changes, fast global rounds are required; otherwise, model
training can be delayed, i.e., large ⌦(k)-s, to save energy and
network resources. In particular, given a warmed up global
model, the model training should be triggered when sufficient
changes in the local data distributions is occurred. We call
this phenomenon the inertia of the global model, since it
resembles the same notion in physics. Initially, the model has a
lower inertia. During model training, the inertia of the global
model increases (i.e., it becomes reluctant to changes) and
it takes large shifts in the data distribution to trigger a new
model training round. A key contribution of our work is in
characterizing this notion of inertia in distributed ML.

E. Cooperative Resource Pooling in PSL
In PSL, the resource of the devices are utilized coop-

eratively, where both data and model parameters can be
transferred in D2D mode. Optimizing these transfers requires
consideration of their resource requirements.

At global aggregation k, for each device n 2 N , we let h
(k)
n

denote the channel gain of the device to the BS. Consequently,
the data rate of device n to the BS is given by5

r
(k)
n = B

U log
⇣
1 + |h

(k)
n |

2
p

U
n

�
N

U
⌘

, (8)

where B
U denotes the uplink bandwidth given to each device,

p
U
n is the uplink transmit power of the device, and N

U =
N0B

U is the noise power with N0 denoting the noise spectral
density.6

Similarly, with D2D communications, for two
devices n, m 2 N , we define the data rate at device m

achieved via transmission from device n in D2D mode as
follows:

r
(k)
n,m = B

D log
⇣
1 + |h

(k)
n,m|

2
p

D
n

�
N

D
⌘

, (9)

where B
D denotes the D2D bandwidth given to each user

pair, h
(k)
n,m denotes the channel gain among the respective

nodes, p
D
n denotes the D2D transmit power of device n, and

N
D = N0B

D.

5log(.) denotes logarithm with base 2 unless otherwise stated and the data
rate expressions are measured at the instance of data/gradient transmissions.

6An alternative method is to use the average/expected data rate expressions
obtained under average fading power. This would lead to closed form
expressions for data rates (e.g., see [41]) that can be directly used in our
subsequent optimization formulation. Note that upon using the instantaneous
data rates as in (8), if the data transmission time exceeds the channel coherence
time, the instantaneous data rate may change during the data transmission.
Using the average/expected data rate will also resolve this issue.

µnew =
|S|µold + |A|µA � |D|µD

|S|+ |A|� |D|
, (3)

�
2
new =

(|S|� 1)�2
old + (|A|� 1)�2

A � (|D|� 1)�2
D

|A|+ |S|� |D|� 1

+

⇣
|A||S|

|A|+|S|�|D|

⌘
kµold � µAk

2
�

⇣
|S||D|

|A|+|S|�|D|

⌘
kµold � µDk

2

|A|+ |S|� |D|� 1
�

⇣
|A||D|

|A|+|S|�|D|

⌘
kµA � µDk

2

|A|+ |S|� |D|� 1
. (4)

Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

HOSSEINALIPOUR et al.: PSL FOR DYNAMIC DISTRIBUTED MODEL TRAINING 227

Remark 2: Since the physical layer details are abstracted
in this paper, for simplicity, it is assumed that the devices
utilize a multi-access protocol such as FDMA [42] that avoids
interference of the devices in uplink transmissions. The same
holds for D2D communications. Investigating the effect of
interference is left as a topic for future works.

We next formalize the data dispersion, local computations,
and local parameter aggregations with local model condensa-
tion processes in PSL visualized in Fig. 2:

1) Data Dispersion: In PSL, each device can offload a
portion of its data in D2D mode. We define a continuous
variable %

(k)
n,m 2 [0, 1], where

P
m2N %

(k)
n,m = 1, 8n, k,

as the fraction of data of node n offloaded to node m at global
iteration k, with ⇢

(k)
n,n being the amount of data kept locally.7

We refer to %(k) =
⇥
%
(k)
n,m
⇤
1n,mN

as the data dispersion
matrix. The data reception time at device m from n is thus
given by

T
DR,(k)
n,m = %

(k)
n,mD

(k)
n b

D
�
r
(k)
n,m, (10)

where b
D denotes the number of bits representing one

data point. Assuming data dispersion occurs in parallel (see
Remark 2), the total data reception time at node m is8

T
DR,(k)
m = max

n2N\{m}

n
T

DR,(k)
n,m

o
. (11)

2) Local Computation: We assume that the devices are
equipped with different processing units. Let us define an as
the number of CPU cycles that are used to process one data
sample at device n. Subsequently, the computation time at
device n to execute e

(k)
n local SGD iterations based on (5) at

global iteration k is given by

T
C,(k)
n = e

(k)
n anB

(k)
n

�
f

(k)
n , (12)

where f
(k)
n denotes the CPU frequency of the device, and the

mini-batch size satisfies B
(k)
n 

P
m2N %

(k)
m,nD

(k)
m .

3) Model Parameter/Gradient Dispersion and Local Con-
densation: PSL introduces a scenario in which after perform-
ing local computations, each device can partition its vector
of local model/accumulated gradient into different chunks and
disperse the chunks among the neighboring devices in D2D
mode, which we call model/gradient dispersion (see Fig. 4).
Considering the update rule in (6)&(7), at each device n,
this can be carried out via either dispersing the (normalized)
latest local model D(k)

n

D(k)e(k)
n

w(k),e(k)
n , or via dispersing the

(normalized accumulated) gradient D(k)
n

D(k)e(k)
n

rF
(k)
n , both of

which are vectors with size M . In the following, we focus on
the latter approach without loss of generality. In this work,
we consider that in each aggregation period, a device either

7We assume that the offloaded data points of each device are no longer
used by that device in its local model training. This assumption is made to
alleviate the global model becoming biased towards the data distributions of
devices offloading samples, i.e., to avoid double-counting them in the SGD
process of the transmitting and the receiving devices.

8Interference-avoidance multiple access techniques other than FDMA
would also be compatible with our methodology, so long as the expres-
sion in (11) is changed accordingly. For example, with TDMA, which is
used in [12], maxn2N\{m}

n
T

DR,(k)
n,m

o
in (11) should be replaced with

P
n2N\{m}

n
T

DR,(k)
n,m

o
, which our optimization methodology in Sec. IV

can easily incorporate. The same holds for other parts of the paper, where
simultaneous information exchange under FDMA is presumed.

Fig. 4. A schematic of gradient dispersion with local condensation for a
network of 5 nodes. Each node n computes rF

(k)
n (with size M), and

normalizes it with respect to its number of data points and SGD iterations.
Nodes 4 and 5 partition the resulting vector to multiple chunks and disperse
the chunks across their neighbors. The recipients sum the received vectors
with their own vectors and transmit the results (vector of size M) to the main
server, which computes rF

(k) (see (7)) and conducts global aggregation
(see (6)).

(i) completely disperses its local gradient across its neighbors
in D2D mode or (ii) keeps its local gradient, receives gradient
chucks from its neighbors, and engages in uplink transmission.

To alleviate uplink transmission of multiple gradients, when
a device receives gradient chunks, it conducts a local aggrega-
tion, i.e., summing the received chunks with its local gradient,
and only sends the resulting vector to the BS. We call this
local model/gradient condensation since it results in uplink
transmission of a vector with size M at each node regardless of
the number of received chunks from its neighbors (see Fig. 4).

To model this process, we define a continuous variable
'

(k)
n,m 2 [0, 1] to denote the fraction of gradient param-

eters (i.e., the fraction of indices of the gradient vector)
offloaded from device n to m during global iteration k,
where

P
m2N '

(k)
n,m = 1, 8n, k. If node n does not share

its gradient with any neighbor, '
(k)
n,n = 1. We define '(k) =

['(k)
n,m]1n,mN as the gradient dispersion matrix. The time

required for the reception of gradient elements at node m from
node n is given by

T
RG,(k)
n,m = '

(k)
n,mMb

G
/r

(k)
n,m, (13)

where b
G denotes the number of bits required to represent one

element of the gradient vector with size M . Since the reception
of gradient occurs in a parallel manner, the total time required
for the reception of gradient parameters at node m is given by

T
RG,(k)
m = max

n2N\{m}

n
T

RG,(k)
n,m

o
. (14)

Finally, the uplink transmission time at node n is given by

T
GT,(k)
n = Mb

G
/r

(k)
n . (15)

As explained earlier, each node either disperses its gradient or
keeps it entirely local, and thus '

(k)
n,n is a binary variable, 8n.

Thus, (15) can be expressed as T
GT,(k)
n = Mb

G
'

(k)
n,n/r

(k)
n .

