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ABSTRACT
Federated learning (FL) has been promoted as 

a popular technique for training machine learning 
(ML) models over edge/fog networks. Traditional 
implementations of FL have largely neglected the 
potential for inter-network cooperation, treating 
edge/fog devices and other infrastructure partic-
ipating in ML as separate processing elements. 
Consequently, FL has been vulnerable to sever-
al dimensions of network heterogeneity, such as 
varying computation capabilities, communication 
resources, data qualities, and privacy demands. 
We advocate for cooperative federated learning 
(CFL), a cooperative edge/fog ML paradigm built 
on device-to-device (D2D) and device-to-server 
(D2S) interactions. Through D2D and D2S coop-
eration, CFL counteracts network heterogeneity 
in edge/fog networks through enabling a model/
data/resource pooling mechanism, which will yield 
substantial improvements in ML model training 
quality and network resource consumption. We 
propose a set of core methodologies that form 
the foundation of D2D and D2S cooperation and 
present preliminary experiments that demonstrate 
their benefits. We also discuss new FL functional-
ities enabled by this cooperative framework such 
as the integration of unlabeled data and hetero-
geneous device privacy into ML model training. 
Finally, we describe some open research directions 
at the intersection of cooperative edge/fog and FL.

INTRODUCTION
Recently, much attention has been given to the 
implementation of data analytics and machine 
learning (ML) techniques at the network edge to 
handle the complexity of emerging Internet of 
Things (IoT) services, ranging from user-oriented 
(e.g., object recognition) to network-oriented (e.g., 
signal classification) applications [1]. IoT devices 
are now capable of gathering data from various 
sources, connecting to the internet, and performing 
computation tasks. Collectively, they form edge/
fog networks capable of producing machine intel-
ligence insights. Traditionally, data insights were 
produced via centralized computing, where net-
work devices send all of their local measurements 
to a single central server for ML training. Such 
methods led to system-wide latency and resource 
inefficiencies as a result of data transmissions from 

edge devices to the server, for centralized ML tasks 
specifically. These limitations have led to the emer-
gence of distributed ML techniques and in particu-
lar federated learning (FL).

Standard FL shifts the processing portion of ML 
training from the server to the edge/fog devices 
[2]. As shown in the upper left corner of Fig. 1, it 
involves a “star” server-to-device communication 
topology, inside of a three-part cyclical process: 
• Edge devices independently and locally train 

an ML model.
• ML models are sent to the central server for 

global aggregation.
• The server synchronizes devices’ ML mod-

els into an aggregated ML model called the 
global model.

While standard FL features global aggregations, 
this is the only form of cooperation among net-
work elements. Inter-device and inter-network 
communications — key features of IoT networks 
— can also facilitate cooperation and are missed 
opportunities in FL. For example, direct device-to-
device (D2D) communication links that are other-
wise underutilized could be employed for faster 
and communication-efficient ML model training 
[3]. Traditional FL therefore does not exploit the 
full potential of cooperation in large-scale edge/
fog networks.

We propose cooperative federated learning 
(CFL), a cooperative edge/fog ML paradigm that 
jointly orchestrates device, server, and network 
infrastructure resources to enhance FL while con-
sidering its core trade-offs, as shown in Fig.  1. CFL 
extends the notion of cooperation to address the 
key missed opportunities in standard FL, which 
are summarized below:
• Edge devices with powerful local processors 

or small local datasets idly wait for network 
stragglers to finish training [4].

• Powerful network infrastructure elements such 
as edge/fog servers are underutilized in FL [5]. 

• Edge devices without direct connectivity to the 
central server are neglected during ML model 
training and synchronization processes [2]. 

• IoT devices, which may have diverse privacy 
requirements [6], are all discouraged from 
sharing data/models over the network. 

These shortcomings are the result of prohibiting 
powerful devices, idle edge servers, and network 
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infrastructure from helping computationally weak 
and/or overburdened devices in FL. Simultane-
ously, D2D and device-to-server (D2S) cooper-
ation over such edge/fog networks has been 
shown to be feasible and beneficial to learning 
processes [7]. Well-designed cooperation mecha-
nisms can thus unlock the full potential of edge/
fog networks for FL, leading to:
• Improved ML performance
• Energy efficiency
• Temporal efficiency (e.g., faster ML training)
• Diverse data/model privacy.

COOPERATIVE FEDERATED LEARNING
We propose cooperative federated learning 
(CFL), a novel paradigm that expands the dimen-
sions of cooperation in FL beyond global aggre-
gations. CFL develops inter-element cooperation 
mechanisms including selective data sharing, com-
putation resource sharing, ML model sharing, and 
data distribution comparisons. FL driven by such 
multi-faceted cooperation better exploits the avail-
ability of links among network devices, servers, 
and infrastructure in contemporary edge/fog sys-
tems. Through such links, CFL unlocks the poten-
tial of cooperative edge/fog networks for ML.

