
On the Effects of Data Heterogeneity on the Convergence Rates of
Distributed Linear System Solvers

Boris Velasevic*
MIT

Rohit Parasnis*
Purdue

Christopher G. Brinton
Purdue

Navid Azizan
MIT

Abstract— We consider the fundamental problem of solving a
large-scale system of linear equations. In particular, we consider
the setting where a taskmaster intends to solve the system
in a distributed/federated fashion with the help of a set of
machines, who each have a subset of the equations. Although
there exist several approaches for solving this problem, missing
is a rigorous comparison between the convergence rates of
the projection-based methods and those of the optimization-
based ones. In this paper, we analyze and compare these
two classes of algorithms with a particular focus on the most
efficient method from each class, namely, the recently proposed
Accelerated Projection-Based Consensus (APC) [1] and the
Distributed Heavy-Ball Method (D-HBM). To this end, we first
propose a geometric notion of data heterogeneity called angular

heterogeneity and discuss its generality. Using this notion, we
bound and compare the convergence rates of the studied
algorithms and capture the effects of both cross-machine and
local data heterogeneity on these quantities. Our analysis results
in a number of novel insights besides showing that APC is the
most efficient method in realistic scenarios where there is a
large data heterogeneity. Our numerical analyses validate our
theoretical results.

I. INTRODUCTION

The emergence of big data and the spate of technological
advancements over the last few decades have resulted in nu-
merous computational tasks and algorithms being distributed
over networks of processing units that may or may not be
centrally coordinated by a server or a taskmaster [2]–[5].
Compared to fully centralized architectures, such distributed
implementations often enable more efficient solutions to
complex problems while facing fewer memory issues.

Of significant interest among these are distributed ap-
proaches to the problem of solving a large-scale system
of linear equations. This is among the most fundamental
problems in distributed computation because systems of
linear equations form the backbone of innumerable algo-
rithms in engineering and the sciences. Unsurprisingly, then,
there exist multiple approaches for solving linear equations
distributively. These can be broadly categorized as (a) ap-
proaches based on distributed optimization and (b) those
specifically aimed at solving systems of linear equations.

Algorithms belonging to the former category rely on
the observation that solving a linear system can be ex-
pressed as an optimization problem (a linear regression) in
which the loss function is separable in the data (i.e., the
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coefficients) but not in the variables [1]. Therefore, this
category includes popular gradient-based methods such as
Distributed Gradient Descent (DGD) and its variants [6]–
[8], Distributed Nesterov’s Accelerated Gradient Descent (D-
NAG) [9], Distributed Heavy Ball-Method (D-HBM) [10],
and some recently proposed algorithms such as Iteratively
Pre-conditioned Gradient-Descent (IPG) [11]. Besides, the
Alternating Direction Method of Multipliers [12], a well-
known algorithm that is significantly slower than the others
for this problem, also falls into this category.

As for the second category, i.e., approaches that are
specific to solving linear systems, the most popular is the
Block-Cimmino Method [13]–[15], which is essentially a
distributed version of the Karczmarz method [16]. In ad-
dition, there exist some recent approaches such as those
proposed in [17]–[19], and Accelerated Projection-based
Consensus (APC) [1].

Among all these methods from either category, of interest
to us are algorithms whose convergence rates are linear
(i.e., the error decays exponentially in time) and whose
computation and communication complexities are linear in
the number of variables. These include DGD, D-NAG, D-
HBM, Block-Cimmino Method, APC, and the projection-
based distributed solver proposed in [19]. It has been shown
analytically in [1] that D-HBM has a faster rate of conver-
gence to the true solution than the other two gradient-based
methods, i.e., DGD and D-NAG, and that APC converges
faster than the other two projection-based methods, namely
Block-Cimmino Method and the algorithm of [19].

However, which among the aforementioned methods is
the fastest remains hitherto unknown, because it has so far
proven challenging to characterize the relationships between
the optimal convergence rates of the gradient-based ap-
proaches with those of the projection-based approaches. This
is because the optimal convergence rates of the latter class of
methods depend on how the global system of linear equations
is partitioned for the distribution of these equations among
the machines in the network, and any precise characterization
of this dependence is bound to be an inherently complex
combinatorial problem.