4) Energy Consumption: At global iteration k, the total
energy consumption E

(k)
n at each device n is given by

E
(k)
n = E

DD,(k)
n + E

C,(k)
n + E

GD,(k)
n + E

GT,(k)
n , (16)

where E
DD,(k)
n , E

C,(k)
n , E

GD,(k)
n , E

GT,(k)
n denote the energy

used for data dispersion, local computation, gradient
dispersion, and gradient transmission to the BS, given as

Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

228 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Fig. 5. A schematic of PSL operations during global round k. There is an
idle time in between global aggregations. During the device acquisition time,
a series of synchronization signals are broadcast by the BS.

follows:

E
DD,(k)
n =

X

m2N\{n}

p
D
n%

(k)
n,mD

(k)
n b

D
/r

(k)
n,m, (17)

E
C,(k)
n = (↵n/2)ane

(k)
n B

(k)
n

⇣
f

(k)
n

⌘2
, (18)

E
GD,(k)
n =

X

m2N\{n}

p
D
n'

(k)
n,mMb

G
/r

(k)
n,m, (19)

E
GT,(k)
n = p

U
nMb

G
'

(k)
n,n/r

(k)
n , (20)

In (18), ↵n/2 is the effective chipset capacitance of n 2 N [6].
5) PSL Under Synchronization Signaling: To synchronize

the processes involved in PSL, we assume that the BS oches-
trates the devices through a sequence of signals. In particular,
the BS starts each global training round via broadcasting
signal SD, which begins the data dispersion phase among
the devices. Afterward, the BS dictates the start of local
model training via broadcasting signal SL. Then, it starts the
model/gradient dispersion phase with a signal SM. Finally, the
global aggregation round ends with the BS broadcasting a
signal SU, at which time the devices start uplink transmissions.
Let T

D,(k), T
L,(k), T

M,(k), T
U,(k) denote the corresponding

time interval associated with data dispersion, local model
training, model/gradient dispersion, and uplink transmissions,
respectively. The total delay of global training round k is
T

Tot,(k) = T
D,(k) + T

L,(k) + T
M,(k) + T

U,(k), which we refer
to as the device acquisition time. Fig. 5 depicts a schematic
of the timeline of PSL during a global training round.

III. CONVERGENCE ANALYSIS OF PSL
We first make two standard assumptions, which are common
in literature [6], [7], [14], [40], [43], to conduct convergence
analysis. Henceforth, notation k.k denotes the 2-norm.

Assumption 1 (Smoothness of the Global and Local Loss
Functions): Local loss function F

(k)
n is �-smooth, 8n 2 N , k:

krF
(k)
n (w)�rF

(k)
n (w0)k�kw�w0

k, 8w,w0
2RM

, (23)

which implies the �-smoothness of the global loss function F .
Assumption 2 (Bounded Dissimilarity of Local Loss Func-

tions): There exist finite constants ⇣1 � 1, ⇣2 � 0, for any set
of coefficients {an � 0}n2N , where

P
n2N an = 1, such that

X

n2N
ankrF

(k)
n (w)k2 ⇣1

���
X

n2N
anrF

(k)
n (w)

���
2
+ ⇣2, 8k,w.

(24)
The two parameters ⇣1 and ⇣2 introduced in Assumption 2

measure the level of heterogeneity (i.e., non-i.i.d-ness) across
the devices’ datasets. If the device’s datasets are homogeneous
(i.e., i.i.d. across the devices), we will have ⇣1 = 1, ⇣2 = 0,
and these values will increase as the heterogeneity of data
across the devices increases.

We next define local data variability to further measure the
level of heterogeneity at the devices’ local datasets:

Definition 1 (Local Data Variability): The local data vari-
ability at each device n is measured via ⇥n � 0, which 8w, k

satisfies

krf(w, d)�rf(w, d
0)k⇥nkd�d

0
k, 8d, d

0
2D

(k)
n . (25)

We further define ⇥ = maxn2N {⇥n}.
We next quantify the dynamics of data variations at the

devices via introducing a versatile measure that connects the
variation in the data to the performance of the ML model:

Definition 2 (Model/Concept Drift): Let Dn(t) and D(t)
denote the instantaneous number of data points at device n

and total number of data points at wall clock time t (measured
in seconds) during PSL. For each device n, we measure the
online model/concept drift for two consecutive time instances
t � 1 and t during which the device does not conduct ML
model training by �n(t) 2 R, which captures the variation of
the local loss for any model parameter, 8w 2 RM :

Dn(t)
D(t)

Fn

�
w
��Dn(t)

�
�

Dn(t� 1)
D(t� 1)

Fn

�
w
��Dn(t� 1)

�
 �n(t).

(26)

�(t)
n is assumed to be measured only at discrete time instances

t 2 Z+ and is presumed to be fixed in the continues time
interval (t� 1, t] (i.e., for the duration of 1 second).

A larger value for the model/concept drift, i.e., �n � 0,
implies a larger local loss variation and a harder tracking of
the optimal model parameters for the ML training. Also, the
above definition encompasses the case where due to model
drift the old model becomes more fit to the current data
(when �n < 0). Our definition of model drift is different
from other few definitions in current art [39], [44] from two
aspects. First, our definition connects the data variations to
the model performance and can be used in scenarios where
major variations in some dimensions of data (i.e., some of
the features) does not affect the performance. Second, our
proposed drift is estimable (i.e., it is not defined with respect to
the variations in the optimal model as in [39] and [44] which
is by itself unknown a priori).

We next obtain the convergence behavior of PSL for
non-convex loss functions. We use bD(k)

n to denote the set
of data points at device n used during global round k

obtained after the model dispersion phase, bD(k)
n = | bD(k)

n | =P
m2N %

(k)
m,nD

(k)
m . Also, with slight abuse of notations, we use

S
(k)
n,j in the bounds to denote the number of data points in

respective stratum and e�(k)
n,j to denote its variance during

local model training of global round k which are obtained
via Lemma 1.

Theorem 1 (General Convergence Behavior of PSL):
Assume

⌘k  min
n 1

2�

vuut ⇤(k)

⇣1(�2 + ⇤(k))
⇣
e
(k)
max

⇣
e
(k)
max � 1

⌘⌘ ,

2�

X

n2N

D
(k)
n e

(k)
n

D(k)

!�1 o
,

where ⇤(k)
< 1 is a constant and e

(k)
max = maxn2N {e

(k)
n }.

Also, define �(k) = ⌘
k

2

P
n2N

D(k)
n

e(k)
n

D(k) , and �(k) =

Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

HOSSEINALIPOUR et al.: PSL FOR DYNAMIC DISTRIBUTED MODEL TRAINING 229

P
n2N

b�(k)
n , where b�(k)

n = maxt2T Idle,(k) �n(t). Then, the
cumulative average of the gradient of the global loss function
over the training period of PSL satisfies the upper bound
in (21), as shown at the bottom of the page.

Proof: Refer to Appendix B for the detailed proof.
In (21), F

(k�1)(w(k)) = F (w(k)
|D

(k�1)) denotes the loss
under which the k-th global model training ends where w(k)

is obtained and F
(k)(w(k+1)) = F (w(k+1)

|D
(k)) denotes the

loss under which the k+1-th global model training ends where
w(k+1) is obtained. Also, F

(�1)(w(0)) denotes the initial loss
of the algorithm before the start of any model training, i.e.,
⌦(1) seconds before the first model training round.

Main Takeaways. The bound in (21) captures the effect
of the ML-related parameters on the performance of PSL.
Term (a) captures the effect of consecutive loss function gains
during ML training. Term (b) captures the effect of model
drift (via �(k+1)). Terms (c) and (e) are both concerned with
the data stratification and mini-batch sizes used at the devices.
Term (d) captures the effect of model dissimilarity (via ⇣2) and
the number of SGD iterations (via e

(k)
max). Larger model dis-

similarity leads to smaller step size choices (⇣1 incorporated in
the condition on ⌘

k
) and larger upper bound (⇣2 in (d)). Also,

larger local data variability implies a larger bound (⇥ in (c)
and (e)). Further, terms (a) and (b) are inversely proportional
to ⌘k (incorporated in �(k)), terms (c) and (d) are quadratically
proportional to ⌘k, and term (e) is linearly proportional to
it (incorporated in �(k)). The bound also provides further

insights: (i) upon having e
(k)
n = 1, 8n, k, terms (c) and (d)

become zero and the bound demonstrate 1-epoch distributed
ML with non-uniform SGD sampling; (ii) upon sampling all
the data points, i.e., B

(k)
n,j = S

(k)
n,j , 8j, n, k, terms (c) and

(e) become zero and the bound reveals the convergence of
full-batch local gradient descents, (iii) upon having uniform
sampling across strata, B

(k)
n,j = B

(k)
n S

(k)
n,j/D

(k)
n , the bound

demonstrates the convergence upon uniform data sampling
using SGD with mini-batch size B

(k)
n at each device n; (iv) the

effect of offloading is reflected in S
(k)
n,j and bD(k)

n . In particular,
considering terms (c) and (e), increasing S

(k)
n,j -s (i.e., data

reception at device n), with everything else being constant,
needs to be met via increasing B

(k)
n,j (i.e., increasing the mini-

batch size) to keep the bound value fixed. Similarly, upon
data offloading, the device can use a smaller mini-batch size.
Thus, the bound promotes offloading data from devices with
low computation capability to those with higher capability.

