This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

Federated Split Learning with Joint
Personalization-Generalization for Inference-
Stage Optimization in Wireless Edge Networks

Dong-Jun Han, Member, IEEE, Do-Yeon Kim, Minseok Choi, Member, IEEE, David Nickel, Student
Member, IEEE, Jaekyun Moon, Fellow, IEEE, Mung Chiang, Fellow, IEEE, Christopher G. Brinton, Senior
Member, IEEE

Abstract—The demand for intelligent services at the network edge has introduced several research challenges. One is the need for a
machine learning architecture that achieves personalization (to individual clients) and generalization (to unseen data) properties
concurrently across different applications. Another is the need for an inference strategy that can satisfy network resource and latency
constraints during testing-time. Existing techniques in federated learning have encountered a steep trade-off between personalization and
generalization, and have not explicitly considered the resource requirements during the inference-stage. In this paper, we propose
SplitGP, a joint edge-Al training and inference strategy that simultaneously captures generalization/personalization for efficient inference
across resource-constrained clients. The training process of SplitGP is based on federated split learning, with the key idea of optimizing
the client-side model to have personalization capability tailored to its main task, while training the server-side model to have
generalization capability for handling out-of-distribution tasks. During testing-time, each client selectively offloads inference tasks to the
server based on the uncertainty threshold tunable based on network resource availability. Through formal convergence analysis and
inference time analysis, we provide guidelines on the selection of key meta-parameters in SplitGP. Experimental results confirm the

advantage of SplitGP over existing baselines.

Index Terms—Federated learning, Split learning, Edge-Al, Inference, Personalization, Wireless edge network

1 INTRODUCTION

W ITH the increasing prevalence of mobile and Internet-
of Things (IoT) devices, there is an explosion in
demand for machine learning (ML) functionality across
the intelligent network edge. From the service provider’s
perspective, providing a high-quality edge-Al service to
individual clients, from smartphones to smart cars, is of
paramount importance: given newly collected data, the
goal of each client is to apply the provided ML model
for inference/decisioning. However, during the inference
stage (i.e., when training is completed), there are two key
requirements that need to be fulfilled to satisfy the client
needs in practical edge-Al settings.

1.1

1) Personalization vs. generalization. First, during inference,
each client should be able to make reliable predictions not
only for dominant data classes which have been observed
locally, but also occasionally for the classes that have not
previously appeared in its local data. We refer to these
as a client’s main classes and out-of-distribution classes,

Key Requirements for Edge-Al

o This work was partially presented at IEEE INFOCOM 2023 [1].

e Dong-Jun Han, David Nickel, Mung Chiang and Christopher G.
Brinton are with Purdue University, West Lafayette, USA (e-
mail: han762@purdue.edu; dnickel@purdue.edu; chiang@purdue.edu;
cgb@purdue.edu).

e Minseok Choi is with the School of Electronics Engineering, Kyung Hee
University, Yongin, South Korea (e-mail: choims@khu.ac.kr).

e Do-Yeon Kim and Jaekyun Moon are with the School of Electrical
Engineering, Korea Advanced Institute of Science and Technology (KAIST),
Daejeon, South Korea (e-mail: dy.kim@kaist.ac.kr; jmoon@kaist.edu).

respectively. Federated learning (FL) [2], [3], [4], the most
recently popularized technique for distributing ML across
edge devices, has demonstrated a sharp tradeoff between
these objectives. In particular, existing works have aimed
to create either a generalized global model [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18] that is
tuned to the data distribution across all clients, or personalized
local models [19], [20], [21], [22], [23] that work case-by-
case on each client’s individual data. For example, a global
activity recognition classifier for wearables learned via FL
would be optimized for classes of activities observed over
all users. We term the capability to classify all classes
as “generalization”. The generalized global model is a
good option when the input data distribution appearing
at each client during inference resembles the global training
distribution. However, when the data distributions across
clients are significantly non-IID (independent and identically
distributed), the globally aggregated FL model may not
be the best option for many clients (e.g., consider activity
sensors for individuals playing different types of sports).
Personalized FL approaches tackle this problem by providing
a customized local model to each client based on their
individual local data distributions (e.g., a basketball vs.
football player). We term this capability to classify the local
classes as “personalization”.

However, when a client needs to make predictions for
classes that are not in its local data (e.g., due to data
distribution shift between training and inference), the per-
sonalized FL model shows much lower performance than the
generalized model, as shown later in Section 6. Hence, it is

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

predictions Make predictions

for all test data

predictions

Make predictions for
out-of-distribution classes

Make predictions
for all test data

Classes: {2, 3}

(a) Full model at the client-side

g
Server

” Raw data offload
to the server

[

(b) Full model at the server-side

Server

-
-

Make predictions
— for local classes . <~ Selective

; e activation offload

{1,2}

\
\
\
\

Classifier i,

—
[hip=

D @ | Client
@ | component ¢y

12,3}

(c) Proposed framework with split models

Fig. 1: Comparison of inference procedures: Consider the inference stage when training is completed. Deploying the full model
at individual clients (as in Fig. 1(a)) is challenging in resource-constrained edge-AlI settings (e.g., mobile/IoT devices) as it induces
significant storage and computational burden during inference. When the model is implemented at the server (as in Fig. 1(b)), raw
data should be directly transmitted from the client to the server during inference, which incurs various privacy, communication and
latency issues. The proposed framework based on model splitting and edge computing in Fig. 1(c) captures both personalization
and generalization requirements in resource-constrained scenarios while retaining desirable privacy and latency properties.

important to capture both personalization (for handling local
classes) and generalization (for handling out-of-distribution
classes) in practice where not only the main classes but also
the out-of-distribution classes appear occasionally during the
inference stage, due to the time-varying testing environment
at individual clients.

2) Resource and latency constraints during inference.
When training is finished, the trained model should be de-
ployed over the network for efficient inference/decisioning.
Mobile edge and IoT devices suffer from limited storage
and computation resources. As a result, it is challenging
to deploy large-scale models (e.g., neural networks with
millions of parameters) at individual clients for inference
tasks without incurring significant costs. Deploying the full
model at a nearby edge server can be another option, but
this approach requires direct transmissions of raw data from
the client during inference, which incur noticeable latency
depending on the wireless channel condition. Moreover,
under this framework, when client models are personalized,
the server would need to store all of these variations, which
presents scalability challenges. Hence, effectively deploying
the trained model over the network (i.e., to satisfy the
resource and latency requirements) for efficient inference
is of paramount importance.

These two issues are thus significant obstacles to high
quality edge-Al services, with existing approaches falling
short of addressing them simultaneously. Motivated by this,
we pose the following research questions: How can we achieve
both personalization and generalization across resource-constrained
edge devices for high-quality inference? Moreover, what is the best
inference strategy to satisfy the resource and latency constraints in
wireless networks?

1.2 Overview of Approach

To address these questions, we propose SplitGP, a joint
training and inference methodology for generalization and
personalization in FL settings. Our key idea is to split the
full model into two parts, client-side and server-side, and
impose different roles to them. The client-side model should
have strong personalization capability, where the goal is to

work well on each user’s local distribution. On the other
hand, the server-side model, shared by all clients in the
system, should have strong generalization capability across the
tasks of all users. We achieve this goal based on training
with federated split learning (SL). During inference, each
client solves its personalized task, i.e., for its main classes,
using the client-side model. When the client has to make a
prediction that is not related to its personalized task, i.e., for
out-of-distribution classes, they can send the output feature
from the client-side model to the server-side model, and
receive the predicted result back from the edge server. In
other words, each client can selectively offload the inference
task to the server as in edge computing systems. We will
show that this combination of model splitting and edge
computing captures both personalization and generalization
while reducing the storage, computational load and latency
during inference compared to existing methods where the
full model is provided to individual clients. SplitGP also
has significant advantages in terms of privacy and latency
compared to schemes where the full model is deployed at the
server-side. Fig. 1 compares the inference stage of SplitGP
with these existing frameworks; note that the models in
Figs. 1(a)&(b) can be realized through existing FL and SL
methodologies and then deployed either at the client-side or
at the server-side.

Training in SplitGP proceeds through a series of global
rounds, as in FL. In each round, each client first utilizes its
local data to compute the client-side loss and the server-
side loss. By viewing the full model as a multi-exit neural
network, each client conducts model updates to minimize
the weighted sum of the client-side and server-side losses.
This enables the client-side models not only to perform
well on the local task but also to reduce the loss at the
server-side. After this model update process, the server-
side model components are aggregated as in FL to improve
generalization capability. Here we also introduce the notion
of a client-side aggregation, where each client augments its
local model with information from other client-side models,
to converge on meaningful output features for the server-side
model while retaining personalization capability. Inference
in SplitGP is based on selective inference task offloading

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

to the edge server, which depends on the Shannon entropy
value computed at the client-side and the current channel
condition. More specifically, each client offloads the task that
are uncertain for making the decision using the client-side
model, when the channel condition is acceptable.

1.3 Summary of Contributions

To the best of our knowledge, simultaneous training of
client/server-side models with different roles (personaliza-
tion and generalization) has not been considered before.
Existing works in distributed ML also tend to only focus on
the training process, without considering the inference at the
clients with small storage space and small computing powers.
Overall, our contributions are summarized as follows:

o We propose a joint training and inference strategy for
distributed ML, termed SplitGP, with the following
two components: (i) hybrid federated/split learning
(i.e., a training strategy) for capturing both generaliza-
tion and personalization, and (ii) selective inference
task offloading (i.e., an inference strategy) to satisfy
the resource and latency constraints at testing-time.

o We analytically characterize the convergence behavior
of SplitGP for both strongly convex and non-convex
loss functions, showing that training at each client
will converge to a stationary or optimal point asymp-
totically under common assumptions in distributed
ML. The result provides insights into selecting the
design parameter for training, to control the trade-off
between personalization and generalization.

e We conduct a inference time analysis of SplitGP and
provide guidelines on selecting the design parameter
for inference, to control the amount of the task to
be offloaded to the edge server depending on the
network resource availability.

e Experimental results on three real-world datasets
show that SplitGP outperforms existing approaches
with wide margins of improvement in testing ac-
curacy and inference time. We also implemented
SplitGP on Raspberry Pi testbed and confirmed the
effectiveness of our algorithm in real-world resource-
constrained scenarios.

