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ABSTRACT

Federated learning (FL) has been promoted as
a popular technique for training machine learning
(ML) models over edge/fog networks. Traditional
implementations of FL have largely neglected the
potential for inter-network cooperation, treating
edge/fog devices and other infrastructure partic-
ipating in ML as separate processing elements.
Consequently, FL has been vulnerable to sever-
al dimensions of network heterogeneity, such as
varying computation capabilities, communication
resources, data qualities, and privacy demands.
We advocate for cooperative federated learning
(CFL), a cooperative edge/fog ML paradigm built
on device-to-device (D2D) and device-to-server
(D2S) interactions. Through D2D and D2S coop-
eration, CFL counteracts network heterogeneity
in edge/fog networks through enabling a model/
data/resource pooling mechanism, which will yield
substantial improvements in ML model training
quality and network resource consumption. We
propose a set of core methodologies that form
the foundation of D2D and D2S cooperation and
present preliminary experiments that demonstrate
their benefits. We also discuss new FL functional-
ities enabled by this cooperative framework such
as the integration of unlabeled data and hetero-
geneous device privacy into ML model training.
Finally, we describe some open research directions
at the intersection of cooperative edge/fog and FL.

INTRODUCTION

Recently, much attention has been given to the
implementation of data analytics and machine
learning (ML) techniques at the network edge to
handle the complexity of emerging Internet of
Things (loT) services, ranging from user-oriented
(e.g., object recognition) to network-oriented (e.g.,
signal classification) applications [1]. loT devices
are now capable of gathering data from various
sources, connecting to the internet, and performing
computation tasks. Collectively, they form edge/
fog networks capable of producing machine intel-
ligence insights. Traditionally, data insights were
produced via centralized computing, where net-
work devices send all of their local measurements
to a single central server for ML training. Such
methods led to system-wide latency and resource
inefficiencies as a result of data transmissions from

edge devices to the server, for centralized ML tasks

specifically. These limitations have led to the emer-

gence of distributed ML techniques and in particu-
lar federated learning (FL).

Standard FL shifts the processing portion of ML
training from the server to the edge/fog devices
[2]. As shown in the upper left corner of Fig. 1, it
involves a “star” server-to-device communication
topology, inside of a three-part cyclical process:

+ Edge devices independently and locally train
an ML model.

+ ML models are sent to the central server for
global aggregation.

+ The server synchronizes devices’ ML mod-
els into an aggregated ML model called the
global model.

While standard FL features global aggregations,

this is the only form of cooperation among net-

work elements. Inter-device and inter-network
communications — key features of loT networks

— can also facilitate cooperation and are missed

opportunities in FL. For example, direct device-to-

device (D2D) communication links that are other-
wise underutilized could be employed for faster
and communication-efficient ML model training

[3]. Traditional FL therefore does not exploit the

full potential of cooperation in large-scale edge/

fog networks.

We propose cooperative federated learning
(CFL), a cooperative edge/fog ML paradigm that
jointly orchestrates device, server, and network
infrastructure resources to enhance FL while con-
sidering its core trade-offs, as shown in Fig. 1. CFL
extends the notion of cooperation to address the
key missed opportunities in standard FL, which
are summarized below:

+ Edge devices with powerful local processors
or small local datasets idly wait for network
stragglers to finish training [4].

+ Powerful network infrastructure elements such
as edge/fog servers are underutilized in FL [5].

+ Edge devices without direct connectivity to the
central server are neglected during ML model
training and synchronization processes [2].

+ loT devices, which may have diverse privacy
requirements [6], are all discouraged from
sharing data/models over the network.