The bound in (21) reveals that reaching convergence is
attainable under certain circumstances, which we aim to
obtain:

Corollary 1 (Convergence Under Proper Choice of Step
Size and Bounded Local Iterations): In addition to the
conditions in Theorem 1, further assume that (i) ⌘k =
↵
�q

Ke
(k)
sum/N with a finite positive constant ↵ chosen to

satisfy the condition on ⌘k in Theorem 1, where e
(k)
sum =

1
K

K�1X

k=0

E
h��rF

(k)(w(k))
��2
i


1
K

2

664
K�1X

k=0

E
⇥
F

(k�1)(w(k))� F
(k)(w(k+1))

⇤

�(k)(1� ⇤(k))| {z }
(a)

+
K�1X

k=0

⌦(k+1)�(k+1)

�(k)(1� ⇤(k))| {z }
(b)

+
K�1X

k=0

1
(1� ⇤(k))

8�

2⇥2
⌘
2
k

X

n2N

bD(k)
n

D(k)
(e(k)

n � 1)
S(k)

nX

j=1

1�

B
(k)
n,j

S
(k)
n,j

!
S

(k)
n,j⇣

D
(k)
n

⌘2

(S(k)
n,j � 1)

⇣
e�(k)

n,j

⌘2

B
(k)
n,j

| {z }
(c)

+ 8⇣2⌘
2
k�

2
⇣
e
(k)
max

⌘⇣
e
(k)
max � 1

⌘

| {z }
(d)

+ 8⇥2
��(k)

X

n2N

0

@
bD(k)

n

D(k)

q
e
(k)
n

1

A
2

S(k)
nX

j=1

1�

B
(k)
n,j

S
(k)
n,j

!
S

(k)
n,j⇣

D
(k)
n

⌘2

(S(k)
n,j � 1)

⇣
e�(k)

n,j

⌘2

B
(k)
n,j

| {z }
(e)

!
3

775 (21)

1
K

K�1X

k=0

E
h��rF

(k)(w(k))
��2
i

 2
p
bemax

F
(�1)(w(0))� F

(K)?

emin↵
p

NK(1� ⇤max)
+

2
p
bemax

emin↵
p

NK

K�1X

k=0

⌦(k+1)�(k+1)

1� ⇤max
+

1
K

K�1X

k=0

1
(1� ⇤max)

8�

2⇥2
↵

2
N

Ke
(k)
sum

⇥

X

n2N

bD(k)
n

D(k)
(e(k)

n � 1)
S(k)

nX

j=1

1�

B
(k)
n,j

S
(k)
n,j

!
S

(k)
n,j⇣
bD(k)

n

⌘2

(S(k)
n,j � 1)

⇣
e�(k)

n,j

⌘2

B
(k)
n,j

+
8⇣2↵

2
�

2
N

Ke
(k)
sum

⇣
e
(k)
max

⌘⇣
e
(k)
max � 1

⌘!

+
1
K

K�1X

k=0

4emax↵⇥2
�
p

N

(1� ⇤max)
q

e
(k)
sum

p
K

X

n2N

0

@
bD(k)

n

D(k)

q
e
(k)
n

1

A
2

S(k)
nX

j=1

1�

B
(k)
n,j

S
(k)
n,j

!
S

(k)
n,j⇣
bD(k)

n

⌘2

(S(k)
n,j � 1)

⇣
e�(k)

n,j

⌘2

B
(k)
n,j

(22)

Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

230 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

P
n2N e

(k)
n , (ii) bemin  e

(k)
sum  bemax for two finite positive

constants bemin and bemax, 8k, (iii) maxk

�
⇤(k)

 ⇤max < 1,

(iv) emin  e
(k)
avg  emax for two finite positive constants emin

and emax, 8k, where e
(k)
avg =

P
n2N D

(k)
n e

(k)
n /D

(k). Then, the
cumulative average of the global loss function gradient for
PSL satisfies (22), as shown at the bottom of the previous
page.

Proof: Refer to Appendix C for the detailed proof.
Corollary 2 (Convergence Under Unified Upperbounds on

the Sampling Noise): Under the conditions specified in Corol-
lary 1, further assume (i) bounded stratified sampling noise

max
k,n

8
><

>:

S(k)
nX

j=1

1�

B
(k)
n,j

S
(k)
n,j

!
S

(k)
n,j⇣

D
(k)
n

⌘2

(S(k)
n,j � 1)

⇣
e�(k)

n,j

⌘2

B
(k)
n,j

9
>=

>;


�max, 8n, k, (ii) bounded local iterations maxk{e
(k)
max}  emax

for positive constant emax, and (iii) bounded idle period
as ⌦(k)


⇥ �

K�(k)

⇤+, 8k, for a finite non-negative �,
where [a]+ , max{a, 0}, 8a 2 R. Then, the cumulative
average of the global loss function gradient for PSL
satisfies (27), as shown at the bottom of the next page,
implying 1

K

PK�1
k=0

��rF
(k)(w(k))

��2
 O(1/

p
K).

Proof: Refer to Appendix D for the detailed proof.
One of the key findings of Corollary 2 is that, to have a guar-

anteed convergence behavior, the idle times must be inversely
proportional to the model drift, i.e., ⌦(k)


⇥ �

K�(k)

⇤+, 8k.
This implies that larger model drift requires rapid global
aggregations (i.e., small idle times), while smaller model drift
requires less frequent global aggregations.

We next obtain the data sampling technique that needs to be
utilized under a certain data sampling budget at each device:

Proposition 1 (PSL Under Optimal Local Data Sampling):
Considering the assumptions made in Theorem 1. For a given
mini-batch size at each device n, i.e., B

(k)
n , tuning the number

of sampled points from strata according to Neyman’s sampling
technique represented with respect to the variance of the data
described by B

(k)
n,j =

⇣
B

(k)
n e�(k)

n,jS
(k)
n,j

⌘⇣PS(k)
n

i=1 e�
(k)
n,iS

(k)
n,i

⌘�1

minimizes the bound in (21). Further, if ⌘k = ↵
�q

Ke
(k)
sum/N

with a finite positive constant ↵ chosen to satisfy the condition
on ⌘k in Theorem 1 the cumulative average of global gradient
under PSL satisfies the bound in (28), as shown at the bottom
of the next page.

Proof: Refer to Appendix E for the detailed proof.
The choice of B

(k)
n,j in Proposition 1 advocates sampling

more data points from those strata with higher variance to
reduces the SGD noise. This technique is particularly effective
when the local datasets are non-i.i.d., e.g., devices possess
unbalanced number of data points from different labels.

The bound obtained in Proposition 1 is rather general.
In particular, the bound is not obtained under conditions in
Corollary 2, which were considered to prove the convergence.
This is intentionally done to give a generalized bound that
describes the PSL convergence under arbitrary choice of idle
times and sampling errors. We thus build our optimization with
respect to this bound, making our optimization solver general
and applicable to a wide variety of scenarios. We obtain the
convergence of PSL when the conditions of Corollaries 1
and 2 are imposed on Proposition 1 in Appendix F
(Corollary 3 and 4).