This paper is an extension of our previous conference
paper [1]. Compared with [1], this paper makes the following
additional contributions: (i) We provide theoretical guidelines
on designing the key parameters of SplitGP, using the
convergence analysis and latency analysis results. (ii) We
analyze the convergence behavior of SplitGP on strongly
convex loss function. The convergence analysis now covers
not only the non-convex case but also the strongly-convex
case, which holds for many applications such as SVM
models. (iii) We propose a U-shaped version of SplitGP
to handle the privacy issue that arises from transmitting
the label information from each client to the server, which
affects neither the test accuracy nor the latency during the
inference stage. (iv) Finally, we implemented our algorithm
on Raspberry Pi testbed to further validate the effectiveness
using real-world resource-constrained devices.

1.4 Organization

The rest of this paper is organized as follows. We provide the
related works in Section 2, and describe our SplitGP training
and inference strategies in Section 3. In Section 4, we analyze
the convergence behavior of SplitGP. Inference time analysis
in a wireless setup and experimental results are provided in
Sections 5 and 6, respectively. Finally, we draw conclusion in
Section 7.

2 RELATED WORKS

2.1 Federated Learning

A large number of FL techniques [4], [5], [6], [7], [8], [9],
[15], [16], [17], [18], [24], [25] including FedAvg [4], [26],
[27], [28], [29], FedProx [5], FedMA [6], FedDyn [7] and
SCAFFOLD [8] have been proposed to construct a shared
generalized global model that works well on average for all
clients in the system. Personalized FL [19], [20], [21], [22],
[23] has been studied more recently tailored to individual
clients, through techniques such as multi-task learning
[19], interpolation and finetuning [20], meta-learning [21],
regularization [23], or personalizing only a specific portion
of the layers [30], [31]. A recent work [32] constructs both
the global model and the personalized models but use them
separately during inference. FL has been also actively studied
in wireless networks [10], [11], [33], [34], [35], generally
focusing on constructing a shared global model. However,
all of these strategies (e.g., personalized FL) do not achieve
generalization and personalization simultaneously, and thus
are not the best options in practice where not only the main
classes and but also the out-of-distribution classes appear
occasionally during inference; the global FL model is not
personalized to each client’s main classes, while personalized
FL models are not able to effectively handle the out-of-
distribution classes.

2.2 Split Learning

Recently, SL schemes have been proposed [36], [37], [38], [39],
[40], [41], [42] to reduce client-side storage and computation
requirements during training compared to FL. The training
process of our approach draws from concepts in SL in that
we divide the full model into client-side and server-side
components. However, existing works on SL including [38],
[39], [40] do not focus on capturing both generalization and
personalization simultaneously. Compared to existing works,
we consider a new inference scenario where the clients
should make predictions frequently for the main classes
but also occasionally for the out-of-distribution classes, and
design a solution tailored to this setup. Prior works also do
not provide guidelines on how to perform inference during
testing. Compared to existing SL methodologies considering
a single model output during inference, we take advantage
of multi-exit neural networks and let clients to frequently
make predictions using only the client-side model (instead of
the full model) while also letting them to occasionally offload
the task to the server, which results in reduced inference time
with better test accuracy.

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

2.3 Efficient Edge-Al Inference

Several works have focused on the inference stage of the
clients at the edge. [43] proposed to deploy distributed deep
neural networks on the server and devices during inference,
using multi-exit neural networks [44], [45], [46], [47], [48].
Our approach also borrows the concept of multi-exit neural
networks with two exits to make predictions both at the
client-side and at the server-side. However, these previous
works have assumed that the model training phase occurs in
a centralized manner, which does not consider the important
challenge of non-IID local datasets in FL/SL setups where
raw data remains at the devices. In practical settings where
each client observes main and out-of-distribution classes
during inference, incorporating personalization and gener-
alization results in significant performance enhancements
during inference, as we will see in Section 6.

Overall, compared to all previous literatures, the key
contribution of this work is to focus on both training and
inference of FL/SL with distributed clients. In terms of
training, we focus on capturing both personalization and
generalization to handle not only the main classes but also
the out-of-distribution classes, which cannot be achieved via
existing personalized FL/SL methods. In terms of inference,
we propose to selectively offload the inference task to the
server for efficient inference at low-cost client devices.

3 PROPOSED SPLITGP TRAINING & INFERENCE

Let K be the number of clients in the system and Dj, be
the local dataset of client £ = 1,2,..., K to be used for
training an ML model. We consider a setup with resource-
constrained clients (e.g., mobile/IoT devices) having limited
storage space and computing powers. We denote the full
model as a parameter vector w, which is split into client-side
and server-side model components ¢, and 0, respectively.
This model splitting can be performed depending on the
client-side storage space. Considering resource-constrained
edge devices, we have |¢| < || in practice. Each client also
maintains an auxiliary classifier Ky, with output dimension
equal to the number of classes, which enables each client k to
make predictions using only ¢;, and ky; as shown in Fig. 1(c),
the output of ¢ becomes the input of ki, and prediction
can be made at the output of x;. As in FL, model training
will proceed in a series of training rounds, which we index
t=0,1.,7T -1
Before training begins, we split the initialized full model
Yinto w® = [¢°,6°], and also 1n1t1ahze /<a . Each client
k receives ¢, k¥ and sets @9 = ¢°, k) = &°, whereas 69 is
deployed at the server-side. After T" global rounds of training,
each client k obtains ¢} and x}, while the server obtains 67
We let
oh = [0 0 g
be the model components obtained at client k& and the server
when global round ¢ is finished.

Inference scenario. We consider a scenario having data
distribution shift between training and inference in each
client: each client should make predictions mainly for the lo-
cal classes that were already observed in the client’s training
dataset (personalization) but also occasionally for the out-of-
distribution classes (generalization) due to distribution shift.

TABLE 1: Summary of notations.

Symbol | Definition
K The number of clients in the network
T Total number of global rounds
ot Model component of client k at round ¢
K, Auxiliary network of client & at round ¢
0° Server-side model component at round ¢
v Concatenation of ¢%, % and 6*
Lk Client-side loss computed with client k’s local data
ls,k Server-side loss computed with client k’s local data
Dy, Local dataset of client k
e Learning rate at round ¢
R Uplink communication rate during inference
Pc, Ps Computation powers at the client and the server
pg’j) (z) Softmax output corresponding to class g on sample z
Ej(z) Shannon entropy computed at client k& with test sample z
A Our design parameter that controls personalization & generalization
E:p Our design parameter that controls task offloading over the network

Note that existing works on personalized FL consider the
inference scenario with only the local classes, while FL with
global model focuses on the case where each class appears
uniformly at random during testing. Compared to existing
works, we consider a practical setup with frequent local
classes and occasional out-of-distribution classes at testing,
which is caused by data distribution shift between training
and inference.

Goal. As depicted in Fig. 1(c), under this scenario, the
goal of the k-th client’s model, ¢, combined with &y, is
to make a reliable prediction for local classes in Dj. The
goal of each full model, ¢, combined with 6, is to make a
reliable prediction for all classes in the network-wide dataset,
D = UL | Dy, to handle the out-of-distribution classes of
each client. In the following, we describe our SplitGP training
strategy (Sections 3.1 & 3.2) and inference strategy (Section
3.3) tailored to this setup. The notations used in this paper is
summarized in Table 1.

3.1 Multi-Exit Objective Function

Based on the three model components v = [¢y, ki, 0], we
first define the following two losses computed based on Dy.

Client-side loss. Given k-th client’s local data D;, and
v = [¢, K, 0], the client-side loss {¢ (v) is defined as

> b pr,),)

€Dy,

Lok (v
\D |

where {(z; ¢y, K1) is the loss (e.g., cross-entropy loss) com-
puted with the client model (¢, combined with k) using
input data . The loss in (2) is computed by client k.

Server-side loss. We also define the server-side loss
ls 1 (v) computed with the k-th client’s local data Dy, as
follows:

> Uw;bx,0) 3)

r€Dy

ls k(v
\D |

where {(x; ¢, 0) is the loss computed at the output of the
full model (¢, combined with §) based on input z. As in
existing SL schemes, (3) is computed by the server in SplitGP.
To facilitate this, for each x € Dy, the client transmits the

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

output features it computes from ¢;, along with the label to
the server!.

Proposed objective function. In this way, the model ¢y,
maintained at the client-side affects both the client-side loss
lck(v) and the server-side loss fg(v). By viewing the
model v = [Py, ki, 8] as a multi-exit neural network [44],
[45], [46], [47], [48] with two exits ({c i and (g 1), we update
@k, Kk, 8 to minimize the weighted sum of client/server-side
losses computed with Dy

Fi(v) =vlowk(v) + (1 = 7)lsk(v). (4)

Here, v and 1 — y correspond to the weights of the client-
side loss and the server-side loss, respectively. If v = 0, the
client-side model is updated only considering the server-side
loss, which corresponds to the objective function of SplitFed
proposed in [38]. Personalization capability is not guaranteed
at the client-side in this case. If v = 1, the client-side model
does not consider the server-side loss at all, which does
not guarantee generalization capability at the server-side.
In multi-exit network literatures [46], [47], [48], a common
choice is to give equal weights to both exits with v = 0.5.
This choice enables the models to provide reliable predictions
not only with the client-side model (¢, combined with xy)
but also with the full model (¢ combined with 6).

3.2 SplitGP Training: Personalization & Generalization

Model update. In the beginning of global round ¢, we have
vl = [¢h, kL, 0], where ¢} and k}, are implemented at client
k while 0" is deployed at the server. Based on the proposed
objective function (4), the models of client & (¢! and %) and
the shared server-side model 6" are updated according to

= gk — Ve Fi(v)), ®)
Kt = Kj, = eV Fi (o)), (6)
Ot = 0" — Vo Fy(v}),)

where 7, is the learning rate at global round ¢, and

VE(0f) = == > (7Vlo(viz) + (1 —7)Ves(v;))
‘Dk| xeD?t
k
®)
is the stochastic gradient computed with a specific mini-batch
D}; C Dg.

Server-side model aggregation. The updated server-side
models based on (7) are aggregated according to

K
O > a0t)
i=1
|Di
is the relative dataset size. This aggregation process is a

natural choice to capture generalization capability at the
server using a single model.

Client-specific model aggregation. For client k, ¢y
combined with k; should work well on its local classes
(personalized task), while ¢, combined with 6 should work

to construct a single server-side model, where a; =

1. Potential privacy issues can be handled by adding a noise layer
[49] at the client as in [38], to construct private/noisy versions of output
features. More detailed discussions regarding the privacy issue of SL
can be found in [38].