These shortcomings are the result of prohibiting

powerful devices, idle edge servers, and network
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FIGURE 1. The progression from standard FL toward network-aware cooperative FL. Starting from standard FL and its associated trade-offs, we develop the pillars of cooperative FL frameworks, namely
device-to-device and device-to-server cooperation. We envision that future work toward integrating collaboration into FL involves ideas such as multi-hop cooperation, integration of unlabeled

data, and heterogeneous privacy.

infrastructure from helping computationally weak
and/or overburdened devices in FL. Simultane-
ously, D2D and device-to-server (D2S) cooper-
ation over such edge/fog networks has been
shown to be feasible and beneficial to learning
processes [7]. Well-designed cooperation mecha-
nisms can thus unlock the full potential of edge/
fog networks for FL, leading to:

+ Improved ML performance

+ Energy efficiency

+ Temporal efficiency (e.g., faster ML training)

+ Diverse data/model privacy.

COOPERATIVE FEDERATED LEARNING

We propose cooperative federated learning
(CFL), a novel paradigm that expands the dimen-
sions of cooperation in FL beyond global aggre-
gations. CFL develops inter-element cooperation
mechanisms including selective data sharing, com-
putation resource sharing, ML model sharing, and
data distribution comparisons. FL driven by such
multi-faceted cooperation better exploits the avail-
ability of links among network devices, servers,
and infrastructure in contemporary edge/fog sys-
tems. Through such links, CFL unlocks the poten-
tial of cooperative edge/fog networks for ML.

Whereas the state-of-the-art in FL [2] has most-
ly considered data offloading as a mechanism for
improving local statistical properties in FL, our
vision for CFL involves a broader look at cooper-
ation in FL, including D2D- and D2S-driven data,
model, and resource cooperation. These pro-
posed cooperation technologies aim to improve
the balance among the trade-offs in FL shown in
Fig. 1. For example, intelligent cooperation can
lead to better ML model performance with less
energy usage and system delay.

Specifically, CFL leverages D2D links for data
and model sharing, which we term D2D coopera-
tion, and leverages D2S links to incorporate edge
servers, routers, and other network infrastructure
into the FL ecosystem through data processing and
ML model transmission tasks. We consider data
transfers in CFL noting that while some applica-
tions of FL (e.g., healthcare analytics) discourage
data sharing, other applications have milder data
privacy restrictions, especially when the data is gen-
erated with ML as the primary purpose (e.g., FL for
self-driving vehicles with sensor measurements).

Combined, D2D and D2S cooperation form
the two pillars of CFL, which together enable
many complementary technologies, we only
examine a few of which for brevity. As depicted
in Fig. 1, we examine multi-hop cooperation due
to its key influence on improved resource efficien-
cy (i.e., energy efficiency and temporal sensitivity),
integration of unlabeled data as it enhances ML
performance for devices, and devices heteroge-
neous privacy demands because it focuses on the
data/model privacy aspects of CFL.

(OVERARCHING TECHNOLOGIES FOR CFL

In the following, we explain how D2D and D2S
cooperation exploit the network characteristics
inherent in edge/fog networks, and fulfill the
missed opportunities of FL.

Device-to-Device (D2D) Cooperation: In
edge/fog networks, devices are heterogeneous
statistically (i.e., different dataset characteristics)
and structurally (i.e., varying computation/com-
munication capabilities). In standard FL, such het-
erogeneity leads to isolated resource-abundant
and resource-scarce devices, some of which may
introduce straggler effects and delay ML model
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better represent and facilitate

with partially labeled or unla-

D2D and D2S cooperation can

the contribution of devices

beled datasets in FL.

aggregations. In the worst-case, resource-scarce
devices may be unable to complete ML model
training iterations, possibly due to insufficient
battery, or result in the existence of unused local
data, as model training in straggler devices use
smaller batches of data. To cope with device het-
erogeneity, we exploit D2D cooperation as dis-
cussed below.

Cooperation as Resource Pooling: Coop-
erative edge/fog networks can reallocate the
intensity of local ML training by leveraging D2D
links for data transfers from resource-scarce to
resource-abundant devices. Through this process,
the impact of stragglers (i.e., resource-scarce
devices) on ML model training is then reduced.
Simultaneously, D2D cooperation shifts the bur-
den of ML model training to devices with ener-
gy-efficient processors, and thus can lead to
network energy savings.