IV. NETWORK-AWARE PARALLEL SUCCESSIVE LEARNING
In network-aware PSL, we aim to jointly optimize the macro
decisions of the system, e.g., timing of the synchroniza-
tion signals and idle times between global aggregations, and
the micro decisions of the system, e.g., local mini-batch
sizes and data/parameter offloading ratios, which is among
the most general formulations in literature. We formu-
late the network-aware PSL as the following optimization
problem:

(P) :min
1
K

"
K�1X

k=0

c1E
Tot,(k) + c2T

Tot,(k)

#

+ c3
1
K

K�1X

k=0

E
h��rF

(k)(w(k))
��2
i

| {z }
=⌅

⇣
bD(k)

,B(k),⌦(k),�(k)
⌘

given by (28)

(29)

s.t. T
Tot,(k) = T

D,(k) + T
L,(k) + T

M,(k) + T
U,(k)

,

(30)
E

Tot,(k) =
X

n2N
E

(k)
n , (31)

KX

k=1

T
Tot,(k) + ⌦(k) = T

ML
, (32)

max
n2N

n
T

DR,(k)
n

o
 T

D,(k)
, (33)

max
n2N

n
T

C,(k)
n

o
 T

L,(k)
, (34)

max
n2N

n
T

RG,(k)
n

o
 T

M,(k)
, (35)

max
n2N

n
T

GT,(k)
n

o
 T

U,(k)
, (36)

X

m2N
%
(k)
n,m = 1, n 2 N , (37)

X

m2N
'

(k)
n,m = 1, n 2 N , (38)

'
(k)
n,n

X

m2N\{n}

'
(k)
n,m  0, n 2 N , (39)

(1� '
(k)
n,n)

X

m2N\{n}

'
(k)
m,n  0, n 2 N , (40)

f
min
n  f

(k)
n  f

max
n , 1  B

(k)
n



X

m2N
%
(k)
m,nD

(k)
m , n 2 N , (41)

%
(k)
n,m, '

(k)
n,m � 0, n,m 2 N ,

Variables:
K,
�
e(k)

, f (k)
,B(k)

,%(k)
,'(k)

, T
D,(k)

, T
L,(k)

,

T
M,(k)

, T
U,(k)

,⌦(k)
 K

k=1
(42)

Objective and variables. P aims to identify the number
of global aggregations K, and the value of the following
variables at each global aggregation k: the number of SGD
iterations e(k) = [e(k)

n]n2N , frequency cycles of the devices
f (k) = [f (k)

n]n2N , mini-batch sizes B(k) = [B(k)
n]n2N

(given the mini-bath size, the sample size of strata, i.e.,
[B(k)

n,j]n2N ,8j, is given by Proposition 1), data offloading
ratios %(k) = [%(k)

n,m]n,m2N , model parameter offloading
ratios '(k) = ['(k)

n,m]n,m2N , synchronization periods (i.e.,

Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

HOSSEINALIPOUR et al.: PSL FOR DYNAMIC DISTRIBUTED MODEL TRAINING 231

T
D,(k)

, T
L,(k)

, T
M,(k)

, T
U,(k) defined in Sec. II-E.5), and idle

times between the global aggregations ⌦(k). The objective
function of P draws a tradeoff between the total energy
consumption, device acquisition time/cost, and the ML training
performance of the global model. The latter is captured
via ⌅, which is characterized by the bound in (28). These
(possibly) competing objectives are weighted via non-negative
coefficients c1, c2, c3.9

Constraints. T
Tot,(k) in (30) denotes the device acquisition

time and E
Tot,(k) in (31) denotes the total energy consump-

tion during global round k, where E
(k)
n is given by (16).

Constraint (32) ensures that the accumulated time spent during
the model training and the idle times equals to the ML model
training time T

ML. Constraints (33), (34), (35), (36) ensure
that the time interval used for data dispersion (see (11)), local
computation (see (12)), model dispersion (see (13)), and uplink
transmission (see (15)) are chosen to ensure the operation
of the system without conflict. Constraints (37) and (38)
ensure the proper dispersion of the data and model parameters.
Constraints (39) and (40) together ensure that each device
either disperses its model parameter or keeps it local and
engages in model condensation, i.e., �n,n is binary and takes
the value of 0 if any portion of the local model is offloaded;
and 1 otherwise. Finally, (41), (42) are the feasibility
constraints.

Main takeaways. In P , if c3 = 0, and c1, c2 > 0,
model training never occurs (K = 0) and devices
always remain in the idle state. As c3 increases, the solution

9We trivially defined ETot,(0) = TTot,(0) = 0.

favors a lower model loss via increasing the number of
global rounds K and decreasing the idle times ⌦(k)-s. ⌅ is a
function of concept drift (�(k)

n -s), especially upon having
small concept drifts, once the global model reaches a rela-
tively low loss (i.e., it is warmed up and has high inertia),
performing global aggregations result in marginal perfor-
mance gains, and thus the frequency of global rounds will
be decreased. Also, considering ⌅ behavior in (28), the
optimization favors larger mini-batch sizes at the devices
with higher number of data points and larger data variance.
Also, the data is often offloaded from the devices with lim-
ited computation resource to those with abundant resources,
while the model parameters are often transferred from the
devices with poor BS channel conditions to those with better
channels.

Behavior of P . Except integer K, all the variables are
continuous. Given that 1  K  T

ML, with all the rest of
the variables known as a function of K, K can be obtained
with an exhaustive search. We thus focus on obtaining the
rest of variables for a given K. In P , multiplication between
optimization variables appear in multiple places. For example,
in E

C,(k)
n , encapsulated in E

(k)
n (see (16)) in (31), multipli-

cation between e
(k)
n , B

(k)
n , and f

(k)
n exist (see (18)). Similar

phenomenon exist in T
C,(k)
n (see (12)) in (34). More impor-

tantly, the definition of ⌅ in (28) consists of multiple terms
with multiplication of variables some of which with negative
coefficients. In particular, the problem belongs to the category
of Signomial Programming, which are highly non-convex and
NP-hard [45].

1
K

K�1X

k=0

E
h��rF

(k)(w(k))
��2
i
 2
p
bemax

F
(�1)(w(0))� F

(K)?

emin↵
p

NK(1� ⇤max)
+

2
p
bemax�

emin↵
p

NK(1� ⇤max)
+

4emax↵⇥2
�
p

N

(1� ⇤max)
p
bemin

p
K

�max

+
1
K

1
(1� ⇤max)

8�

2⇥2
↵

2
N(emax � 1)�max/bemin + 8⇣2↵

2
N�

2 (emax) (emax � 1)/bemin

!
(27)

1
K

K�1X

k=0

E
h
krF

(k)(w(k))k2
i
 ⌅

✓
bD

(k)
,B(k)

,⌦(k)
,�(k)

◆
, 2

p
bemax

�
F

(�1)(w(0))� F
(K)?�

↵emin

p
NK(1� ⇤max)| {z }

(a)

+
K�1X

k=0

2
q

e
(k)
sum⌦(k+1)�(k+1)

↵e
(k)
avg

p
NK(1� ⇤(k))

+
K�1X

k=0

1
(1� ⇤(k))

0

BB@
8�

2⇥2
↵

2
N

e
(k)
sumK2

X

n2N

bD(k)
n

D(k)
(e(k)

n � 1)
1

⇣
bD(k)

n

⌘2

2

664
1

B
(k)
n

0

@
S(k)

nX

j=1

e�(k)
n,jS

(k)
n,j

1

A
2

�

S(k)
nX

j=1

S
(k)
n,j

⇣
e�(k)

n,j

⌘2

| {z }
(b)

3

775

+
8⇣2↵

2
�

2
N

e
(k)
sumK2

⇣
e
(k)
max

⌘⇣
e
(k)
max � 1

⌘
1

CCA+
K�1X

k=0

4e
(k)
avg↵⇥2

�
p

N

2
q

e
(k)
sumK

p
K(1� ⇤(k))

X

n2N

1
✓

D(k)

q
e
(k)
n

◆2

⇥

2

664
1

B
(k)
n

0

@
S(k)

nX

j=1

e�(k)
n,jS

(k)
n,j

1

A
2

�

S(k)
nX

j=1

S
(k)
n,j

⇣
e�(k)

n,j

⌘2

| {z }
(c)

3

775 (28)

Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

232 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

In the following, we provide a tractable technique to solve
P .10 Although our approach is developed for P , it can be
applied to a broader category of problems that we call network-
aware distributed ML, where the formulations are mostly
concerned with optimizing the performance of the ML training
under network constraints. We are among the first to introduce
these optimization techniques to distributed ML literature.

A related problem format in literature to P is geometric
programming (GP), to understand which the knowledge of
monomial and posynomials is necessary.

Definition 3: A monomial is defined as a function f :
Rn

++ ! R: f(y) = zy
↵1
1 y

↵2
2 · · · y

↵n

n , where z � 0,
y = [y1, · · · , yn], and ↵j 2 R, 8j. Further, a posyn-

omial g is defined as a sum of monomials: g(y) =
PM

m=1 zmy
↵(1)

m

1 y
↵(2)

m

2 · · · y
↵(n)

m

n , zm� 0,8m.
A GP in its standard form admits a posynomials objec-

tive function subject to inequality constraints on posynomials
and equality constraints on monomials (see Appendix G-A).
With a logarithmic change of variables, GP in its standard
form can be transformed into a convex optimization that
can be efficiently solved using well-known software, e.g.,
CVXPY [46]. Nevertheless, P does not admit the format of
GP. In particular, the bound in (28) appearing in the objective
function consists of terms with negative sign that violate the
definition of posynomials. Furthermore, constraints (32), (37)
and (38) are equalities on posynomials, which GP does not
admit. To tackle these violating terms, we first consider the
constraints in the form of equality on posynomials, and use
the method of penalty functions and auxiliary variables [47].
To this end, we consider each equality on a posynomial in
the format of g(x) = c as two inequality constraints: (c-i)
g(x)  c, and (c-ii) 1/(Ag(x))  c, where A � 1 is an
auxiliary variable, which will later be forced A # 1 via being
added to the objective function with a penalty coefficient.11

Inequality (c-i) is an inequality on a posynomial, which GP
admits. However, (c-ii) is an inequality on a non-posynomial
(division of a monomial/posynomial by a posynomial is not
a posynomial). One way to transform (c-ii) to an inequality
on a posynomial is to approximate its denominator by a
monomial (division of a posynomial by a monomial is a
posynomial). To this end, we exploit the arithmetic-geometric
mean inequality.