To circumvent this complexity, we propose a novel ap-
proach to capture the effect of the partitioning of the
equations among the machines on the convergence rates
of the aforementioned gradient-based and projection-based
methods. Our analysis is based on a new notion of data het-
erogeneity (a concept used in federated learning to quantify
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the diversity of local data across machines) called angular
heterogeneity. This concept enables us to compare algorithms
from both the classes of interest and to show that APC
converges faster than all other methods when the degree of
cross-machine angular heterogeneity is significant, as is often
the case in real-world scenarios.

A. Summary of Contributions
Our contributions are summarized below.

1) A Geometric Notion of Data Heterogeneity: We propose
the concept of angular heterogeneity, which extends the
notion of cosine similarity to certain vector spaces associated
with the distribution of global data among the machines.
The generality of this concept and its scale-invariant nature
make it a potentially useful measure of data heterogeneity in
distributed learning.
2) Convergence Rate Analysis: We derive bounds on the
optimal convergence rates of (a) three gradient descent-
based methods, namely D-NAG, D-HBM, and DGD, and (b)
three projection-based methods, namely the Block-Cimmino
Method, APC, and the algorithm proposed in [19]. Moreover,
we show that the greater the level of cross-machine angular
heterogeneity, the greater are the optimal convergence rates
of APC and the Block-Cimmino Method.
3) Experimental Validation: We validate our theoretical
results numerically and demonstrate how the optimal conver-
gence rate of the most efficient method (APC) is bounded
with respect to the dimension of the data. We also show how
this convergence rate depends on the number of machines.

Notation: We let R denote the set of real numbers. Given
two natural numbers n and m, we let [n] := {1, 2, . . . , n}
denote the set of the first n natural numbers, Rn denotes the
space of all n-dimensional column vectors with real entries,
and Rm⇥n to denotes the space of real-valued matrices with
m rows and n columns. Besides, In⇥n 2 Rn⇥n denotes the
identity matrix and On⇥n 2 Rn⇥n denotes the matrix with
every entry equal to 0, where the subscripts are dropped if
they are clear from the context. for each k 2 [n], we let ek
denote the k-th canonical basis vector of Rn.

For a vector v 2 Rn, we let vk denote the k-th entry
of v for each k 2 [n], and kvk :=

pPn
k=1 v

2
k denotes the

Euclidean norm of v. Given a matrix M 2 Rm⇥n, we let M>

denote the transpose of M , we let kMk := supkzk=1 kMzk
denote the spectral matrix norm of M , and ⇢(M) denotes
the spectral radius (the absolute value of the eigenvalue with
the greatest absolute value) of M . In addition, for a square
matrix M 2 Rn⇥n, we let �max(M) and �min(M) denote,
respectively, the maximum and the minimum eigenvalues of
M . Furthermore, if M is invertible, then (M) denotes the
condition number of M as defined with respect to the spectral
norm, i.e., (M) := kMk ·

��M�1
��. It is well-known [20]

that (M) equals the ratio of the greatest and the smallest
singular values of M . All matrix inequalities hold entry-wise.

Two linear subspaces U and V are said to be orthogonal
if u

>
v = 0 for all u 2 U and all v 2 V , to express which

we write U ? V . Finally, we define the inner product of two
vectors u, v 2 Rn as hu, vi := u

>
v.

II. PROBLEM FORMULATION
We aim to compare the efficiencies of two classes of

distributed linear system solvers, namely, gradient-based al-
gorithms and projection-based algorithms. We first introduce
the problem setup, describe the most efficient algorithms
from each class, and reproduce some known results on
their optimal convergence rates. We then introduce a few
geometric notions of data heterogeneity to formulate our
problem precisely.