5

well on all classes in the system. While the updated ¢y,
using (4) enables the client-side model (¢, combined with
ki) to have strong personalization capability, it does not
guarantee the generalization performance of the full model
(¢r combined with ;). In particular, since ¢ is updated
mainly with the local data Dy, of client k, the output of ¢y,
(which becomes the input of 6 in the full model) does not
provide meaningful output features for the classes outside of
client k’s local dataset Dj,.
A natural way to resolve this issue would be to aggregate
+1 for all k as Zszl ;9™ and deploy this aggregated
model at each client. However, this can reduce the per-
sonalization capability at each client. In order to capture
personalization while providing a meaningful result to the
server-side model 6, in SplitGP, each client £ computes

the weighted sum of qb?'l and the average of gb’,fjl for all
k=1,2,..., K, as follows:
K
e AT (L= st (10)
i=1

Here, A € [0,1] is a parameter that controls the weights for
personalization and generalization. If A = 1, the client-side
model has a strong personalization capability but does not
provide a meaningful output feature to the server-side model
since the client-side models are updated independently
without aggregation. If A = 0, the client-side model provides
a generalizable feature to the server but lacks personalization
capability, since all clients share the same components in
this case. Using), the auxiliary classifiers {xx }2_ | are also
aggregated at each client k according to

K
/{fjl —)\nfjl +(1=X) Zamﬁ“,
i=1

(11)

which enables the client-side model to make reliable predic-
tions on the out-of-distribution classes. Although general-
ization is not the main goal of the client model, conducting
inference for out-of-distribution classes at the client when
possible will further reduce communication cost and latency.
Moreover, during inference, the client does not automatically
know whether a datapoint is from one of its main classes
or not. We therefore introduce a confidence threshold for
test-time in Section 3.3 which chooses between client and
server-side inference.

The left part of Fig. 2 summarizes the loss computation
process, the model update procedure, and the model aggre-
gation step during SplitGP training. Note that, for simplicity
of presentation, we have presented the model updates in
(5), (6), (7) assuming a single gradient step at each time ¢.
In practice, these can be repeated multiple times in-between
each model aggregation process.

After repeating the overall process for 1" global rounds,
we obtain K different personalized models {¢7 }X_ | and
auxiliary classifiers {xZ } X |, and one server model §7 which
are deployed over the network at testing time; ¢} and r}
are deployed at client k while 67" is implemented at the edge
server for efficient inference. The overall training process of
SplitGP is also summarized in Algorithm 1.

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

Multi-exit objective function
Fie=vler+ (1= v)sk

9t+1 ‘721(1(1 gt+1
[5 k (Server-side aggregation)

Inference strategy to satisfy

Server-side
prediction

resource requirements
Strong

generalization

Server

Server

D Update 8},

Forward propagation
(activations, labels)

T

Backpropagation

i e A+ (- DB e

A AR N CEROD BT T

!

(Client-specific aggregation)

D Update ¢}, and f

(gradients)

i

Train samples: {1, 2}

1

{2,3} {3,1}
SplitGP training

Er(z) > Eg?

-
-

| Clientside - Selective activation offload
prediction
Training strategy —
tailored to inference [Strong
— D D] D @D [personalization
] s
Main test samples: {1, 2} {2, 3} 3,1}

{1} {2}
SplitGP inference

Out-of-distribution samples: {3}

Fig. 2: Overall procedure of SplitGP training (left) and inference (right): Training and inference strategies are jointly designed
for efficient edge-Al over the network. To satisfy the resource and latency constraints during inference, SplitGP controls the amount
of offloaded inference task over the network. Tailored to this inference strategy, the training strategy of SplitGP is designed to
capture personalization capability at the client-side and generalization capability at the server-side.

Algorithm 1 SplitGP: Training and Inference

Training Phase
= [¢%, 1%, 0]
= | k,mk,GT] for each client k

1: Input: Initialized models v°
2. Output: v}
1,2,...,K
3: for each global round ¢ = 0,1,...,7 — 1 do

4: fork € {1,2,...,K} in parallel do
5: lo(vi) = ﬁ Yaepy @ O, k)

// Client- side loss computed with [¢},, K]

6: ls k(vk) ‘Dt‘ ZggeDt E(x ¢)

// Server-side loss computed with [¢}, ¢']
7 Fi(vg) = vlow(vp) + (1 =)l (vg)

// Multi-exit oblectlve function
8: ot = ol — mVeFi(vh)
9: n’,fjl = K}, — iV F(v})
10: 0, = 0L —n,VoFy(vh) // Model update
11: end for
122 0« K g0t

// Server model aggregatlon

13 gh e At 4 (1 -) Z}(Lttt
14: t'H —)\H“'l + (A=A sttt

/ / Cl1ent—51de model aggregations; A controls the
weights for personalization and generalization

15: end for

16: o = [6F, KT, 7]

Inference Phase

1: Input: Test sample z at client k with vl = [¢7, k], 07]

Output: Prediction result for test sample z

Bi(2) = = S (=) ogp” (2)

if Fi(z) < Ey, then

Make prediction with ¢ combined with
else
Make prediction with ¢7 combined with 67
end if

3.3 SplitGP Inference: Selective Task Offloading

During inference, given the trained models ¢7 , x} and 67,
each client k must determine whether to rely on the client-
side (¢], k1) or server-side (¢F,07) model. Given a test

sample z at client k, the Shannon entropy is first computed

using the client-side model ((bg, n{) as

ZP(Q)

where () is the total number of classes in the system and
p,(f) (2) is the softmax output for class ¢ on sample z, using
the model deployed at client k. This value shows how much
the client-side model is certain about the prediction of z. If

)log p\¥ (2), (12)

Ey(z) < Ey, (13)

holds for a desired entropy threshold E,;, the inference is
made at the client-side. Otherwise, if the prediction is not
certain enough (i.e., if Ej(z) > Eyy,), the output feature of ¢}
computed on sample z is sent to the server and the output
of the server model 07 is used for inference, as in Fig. 1(c).
The value of Ejj, in (13) is therefore a control parameter
for the amount of communication over the network during
inference. The inference stage of our SplitGP is described in
the right part of Fig. 2 and in Algorithm 1.

Remark 1. If the client-side component ¢y, is fully personalized
(e.g., by setting A = 1 or via fine-tuning), ¢;, does not provide
meaningful features to the server-side model), for the out-of-
distribution samples. The aggregation in (10) without further
fine-tuning enables the full model (¢}, combined with 0) to make
reliable predictions for the out-of-distributions samples.

Remark 2. We reiterate that model splitting w = [¢, 0] can be
done depending on the storage space of the clients. In resource-
constrained scenarios with mobile/loT devices, the size of the
client-side component ¢ is significantly smaller than that of
0. Considering this practical setup, we set ¢ to have 10% of
model parameters compared to the full model w when performing
experiments in Section 6.

3.4 Label Transmission to the Server

We note that existing works on SL and our SplitGP require
each client to transmit its label information to the server
during training, which can cause privacy issue in specific
applications. This can be handled by adopting U-shaped SL
[36] where the last layer of the overall model is also trained
at the client-side. Fig. 3 describes how model update can be

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

Server

Forward propagation
(activations)

Backpropagation
(gradients)

} Last layer of the
full model

I i

Fig. 3: U-shaped version of SplitGP training process to avoid
label transmission to the server. By letting each client to have
the last layer of the full model, the clients can directly compute
the loss without sending the labels to the server. This training
process can replace the left part of Fig. 2 when label information
turns out to be critical.

conducted in SplitGP by adopting U-shaped SL, to replace
the process in the left part of Fig. 2. Since the last layer of the
full model is at the client-side, each client can compute the
loss without sending the labels to the server. Here, the server
is still responsible for training the majority of the layers
(except the first few layers and the last layer), preserving the
advantage of SL. After the model update process, the models

are aggregated according to Lines 12, 13, 14 in Algorithm 1.

Here, the last layer as well as the client-side components are
broadcasted to the client for the next round. This training
process requires additional communication load between the
server and the clients during training, which is the cost for
handling the label transmission issue.

Remark 3. The U-shaped version of SplitGP training produces
exactly the same model as in the original process in the left-side
of Fig. 2. Moreover, U-shaped approach only needs to be applied
during training. When training is finished, the model is deployed
as in the our original inference strategy shown in the right part
of Fig. 2. Hence, the U-shaped approach affects neither the test
accuracy nor the latency during the inference stage, which is a
significant advantage.

3.5 Design Parameters in SplitGP

Overall, SplitGP is a solution that tackles both training
and inference stages, with two design parameters: X in (10)
and (11) is the hyperparameter that controls the amount of
personalization and generalization during training, while
E,j, in (13) is the hyperparameter that manages the amount
of communication over the network during inference. In
the following, we first analyze the convergence behavior of
SplitGP and provide insights into the effect of A, in Section
4. Then in Section 5, we provide guidelines on selecting Fy,
to satisfy the inference time constraint depending on the
current channel condition and other system parameters. The
effects of A and FEj, are also analyzed via experiments in
Section 6.

4 SPLITGP CONVERGENCE ANALYSIS

In this section, we analyze the convergence behavior of
SplitGP based on some standard assumptions in FL [50],
[51], [52].

Assumption 1. For each k, Fy,(v) is L-smooth, i.e., |V Fy(u) —
VE,(v)|| < Llju — vl for any w and v.

7

Assumption 2. For each k, the expected squared norm of
stochastic gradient is bounded, i.e., E[|VFy(v)|]?] < G

Assumption 3. The variance of the stochastic gradient of Dy is
bounded, i.e., E[|VFy(v) — VF,(v)|?] < o3

Assumption 1 is one of the most common assumptions in
FL [50], [51] that holds for linear/logistic regression models
and neural networks with sigmoid activations. Assumptions
2 and 3 are also adopted in various FL literatures [10], [50].
We define the global loss function F'(v) as

1 K
= ? ZFk(v)v
k=1

which is the average of the losses defined in (4). We show that
our algorithm converges to a stationary point of (14), which
guarantees the generalization capability of SplitGP while
including personalization through A for any non-convex ML
loss function F'(v).

(14)

4.1

The following theorem gives the convergence behavior of
our SplitGP training process for non-convex loss functions.

Main Theorem and Discussions

Theorem 1. (SplitGP Convergence: Non-convex case) Let
n = +t’ where a = <5 for some constant ¢ > 0. Suppose
that nq is chosen to satisfy n; < 5. Under Assumptions 1, 2, 3,

SplitGP model training converges to the stationary point as

F*

1 2 F(v°) -
r;z E[IVFOIP] < =5
LZk 1% LT_l

< Znt>+6)(FTgnf),

t=0
(15)
where 16(c + 4)G2L2A2(2 — \?)
c _
G(A) = C(l —)\2)2) (16)

'y = Zz:ol 0 and F* is the minimum value of F'(v) in (14).