Lemma 2 (Arithmetic-Geometric Mean Inequality [48]):
Consider a posynomial function g(y) =

Pi0

i=1 ui(y), where
ui(y) is a monomial, 8i. The following inequality holds:

g(y) � ĝ(y) ,
i0Y

i=1

(ui(y)/↵i(z))↵i(z)
, (49)

where ↵i(z) = ui(z)/g(z), 8i, and z > 0 is a fixed point.
In Appendix G, we explain all the steps taken to solve the

optimization problem P . Due to space limitations, we provide
a high level discussion in the following.

Our technique to solve P is an iterative approach, where
at each iteration `, we use the aforementioned method of
penalty functions based on (c-i) and (c-ii). The corresponding

10To be able to solve the problem, we rely on strict positive optimization
variables and replace constraint (42) with %

(k)
n,m, '

(k)
n,m > 0, 8n, m. Accord-

ingly, inequalities in (39) and (40) in the form of A(x)  0 are replaced with
A(x) < #, where # > 0 is an optimization variable. # is then added to the
objective function with a penalty term to ensure # # 0 at the final solution.

11A # 1 is an equivalent representation of A ! 1+.

posynomials in (c-ii) for (32), (37) and (38) are approxi-
mated using (43), (44), and (45), as shown at the bottom
of the next page, respectively. Furthermore, since bD(k)

n , e
(k)
sum

and e
(k)
avg appear in multiple places in (28), for tractability,

we treat them as optimization variables and add the follow-
ing constraints to P : (bD(k)

n)�1
P

m2N %
(k)
m,nD

(k)
m = 1, n 2

N ,
P

n2N e
(k)
n /e

(k)
sum = 1,

P
n2N

bD(k)
n e

(k)
n /(e(k)

avgD
(k)) = 1,

which are all equality constraint on posynomials. We thus use
the method of penalty functions with approximations given
in (46), (47) and (48), as shown at the bottom of the next
page, to transform them. It is easy to verify that (43)-(48)
are in fact the best local monomial approximations to their
corresponding posynomials near fixed point x[`�1] in terms
of the first-order Taylor approximation (vector x encapsulates
all the optimization variables in all the expressions).

We next tackle the complex term ⌅ in the objective function
of P , i.e., (28). In (28), we first upper bound F (w(0))�F

(K)?

(inside the term in the first line) with F (w(0)) and e
(k)
n �1 with

e
(k)
n (inside the term in the second line), and e

(k)
max�1 with e

(k)
max

(inside the term in the third line) since these do not impose a
notable difference in the optimization solution. Also, to have
a tractable solution, we assume that (i) the relative size of
the strata to the size of the local dataset is upper bounded
throughout the learning period, and let sn,j  1 denote the
upper bound of the relative size of stratum S

(k)
n,j to the local

dataset, i.e., S
(k)
n,j/

bD(k)
n  sn,j , 8k, and (ii) the optimizer

optimizes the ML bound for an upper bound on the variance
of the local strata (i.e., e�(k)

n,j , 8k, n, j, is upper bounded via
historical data for the optimizer); however, during the PSL
model training each node uses Lemma 1 to track the variance
of its strata, based on which it conducts non-uniform data
sampling according to the rule obtained in Proposition 1.
These upper bounds and assumptions are inherently assumed
in Proposition 2. Note that in (28), all the terms contain
the summation over global aggregation index k, i.e.,

PK
k=1,

expect the first term (term (a)), which in turn can be upper
bounded as

PK
k=1

2
p
bemaxF (w(0))

↵eminK
p

K(1�⇤max)
. We thus consider ⌅ in

(28) as ⌅ =
PK

k=1 �
(k)
+ (x) � �

(k)
�,1(x) � �

(k)
�,2(x), where

�
(k)
+ (x) contains all the terms with positive coefficients, while

�
(k)
�,1(x), �

(k)
�,2(x) are two terms with negative sign (terms (b)

and (c) and their coefficients). We next replace the term �⌅
in the objective function of P with �

PK�1
k=0 �

(k), which
auxiliary variable �

(k) is the upperbound of summand in ⌅,
which we add it to the constraints as �

(k)
+ (x) � �

(k)
�,1(x) �

�
(k)
�,2(x)  �

(k), 8k. Now we focus on this constraint, which
can be written as follows:

�
(k)
+ (x)

.⇣
�

(k) + �
(k)
�,1(x) + �

(k)
�,2(x)

⌘
 1. (51)

Considering the fraction in (51), all the terms encapsulated in
�

(k)
+ (x) are posynomials, making its numerator a posynomial.

However, its denominator is also a posynomial, making it a
non-posynomial fraction. We thus focus on the approximation
of the denominator with a monomial, for which we exploit
Lemma 2 (see Appendix G for the detailed steps), the result
of which is given by (50), as shown at the bottom of the
next page. After the conducted approximations, we obtain a
problem in which the objective function is a posynomial and
all the constraints are inequalities on posynomials admitting

Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

HOSSEINALIPOUR et al.: PSL FOR DYNAMIC DISTRIBUTED MODEL TRAINING 233

the GP format (see the problem in (186)-(210) in Appendix G).
We provide the pseudo-code of our optimization solver in
Algorithm 1. We next show the convergence guarantees of our
solver.

Proposition 2 (Optimization Solver): For each K,
Algorithm 1 generates a sequence of solutions for P 0

using the approximations (43)-(48),(50) that converge to x?
K

satisfying the Karush-Kuhn-Tucker (KKT) conditions of P .
Proof: It can be shown that P 0 (given by (186)-(210))

is an inner approximation [49] of P . Thus, it is suffi-
cient to examine the three characteristics mentioned in [49]
for Algorithm 1 to prove the convergence, which can be
done using the methods in [47] and [50] and omitted for
brevity.

V. SIMULATION RESULTS

We next evaluate the effectiveness of PSL. We incorporate the
effect of fading in h

(k)
n , h

(k)
n,m (in (8) and (9)). For the uplink

channel h
(k)
n =

q
�

(k)
n u

(k)
n , where u

(k)
n ⇠ CN (0, 1) captures

Rayleigh fading, and �
(k)
n = �0 � 10e↵ log10(d

(k)
n /d0) [51].

Here, �0 = �30dB, d0 = 1m, e↵ = 3, and d
(k)
n is the

instantaneous distance between node n and the BS. We use
the same formula to describe the D2D channels but choose
e↵ = 3.2 since D2D are more prone to excessive loss. Channels
are realized with coherence time of 50 ms. The devices are
randomly placed in a circle area with radius of 25m with a
BS in the center. Our simulations were implemented using
Pytorch [52] and run on three Nvidia Tesla V100 GPUs

H(x) =
KX

k=1

T
Tot,(k) + ⌦(k)

� bH(x; `) ,
KY

k=1

T

D,(k)
H([x]`�1)

⇥
TD,(k)

⇤`�1

! [T D,(k)]`�1

H([x]`�1)

T
L,(k)

H([x]`�1)
⇥
T L,(k)

⇤`�1

! [T L,(k)]`�1

H([x]`�1)

T

M,(k)
H([x]`�1)

⇥
TM,(k)

⇤`�1

! [T M,(k)]`�1

H([x]`�1)

T
U,(k)

H([x]`�1)
⇥
TU,(k)

⇤`�1

! [T U,(k)]`�1

H([x]`�1)

⌦(k)
H([x]`�1)

⇥
⌦(k)

⇤`�1

! [⌦(k)]`�1

H([x]`�1)

(43)

G(x) =
X

m2N
%
(k)
n,m � bG(x; `) ,

Y

m2N

0

B@
%
(k)
n,mG([x]`�1)
h
%
(k)
n,m

i`�1

1

CA

[%(k)
n,m]`�1

G([x]`�1)

(44)

J(x) =
X

m2N
'