D2D Driven Model Offloading: Similar to
data and subsequent ML training offloading, D2D
cooperation can mitigate some of the model
aggregation overhead. Rather than only transmit-
ting local ML models to the aggregation server,
devices can transfer different parts/chunks of their
model to their neighboring devices. In this way,
those devices that are far away from the server
or have limited communication resources (e.g.,
limited bandwidth) can communicate with their
neighboring devices. Devices that receive models
from their neighbors then combine received mod-
els with their local one and then transmit these
partially combined ML parameters to the serv-
er. Thus, D2D model offloading can reduce the
number of devices engaging in resource intensive
uplink transmissions.

Device-to-Server (D2S) Cooperation: Cur-
rent FL research presumes conducting ML model
training solely on the devices and neglects the
underutilized network infrastructure elements
such as edge servers. While edge servers may not
gather data themselves, they can add value to the
FL process owing to their powerful local proces-
sors and dedicated communications equipment
which can be exploited through network collabo-
ration. We will refer to all cooperation, aside from
global model aggregations, between devices and
edge servers as D2S cooperation. Two potential
use cases of edge servers are provided below.

Computational Resources: D2S cooperation
allows resource-scarce devices to transfer their
local data to a physically stable and computa-
tionally powerful edge server. These edge serv-
ers then function similarly as a resource-abundant
device, enabling the network to process more
training data and lessening straggler effects.

Flexible Data Caches: Using the data they
receive from nearby devices, edge servers can
act as local data caches, which can carry globally
representative distributions of high quality data,
to mitigate the impact of non-i.i.d. data across the
network. Additionally, this functionality enables
better tracking of the distribution shifts in the data
via comparing old data with newly arriving data at
the edge servers, which enables more informative
decisions on ML model training.

ENHANCING THE CORE PROPERTIES OF CFL

While many applications/extensions are possi-
ble from the foundation of D2D/D2S coopera-

tion, we focus on a subset of techniques that can

enhance the core trade-offs in CFL. We present

high-level explanations of:

+ Multi-hop cooperation due to its benefits for
resource efficiency (energy efficiency and
time sensitivity)

* Integration of unlabeled data as it extends
FL to benefit a wider range of devices (e.g.,
devices with unlabeled data)

+ Heterogeneous privacy for its enhancements
to data/model privacy.

Multi-Hop D2D and D2S Cooperation: Multi-
hop D2D and D2S cooperation refers to extend-
ing the above concepts developed for single-hop
D2D and D2S cooperation to multiple, sequen-
tial links in between devices. This envisioned
technology can greatly improve the resource
efficiency (i.e., less energy consumption and/or
faster model training) of FL. In particular, multi-
hop cooperation enables greater connectivity/
reach from resource-scarce to resource-abundant
edge devices or servers.

Integration of Unlabeled Datasets: D2D and
D2S cooperation can better represent and facil-
itate the contribution of devices with partially
labeled or unlabeled datasets in FL. Unlabeled
data refers to data samples that have not been
tagged with a ground-truth, for example, images
taken by cameras mounted on smart cars with-
out pre-assigned or pre-identified types of objects
within the image. In standard FL, only devices with
labeled data are engaged in ML model training.
Consequently, edge devices with unlabeled data-
sets are unlikely to have their data properly repre-
sented at the global ML model and so are likely
to suffer from poor ML performance. Roughly
speaking, D2D and D2S cooperation can enable
approximations of the local data distribution of
each device at its neighboring devices/network
elements, even if the device has fully or mostly
unlabeled data. Subsequently, the type of distrib-
uted learning method being applied can be tuned
to improve ML performance across the network.