Proof: See Section 4.2. O

Here, €()\) is the term specific to our work, arising from
the joint consideration of generalization and personalization.
By setting 1, = -, we have I'r = ZtT;Ol m — ooas T
grows, and Y37 17 < 00, Y40 i < oc. Hence, for any \ €

[0,1), the upper bound in (15) goes to 0 as T grows. Thus, we

[||VF(vk)|\} = 0forallk = 1,..., K,

which guarantees convergence to a statlonary point of (14).
Theorem 1 indicates that vl = [¢%, kL, 6], which has
a certain amount of personalization capability from A,
also obtains the generalization capability of (14). In other
words, both personalization and generalization are achieved.
Here, A controls the trade-off between personalization and
generalization; as A grows, a larger number of global rounds
is required to reduce the upper bound in (15). This is the cost
for achieving a stronger personalization at the client-side.
Given the number of global rounds 7" and learning rates 7,
the first two terms of (16) are fixed values, while the third
term (A)(FT ST o 7?) is controllable by \. Let § be the

have min
te{0,1

,,,,,,

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

constraint that we expect e()\)(ﬁ ZfT ' m}) to be smaller

than, i.e.,
Tf

(W o) <6

t=0

17)

to guarantee a certain amount of generalization capability.
It can be easily seen that €(\) is an increasing function of A
within the range [0, 1). Hence, we can obtain the condition

A< A0, (18)

where \(9) is the solution of E()\)(Fl tT ' n}) = & which
can be obtained via a bisection search method In other words,
we must select A within the modified range [0, min{\(®) 1})
to satisfy the generalization constraint.

Note that the case with A = 1 does not guarantee
convergence, since the client-side models are constructed
independently without aggregation. On the other hand, the
case with A = 0 reduces to the bound of conventional FL
with generalization since all the clients share the same ¢
and k. Later in Section 6, we also observe via experiments
that A controls the trade-off between personalization and
generalization with varying portion of out-of-distribution
test samples relative to the main test samples.

4.2 Convergence Proof

Using v = [¢%, kL, 0], we first define v* as:
K
1 ¢
- K > vk
k=1

By the L-smoothness of F(v) and taking the expectation of
both sides, we have

(19)

E[F(u')] - E[F(v")] S E(VF(u'),0""" —v")]
A
L 1 t))2
+SE[=P Qo)
B

In the following, we first bound A, and then bound B.

Step 1: Bounding A. We start by rewriting A as

1 K
_ ty = ¢
A = —nE[(VF(), & ,;1 VE(v}))] 1)
1K
_ ty ¢
= nE[(VF(), > VEL(v}))] 22
2
= yelivroor] -S| S vac] @
Ay
1 K
-Jvrer- £ Svncn),
k=1
Ay

where (a) comes from v**! — vt = —p, L 5% V. (v}), (b)
follows from taking the expectation for the mini-batch, and
(¢) is obtained by utilizing ||z1 — 22||*> = ||z1|* + ||22]* —

2<Zl, ZQ>.

8
We now focus on A;. We can write
1

IVF ()| (% SIVE(WIZ = IVE(v}) = VF()?

1 112 1 ¢ |12
= IV = =Y (VFi(v}) = VE ("))

K
i=1

1

2 SIVFCI — L2lef — oI (4)

for any k. Here, (d) comes from using ||a + b||*> < 2[a|? +
2||b||* and (e) comes from L-smoothness. Thus, we can
bound A; as follows:

Alz——E[HVF(7] 25)
Nt 2
——K;E[HWMH |
oM KE vF mL B[¢
< —ix LE[IVFEDIF] ¢ Z ok = v*IP).
For A,, we have
1 & 2
3B = 3E[| % (VAW - VRG]]
K
< 3k 2 EIVEOY) — VA
77tL2 = 2
ST kzlE[llvf—vZH) (26)

where (f) holds due to the convexity of || - || and (g) holds
due to the L-smoothness assumption.

Step 2: Bounding B. Now we bound the term B. Recall
that from (14), the following holds:

ot — ot = —py— ZVFk 27)
Based on this result, we can write
2 1 u t 2
B < ?L(E[l = Y VFi(e}) 8)
k=1
1 & 1 &
+Ell = Y VE@) - = Y VEEDIY), @9)
K K
k=1 k=1
where
E[Hi 3 VE(ul) — ~ 3 V Ei()HQ} 30
Kkz::l k(vg) — Kkz::l % (Vg (30)
1 K
< 2 D ElIVE(v}) = VE ()] (31)
k=1
1 K
<= o}
m K ,;1 i

and (h) results from Assumption 3.

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

By inserting the bounds of A and B to (20), and by

employing a learning rate that satisfies 1, < -, we obtain

1K (32)
4K =

2L K L2 K
+ B2 3 of+ L S Bl oI (39)

k=1 k=1

c
Step 3: Bounding C'. To bound C, we define
Vi = (b #1] (34)
Gt =k = mVuFi(vh), (35)
Y=+ S Yl and PF = + S, ¥L. Then, we have

t+1 A¢t+1 (A)Tﬁt+1

-2 = % Z,ﬁ;l [|lf —1pt(|2. We can write

(36)

K
and % D k=1 ||Ult€

Loy e 1 v ¢ t_aty)2
gZHwk—wll =EZ||<w =9 = (@' =)
K
gzw $IP 5 g 2 1AL
A2 I_(- A_
= 2 MWk =g = @ =y
=1
AN =12
§f2||w — |
A2 E =1 _ =132
= 2 = Ve BT + (0 =0 HIP 67)
k=1
where (i) and (k) come from E[||z—E[z]||] < E[[|z]?], (4) fol-
lows from (36) and (1) results from ¢Z = b =1V Fi(vh).

Now following the proof of Lemma 4 of [52] and utilizing

0 and a = -<t% for some

Assumption 2, when n; = = o3 v

constant ¢ > 0, we obtain the following result:

4)G2\2(2

X o) < 160t —)2)
g [llor, = v*|1] 1= \)2 ~

(38)

Step 4: Telescoping sum. Finally, after inserting the result
of Step 3 into (32), we have

K
TS E[IVFIP] S EFQ] -EFEY] (39)
k=1
L&, 16n3(c+ 4)G2A2(2 — A2)
+?;U’C+ e
(40)

After summing up f fort =0,1. — 1 and dividing both
sidesby I'r = >, _ 1, with some mampulatlons we obtain
(15). This completes the proof of Theorem 1.

4.3 Strongly Convex Case

In this subsection, we analyze the convergence behavior of
the strongly convex loss function (e.g., logistic regression
and SVM models). We consider the following assumptions
for the proof as in [9], [21].

Assumption 4. For each k, Fy,(v) is p strongly convex i.e., i.e.,

(VFp(u) — VE(v),u —v) > pllu — vl holds for any v and v.
Assumption 5. For each k, the diversity of gradient is bounded,
ie., [— VFk(v)m <2

Assumption 4 is about the strong convexity, while As-
sumption 5 is about the bounded gradient diversity, which is
more practical than Assumption 2 on the bounded gradient.
Now we state the following theorem.

Theorem 2. (SplltGP Convergence Strongly convex case)
Define v* = sz Ve Let gy = S and o =
maxi<y<k 0. Under Assumptions 1, 3, 4, 5 SplitGP model
training satisfies

]

E|[Jo" — v 1 1 E|[Jo® —o"||*
[E[H‘L—lx -UTHQ]] : 2’”700<ﬁ> [E[H‘LO — 1k -UO}HQ]}

RERCORNCAREO)

* [4EO(<2§(+ 2KU2J ’

(41)

where Vt = [(v})T -+ (vi)T]T is a matrix with stacked
row vectors {vt }K |, and v* is the model that minimizes (14).

Proof: By defining the client-side parameters as 1}, =
[¢Z’ HZ], we can write

= (0 ntiFk(i/)k))
- A)Zai (P = mVeF(Y]) (42)
i=1

K K)

= mkatf —ne Y iV Fi(y) (43)
i=1 i=1

where {my;}1<k, i<K are the wvalues that satisfy
S mes = 1, Z _ymy; = 1. Now define a doubly-

stochastic and symmetric matrix M = [mg;|i<k,i<kx. We
also define ! = [(y4)T (Vi) "]" by stacking the
row vectors 1. Then, we have U™ = MU! — p, MOF (T1),
which can be rewritten as

t
P+l — g0 _ anMtJrl*ng(\I;j), (44)
j=0

where OF(V') = [(VFi(4]))" (VER(5)) -

Moreover, by defining 9* = L 3" | ¢}, we obtain

1
R & Zm Z VE(Uh). (45)
J 0 =

where (a) comes from applying i mp; = 1,

ZiK:1 my ; = 1 to (44). Recall that the server-side parameters

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

6" are shared across all clients. By adopting the similar
derivation, we obtain
1 1 K
t+1 _ Tot+l _ g0
0" = 21,0 =0 ?; 2:: K(01), (46)
(0%)T]T and 0% = ¢! for all k €
K'}. Finally, by combining (45) and (46), we have

where O = [(6%) T
1,2,...,

,Ut+1 _ Vt+1

1 1 ¢ K .
= 1V =00 — =N " Y VE(v)),
K szo k=1

Now by adopting the result of Theorem 2 of [53], we
complete the proof. O

From the upper bound of E[||VT — lKvT||2], it can be
seen that each model theoretically converges to the average
of models. Moreover, the upper bound of E[||vT — U*HQ]
shows that the average of models v* converges to the optimal
model v*. From these two, Theorem 2 indicates that all
models converge to the optimal model of v* that minimizes
(14), which theoretically guarantees generalization capability
of the models for the strongly convex case. Compared to
the non-convex loss function considered in Theorem 1, in
the strongly convex case, the convergence to the optimal
point can be directly guaranteed with a milder learning rate
constraint. More specifically, the learning rate should be
decayed faster to guarantee the convergence to the stationary
point in the non-convex case. We also note that the bounded
gradient assumption (Assumption 2) is also not required
when guaranteeing the convergence for the strongly convex
case.

(47)

5 SPLITGP INFERENCE TIME ANALYSIS IN
WIRELESS NETWORKS

Given the trained models vl = [¢1, kL, 0] for each
k=1,2,..., K, recall that SplitGP selectively offloads the
inference task to the server over the network based on the F;,
value. In this section, we analyze the storage, computation,
communication and time required during the inference stage,
and provide guidelines on selecting the E,;, parameter of
SplitGP to satisfy the inference time constraint depending on
various system parameters in wireless networks.