A. The Setup
Consider a large-scale system of linear equations

Ax = b, (1)

where A 2 RN⇥n, x 2 Rn, and b 2 RN . Throughout this
paper, we assume N = n for the sake of simplicity. In other
words, the coefficient matrix A is assumed to be a square
matrix, as we believe that the results can be extended to
more general cases using very similar arguments and proof
techniques. In addition, we assume A to be invertible, which
implies that (1) has a unique solution x

⇤ (so that Ax⇤ = b).
To solve the n equations specified by (1) distributively

over a network of m  n edge machines, the central server
partitions the global system (1) into m linear subsystems as

2

64
A1
...

Am

3

75x =

2

64
b1
...
bm

3

75 ,

where for each i 2 [m], the i-th subsystem Aix = bi

(equivalently, the local data pair [Ai, bi] where Ai 2 Rpi⇥n

and bi 2 Rpi ) consists of pi equations and is accessible
only to machine i 2 [m]. Unlike the analysis in [1], we
do not impose any restrictions on the number of equations
in any of these local subsystems. Note, however, that if
m � 1, then each of these local systems is likely to be
highly undetermined with infinitely many solutions because
the number of local equations is likely much smaller than n.

We now describe the algorithms of interest. For each of
these algorithms, there exists an optimal convergence rate
⇢ > 0 such that the convergence error vanishes at least
as fast as ⇢

t vanishes in the limit as t goes to 1. We
focus particularly on APC, the projection-based method with
the fastest convergence behavior, and D-HBM, the gradient-
based method with the fastest convergence behavior.

B. Accelerated Projection-Based Consensus
Originally proposed in [1], accelerated projection-based

consensus (APC) is essentially a distributed linear system
solver in which every iteration consists of a local projection-
based consensus step followed by a global averaging step,
both of which incorporate momentum terms that accelerate
the convergence of the algorithm to the global solution of (1).

We now describe the APC algorithm in detail. At all times
t, the server as well as all of the m machines store their
estimates {x̄(t)}[ {xi(t)}mi=1 of the global solution x

⇤, and
these estimates are initialized and updated as follows. Each
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machine i sets its initial estimate xi(0) of x
⇤ to one of the

infinitely many solutions of Aix = bi, which can be easily
computed in O(p3i ) steps. The machine then transmits xi(0)
to the server, which then computes its own initial estimate of
x
⇤ as x̄(0) := 1

m

Pm
i=1 xi(0). In subsequent iterations, xi(t)

and x̄(t) are updated as follows.
1) Projection-Based Consensus Step: In iteration t+1, ev-

ery machine i receives x̄(t), the server’s most recent estimate
of x

⇤. The machine then updates its own estimate xi(t) by
performing the following projection-based consensus step:

xi(t+ 1) = xi(t) + �Pi(x̄(t)� xi(t)), (2)

where � � 1 is a fixed momentum and the ma-
trix Pi := I �A

>
i (AiA

>
i )

�1
Ai is the orthogonal projec-

tor onto the nullspace of Ai. In other words, the ma-
chine takes an accelerated step in a direction that is
orthogonal to the coefficient vectors of its local sys-
tem of equations (i.e., the rows of Ai). This ensures
that Aixi(t+ 1) = Aixi(t) = Aixi(0) = bi, i.e., xi(t) never
leaves the local solution space of machine i.

2) Global Averaging Step: The next step in iteration t+1
is the global averaging step performed by the server as

x̄(t+ 1) =
⌘

m

mX

i=1

xi(t+ 1) + (1� ⌘)x̄(t), (3)

where ⌘ > 1 is a fixed momentum and (1 � ⌘)x̄(t) is the
memory term.

In sum, (2) and (3) are the update steps that define APC.
Convergence Rate: It was shown in [1] that the conver-

gence rate of APC depends on the arithmetic mean of the
projectors {Pi}mi=1. More precisely, let S :=

Pm
i=1(I�Pi) =Pm

i=1(A
>
i (AiA

>
i )

�1
Ai). We then know from [1, Theorem

1]1 that there exist values of � and ⌘ that result in the optimal
convergence rate of APC being given by

⇢APC := 1� 2
⇣p

 (S) + 1
⌘�1

. (4)

Other Projection-Based Methods: It was shown
in [1] that the optimal convergence rate of the Block-
Cimmino Method (BCM) is given by the convergence rate
⇢BCM := 1� 2

(S)+1 . Besides, the algorithm proposed
in [19] has an optimal convergence rate given by
⇢MLM := 1� 1

m�min(S), where MLM stands for Mou, Liu,
and Morse. As shown in [1], we have ⇢APC  ⇢BCM  ⇢MLM.