(k)
n,m � bJ(x; `) ,

Y

m2N

0

B@
'

(k)
n,mJ([x]`�1)
h
'

(k)
n,m

i`�1

1

CA

['(k)
n,m]`�1

J([x]`�1)

(45)

I(x) =
X

m2N
%
(k)
m,nD

(k)
m � bI(x; `) ,

Y

m2N

%
(k)
m,nI([x]`�1)

[%(k)
m,n]`�1

!D
(k)
m [%(k)

m,n]`�1

I([x]`�1)

(46)

R(x) =
X

n2N
e
(k)
n � bR(x; `) ,

Y

n2N

e
(k)
n R([x]`�1)

[e(k)
n][`�1]

! [e(k)
n][`�1]

R([x]`�1)

(47)

V (x) =
X

n2N

bD(k)
n e

(k)
n � bV (x; `) ,

Y

n2N

Y

m2N

0

B@
%
(k)
m,ne

(k)
n V ([x]`�1)

h
%
(k)
m,ne

(k)
n

i[`�1]

1

CA

D
(k)
m [%(k)

m,ne
(k)
n][`�1]

V ([x]`�1)

(48)

W (x) = �
(k) +

1
(1� ⇤(k))

8�
2⇥2

↵
2
N

K2
(e(k)

sum)�1
X

n2N

e
(k)
n

D(k)
bZ(k)

n +
4⇥2

�↵
p

N

K
p

K(1� ⇤(k))

⇣
e
(k)
avg

⌘⇣
e
(k)
sum

⌘�1/2 X

n2N

bD(k)
n

�
D(k)

�2
e
(k)
n

bZ(k)
n

� cW (x; `) ,
✓

�
(k)

W ([x]`�1)
[�(k)]`�1

◆ [�(k)]`�1

W ([x]`�1)

⇥

Y

n2N

2Y

q=1

✓
�q(x, n)W ([x]`�1)

�q([x]`�1, n)

◆ �q([x]`�1
,n)

W ([x]`�1)

,

�1(x, n)=
1

(1�⇤(k))
8�

2⇥2
↵

2
N

K2

e
(k)
n

e
(k)
sumD(k)

bZ(k)
n , �2(x, n)=

4⇥2
�↵
p

N

K
p

K(1�⇤(k))
e
(k)
avg
bD(k)

nq
e
(k)
sum
�
D(k)

�2
e
(k)
n

bZ(k)
n , bZ(k)

n =
S(k)

nX

j=1

sn,j

⇣
e�(k)

n,j

⌘2

(50)

Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

234 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Algorithm 1 Optimization Solver for Problem P
input : Convergence criterion, model training duration TML.

1 for K = 1 to TML do
2 Set the iteration count ` = 0.
3 Choose a feasible point x[0].
4 Obtain the monomial approximations (43)-(48),(50) given x[`].
5 Replace the results in the approximation of Problem P (i.e.,

P0 given by (186)-(210) in Appendix G).
6 With logarithmic change of variables, transform the resulting GP

problem to a convex problem (as described in Appendix G-A).
7 ` = ` + 1
8 Obtain the solution of the convex problem using current art

solvers (e.g., CVXPY [46]) to determine x[`].
9 if two consecutive solutions x[`�1] and x[`] do not meet the

specified convergence criterion then
10 Go to line 4 and redo the steps using x[`].
11 else
12 Set the solution of the iterations as x?

K = x[`].

13 x? = min{x?

K
}1KT ML

{Objective of P evaluated at x?
K}

TABLE I
PSL NETWORK SAVINGS VS THE BASELINE METHOD (FED-NOVA [40]).

WE MEASURE NETWORK SAVINGS TO REACH ACCURACY
THRESHOLDS BY THE COMBINATION OF ENERGY AND

DEVICE ACQUISITION TIME (DAT)

with 32 GB VRAM each. We used CVXPY [46] to obtain
the solutions of the convex problems obtained through Alg. 1.

A. Dynamic Model Training Under PSL: Proof-of-Concept
We compare the ML performance of PSL against the base-

line method Fed-Nova [40], a state-of-the-art FedL method
that also accounts for varying SGD iterations across the
devices. Fed-Nova aims to obtain unbiased global mod-
els for FedL by normalizing devices’ received gradients
at the server with respect to their number of conducted
local SGD iterations, which is shown to significantly out-
perform existing FedL methods including FedAvg, FedProx,
and VRLSGD [40]. We consider classification tasks over
MNIST [53] and Fashion-MNIST [54] datasets for a network
of 10 devices in Fig. 6 and Table I.12 Both datasets consist
of 60K training samples and 10k testing samples, where
each datum belongs to one of 10 labels. We consider both
time-varying and static device datasets. In the dynamic case,
devices obtain a new dataset of size drawn from a normal
distribution N (1000, 125) after each global aggregation. In the
static case, devices use a fixed dataset with size drawn from
N (1000, 125). Device datasets are only composed of data
from 3 distinct labels. To have a fair comparison, we isolate
the ML performance and consider both methods with no
data offloading. The maximum and minimum number of local
SGDs are considered 25 and 1 respectively. Fig. 6 shows that
PSL outperforms the baseline method in both cases owed to
its local data management and non-uniform data sampling.

12The results in Fig. 6 and Table I are the averaged results obtained from
10 Monte-Carlo iterations of independent network realizations.

Fig. 6. Accuracy obtained using PSL vs. the baseline method
(Fed-Nova [40]). Left subplot: time varying local datasets across the global
aggregations. Right subplot: static local datasets across the global aggrega-
tions. The results are obtained using moving average with window size of 10.

We quantify the corresponding resource savings of PSL in
Table I. The jumps in energy consumption when moving
from 50% to 60% accuracy on FMNIST and 70% to 80%
accuracy on MNIST are due to the natural saturation in
training improvement of the federated ML methods upon
reaching higher accuracies. For example, to improve from
40% to 50% accuracy on FMNIST, PSL uses 3 additional
aggregations while Fed-Nova requires 5 additional aggrega-
tions. Meanwhile, to improve from 50% to 60% classification
accuracy on FMNIST, PSL needs 10 further aggregations
while Fed-Nova uses 16 further aggregations.

B. Network-Aware PSL: Ablation Study
Direct examination of P is difficult due to the complexity

and entanglement of the optimization variables and elements
of the bound in (28). As a result, we perform an ablation
study – systematically evaluating the impacts of important
optimization and scaling variables in isolation – to charac-
terize P in detail. We use the set of network characteristics
in Table II. The results in Sections V-B.1, V-B.3, V-B.5,
V-B.7 are the averaged results over 10 Monte-Carlo iterations
of independent network realizations. Sections V-B.2, V-B.4,
V-B.6 focus on showing discretized numerical values and,
in order to preserve the key intuition behind the results,
we show the result for a single network realization.

1) Optimization Solver and Network Size: We first inves-
tigate the convergence of our optimization solver for various
network sizes in Fig. 7, where T

ML = 1000s, K = 2, and
N 2 {5, 10, 15, 20}. As can be seen, larger number of devices
leads to slower convergence but a better final solution since it
causes (i) processing higher number of data points across the
devices that leads to a better ML performance, and (ii) more
efficient D2D data/model transfer opportunity. Furthermore,
Fig. 7 reveals the diminishing rewards of increasing the
number of devices, where an initial increase from N = 5
to N = 10 results in a notable performance improvement;
however, this effect is less notable as the number of devices
increase. This implies that engaging more devices may allow
for more efficient model training but there is a point after
which the network energy consumption (due to data processing
and model aggregations) overshadows the ML performance
gains.

2) Model/Concept Drift vs. Idle Time: We investigate the
effect of the model drift �(k) on the system idle time in Fig. 8,
where T

ML = 5000s, and K = 10. The figure shows that our
solution promotes rapid global aggregations when the value of
model drift increases. Further, when the value of concept drift

Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

HOSSEINALIPOUR et al.: PSL FOR DYNAMIC DISTRIBUTED MODEL TRAINING 235

Fig. 7. Convergence of the objective function of P upon having varying
number of devices N for TML = 1000s, where the ML performance term in
the objective function is prioritized over the energy and delay terms.

Fig. 8. Demonstration of the variation of the idle time in between the
consecutive global aggregations (right y-axis) for a given configuration of
model/concept drift (left y-axis).

TABLE II
NETWORK CHARACTERISTICS USED FOR ABLATION STUDY. THE

EXPERIMENTS ALL USE THE NETWORK VALUES
HEREIN, UNLESS INDICATED OTHERWISE

is low, the global aggregations are carried out via higher idle
times: since the data variations at devices is small, they can
stay in idle state to save energy and device acquisition cost.