5.1

Let Pc and Ps be the available computing powers of each
client and the server, respectively. Let |¢|, |0, |x| be the
numbers of parameters of ¢, 8, k, respectively. Considering
Pc < Pg in practice, we split the model w = [¢, 8] such that
the size of client-side component ¢ is significantly smaller
than the server-side component 0, i.e., |¢| < |0|. Moreover,
k is assumed to be a small classifier satisfying |x| < |¢| and
|k| < |0]. The inference time is the value that is affected by
the model size. To make our analysis tractable, we assume
that the inference time is proportional to the number of
parameters of the model [40], [54]. For example, given a
model with |¢| + |k| parameters and a test dataset of size
|D|, the inference time at the client will be proportional to
M . One may also consider different latency models
Wthh is beyond the scope of this paper. During inference,

System Model

10

we consider orthogonal frequency division multiple access
(OFDMA) to serve each client using a fixed frequency band
without interference [11], [34]. By letting p, be the transmit
power of client k, the uplink communication rate R, between
the server and client k can be written as

pk|hk\2)
bpNog "’

where hj denotes the channel coefficient between client &
and the server, by is the bandwidth allocated to client k,
and N is the noise power density. Finally, g. denotes the
dimension of the cut-layer (i.e., output dimension of ¢) and
g denotes the size of the test sample (input dimension of ¢).

Ry, = by logy(1 +

(48)

5.2 Resource and Latency Analysis

Table 2 compares our methodology with existing frameworks
at the inference stage. By adopting OFDMA, we focus on
a specific client and omit the index k in this subsection for
notational simplicity. We first present the derivations of two
baseline inference frameworks.

Baseline 1: Full model at the client. The first baseline
strategy for inference is to deploy the full model w = [¢, 6]
at individual clients, as depicted in Fig. 1(a); each client
makes all predictions using its full model, without any
communications with the server. In this inference strategy,
the required storage for each client is |¢| + || for storing
the full model. Hence, the client-side computational load
becomes (|¢| + |0|)|D|. Since all predictions are made at
the client, no communication is required during inference.
Hence, the inference time can be written as follows:

_ (gl +16DID|
P

Baseline 2: Full model at the server. When the full model
is deployed at the edge server as in Fig. 1(b), all inference
tasks are offloaded from each client to the server, and each
client receives the predicted result back from the server. In
this baseline, client-side storage is unused and the client-
side computational load is also zero. Since the entire test
set must be sent to the server, the required communication
load during inference becomes ¢|D|, which results in uplink

communication time of 75°™™ = % = ———9——— per test
blog, (1+575)

sample. Then, the server makes inference using the full model
(¢ combined with), which requires server-side computation
time of Tcomp w. The inference time can be written as
the sum of communication time and server-side computation
time as follows:

(49)

alDl (ol +1DID|
R Ps

SplitGP. In our approach, the required storage space at
each client is |¢| + | x| while the server-side storage is |6|. The
client first performs forward propagation for all test samples,
which requires client-side computation of (|¢| + |«|)|D|, and
computation time of

Ty = (15" + 77 | D] = (50)

comp _ (9] 4+ |KDID|

c PC
Now based on the Shannon entropy Ej(z) computed for
sample z € D as in (12), the client determines whether to

(1)

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

11

TABLE 2: Resources required and latency incurred at each client during inference: comparing SplitGP with baselines.

Methods Storage Computation =~ Communication Inference time
Full model at the server-side 0 0 q|D] % + LWHILZ DID|
Full model at the client-side lol+ 16 | (I¢ +16])|D] 0 (oLt PINEL
Proposed framework (SplitGP) | |¢| + || | (|¢| + |&|)|D] Bgc|D| <|¢|+ILNMD| + qu;lDl + B‘%HD‘

C S

offload the inference task for sample z to the edge server or
not, depending on the entropy threshold Ey,. If Ey(2) < Ey,
the prediction for sample z is made at the client which
requires no additional time. Otherwise, the client sends the
output feature of z at ¢y to the server, which requires an
additional communication load of g. and latency of

qc qc

geomm _ 26 _ HC (52)
h 2)

R blogy(1+ R
where g, is the cut-layer dimension, i.e., the output dimen-
sion of ¢. Then, the server performs forward propagation
with 0 for completing the inference, that incurs server-side
computation time of

comp __ ﬂ
s - PS .
Opverall, for the sample z € D with Ey(z) < E}p, additional
latency of 7°™™ 7™ is required for making the prediction
at the server-side. As a result, choosing a smaller £}, reduces
the inference time, but can limit the overall performance since
all predictions (including out-of-distribution test samples)
are made at the client-side.
Suppose § portion of samples are predicted at the server-
side, which is determined by the Ejj. Then, the overall
inference time can be written as

7(Bn) = 7 + B(Eu) - (1™ + 7:5) (54)

(91+ =DID| , B(Ew)aclD] | B(EwI6lID)
Pc R Ps '

(53)

5.3 FE;, Design in SplitGP

Let 7' be the average inference time per test sample that
the system should support. We must have a small 7" in low-
latency applications such as self-driving cars, while 7’ can be
relatively large for applications like smart agriculture where
latency is not significant. To satisfy the latency constraint

7(Ew)/|D| < 7', (55)
we must have
B(Ewm) < B*, (56)
where
o (\(b\;rlﬁl)
§' = — (57)
R T Pg

Now define Ef(f) as the minimum entropy value that makes
at least 1 — 3 portion of test samples in D to have entropy
values less than or equal to E}j, as follows:

]1 z
EP — min{Eu ZeD|]§|<><E

>1-p}, (59)

where 1 4 is an indicator function with 14 = 1 if A is true
and 14 = 0, otherwise. Based on (57) and (58), we must have

Eyp > EY) (59)

to satisfy the inference time constraint. As can be seen from
(57), Et(fi) is affected by various factors as follows:

o Latency threshold 7': As the latency requirement 7/
decEeases, B* becomes smaller, which results in larger
Et(f). This means that we need to increase the portion
of test samples predicted at the client-side to satisfy
the tighter inference time requirement.

e Model sizes \9\, |¢|, |k|: Larger model sizes results
in larger Etg . In other words, more test samples
should be predicted at the client-side to meet the
inference time requirement using larger models.

o Computing powers P¢, Pg: Larger computing pow-
ers of clients and server lead to smaller Et(,f); due
to the increased computing powers, one can achieve
the same latency constraint with more inference task
offloaded to the server.

o Channel gain |h|: As the channel gain increases,
the communication rate R between the server and
the client increases. This reduces the time for task
offloading fron} the client to the server, resulting
in smaller ng) ; more tasks can be offloaded to
the server while satisfying the same inference time
requirement.

5.4 Feasible Regimes

Based on the inference time analysis, we also pose the
following question: when is our framework with split models
beneficial compared to other baselines in terms of inference
time? We first compare with the case where the full model
is deployed at the client. From (49) and (54), we have the
following proposition:

Proposition 1. Suppose Eyy, is given. We have 7(Ey) < 71 if
and only if

9 —
po< 19 q'“' = (60)
ﬁ(Eth) : (ﬁ + pfg)
This is equivalent to
9 —
Eun > B, where py = —01 =1 (61)

Po- (% + 1)

The above result in (60) indicates that our solution is faster
than the baseline when the client-side computing power P¢
is smaller than a specific threshold. This makes intuitive
sense because deploying the full model at the client-side
incur significant inference latency when P¢ is small (e.g.,
low-cost IoT devices). Equation (61) shows the equivalent

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

condition with respect to Ej,. Our scheme is faster compared
to the baseline when we set Ey, to be larger than Et(g 1), to
limit the number of data points to be offloaded to the server.
Second, we compare with the baseline where the full
model is implemented at the edge server during inference.
Based on (50) and (54), we state the following proposition:

Proposition 2. Suppose Ety, is given. We have 7(Ey) < To if
and only if
q—Bqe
RS G aa(emen
Ps

Pc

(62)

This is equivalent to

_R. (|¢\+|'€\ _ (1—5)(\¢\+\9\))
Ey > Et(ij), where By = Po Ps

ge '
(63)

According to (62), our solution is beneficial when the
communication rate R is smaller than a specific value, since
this baseline requires transmission of all test samples from
client to server.

Fig. 4 compares the inference times of different schemes in
Table 2 with |¢| = 387,840, |#] = 3,480,330, |x| = 23,050,
which corresponds to the convolutional neural network
(CNN) that is utilized for experiments in the next section.
Other parameters are Ps = 100, P =20, R =1, 3 =0.1,
|D| = 1. It can be seen that our framework achieves smaller
inference time compared to existing baselines in various
Pc and R regimes, confirming its advantage compared to
existing frameworks where the full model is deployed at the
client or at the server. We also observe the effect of E};, on
latency with more detailed analysis, in the next section.

6 EXPERIMENTAL RESULTS
6.1

We evaluate our method on MNIST [55], EFMNIST [56]
and CIFAR-10 [57] using different ML models. MNIST and
FMNIST consist of 60,000 training samples and 10,000 test
samples while CIFAR-10 has 50,000 training samples and
10,000 test samples. We utilize a CNN with 5 convolutional
layers and 3 fully connected layers for MNIST and FMNIST
datasets. For CIFAR-10, we adopt VGG-11.
Implementation. We consider K = 50 clients. To model
non-IID data distributions, following the setup of [4], we
first sort the overall train set based on classes and divide it
into 100 shards; in each shard, there are 600 train samples
for MNIST and FMNIST and 500 train samples for CIFAR-
10. We then randomly allocate 2 shards to each client.
We used a learning rate of = 0.01 for all schemes. In
each global round, each client updates its model for one
epoch with a mini-batch size of 50 (i.e., 12 local updates
for MNIST and FMNIST, 10 local updates for CIFAR-10),
and cross-entropy loss is utilized throughout the training
process. Moreover, we set A = 0.2 and choose the optimal
E:n, € {0.05,0.1,0.2,0.4,0.8,1.2,1.6,2.3} unless otherwise
stated. We also study the effects of A and Fyj, in Section
6.3. We train the CNN model with MNIST and FMNIST
for 120 global rounds and VGG-11 model with CIFAR-10
for 800 global rounds. For our scheme, we split the full

Experimental Setup

12
5 5
3210 5 <10
— Proposed
25 —— Proposed 4 —— Full model at the client
_aé 2 ~—— Full model at the client 2 Full model at the server
L Full model at the server F3
3 (o3
15 8
<

o 8,
L 9 o
= 2

0 0

20 4 60 80 100 0.02 0.04 0.06 0.08 0.1
PC R

(a) Inference time versus Po (b) Inference time versus R

Fig. 4: Comparison of inference time depending on client-
side computing power Pc and communication rate R. Our
framework demonstrates significant advantage compared to the
baselines in various power-rate regimes.