C. Distributed Heavy-Ball Method

Introduced in [10], the Distributed Heavy-Ball Method (D-
HBM) is a distributed linear system solver that performs the
following momentum-enhanced updates in each iteration t:

z(t+ 1) = �z(t) +
mX

i=1

A
>
i (Aix(t)� bi) (5)

x(t+ 1) = x(t)� ↵z(t+ 1), (6)

1Note that S = mX for the matrix X defined in [1, Eq. (4)].

Here, � > 0 and ↵ > 1 are the momentum and step
size parameters, respectively, and A

>
i (Aix(t) � bi) is the

gradient of the function fi : Rn ! [0,1) defined by fi(y) =
kAiy � bik2. This gradient is evaluated at the global estimate
x(t) by machine i. Thus, each iteration of D-HBM consists
of a memory-augmented gradient update followed by an
accelerated gradient descent step.

Convergence Rate: We know from [21] that the global
estimate x(t) in D-HBM converges to x

⇤ as fast as ⇢
>
HBM

vanishes, where

⇢HBM := 1� 2

✓q
(A>A) + 1

◆�1

. (7)

Other Gradient-Based Methods: It was shown in [1]
that DGD has an optimal convergence rate given by the
convergence rate ⇢DGD := 1� 2

(A>A) , and it was shown
in [21] that the optimal convergence rate of D-NAG is
⇢NAG := 1� 2p

3(A>A)+1
. Thus, ⇢HBM  ⇢NAG  ⇢DGD.

III. GEOMETRIC NOTIONS OF DATA HETEROGENEITY

In this section, we develop two geometric notions of data
heterogeneity. The first notion is based on the following
concepts of local data spaces and cosine similarities between
local data.

Definition 1 (Local Data Spaces). Given a machine i 2 [m],
the row space of Ai, denoted by R(Ai), is called the local
data space of machine i.

Note that the linear span of the coefficient vectors (the
rows of A) stored at machine i equals the span of the rows
of Ai, which is precisely the local data space of the machine.

Definition 2 (Cosine Similarity). For any two machines
i, j 2 [m], let ✓ij denote the minimum angle between their
local data spaces, i.e.,

✓ij := cos�1 max
u2R(Ai),v2R(Aj)

⇣
|u>

v| kuk�1 kvk�1
⌘
. (8)

Then cos ✓ij is called the cosine similarity between the local
data of machines i and j.

Remark 1. Making the local data spaces R(Ai) and R(Aj)
uni-dimensional in (8) and setting kuk = kvk = 1 would
result in an expression for the cosine similarity between two
unit-norm vectors. Definition 2, therefore, generalizes the
standard definition of cosine similarity.

On the basis of Definition 2, we now define cross-machine
angular heterogeneity.

Definition 3 (Cross-machine Angular Heterogeneity).
The angle defined as the inverse cosine of the max-
imum of all pairwise cosine similarities, i.e., ✓H :=
cos�1 (max1i<jm cos ✓ij) , is called the cross-machine
angular heterogeneity of the network.

Note that we always have 0  ✓ij , ✓H  ⇡
2 . Also, note

that the more the local data spaces of the machines diverge
from each other in the angular sense, the greater is the
cross-machine angular heterogeneity of the network. At the
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same time, however, a salient feature of this notion of data
heterogeneity is that its value is invariant with respect to any
scaling applied to the rows of A. This is especially useful
in the context of solving a linear system, because the true
solution of such a system is unaffected by scaling any subset
of the equations.

Besides cross-machine heterogeneity, we define another
geometric notion of data heterogeneity to quantify the total
angular spread of the local data at each machine.

Definition 4 (Local Angular Heterogeneity). The local
angular heterogeneity �i of machine i is the minimum angle
between any two of its feature vectors (i.e., the rows of Ai).

Hence, �i := cos�1 max1k<`pi

✓
|e>k AiA

>
i e`|

kA>
i ekkkA>

i e`k

◆
.