3) Model Dissimilarity vs. Local SGD Iterations: ⇣2 in (28)
quantifies data dissimilarity, where higher data dissimilarity
increases the chance of local model bias with increased local
SGD iterations. In Fig. 9, we vary dissimilarity and depict the
number of SGD iterations across the devices, where T

ML =
100s. Each device n requires an CPU cycles to process each
datum, thus a large an indicates a higher data processing cost.
Fig. 9 shows that when ⇣2 is small, i.e., data is homogeneous
across the devices, PSL maximizes ML performance by having
more local SGD iterations at devices with small an (n 2

{3, 4, 5}). As ⇣2 increases, uneven local SGD iterations can
favor local models at devices with higher SGD iterations,
so PSL reduces the variance of the number SGD iterations
among the devices.

4) Cold vs. Warmed Up Model, and Model Inertia: Model
training interval T

ML limits the time for all aspects of
PSL (i.e., data/model transfer, local processing, and uplink
transmissions). In Fig. 10, we depict the optimal number of
global aggregations for a wide range of T

ML values. The left
subplot shows the objective function value as a function of
the number of global aggregations K. It can be seen that

Fig. 9. Average local SGD iterations for different devices through the model
training period upon having different degree of model dissimilarity ⇣2.

Fig. 10. Optimal number of global aggregations K? for different period of
model training intervals TML.

increasing the number of global aggregations K is not suitable
for all scenarios. Large K implies that the system must spend
more time on the data and model transmission processes and
therefore has less time to run model training. As a result,
for smaller T

ML, K
? is smaller, and K

? increases as T
ML

increases. In the right subplot of Fig. 10, we analyze the
relationship between T

ML and K
?. Initially, i.e., having a cold

model, K
? increases rapidly as a function of T

ML, however,
as the model gets warmed up increasing K

? calls for larger
increments in T

ML which signifies the model inertia (i.e., for a
warmed up model, to trigger a new model training round larger
data variations are needed so that ML model gains outweighs
the network costs).

We next sequentially focus on the scaling of energy, acqui-
sition time, and ML bound terms in problem P .

5) Energy Scaling in Optimization Objective: c1 in the
objective of P controls the importance of the energy com-
ponents. To demonstrate the effect of c1, we focus on the
data processing (measured via mini-batch size) and offloading
(measured via net data received) in Fig. 11, where T

ML =
100s and ⇣2 = 1e � 3. In the first column of Fig. 11,
c1 increases while is still small, which leads to less data
processing at devices with high processing cost (i.e., n = 2)
and more data offloading from them. The middle column
accelerates the increment of c1, showing rapid increase of
data reception and processing at device n = 5. Here, even
lower processing cost devices (n = 4) begin offloading data
and processing less data. In the last column, data processing
becomes almost prohibitive, and consequently, even device
n = 5 processes only a subset of its data. Even though device
n = 5 processes only a subset of its data, it is still beneficial
for all devices to transfer data to device n = 5 in order to
reduce their SGD noise (they choose mini-batch sizes of 1 so
lower number of local data implies a lower SGD noise) and
thereby reduce the ML term ⌅.

6) Temporal Importance in Optimization Objective: The
cost of device acquisition, c2, determines the balance of

Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

236 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Fig. 11. Top row: the average mini-batch size through model training period.
Bottom row: the net number of received data at the devices (negative values
imply data offloading) through model training period. Different ranges of
energy importance c1 in P are considered.

Fig. 12. Device acquisition time (right y-axis) and device idle times (left
y-axis) for varying values of cost of device utilization c2 in P . As c2 increases
the device utilization time decreases and devices remain idle for longer times.

device acquisition and idle times. We investigate its influence
in Fig. 12, where T

ML = 1000s. It can be seen that a
decrease in the device acquisition/active times corresponds to
an increase in the idle times. This trade-off occurs in three
regimes, segmented into three subplots. Initially, increasing
c2 has no effect until a network dependent threshold (in this
case c2 = 40) is reached. After this threshold, we enter a
regime in which incremental increase of c2 results in a notable
increase in idle times and a proportional decrease in active
times. Finally, in the third regime, the marginal reward of
reducing device acquisition, which translates to processing less
data in the ML bound, become prominent. To outweigh this
effect, c2 must increase by orders of magnitude to reduce the
system active time.

7) ML Performance in Optimization Objective: Finally,
we characterize the ML model training importance c3 by its
effect on the devices mini-batch size in Fig. 13 for T

ML =
1000s. With increasing c3, the importance of the model per-
formance increases, and the solution prioritizes the third term
in the objective by increasing the mini-batch size at the cost-
efficient devices: we see that n = 5 begins processing more
data, and, as c3 increases, other devices also begin processing
more data based on a combination of data offloading and
processing cost.

VI. CONCLUSION

We introduced dynamic distributed learning via PSL. PSL
extends federated learning through network, heterogeneity,
and proximity. Also, it considers a cooperative distributed
learning paradigm via incorporating data dispersion and
model/gradient dispersion with local condensation across the

Fig. 13. Average mini-batch size of the devices for various values of ML
model performance importance c3 in the objective function of P .

devices to battle the innate shortcomings of federated learning.
PSL further considers a realistic scenario in which the model
training rounds are conducted with idle times in between,
during which the data evolves across the devices. We mod-
eled the processes conducted during PSL, introduced a new
definition for concept/model drift, obtained the convergence
characteristics of PSL, and formulated the network-aware PSL
problem. We then proposed a general optimization solver to
solve the problem with convergence guarantee. Multiple future
work directions are also discussed in the paper.

REFERENCES

[1] C. Jiang, H. Zhang, Y. Ren, Z. Han, K. Chen, and L. Hanzo, “Machine
learning paradigms for next-generation wireless networks,” IEEE Wire-
less Commun., vol. 24, no. 2, pp. 98–105, Apr. 2017.

[2] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” Proc. IEEE, vol. 107, no. 11, pp. 2204–2239,
Nov. 2019.

[3] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Artif. Intell. Stat., 2017, pp. 1273–1282.

[4] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward
an intelligent edge: Wireless communication meets machine learning,”
IEEE Commun. Mag., vol. 58, no. 1, pp. 19–25, Jan. 2020.

[5] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” 2019, arXiv:1909.07972.

[6] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in Proc. IEEE Conf. Comput. Commun., Apr. 2019,
pp. 1387–1395.

[7] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Jun. 2019.

[8] G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for
low-latency federated edge learning,” IEEE Trans. Wireless Commun.,
vol. 19, no. 1, pp. 491–506, Jan. 2020.

[9] M. M. Amiri and D. Gündüz, “Federated learning over wireless
fading channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5,
pp. 3546–3557, May 2020.

[10] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui, “Federated
learning with quantization constraints,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2020, pp. 8851–8855.

[11] C. Renggli, S. Ashkboos, M. Aghagolzadeh, D. Alistarh, and T. Hoefler,
“SparCML: High-performance sparse communication for machine learn-
ing,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal.,
Nov. 2019, pp. 1–15.

[12] C. T. Dinh et al., “Federated learning over wireless networks: Con-
vergence analysis and resource allocation,” IEEE/ACM Trans. Netw.,
vol. 29, no. 1, pp. 398–409, Feb. 2021.

[13] S. Dhakal, S. Prakash, Y. Yona, S. Talwar, and N. Himayat, “Coded
federated learning,” in Proc. IEEE Globecom Workshops (GC Wkshps),
Dec. 2019, pp. 1–6.

[14] S. Wang, Y. Ruan, Y. Tu, S. Wagle, C. G. Brinton, and C. Joe-Wong,
“Network-aware optimization of distributed learning for fog computing,”
IEEE/ACM Trans. Netw., vol. 29, no. 5, pp. 2019–2032, Oct. 2021.

Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

HOSSEINALIPOUR et al.: PSL FOR DYNAMIC DISTRIBUTED MODEL TRAINING 237

[15] V. Aggarwal, W. Wang, B. Eriksson, Y. Sun, and W. Wang, “Wide
compression: Tensor ring nets,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 9329–9338.

[16] S. Ji, W. Jiang, A. Walid, and X. Li, “Dynamic sampling and selec-
tive masking for communication-efficient federated learning,” 2020,
arXiv:2003.09603.

[17] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in Proc. IEEE Int. Conf. Commun.
(ICC), Jun. 2020, pp. 1–6.

[18] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooper-
ating devices: A consensus approach for massive IoT networks,” IEEE
Internet Things J., vol. 7, no. 5, pp. 4641–4654, May 2020.

[19] H. Xing, O. Simeone, and S. Bi, “Decentralized federated learning via
SGD over wireless D2D networks,” in Proc. IEEE 21st Int. Workshop
Signal Process. Adv. Wireless Commun. (SPAWC), May 2020, pp. 1–5.