Heterogeneous Privacy: Similar to statistical
(i.e., data-level) and structural (i.e., computation/
communication resources) differences, edge/fog
devices also exhibit heterogeneity with respect to
their privacy needs. Heterogeneous privacy needs
will motivate selective D2D and D2S cooperation.
For example, D2D cooperation can involve shar-
ing sensitive data only among mutually trusted
devices (e.g., edge devices belonging to the same
user or family), while among untrusted neighbors,
this sharing can be limited to sharing insensitive
data or even prohibited completely. This is one
of the future complementary technologies depict-
ed in Fig. 1. With such methods in place, D2D/
D2S cooperative technologies can improve the
resource efficiency and ML performance while
meeting data/model privacy requirements of
edge/fog network elements.

TowARD NETWORK-AWARE CFL

As depicted in Fig. 1, our vision for CFL relies on

cooperative edge/fog networks to enhance stan-

dard FL on:

+ ML performance — the effectiveness of the
ML model trained by the network

* Energy efficiency — the network-wide accu-
mulated energy expenditure on data pro-
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FIGURE 2. Data and local model offloading form the basis of effective D2D cooperation. We envision smart data offloading by edge devices through dataset
stratification. Additionally, we propose local model offloading, where devices offload segments of their local ML models to other devices.

cessing, and data/model communication

Temporal efficiency — the total time includ-

ing idle time consumed by the FL process

+ Data and model privacy — the heteroge-
neous privacy needs in large-scale edge/fog
networks.

Methodologies that develop network-aware CFL

must carefully balance their contributions to these

four coupled elements, which contain design

trade-offs.

The first layer of network-aware CFL consists of
the pillars of D2D and D2S cooperation and their
core mechanisms. D2D and D2S cooperation can
leverage data and model transfers to cope with
device heterogeneity.For example, data offloading
through D2D links can yield energy savings, and
ML model routing through D2S links can mitigate
straggler effects.

With our established frameworks of D2D and
D2S cooperation, we can then develop comple-
mentary technologies to enhance CFL along the
four design considerations of ML performance,
energy efficiency, temporal sensitivity, and data/
model privacy. In Fig. 1, we depict three sam-
ple complementary techniques, with each tech-
nique primarily improving one aspect of CFL. For
instance, multi-hop collaborations such as those
seen in industrial loT [8] enhance resource (ener-
gy and delay) efficiency, integration of unlabeled
data such as those in autonomous driving [9] can
improve ML performance, and heterogeneous pri-
vacy as seen in social trust [6] offers an alternative
approach to data/model privacy. We next develop
D2D and D2S cooperation as the two pillars of net-
work-aware CFL, and, as future work, explain how
complementary technologies can enhance them.

NETWORK-AWARE D2D COOPERATION

The first step toward network-aware CFL is to
develop and maximize the benefits arising from
D2D cooperation.Well-designed D2D coopera-
tion can enable efficient orchestration of limited
network resources, leading to improvements in
the trade-offs of FL from Fig. 1. To this end, we first
introduce a set of core, overarching technologies
to enable effective D2D cooperation, and thereaf-

ter propose future work on complementary tech-
nologies to further enhance D2D cooperation.

CORE TECHNIQUES FOR EFFECTIVE D2D COOPERATION

Effective D2D cooperation improves network
resource efficiency and ML model training
through innovations in data and model offloading,
which we propose in Fig. 2. At the data level, we
propose dataset stratification, a method which
clusters local datasets for higher quality data off-
loading. At the ML model level, we propose local
model offloading, a technique that involves partial
local ML model offloading to streamline efficient
ML model aggregations.

Dataset Stratification: After offloading data,
the sending device (sender) continues local ML
model training on a smaller local dataset, as keep-
ing a copy of the transferred data leads to bias
at ML model aggregations from counting the
same data multiple times. On the other end, the
receiving device (receiver) may receive data that
is unrepresentative of the data gathered at the
sender. As a result, random/naive data offloading
may hinder rather than help the ML model train-
ing, motivating dataset stratification.