Our goal now is (a) to analyze the effects of both local
and non-local angular heterogeneity on the convergence rates
⇢APC and ⇢HBM, and (b) to use the results of our analysis to
compare the efficiencies of APC and D-HBM.

IV. MAIN RESULTS
To see how data heterogeneity affects the convergence

rates ⇢APC and ⇢HBM, we first bound the condition numbers
(S) and (A>

A) (with S as defined in Subsection II-B) in
terms of the angular heterogeneity measures ✓H and {�i}mi=1.
We then use (4) and (7) to compare ⇢APC with ⇢HBM. We
relegate all the proofs to the extended version [22].

Theorem 1. For any n ⇥ n system of equations and m

machines with a given cross-machine angular heterogeneity
✓H > cos�1

⇣
1

m�1

⌘
, the following bound holds independent

of the number of equations n:

(S)  (1 + (m� 1) cos ✓H)(1� (m� 1) cos ✓H)
�1

.

Theorem 1 shows that the condition number of S (and
hence also the convergence rate ⇢APC) is upper-bounded by
an expression that is independent of the data dimension n. As
expected, the higher the cross-machine angular heterogeneity,
the tighter is the bound and the greater is the likelihood of
APC converging faster to the true solution. Moreover, the
result suggests that increasing the number of machines may
slow down the convergence rate, which is in agreement with
our intuition that packing more local data spaces into the
same global space Rn may result in reducing the angular
divergence between the data spaces.

Having examined (S), which determines ⇢APC, we now
examine (A>

A), which determines ⇢HBM.

Theorem 2. Let a>k 2 R1⇥n denote the k-th row of A for
each k 2 [n]. We have

(A) �
✓
max
k2[n]

kakk
◆✓

min
`2[n]

n
ka`k sin ✓(`)min

o◆�1

, (9)

where ✓
(`)
min := cos�1 maxk2[n]\{`}

⇣
|a>k a`| kakk

�1 ka`k�1
⌘

is the minimum angle between a
>
` and any other row of A.

Theorem 2 provides a bound on (A>
A) = ((A))2 not

only in terms of the minimum local angular heterogeneity

�min := mini2[m] �i, but also in terms of the variation in the
norms of the rows of A.

To see the dependence on �min, we first observe that for
every ` 2 [n], there exists a machine i 2 [m] that stores
a`, which, by the definitions of ✓

(`)
min and �i, implies that

✓
(`)
min  �i. Using this, we deduce from (9) that

(A>
A) �

�
sin2 �min

��1 (10)

Thus, it suffices to have just one machine with low local data
heterogeneity for the condition number of A>

A to be large.
To see the dependence on the variation in the norms of

{ak : k 2 [n]}, one can easily verify that (9) implies that

(A>
A) �

✓
max
k2[n]

kakk2
◆✓

min
`2[n]

ka`k2
◆�1

. (11)

Therefore, a single row of A with an atypically large (or
small) norm suffices to make (A>

A) large.
Besides, it is worth noting that Theorem 2 is a general

result on condition numbers as it does not make any assump-
tions on A other than that it is a square matrix. Hence, this
result may be of independent interest to the reader. Finally,
the theorem leads to a lower bound on (S), as shown below.

Corollary 1. We always have (S) � 1
sin2 ✓H

independently
of the number of equations n and the number of machines
m.

We now combine the bound derived in Theorem 1 with
the expression for ⇢APC provided in (4) and simplify the
result in order to obtain an upper bound on ⇢APC. Similarly,
combining Corollary 2 with (4) results in a lower bound on
⇢APC. We repeat these steps with the closed-form expressions
we provided in Section II-B for the optimal convergence
rates ⇢MLM and ⇢BCM to obtain similar bounds, which we
summarize in Table I.

Likewise, we combine the bounds established in (10)
and (11) with the expression for ⇢HBM provided in (7)
in order to obtain the following lower bounds on ⇢HBM:

⇢HBM = 1 � 2p
(A>A)+1

(a)
�= 2

1+sin�min
� 1, and ⇢HBM =

1 � 2p
(A>A)+1

(b)
� maxkkakk�min`ka`k

maxkkakk+min`ka`k , where (a) follows

from (10) and the fact that �i 2 [0, ⇡
2 ] for all i 2 [m], and

(b) follows from (11). We repeat these steps with the closed-
form expressions we provided in Section II-C for ⇢DGD and
⇢NAG to obtain similar convergence rate bounds, which we
summarize in Table I.