CNN model (for MNIST and FMNIST) such that the client-
side ¢ contains 4 convolutional layers (|¢| = 387, 840) and
the server-side # contains 1 convolutional layer and 3 fully
connected layers (|6] = 3,480, 330). The fully connected
layer with size |k| = 23,050 is utilized as the auxiliary
classifier. We also split the VGG-11 as |¢| = 972,554 and
|6] = 8,258,560, and adopt the fully connected layer with
size |k| = 10,250 as a classifier. All experiments are using a
NVIDIA GeForce RTX 2080Ti GPU.

Baselines. We compare SplitGP with the following
baselines. First, we consider the personalized FL scheme
proposed in [20], where the trained personalized models
are deployed at individual clients during inference. We
also consider a generalized global model constructed via
conventional FL [4] as well as SplitFed [38]. Note that FL
and SplitFed produce the same model while SplitFed can
save storage and computation resources during training.
This generalized global model can be deployed either at the
client or at the server during inference. Finally, we consider
a multi-exit neural network [44] that has two exits, one at the
client-side and the other at the server-side, constructed via
FL or SL. For this baseline, the prediction can be made either
at the client or at the server, which can be viewed as the case
with A = 0 in our scheme. For a fair comparison, FedAvg [4]
is adopted for the model aggregation process of all schemes.

Evaluation. When training is finished, the overall perfor-
mance is measured by averaging the local test accuracies of
all clients. To reflect the practical setup with data distribution
shift between training and inference, we construct the local
test set of each client as the union of the main test samples
and the out-of-distribution test samples. The main test
samples are constructed by selecting all test samples of
the main classes, e.g., if client £ has only classes 1 and 2
in its local data, all the test samples with classes 1 and 2
in the original test set are selected to construct the main
test samples. When constructing the out-of-distribution test
samples, we introduce a parameter for the relative portion
of out-of-distribution test samples, which is defined as

_ # of out-of-distribution test samples

64

of main test samples ¢4)
Given the main test samples, a fraction p of out-of-
distribution samples are selected from the original test set.
We reiterate that the previous works on personalized FL
adopted p = 0 for evaluation.

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

=)
S
=)
S

13

©
@

—— SplitGP (Ours)
—— Personalized models via FL

Generalized global model via FL/SL 85
—— Multi-Exit NN via FL/SL

——SplitGP (Ours)

——Personalized models via FL
Generalized global model via FL/SL|

——Multi-Exit NN via FL/SL

©

>
©
S

—— SplitGP (Ours)
—— Personalized models via FL

©
S

©
®
Test Accuracy
@
&

Test Accuracy

Generalized global model via FL/SL|
——Multi-Exit NN via FL/SL

-3
S

©
>

75

Test Accuracy
S
&

<
=]

65

90 70
0o 02 04 06 0.8 1
Relative Portion of Out-of-Distribution Test Samples p

(a) MNIST

0 0.2 0.4 0.6 0.8
Relative Portion of Out-of-Distribution Test Samples p

(b) FMNIST

1 0 0.2 0.4 0.6 0.8 1
Relative Portion of Out-of-Distribution Test Samples p

(c) CIFAR-10

Fig. 5: Test accuracy vs. p. For the simplest dataset MNIST, the baselines can also achieve accuracies over 98%. For more complicated
datasets, FMNIST and CIFAR-10, SplitGP has advantages for most settings of p by capturing personalization and generalization.

TABLE 3: Effect of out-of-distribution test samples on FMNIST
corresponding to Fig. 5.

Methods H p=20 p=0.2 p=204 p=20.6 p=20.38
Personalized FL 98.00% 84.67% 75.11% 67.96% 62.43%
Generalized FL 82.75% 83.44% 83.57% 83.62% 83.64%
SplitGP (Ours) 95.10% 90.93% 87.95% 85.74% 84.15%

TABLE 4: Effect of out-of-distribution test samples on CIFAR-10
corresponding to Fig. 5.

Methods | p=0 p=02 p=04 p=06 p=038
Personalized FL 84.78% 78.42% 74.04% 70.7% 68.05%
Generalized FL 69.15% 69.52% 69.56% 69.92% 69.73%
SplitGP (Ours) 87.57% 84.34% 81.78% 79.78% 78.24%

6.2 Comparison with Baselines

Effect of out-of-distribution data on test accuracy. We first
observe Fig. 5, which shows the performance of each scheme
depending on the relative portion of out-of-distribution
data p during inference. Tables 3 and 4 show the result
in a tabular form for FMNIST and CIFAR-10. We have the
following key observations from Fig. 5 and Tables 3 & 4.
First, the performance of the generalized global model and
the multi-exit neural network constructed via FL/SL do not
dramatically change with varying p. This implies that all
classes pose a similar level of difficulty for classification,
which is consistent with the class-balanced nature of the
datasets we adopted. It can be also seen that the performance
of personalized FL is significantly degraded as p grows,
since the personalized models are designed to improve the
performance on the main classes, not the out-of-distribution
classes. Finally, it is observed that SplitGP captures both
personalization and generalization capabilities: due to the
personalization capability, our scheme achieves a strong
performance when p is small, and due to the generalization
capability, our scheme is more robust against p compared to
personalized FL. Especially with more complicated datasets
such as FMNIST and CIFAR-10, SplitGP is advantage against
existing baselines for most settings of p.

Latency, accuracy, and resource improvements. Fig. 6
shows the achievable accuracy-latency performance of the
different schemes. For personalized FL, the models are
deployed at individual clients while the generalized global
model can be deployed either at the client-side or at the
server-side. To evaluate the inference time, we compute

the latency from Table 2 by setting Pc = 20, Ps = 100,
2

R =1, as in Fig. 3. From Rj = by log,(1 + %), this

corresponds to the case with by, = 0.1 MHz, Ny = 4 x 10~2!

W/Hz, pr, = 0.01 W, hy, = y/d, g, where d;; = 300 m is
the distance between client k and the server and ¢ = 4 is
the pathloss factor and g is the Rayleigh fading parameter,
which results in R = 0.99 =~ 1 Mbps. It can be seen that
SplitGP achieves the best accuracy with smallest inference
time for most values of p, confirming the advantage of our
solution. Note that this performance advantage is achieved
with considerable storage savings at the clients compared to
deploying the full model at the client; compared to the case
where w = [¢, 0] is deployed at each client, our scheme only
requires 10.62%, 10.62% and 10.64% of the storage space
for MNIST, FMNIST and CIFAR-10, respectively, by storing
only ¢ at the client-side. The communication load is also
significantly reduced compared to the case where the full
model is at the server; for example, when p = 0.8 in FMNIST,
our scheme achieves the best performance while inferring
only 20.30% of the test samples at the server.

6.3 Varying Parameters in SplitGP

Effect of). In Fig. 7, we study the effect of A which controls
the weights for personalization and generalization in SplitGP.
Table 5 shows the details of Fig. 7(b). When) is relatively
large, the weight for the personalized client-side model
increases, which leads to stronger personalization. In other
words, the case with large A performs well when p is small.
However, the performance degrades as p increases, since
the scheme with large A lacks generalization capability. In
general, the best A depends on the p value. Without prior
information, i.e., assuming p is uniform in the range of [0,1],
A = 0.2 gives the best expected accuracy for FMNIST. On
the other hand, if we have prior knowledge that p is uniform
in [0,0.2], A = 0.3 is a better option.

Effect of Eyj,. In Fig. 8, we observe the effect of E;j, which
controls the amount of inference task to be offloaded to the
edge server. Similar to A, one can choose an appropriate Eyp,
given the expected p (or the range of p). When p is small, a
large E;p, performs well, which means that a relatively large
number of samples should be predicted at the client-side
to achieve the highest accuracy. On the other hand, when
p is large, smaller E};, performs well which indicates that a
large number of samples should be predicted at the server.
These observations are consistent with our intuition that the

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

100 100 a
g4 :
98
- _ > 95
g @ SplitGP (Ours) S @ SplitGP (Ours)
5 96| % Personalized models 5 % Personalized models
3 Generalized model (Full model at clients) 8 90| Generalized model (Full model at clients)
< A Generalized model (Full model at the server) < A Generalized model (Full model at the server)
% 94| A Multi-Exit NN B ¢ Multi-Exit NN
s s
85
92 *
*
90 80
0 0.5 1 15 2 25 0 0.5 1 1.5 2 25 3
Inference Time [sec] 1010 Inference Time [sec] 1010

(a) MNIST, p = 0.2, 2405 samples (b) MNIST, p = 0.4, 2807 samples

92
PY 88 @
90 - 86
- @ SplitGP (Ours) -
S | ¥ Personalized models S84 A
588 Generalized model (Full model at clients) 5 *x
E A Generalized model (Full model at the server) E 82g SpItGP (Ours)
< go [Multi-Exit NN - 80 | * Personalized models
$ Z’, Generalized model (Full model at clients)
= * = 78| A\ Generalized model (Full model at the server)
84 A Multi-Exit NN
A 76 e
82 74
0 0.5 1 1.5 2 0.5 1 1.5 2 25
Inference Time [sec] 1010 Inference Time [sec] 1010

14
100 100
A oA
95 95
> > -
%) - %) @ SplitGP (Ours)
g g9 ; gplltGP fQu(;s) del £ gp|k Personalized models
3 ey (Full model at ci 3 Generalized model (Full model at clients)
< la Generalized model (Full model at clients) & | A Generalized model (Full model at the server)
+ 85 Generalized model (Full model at the server) — 85 # Muli-Exit NN
3 A Multi-Exit NN 2
= =
80 * 80
75 75 *
0 1 2 3 4 0 1 2 3 4
Inference Time [sec] 1010 Inference Time [sec] 100

(c) MNIST, p = 0.6, 3208 samples (d) MNIST, p = 0.8, 3611 samples

8l g
g5t @ i A
* 80
g z
£80 @ _ [@ SpiitGP (Ours)
§ @ SplitGP (Ours) § 75 Personalized models)
<75 & Personalized models < a Generalized model (Full model at clients)
k7 Generalized model (Full model at clients) 5 70| 4k Generalized model (Full model at the server)
& | A Generalized model (Full model at the server) @ 3 Multi-Exit NN
70 | Multi-Exit NN 65
x *
65 60
0 0.5 1 15 2 25 3 0.5 1 15 2 25 3 3.5
Inference Time [sec] . 10'0 Inference Time [sec] . 10'0

(e) FMNIST, p = 0.2, 2207 samples (f) FMNIST, p = 0.4, 2575 samples (g) FMNIST, p = 0.6, 2943 samples (h) FMNIST, p = 0.8, 3310 samples

85
° °
80 @ SplitGP (Ours)
80 Personalized models
o oy Generalized model (Full model at clients)
e . * g A Generalized model (Full model at the server)
3 | ® SplitGP (Ours) 3 . | Multi-Exit NN
2 75| % Personalized models 27 *
5 Generalized model (Full model at clients) 5
.9 A Generalized model (Full model at the server) &
% Multi-Exit NN
700 A 70 A
x x
1 2 3 4 5 1 2 3 4 5 6
Inference Time [sec] 100 Inference Time [sec] 1010

80
80 @
78 @
.. 78/ ® SpitGP (Ours) -
876 Personalized models g 76| @ SplitGP (Ours)
5 Generalized model (Full model at clients) 5 & Personalized models
874 A Generalized model (Full model at the server) 8 74 Generalized model (Full model at clients)
< W Multi-Exit NN < A Generalized model (Full model at the server)
372 3 72| Multi-Exit NN
it * i
70 A 70 A
681 681 4 *
1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
Inference Time [sec] 110 Inference Time [sec] ~ , 1g'0

(i) CIFAR10, p = 0.2, 2207 samples (j) CIFAR10, p = 0.4, 2575 samples (k) CIFAR10, p = 0.6, 2943 samples (1) CIFAR10, p = 0.8, 3310 samples

Fig. 6: Achievable accuracy-latency plot. The average number of test samples at each client is also reported. Our scheme achieves
the best accuracy with smallest inference time for most settings of p, underscoring the ability of SplitGP to provide personalization
and generalization while reducing inference resource requirements.