As depicted on the left subplot of Fig. 2, data-
set stratification clusters datasets into strata (i.e.,
categories) based on task-dependent criteria.
Using the example of clothing recognition (i.e.,
the Fashion-MNIST dataset [10]) for data collected
by smartphones’ cameras, each stratum may con-
tain data belonging to a unique type of clothing
(e.g., T-shirts or coats). Then, through sequential
selection of the most representative data samples
(i.e., those that are closest to the strata average)
from the most populous strata, devices can offload
datapoints which well-capture the distribution of
their local dataset. In doing so, dataset stratifica-
tion keeps the distribution of the dataset at senders
relatively intact, and enables receivers to receive a
representative sample of data from senders.

As an example, consider a smart car communi-
cating with a drone. From its operation, the car has
images of mostly stop signs and traffic lights, which
the drone may not. Dataset stratification enables the
car to transmit a small set of representative stop sign
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FIGURE 3. Our D2D cooperation-driven method incurs both less compute time and energy consumption relative to the
state-of-the-art NOVA methodology on two commonly used machine learning datasets (MNIST for numbers and
Fashion-MNIST for clothes).

and traffic light pictures, without significantly distort-
ing its local dataset distribution, to the drone.

Local Model Offloading: We propose segment-
ing and sequentially transmitting the devices’ local
ML models at global ML model aggregations.Each
segment of an ML model is a subset of model
parameters. For example, in the case of neural net-
works, each segment may contain the parameters
associated with a layer of the neural network. Local
model offloading, depicted in Fig. 2, enables devic-
es with limited access to the server (e.g., due to
unsatisfactory channel conditions) to offload dif-
ferent segments of their local ML models to inter-
mediary devices with a better accessibility to the
server. These intermediary devices will combine
their local ML models with their received partial
ML models, leading to a set of partially aggregated
parameters, which are then sent to the central serv-
er. In this way, the central server is able to perform
the global aggregation using all ML model parame-
ters while saving communication resources.

We have taken initial steps toward formaliz-
ing this D2D cooperation methodology in our
prior work [10], including optimization formula-
tion, theoretical results, and convergence proofs.
To evaluate its potential benefits, we compare it
against the algorithm Nova [11] on two common
datasets used to evaluate FL methods: MNIST
(numbers) and Fashion-MNIST (clothes). Simula-
tion results are shown in Fig. 3, where both meth-
ods train a two layer convolutional neural network
(CNN) across a network of 10 devices. A detailed
description of the computational infrastructure,
wireless channel models, and models of energy
consumption (including energy from both the
communication and computation processes) can
be found in [10].We compare against Nova [11],
a recent and well-established method for aggre-
gations involving heterogeneous training epochs
across edge/fog devices. Our proposed CFL tech-
nology is seen to yield consistent energy savings,
and faster ML training times.

FUTURE DEVELOPMENT OF COMPLEMENTARY TECHNOLOGIES

Further extension of D2D cooperation can further
enhance the trade-offs in FL and subsequently CFL
depicted in Fig. 1. A few open research directions
are summarized below:

D2D Cooperation in Non-Stationary Net-
works: In non-stationary networks, devices will
enter and exit the network, leading to varying net-

work size, changing compute resource availability,
and time-varying D2D links. Here effective cooper-
ation should consider the physical stability of edge/
fog devices to determine effective time-varying
anchor devices.These anchors will receive near-
by ML models from devices as they leave the net-
work and transmit the latest global ML model to
new devices as they join the network. In doing so,
anchor devices improve ML training by enabling
more devices to contribute to the training process
in-between global model aggregations.

n-Hop Cooperation: n-hop cooperation aims
to broaden the scope of D2D cooperation, pro-
viding resource-scarce devices with greater access
to resource-abundant ones through intermediary
devices. Consequently, this technology can further
enhance the resource and time savings introduced
by single-hop D2D cooperation. This calls for novel
optimization methodologies to characterize the
benefits and trade-offs of n-hop cooperation.