A. Comparison of ⇢APC and ⇢HBM

To compare ⇢APC with ⇢HBM in settings with different
levels of local and cross-machine angular data heterogeneity,
we first deduce from (4) and (7) that ⇢APC  ⇢HBM if and
only if (S)  (A>

A). Hence, we obtain the following
result as an immediate consequence of Theorem 1 and (10).

Corollary 2. A sufficient condition for ⇢APC  ⇢HBM is the
following: (m� 1) cos ✓H  cos2 �min.

We now consider two realistic cases for �min and ✓H.
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TABLE I: Summary of our bounds on the optimal conver-
gence rates of projection-based and gradient-based methods.
MLM: Mou, Liu, and Morse [19]; BCM: Block-Cimmino Method [13]–
[15]; APC: Accelerated Projection-Based Consensus [1]; DGD: Distributed
Gradient Descent [8]; D-NAG: Distributed Nesterov’s Accelerated Gradient
Descent [9]; D-HBM: Distributed Heavy-Ball Method [10]

1� sin2 ✓H  ⇢MLM 
�
1� 1

m

�
(1 + cos ✓H)

2
1+sin2 ✓H

� 1  ⇢BCM  (m� 1) cos ✓H

2
1+sin ✓H

� 1  ⇢APC  (m�1) cos ✓H
1+

p
1�(m�1) cos2 ✓H

⇢DGD � maxkkakk2�min`ka`k2
maxkkakk2+min`ka`k2

, ⇢DGD � 2
1+sin2 �min

� 1

⇢NAG � 1� 2r
3
maxkkakk
min`ka`k

+1
, ⇢NAG � 1� 2 sin�minp

3+sin2 �min

⇢HBM � maxkkakk�min`ka`k
maxkkakk+min`ka`k

, ⇢HBM � 2
1+sin�min

� 1

1) Small �min and Large ✓H: This is the case of high
cross-machine heterogeneity accompanying low local hetero-
geneity. Hence, this corresponds to most real-world scenarios
in which different machines being exposed to different envi-
ronments results in significant data variation across machines
rather than within any local dataset. From Corollary 2 and
the preceding discussion, it is clear that APC is likely to
outperform D-HBM.

2) Large �min and Small ✓H: This may happen in feder-
ated learning scenarios in which the distribution of the global
data across the machines is implemented in an i.i.d. manner,
which results in the local data being highly representative of
the global data. Consequently, if the global data are diverse,
then so is every local dataset. This may lead to the value of
�min being large. On the other hand, since the local datasets
are similar to the global dataset, they are also similar to each
other. This may result in a small ✓H. In light of Corollary 2,
this means that APC converges slowly in this case. At the
same time, however, highly diverse global data are likely to
result in a large variation in the norms of {ak : k 2 [n]} (the
rows of A). This leads to a large (A>

A), and consequently,
a poor convergence rate for D-HBM too.

Nonetheless, APC is likely to converge faster than D-HBM
in most real-world scenarios, which are subsumed by Case
1. Moreover, as Theorems 1 and 2 suggest, APC has the
added advantage of its convergence rate being insensitive
to any diversity in the Euclidean lengths of the coefficient
vectors (the rows of A).

B. Comparison of Other Optimal Convergence Rates

From the definitions of ⇢BCM and ⇢DGD, it is clear that the
condition stated in Corollary 2 is also a sufficient condition

for the Block-Cimmino Method to converge faster than DGD.
Therefore, the Block-Cimmino Method can be compared
with DGD in the exact same manner in which we compared
APC with D-HBM in Section IV-A. Moreover, Table I shows
that any comparison between a projection-based method and
a gradient-based method will be qualitatively similar to the
preceding comparisons.