— =0

Test Accuracy
Test Accuracy

96 75

0 0.2 0.4 0.6 0.8 1
Relative Portion of Out-of-Distribution Test Samples p

(b) FMNIST

0 0.2 0.4 0.6 0.8 1
Relative Portion of Out-of-Distribution Test Samples p

(a) MNIST

Fig. 7: Effect of A in SplitGP. Larger A\ leads to stronger
personalization for handling the main classes while smaller
A leads to stronger generalization for handling the out-of-
distribution classes.

main test samples should be predicted at the client-side (with
strong personalization) while the out-of-distribution samples
should be predicted at the server (with strong generalization),
to achieve the most robust performance.

Performance of each component. We also consider the
performance of different components of our model. Table
6 compares the performance of the client-side model (¢
combined with hj) and the full model (¢ combined with
0) with the complete SplitGP on FMNIST. Due to the
personalization capability, it can be seen that SplitGP relies
on the client model when p is small. As p increases, SplitGP
relies on both the client model and the server model to

TABLE 5: Effect of A corresponding to Fig. 7. The value
of X should be chosen to achieve both generalization and
personalization, depending on the expected range of p.

Methods H p=0 p=02 p=04 p=20.6 p=0.8
A=0.2 95.10% 90.93% 87.95% 85.74% 84.15%
A=0.3 96.93% 91.69% 87.70% 84.79% 82.39%
A=0.5 97.39% 90.40% 85.46% 81.96% 79.24%
A=0.9 97.75% 84.87% 75.62% 68.79% 63.46%

©
©
o
©
>

94
99
> .92
g g
595 590
3 3
< <
7 98 588
3 3
= = gg
97.5
84
97 82
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Relative Portion of Out-of-Distribution Test Samples p Relative Portion of Out-of-Distribution Test Samples p
(a) MNIST (b) FMNIST

Fig. 8: Effect of E;, in test accuracy of SplitGP. A larger E:p
(i.e., less task offload to the server) is a good option when p is
small, while a smaller E};, (i.e., more task offload to the server)
achieves a better performance when p is large enough.

achieve generalization and personalization jointly.
Effect of system parameters in SplitGP inference de-
sign. As discussed in Section 5.3, we must select Fy, to

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

TABLE 6: Performance of the client-side model and the full
model. Our scheme takes the benefits of both models.

15

Methods [| p=02 p=04 p=0.6 p=0.8
Client model (SplitGP) 90.93% 87.90% 85.68% 83.85%
Full model (SplitGP) 88.06% 86.22% 84.89% 83.96%
Overall performance (SplitGP) 90.93% 87.95% 85.74% 84.15%
85 T t T
¢ 1 1
1 1
1 1
84.5 g’lg [:
_ | @ E,-005
=2 1 * E,=01
5 84 :p=0.7 : £,-02 [|
g | \ : E, =04
| | E,=08
§ 83.5 p=1 1 1 E::=1 2 f
3 ! A E -6
K b e
831 :
Inference time |
constraint Baseline !
825 ‘ —— L
2 3 4 T 5 6 7
Inference Time (per test sample) [sec] x10*
(a) R= I,PC =20
85 ! o - - |
* ® 1 1
1 1
[1
84.5 m ¥ @ 1
@ E,-005 :
X * Ep=01 | I
= 84 E, =02 | — I
s N |
5 E, =08
8 ‘ Elh=|2 p=1 ! !
< 835 th I
3 A E -1 I |
K * E,=2 L !
831 :
Inference time !
traint ine !
825 * ‘ consi fa'”‘ ‘ ‘ ‘ ‘Baselme ! |
2 3 4 7 5 6 7 8
Inference Time (per test sample) [sec] x10*
(b) R = 0.1, Po = 20
85 : : e , , .
[1
s |
845 | [] * @ : 1
@ E,-005 \ |
* % E,=0.1 o
= a4l E:::O.Z Inference time | 9207 :]
g m 04 constraint | :
é ¢ £,08 o |
<8351 Y Ey=12 n= .
5 E,=16
& | ke * |
83 14
|
|
Baseline !
825[, : h ; : : I
2 3 4 7 5 6 7 8
Inference Time (per test sample) [sec] x10%

(C)R:LPC:IO

Fig. 9: Effect of Ey;, in both test accuracy and inference time with
varying system parameters. The baseline inference time with
full model at the client is marked in blue. SplitGP can flexibly
choose Fy, to satisfy the inference time constraint depending on
the network resource availability.

satisfy the inference time constraint depending on the system
parameters. Fig. 9 shows how E}, affects the test accuracy
and inference time on FMNIST with different varying
communication rate I? and client-side computing power Pc.
As the communication rate decreases (e.g., by smaller channel
gain), the feasible E};, range becomes smaller to meet the
inference time constraint 7’. As the client-side computation
power decreases, SplitGP also offloads less task to the server

FEAS

Fig. 10: Raspberry Pi testbed with the laptop working as a server.
For SplitGP implementation, the client-side model components
are deployed at the Raspberry Pi device, while the server-side
model is deployed at the laptop.

to satisfy the latency constraint. SplitGP can be designed
to satisfy the inference time constraint by controlling the
feasible Eyj, range depending on the system parameters as in
(59). On the other hand, the baseline with full model at the
client-side (marked in blue) is not able to satisfy the inference
time requirement.

6.4

Finally, we also implemented SplitGP using Raspberry Pi
testbed to corroborate our findings in previous sections
using real-world resource constrained devices. We used the
Raspberry Pi 4 Model B as a client and the laptop with
NVIDIA GeForce RTX 3070 Ti Laptop GPU as a server. For
the baseline, the full model is deployed at each Raspberry
Pi device, while for SplitGP, we split the model according to
the setup described in Section 6.1. During SplitGP inference,
PyTorch tensors, representing intermediate features, were
encoded (decoded) into (from) byte representations. TCP was
then used to communicate between client and server over a
typical consumer-grade router running approximately 100
Mbps.

Fig. 11 shows the inference time per test sample measured
with our testbed when p = 0.4. The corresponding test accu-
racies are also reported. We make the following observations.
First, the baseline scheme requires the largest inference time
in resource-constrained devices. Second, as F;, increases,
the inference time of SplitGP decreases, as more test samples
are predicted at the client-side without communicating with
the server. Here, the inference time of SplitGP is less affected
by Eyp, for the CIFAR-10 dataset. This is because a larger
model is adopted for CIFAR-10, which makes computation
time at the Raspberry Pi device dominant compared to the
communication time. According to the results on CIFAR-10,
the required inference time for the baseline is larger than 7
milliseconds (ms) per test sample, while the inference time
of our scheme is below 3 ms per test sample most of the
cases. Considering end-to-end delay requirements for 5G
wireless reported to be on the order of 5 ms [58], an inference
time reduction from 7 ms to 3 ms is expected to have a large
impact on user experience. The overall results validate the
effectiveness of SplitGP in real-world resource-constrained
scenarios.

In Fig. 12, we consider other scenarios with p = 0.7 and
p = 1, where the setups are exactly the same as in Fig. 9.

Implementation on Raspberry Pi Testbed

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

Il inference time

§ 0.04 [l Test accuracy [[[90

)

8'0.03 80 g

& 2y

g g

£0.02 70 3

£ <

5 3

9 0.01 60 @

c

[

2

= N 50

Baseline E =0.1 E =04 E =038 E=2
(a) FMNIST

©'0.08 Il Inference time — ; r 90

3 Il Test accuracy

2 80

2 =

2006 05

3 60 3

5] 50 3

£0.04 3

) 40 f

E 30 8
i

g 0.02 - 20

C

o 10

9]

= . 0

Baseline Eth=0.1 Em=0.4 E1h=0'8 Eth=2

(b) CIFAR-10

Fig. 11: Inference time per test sample in seconds measured
with Raspberry Pi devices.

85

8451

@
S
T

p=0.7

p

Test Accuracy [%]
8
(6,1

ol
(%]
T

Inference time

T
I
I
I
|
I
I
I
1
|
I
I
I
|
I
I
1
|
. |
constraint I
1

Baseline

sl A

0.01 0.015 0.02 0.025
Inference Time (per test sample) [sec]

0.03

Fig. 12: Results obtained using Raspberry Pi devices with
varying E;, and p. Other settings are the same as in Fig. 9.

It can be seen that it is more beneficial to offload more test
samples to the server when p is large. It is also observed
that the proposed scheme can achieve smaller inference time
compared to the baseline where the full model is deployed
at each client. The overall results in Fig. 12 obtained with
Raspberry Pi devices are consistent with the ones in Fig. 9,
confirming the advantage of the proposed algorithm.

7 CONCLUSION

In this paper, we proposed SplitGP, a joint training and
inference strategy that can capture both personalization
and generalization capabilities in FL for efficient edge-
Al over the network. Based on a hybrid federated and
split learning methodology, SplitGP enables the client-side
model to capture personalization, while the server-side
model to capture generalization. During inference, SplitGP

16

enables each client to selectively offload the task over the
network for effectively handling the out-of-distribution tasks.
The convergence analysis is conducted to provide insights
into SplitGP training, while the latency analysis provides
guidelines on the inference task offloading depending on the
inference time constraint. Extensive experimental results on
real-world datasets confirmed the advantage of SplitGP in
practical settings where each client needs to make predictions
frequently for its main classes but also occasionally for its
out-of-distribution classes.