Heterogeneous Privacy Needs in D2D
Cooperation: Edge/fog devices may have het-
erogeneous privacy needs. For example, D2D
connections may be allowed based on trust or
familiarity. In such cases, devices often band
together into cliques, which are private groups
with a certain level of mutual trust.Data trans-
ferring can be restricted to links between mutu-
ally trusted devices (e.g., smart devices such as
a smartphone, laptop, and tablet of the same
owner). In intra-clique cooperation, then, devic-
es can share data without any restrictions, while,
in inter-clique cooperation, devices may only be
willing to share model parameters or insensitive
data. Furthermore, dataset stratification can be
designed to separate data based on sensitivity,
with restricted offloading of sensitive strata (e.g.,
personal health data or biometrics) among intra-
clique devices and unrestricted offloading of
insensitive strata (e.g., weather information).

Inclusion of Devices With Unlabeled Data: In
practical edge/fog networks, some devices may
have mostly or fully unlabeled datasets. Standard
FL neglects all these devices and obtains a glob-
al ML model by only engaging the devices with
labeled datasets.Through D2D cooperation, edge
devices can share small quantities of data, labeled
or unlabeled, to develop estimates of data distribu-
tions at devices with unlabeled datasets. This tech-
nique, termed unlabeled distribution estimation,
will then involve determining unique combinations
of ML models trained by devices with labeled data-
sets for use at devices with unlabeled datasets.

NETWORK-AWARE D2S COOPERATION

Edge servers, especially in large-scale edge/fog
networks, offer an untapped resource in stan-
dard FL.D2S cooperation aims to facilitate effi-
cient utilization of these resources, for example,
by enabling devices with limited computation
capabilities to transfer local training data to edge
servers. In doing so, edge servers can leverage
their powerful and efficient processors to improve
energy efficiency and training delay of ML model
training, thus enhancing the trade-off between
energy consumption and ML performance. In the
following, we introduce a set of core technologies
that enable effective D2S cooperation, and there-
after explain complementary future technologies
to further enhance it.
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FIGURE 4. Device-to-Server (D2S) cooperation via data/model transfers can improve the resource efficiency and performance of FL. Additionally, intelligent

selection of the aggregation server can further reduce aggregation delay.

CORE TECHNIQUES FOR EFFECTIVE D2S COOPERATION

Edge servers can have a diverse set of function-
alities when assisting ML. They can act as com-
putational resources to train ML models, as
communication gateways to reroute ML mod-
els during global aggregations, and as the model
aggregation points. Starting at the computation-
al level, we propose a novel technology called
load balancing of data processing tasks, that relies
on data offloading from edge devices to edge
servers. Then, we propose efficient ML model
parameter and data routing from edge devices
to edge servers using base stations and network
routers. Finally, we develop a concept called float-
ing aggregation point, a method to optimize the
selection of the aggregation server to save com-
munication resources and minimize communica-
tion delay. We present a visual summary of these
new technologies in Fig. 4, and explain them in
detail below.

Load Balancing of Data Processing: In stan-
dard FL, edge devices perform all of the compu-
tationally intensive ML model training tasks. We
propose a novel technology of load balancing for
data processing tasks in order to make use of the
computational power at edge servers, similar to
mobile edge computing frameworks in large-scale
edge/fog networks [12]. As part of load balanc-
ing, resource-constrained edge devices have the
option to transfer a subset or all of their local data
to nearby base stations (or road-side units), which
through efficient data routing (another innovation
which we explain next) relay the data to one or
many edge servers.

Efficient Data and Parameter Routing: To
enable D2S cooperation, we propose efficient
data and model parameter routing through
the use of routers/switches as shown in Fig. 4.
Through a combination of base stations and rout-
ers/switches, we can finely control the routing
of data and ML models based on communica-
tion factors, such as channel congestion (a base
station may be serving many users), and systems
factors, such as computation power availability
(an edge server may be running intensive data
backups). This fine-grained control of data and
ML model routing enables energy efficient and
fast ML training.