[20] S. Hosseinalipour et al., “Multi-stage hybrid federated learning over
large-scale D2D-enabled fog networks,” IEEE/ACM Trans. Netw.,
vol. 30, no. 4, pp. 1569–1584, Aug. 2022.

[21] F. P. Lin, S. Hosseinalipour, S. S. Azam, C. G. Brinton, and
N. Michelusi, “Semi-decentralized federated learning with cooperative
D2D local model aggregations,” IEEE J. Sel. Areas Commun., vol. 39,
no. 12, pp. 3851–3869, Dec. 2021.

[22] M. Bertran et al., “Adversarially learned representations for information
obfuscation and inference,” in Proc. Int. Conf. Mach. Learn. (ICML),
2019, pp. 614–623.

[23] S. S. Azam, T. Kim, S. Hosseinalipour, C. Joe-Wong, S. Bagchi, and
C. Brinton, “Can we generalize and distribute private representation
learning?” Proc. 25th Int. Conf. Artif. Intell. Stat. (AISTATS), 2022,
pp. 1–21.

[24] Z. Ji, L. Chen, N. Zhao, Y. Chen, G. Wei, and F. R. Yu, “Computa-
tion offloading for edge-assisted federated learning,” IEEE Trans. Veh.
Technol., vol. 70, no. 9, pp. 9330–9344, Sep. 2021.

[25] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-IID data,” 2018, arXiv:1806.00582.

[26] S. Hosseinalipour, C. G. Brinton, V. Aggarwal, H. Dai, and M. Chiang,
“From federated to fog learning: Distributed machine learning over
heterogeneous wireless networks,” IEEE Commun. Mag., vol. 58, no. 12,
pp. 41–47, Dec. 2020.

[27] S. Wang, M. Lee, S. Hosseinalipour, R. Morabito, M. Chiang, and
C. G. Brinton, “Device sampling for heterogeneous federated learning:
Theory, algorithms, and implementation,” in Proc. IEEE Conf. Comput.
Commun., May 2021, pp. 1–10.

[28] M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, “Device-to-device
communication in 5G cellular networks: Challenges, solutions, and
future directions,” IEEE Commun. Mag., vol. 52, no. 5, pp. 86–92,
May 2014.

[29] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Wireless communications for
collaborative federated learning,” IEEE Commun. Mag., vol. 58, no. 12,
pp. 48–54, Dec. 2020.

[30] M. Abolhasan, T. Wysocki, and E. Dutkiewicz, “A review of routing
protocols for mobile ad hoc networks,” Ad Hoc Netw., vol. 2, no. 1,
pp. 1–22, Jan. 2004.

[31] S. Zeadally, R. Hunt, Y.-S. Chen, A. Irwin, and A. Hassan, “Vehicular ad
hoc networks (VANETS): Status, results, and challenges,” Telecommun.
Syst., vol. 50, no. 4, pp. 217–241, Aug. 2012.

[32] İ. Bekmezci, O. K. Sahingoz, and Ş. Temel, “Flying ad-hoc networks
(FANETs): A survey,” Ad Hoc Netw., vol. 11, no. 3, pp. 1254–1270,
May 2013.

[33] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recom-
mender system: A survey and new perspectives,” ACM Comput. Surveys,
vol. 52, no. 1, pp. 1–38, Jan. 2020.

[34] D. Netburn. (Dec. 28, 2020). From COVID to Curbside,
2020 Changed Our Vocabulary Too. [Online]. Available:
https://www.latimes.com/science/story/2020-12-28/from-covid-to-
curbside-2020-changed-our-vocabulary-too

[35] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and
A. A. Bharath, “Generative adversarial networks: An overview,” IEEE
Signal Process. Mag., vol. 35, no. 1, pp. 53–65, Jan. 2018.

[36] S. L. Lohr, Sampling: Design and Analysis: Design And Analysis. Boca
Raton, FL, USA: CRC Press, 2019.

[37] P. Zhao and T. Zhang, “Accelerating minibatch stochastic gradient
descent using stratified sampling,” 2014, arXiv:1405.3080.

[38] D. Bienstock, G. Muñoz, and S. Pokutta, “Principled deep neural
network training through linear programming,” 2018, arXiv:1810.03218.

[39] E. Rizk, S. Vlaski, and A. H. Sayed, “Dynamic federated learning,” in
Proc. IEEE 21st Int. WRKSH Signal Process. Adv. Wireless Commun.
(SPAWC), May 2020, pp. 1–5.

[40] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the
objective inconsistency problem in heterogeneous federated optimiza-
tion,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 33, Dec. 2020,
pp. 7611–7623.

[41] Y. Chen, N. Zhao, Z. Ding, and M. Alouini, “Multiple UAVs as relays:
Multi-hop single link versus multiple dual-hop links,” IEEE Trans.
Wireless Commun., vol. 17, no. 9, pp. 6348–6359, Sep. 2018.

[42] J. Zhang, L. Yang, L. Hanzo, and H. Gharavi, “Advances in cooperative
single-carrier FDMA communications: Beyond LTE-advanced,” IEEE
Commun. Surveys Tuts., vol. 17, no. 2, pp. 730–756, 2nd Quart., 2015.

[43] C. T. Dinh et al., “Federated learning over wireless networks: Conver-
gence analysis and resource allocation,” 2019, arXiv:1910.13067.

[44] Y. Ruan, X. Zhang, S.-C. Liang, and C. Joe-Wong, “Towards flexible
device participation in federated learning,” 2020, arXiv:2006.06954.

[45] M. Chiang, “Geometric programming for communication systems,”
Found. Trends Commun. Inf. Theory, vol. 2, nos. 1–2, pp. 1–154,
Aug. 2005.

[46] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” J. Mach. Learn. Res., vol. 17, no. 83,
pp. 1–5, Apr. 2016.

[47] G. Xu, “Global optimization of signomial geometric programming
problems,” Eur. J. Oper. Res., vol. 233, no. 3, pp. 500–510, Mar. 2014.

[48] R. Duffin and E. Peterson, “Reversed geometric programs treated by
harmonic means,” Indiana Univ. Math. J., vol. 22, no. 6, pp. 531–550,
1972.

[49] B. R. Marks and G. P. Wright, “A general inner approximation algorithm
for nonconvex mathematical programs,” Oper. Res., vol. 26, no. 4,
pp. 681–683, Aug. 1978.

[50] S. Wang, S. Hosseinalipour, M. Gorlatova, C. G. Brinton, and
M. Chiang, “UAV-assisted online machine learning over multi-tiered net-
works: A hierarchical nested personalized federated learning approach,”
2021, arXiv:2106.15734.

[51] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge, U.K.: Cambridge Univ. Press, 2005.

[52] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 8026–8037.

[53] L. Yan, C. Corinna, and C. J. Burges. The MNIST Dataset
of Handwritten Digits. Accessed: Jun. 2023. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[54] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST. Accessed:
Jun. 2023. [Online]. Available: https://github.com/zalandoresearch/
fashion-mnist

[55] J. Neyman, “On the two different aspects of the representative method:
The method of stratified sampling and the method of purposive selec-
tion,” in Breakthroughs in Statistics. Cham, Switzerland: Springer, 1992,
pp. 123–150.

[56] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on
geometric programming,” Optim. Eng., vol. 8, no. 1, p. 67, Mar. 2007.

Seyyedali Hosseinalipour (Member, IEEE) received the Ph.D. degree in EE
from NCSU in 2020. He is currently an Assistant Professor of EE with
University at Buffalo-SUNY.

Su Wang (Student Member, IEEE) received the B.Sc. degree in ECE from
Purdue University in 2019, where he is currently pursuing the Ph.D. degree.

Nicolò Michelusi (Senior Member, IEEE) received the Ph.D. degree in EE
from the University of Padua, Italy, in 2013. He is currently an Associate
Professor of ECEE with Arizona State University.

Vaneet Aggarwal (Senior Member, IEEE) received the Ph.D. degree in EE
from Princeton University in 2010. He is currently a Professor with Purdue
University.

Christopher G. Brinton (Senior Member, IEEE) received the Ph.D. degree
in EE from Princeton University in 2016. He is currently the Elmore Chaired
Assistant Professor of ECE with Purdue University.

David J. Love (Fellow, IEEE) is currently the Nick Trbovich Professor of
Electrical and Computer Engineering at Purdue University.

Mung Chiang (Fellow, IEEE) is president and Roscoe H. George
Distinguished Professor of ECE at Purdue University.

Authorized licensed use limited to: Purdue University. Downloaded on March 26,2024 at 02:47:36 UTC from IEEE Xplore. Restrictions apply.