REFERENCES

[1] D.J. Han, D.-Y. Kim, M. Choi, C. G. Brinton, and J. Moon, “Splitgp:
Achieving both generalization and personalization in federated
learning,” arXiv preprint arXiv:2212.08343, 2022.

[2] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations
and Trends® in Machine Learning, vol. 14, no. 1-2, pp. 1-210, 2021.

[3] T.Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50-60, 2020.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Artificial Intelligence and Statistics, 2017, pp.
1273-1282.

[5] T.Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine Learning and Systems, vol. 2, pp. 429450, 2020.

[6] H.Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni,
“Federated learning with matched averaging,” in International
Conference on Learning Representations, 2020.

[7]1 D.A.E. Acar, Y. Zhao, R. Matas, M. Mattina, P. Whatmough, and
V. Saligrama, “Federated learning based on dynamic regularization,”
in International Conference on Learning Representations, 2020.

[8] S.P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated
learning,” in International Conference on Machine Learning. PMLR,
2020, pp. 5132-5143.

[9] S.Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and

K. Chan, “Adaptive federated learning in resource constrained

edge computing systems,” IEEE Journal on Selected Areas in Commu-

nications, vol. 37, no. 6, pp. 1205-1221, 2019.

M. M. Amiri and D. Giind{iz, “Federated learning over wireless

fading channels,” IEEE Transactions on Wireless Communications,

vol. 19, no. 5, pp. 3546-3557, 2020.

M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui,

“A joint learning and communications framework for federated

learning over wireless networks,” IEEE Transactions on Wireless

Communications, vol. 20, no. 1, pp. 269-283, 2020.

Y. Park, D.-]. Han, D.-Y. Kim, J. Seo, and J. Moon, “Few-round

learning for federated learning,” Advances in Neural Information

Processing Systems, vol. 34, pp. 28 612-28 622, 2021.

J. Park, D.-]. Han, M. Choi, and]J. Moon, “Sageflow: Robust feder-

ated learning against both stragglers and adversaries,” Advances in

Neural Information Processing Systems, vol. 34, pp. 840-851, 2021.

D.-]. Han, M. Choi, J. Park, and J. Moon, “Fedmes: Speeding up

federated learning with multiple edge servers,” IEEE Journal on

Selected Areas in Communications, vol. 39, no. 12, pp. 3870-3885,

2021.

H. H. Yang, Z. Liu, T. Q. Quek, and H. V. Poor, “Scheduling policies

for federated learning in wireless networks,” IEEE transactions on

communications, vol. 68, no. 1, pp. 317-333, 2019.

Y. Tu, Y. Ruan, S. Wagle, C. G. Brinton, and C. Joe-Wong, “Network-

aware optimization of distributed learning for fog computing,” in

IEEE INFOCOM 2020-1EEE Conference on Computer Communications.

IEEE, 2020, pp. 2509-2518.

S. Wang, M. Lee, S. Hosseinalipour, R. Morabito, M. Chiang, and

C. G. Brinton, “Device sampling for heterogeneous federated learn-

ing: Theory, algorithms, and implementation,” in IEEE INFOCOM

2021-IEEE Conference on Computer Communications. 1EEE, 2021, pp.

1-10.

[10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3331690

H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated
learning on non-iid data with reinforcement learning,” in IEEE
INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE, 2020, pp. 1698-1707.

V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” Advances in neural information processing
systems, vol. 30, 2017.

Y. Deng, M. M. Kamani, and M. Mahdavi, “Adaptive personalized
federated learning,” arXiv preprint arXiv:2003.13461, 2020.

A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning with theoretical guarantees: A model-agnostic meta-
learning approach,” Advances in Neural Information Processing
Systems, vol. 33, pp. 3557-3568, 2020.

M. Zhang, K. Sapra, S. Fidler, S. Yeung, and J. M. Alvarez, “Person-
alized federated learning with first order model optimization,” in
International Conference on Learning Representations, 2021.

T. Li, S. Hu, A. Beirami, and V. Smith, “Ditto: Fair and robust feder-
ated learning through personalization,” in International Conference
on Machine Learning. PMLR, 2021, pp. 6357-6368.

C. T. Dinh, N. H. Tran, M. N. Nguyen, C. S. Hong, W. Bao, A. Y.
Zomaya, and V. Gramoli, “Federated learning over wireless net-
works: Convergence analysis and resource allocation,” IEEE/ACM
Transactions on Networking, vol. 29, no. 1, pp. 398-409, 2020.

K. Weij, J. Li, M. Ding, C. Ma, H. Su, B. Zhang, and H. V. Poor,
“User-level privacy-preserving federated learning: Analysis and
performance optimization,” IEEE Transactions on Mobile Computing,
vol. 21, no. 9, pp. 3388-3401, 2021.

S. Itahara, T. Nishio, Y. Koda, M. Morikura, and K. Ya-
mamoto, “Distillation-based semi-supervised federated learning
for communication-efficient collaborative training with non-iid
private data,” IEEE Transactions on Mobile Computing, vol. 22, no. 1,
pp- 191205, 2021.

J. Liu, H. Xu, L. Wang, Y. Xu, C. Qian, J. Huang, and H. Huang,
“Adaptive asynchronous federated learning in resource-constrained
edge computing,” IEEE Transactions on Mobile Computing, 2021.

M. N. Nguyen, N. H. Tran, Y. K. Tun, Z. Han, and C. S. Hong,
“Toward multiple federated learning services resource sharing in
mobile edge networks,” IEEE Transactions on Mobile Computing,
vol. 22, no. 1, pp. 541-555, 2021.

X. Lin, J. Wu, J. Li, X. Zheng, and G. Li, “Friend-as-learner: Socially-
driven trustworthy and efficient wireless federated edge learning,”
IEEE Transactions on Mobile Computing, vol. 22, no. 1, pp. 269-283,
2021.

M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary,
“Federated learning with personalization layers,” arXiv preprint
arXiv:1912.00818, 2019.

K. Pillutla, K. Malik, A.-R. Mohamed, M. Rabbat, M. Sanjabi, and
L. Xiao, “Federated learning with partial model personalization,”
in International Conference on Machine Learning. PMLR, 2022, pp.
17716-17758.

H.-Y. Chen and W.-L. Chao, “On bridging generic and personal-
ized federated learning for image classification,” in International
Conference on Learning Representations, 2021.

Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei,
“Energy efficient federated learning over wireless communication
networks,” IEEE Transactions on Wireless Communications, vol. 20,
no. 3, pp. 1935-1949, 2020.

M. Chen, H. V. Poor, W. Saad, and S. Cui, “Convergence time
optimization for federated learning over wireless networks,” IEEE
Transactions on Wireless Communications, vol. 20, no. 4, pp. 2457-2471,
2020.

Z. Zhao, C. Feng, W. Hong, |. Jiang, C. Jia, T. Q. Quek, and M. Peng,
“Federated learning with non-iid data in wireless networks,” IEEE
Transactions on Wireless communications, vol. 21, no. 3, pp. 1927-1942,
2021.

P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient
data,” arXiv preprint arXiv:1812.00564, 2018.

O. Gupta and R. Raskar, “Distributed learning of deep neural
network over multiple agents,” Journal of Network and Computer
Applications, vol. 116, pp. 1-8, 2018.

C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed:
When federated learning meets split learning,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 36, no. 8, 2022, pp.
8485-8493.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

17

C. He, M. Annavaram, and S. Avestimehr, “Group knowledge
transfer: Federated learning of large cnns at the edge,” Advances in
Neural Information Processing Systems, vol. 33, 2020.

D.-J. Han, H. L. Bhatti, J. Lee, and J. Moon, “Accelerating federated
learning with split learning on locally generated losses,” in ICML
2021 Workshop on Federated Learning for User Privacy and Data
Confidentiality. ICML Board, 2021.

S. Oh, J. Park, P. Vepakomma, S. Baek, R. Raskar, M. Bennis,
and S.-L. Kim, “Locfedmix-sl: Localize, federate, and mix for
improved scalability, convergence, and latency in split learning,”
in Proceedings of the ACM Web Conference 2022, 2022, pp. 3347-3357.
W.J. Yun, Y. Kwak, H. Baek, S. Jung, M. Ji, M. Bennis, J. Park, and
J. Kim, “Slimfl: Federated learning with superposition coding over
slimmable neural networks,” IEEE/ACM Transactions on Networking,
2023.

S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in 2017
IEEE 37th international conference on distributed computing systems
(ICDCS). 1IEEE, 2017, pp. 328-339.

, “Branchynet: Fast inference via early exiting from deep
neural networks,” in 2016 23rd International Conference on Pattern
Recognition (ICPR). 1EEE, 2016, pp. 2464-2469.

H. Hu, D. Dey, M. Hebert, and J. A. Bagnell, “Learning anytime
predictions in neural networks via adaptive loss balancing,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, 2019, pp. 3812-3821.

G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Wein-
berger, “Multi-scale dense networks for resource efficient image
classification,” in International Conference on Learning Representations,
2018.

H. Li, H. Zhang, X. Qi, R. Yang, and G. Huang, “Improved
techniques for training adaptive deep networks,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019, pp.
1891-1900.

M. Phuong and C. H. Lampert, “Distillation-based training for
multi-exit architectures,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 1355-1364.

M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana,
“Certified robustness to adversarial examples with differential
privacy,” in 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 2019, pp. 656-672.

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the
convergence of fedavg on non-iid data,” in International Conference
on Learning Representations, 2020.

A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and
R. Pedarsani, “Fedpaq: A communication-efficient federated learn-
ing method with periodic averaging and quantization,” in Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR, 2020,
pp. 2021-2031.

D. Basu, D. Data, C. Karakus, and S. Diggavi, “Qsparse-local-
sgd: Distributed sgd with quantization, sparsification and local
computations,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

S. Zehtabi, S. Hosseinalipour, and C. G. Brinton, “Event-triggered
decentralized federated learning over resource-constrained edge
devices,” arXiv preprint arXiv:2211.12640, 2022.

A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep
neural network models for practical applications,” arXiv preprint
arXiv:1605.07678, 2016.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278-2324, 1998.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

W. Saad, M. Bennis, and M. Chen, “A vision of 6g wireless systems:
Applications, trends, technologies, and open research problems,”
IEEE network, vol. 34, no. 3, pp. 134-142, 2019.

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2024 at 20:53:17 UTC from IEEE Xplore. Restrictions apply.

© 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