Floating Aggregation Point: In scenarios with
many edge servers, we can improve resource effi-
ciency by dynamically selecting the aggregation
server. Specifically, we propose floating aggre-
gation point, a novel technology that adjusts the
aggregation server based on changing edge/
fog network properties. As shown in Fig. 4, the
choice of global aggregation server changes in
response to devices’ positions and dataset sizes,
which influence the total communication/com-
putation resource consumption for ML model
training and parameter aggregation (uplink) and
broadcasting (downlink).

We have taken initial steps toward formalizing
such a D2S cooperation methodology in [13],
including corresponding mathematical formula-
tions and a proof-of-concept testbed implemen-
tation. To demonstrate the potential benefits, we
compare our method to FedAvg [2] and Nova
[11] on two common benchmark datasets in FL
literature: Fashion-MNIST (clothes) and CIFAR-10
(common objects) in Fig. 5. In this experiment,
we consider a network of 20 edge devices and
10 edge servers training a two layer CNN. Other
system parameters, such as the wireless channels
and edge server links, can be found in [13]. This
shows that CFL obtains substantial improvements
over both baselines in terms of energy and time
savings for the same target ML performance.

FUTURE DEVELOPMENT OF COMPLEMENTARY TECHNOLOGIES

D2S cooperation can be further extended to
enhance the existing trade-offs in FL and CFL
depicted in Fig. 1.The following outlines a few
open research directions.

Non-Stationary Servers: Given current trends
leveraging unmanned aerial vehicles (UAVs) as
mobile communication servers (e.g., at sporting
events), a natural next step for D2S collaboration
involves non-stationary edge/fog servers [14].
Since mobile servers’ locations can be controlled,
efficient server placement methods can be pur-
sued to improve data/model routing and offload-
ing. These methods should carefully investigate
the trade-offs involved in server positioning. For
example, placing a server near a dense neighbor-
hood of devices may ease aggregation delay, but
placing a server near a few resource-scarce devic-
es may save more computation energy.
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FIGURE 5. On both Fashion-MNIST and CIFAR-10, our method based on D2S collaborations enable both energy and

time savings during the ML model training process.

Joint D2D and D2S Collaboration: Frame-
works combining D2D and D2S can yield further
benefits to ML performance, resource consump-
tion, and time efficiency.Such frameworks can
enable simultaneous D2D and D2S data/model
offloading. For example, as an edge device off-
loads data to another device, this secondary
device could simultaneously can offload data to
an edge server. This combined D2D and D2S
cooperation ensures that resource-abundant
edge devices do not become overburdened, and
resource consumption of data offloading (i.e.,
energy and delay) is optimized.

Inclusion of Unlabeled Data: D2S coopera-
tion can also be used to extend FL to edge/fog
networks with fully unlabeled data, such as auton-
omous driving where camera-equipped cars take
images without labels. One possible approach
is to extended the well-known concept of con-
trastive learning [15] to FL. Standard contrastive
learning differentiates among datapoints in cen-
tralized settings via determining their similarities
and differences. However, in federated settings,
edge devices’ datasets may simply be too small or
lack sufficient data for standard contrastive learn-
ing to be effective. Through D2S collaboration,
contrastive learning can be enabled in FL by lever-
aging edge servers as caches of data. As caches,
edge servers can then supplement edge devices’
local datasets with their cached data so that the
compare and contrast steps of contrastive learn-
ing are feasible/effective in FL.

CONCLUSION

We proposed cooperative federated learn-
ing (CFL), a paradigm that extends the notion
of cooperation in federated learning (FL) and
unlocks the potential of edge/fog networks in the
execution of distributed machine learning tasks.
Through device-to-device (D2D) and device-to-
server (D2S) cooperation, CFL counteracts the
heterogeneity of edge/fog networks to improve
ML model performance, energy efficiency, tem-
poral sensitivity, and data/model privacy. We pro-

posed novel technologies that enable efficient
D2D and D2S cooperation in CFL. Finally, we
illustrated how CFL can extend the frontiers of
research in FL.
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