V. EXPERIMENTS

In this section, we validate our theoretical results with the
help of two sets of Monte-Carlo experiments:
1) In the first experiment, we keep n, the number of equa-
tions in the global system (1), fixed, and we investigate how
the convergence rate of APC compares with that of D-HBM
for a given number of machines m.
2) We keep m fixed and investigate how the convergence
rate of APC compares with that of D-HBM.
We now describe the experiments in detail. In the following,
N (µ,�2) denotes the Gaussian distribution with mean µ 2 R
and variance �

2
> 0. Furthermore, in every experiment, we

set pi = n
m , where n is the number of equations and m is

the number of machines.

Experiment 1: Dependence of ⇢APC and ⇢HBM on m

We set n = 120 and generate multiple independent
realizations of A 2 Rn⇥n, whose entries are i.i.d. random
variables generated according to N (µ,�2) with µ = 0
and � = 1. We then compute the condition numbers of
S and A

>
A. To make our simulations stable, we drop the

samples where (A>
A) > 107. Nevertheless, we make sure

to obtain T = 300 samples, and we compute the empirical
expectations of ⇢HBM (which is independent of the number
of machines) and ⇢APC = ⇢APC(m) for m 2 [n].

Next, we repeat all of the above steps with µ = 1 in order
to examine the phenomenon of large-mean distributions lead-
ing to more pronounced differences between the convergence
rates of APC and D-HBM, as described in [1]. Figure 1 plots
the results of Experiment 1 for µ 2 {0, 1}.

Fig. 1: Variation of ⇢APC and ⇢HBM with m for n = 120
and µ 2 {0, 1}.

Key Inferences:
1) APC clearly outperforms D-HBM in both cases. This
validates the conclusions drawn in Section IV.
2) As the number of machines increases, the optimal con-
vergence rate of APC deteriorates and approaches that of
D-HBM. This is as expected: as we increase m, we increase
the number of local data spaces being packed into Rn (the
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universal data space), possibly reducing the angles between
some of the local spaces. This reduces the cross-machine
angular heterogeneity with some positive probability and
leads to an increase in the expected value of the upper bound
on (S) established in Theorem 1.
3) APC converges faster when the coefficient mean µ is
increased. This is consistent with the findings of [1] and
requires further investigation.

Experiment 2: Dependence of ⇢APC and ⇢HBM on n

We retain the setup of Experiment 1, except that we now
vary the number of equations (i.e., the size of the matrix A)
and keep the number of machines fixed, and we now draw the
entries of A only from N (1, 1). Note that ⇢HBM depends on
the matrix size n⇥n via (A>

A). Therefore, we now expect
this convergence rate to vary in our Monte-Carlo simulations.
Figure 2 displays the results for m 2 {10, 20}.

Fig. 2: Variation of ⇢APC and ⇢HBM with n for fixed m.

Key Inferences:
1) Both ⇢APC and ⇢HBM increase with n because the inherent
complexity of (1) increases with the number of equations.
2) The convergence rate of APC is remarkably insensitive to
n for large values of n. This can be explained with the help
of Theorems 1 and 2 as follows: we know from Theorem 1
that (S) is upper-bounded by a quantity that depends on
n only through the cross-machine angular heterogeneity ✓H.
Given that the rows of A are i.i.d. Gaussian random vectors,
we do not expect ✓H to decrease with n, which implies that
(S) (and hence ⇢APC) is bounded with respect to n.

VI. CONCLUSION AND FUTURE DIRECTIONS
We compared the convergence rates of two classes of

distributed linear system solvers that differ greatly in their
design, namely, gradient descent-based methods such as
D-HBM, and projection-based methods such as APC. To
this end, we developed a novel, geometric notion of data
heterogeneity called angular heterogeneity and used it to
characterize the convergence rates of three distributed linear
system solvers belonging to each class. In the process, we
established the superiority of APC for typical real-world sce-
narios theoretically and empirically. We also provided several
interesting insights into the effect of angular heterogeneity
on the efficiencies of the studied methods. As a by-product of
our work, we obtained a tight bound on the condition number
of an arbitrary square matrix in terms of the Euclidean norms
of its rows and the angles between them.

In the future, we aim to study the effect of the number
of machines on the convergence rates of projection-based

algorithms such as APC. We also aim to use the condition
number bounds derived above to characterize the expected
convergence rate of APC in different randomized settings.
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