Whereas the state-of-the-art in FL [2] has most-
ly considered data offloading as a mechanism for 
improving local statistical properties in FL, our 
vision for CFL involves a broader look at cooper-
ation in FL, including D2D- and D2S-driven data, 
model, and resource cooperation. These pro-
posed cooperation technologies aim to improve 
the balance among the trade-offs in FL shown in 
Fig. 1. For example, intelligent cooperation can 
lead to better ML model performance with less 
energy usage and system delay.

Specifically, CFL leverages D2D links for data 
and model sharing, which we term D2D coopera-
tion, and leverages D2S links to incorporate edge 
servers, routers, and other network infrastructure 
into the FL ecosystem through data processing and 
ML model transmission tasks. We consider data 
transfers in CFL noting that while some applica-
tions of FL (e.g., healthcare analytics) discourage 
data sharing, other applications have milder data 
privacy restrictions, especially when the data is gen-
erated with ML as the primary purpose (e.g., FL for 
self-driving vehicles with sensor measurements).

Combined, D2D and D2S cooperation form 
the two pillars of CFL, which together enable 
many complementary technologies, we only 
examine a few of which for brevity. As depicted 
in Fig. 1, we examine multi-hop cooperation due 
to its key influence on improved resource efficien-
cy (i.e., energy efficiency and temporal sensitivity), 
integration of unlabeled data as it enhances ML 
performance for devices, and devices heteroge-
neous privacy demands because it focuses on the 
data/model privacy aspects of CFL.

OVERARCHING TECHNOLOGIES FOR CFL
In the following, we explain how D2D and D2S 
cooperation exploit the network characteristics 
inherent in edge/fog networks, and fulfill the 
missed opportunities of FL.

Device-to-Device (D2D) Cooperation: In 
edge/fog networks, devices are heterogeneous 
statistically (i.e., different dataset characteristics) 
and structurally (i.e., varying computation/com-
munication capabilities). In standard FL, such het-
erogeneity leads to isolated resource-abundant 
and resource-scarce devices, some of which may 
introduce straggler effects and delay ML model 

FIGURE 1. The progression from standard FL toward network-aware cooperative FL. Starting from standard FL and its associated trade-offs, we develop the pillars of cooperative FL frameworks, namely 
device-to-device and device-to-server cooperation. We envision that future work toward integrating collaboration into FL involves ideas such as multi-hop cooperation, integration of unlabeled 
data, and heterogeneous privacy.
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aggregations. In the worst-case, resource-scarce 
devices may be unable to complete ML model 
training iterations, possibly due to insufficient 
battery, or result in the existence of unused local 
data, as model training in straggler devices use 
smaller batches of data. To cope with device het-
erogeneity, we exploit D2D cooperation as dis-
cussed below. 

Cooperation as Resource Pooling: Coop-
erative edge/fog networks can reallocate the 
intensity of local ML training by leveraging D2D 
links for data transfers from resource-scarce to 
resource-abundant devices. Through this process, 
the impact of stragglers (i.e., resource-scarce 
devices) on ML model training is then reduced. 
Simultaneously, D2D cooperation shifts the bur-
den of ML model training to devices with ener-
gy-efficient processors, and thus can lead to 
network energy savings.

D2D Driven Model Offloading: Similar to 
data and subsequent ML training offloading, D2D 
cooperation can mitigate some of the model 
aggregation overhead. Rather than only transmit-
ting local ML models to the aggregation server, 
devices can transfer different parts/chunks of their 
model to their neighboring devices. In this way, 
those devices that are far away from the server 
or have limited communication resources (e.g., 
limited bandwidth) can communicate with their 
neighboring devices. Devices that receive models 
from their neighbors then combine received mod-
els with their local one and then transmit these 
partially combined ML parameters to the serv-
er. Thus, D2D model offloading can reduce the 
number of devices engaging in resource intensive 
uplink transmissions.

Device-to-Server (D2S) Cooperation: Cur-
rent FL research presumes conducting ML model 
training solely on the devices and neglects the 
underutilized network infrastructure elements 
such as edge servers. While edge servers may not 
gather data themselves, they can add value to the 
FL process owing to their powerful local proces-
sors and dedicated communications equipment 
which can be exploited through network collabo-
ration. We will refer to all cooperation, aside from 
global model aggregations, between devices and 
edge servers as D2S cooperation. Two potential 
use cases of edge servers are provided below.

Computational Resources: D2S cooperation 
allows resource-scarce devices to transfer their 
local data to a physically stable and computa-
tionally powerful edge server. These edge serv-
ers then function similarly as a resource-abundant 
device, enabling the network to process more 
training data and lessening straggler effects.

Flexible Data Caches: Using the data they 
receive from nearby devices, edge servers can 
act as local data caches, which can carry globally 
representative distributions of high quality data, 
to mitigate the impact of non-i.i.d. data across the 
network. Additionally, this functionality enables 
better tracking of the distribution shifts in the data 
via comparing old data with newly arriving data at 
the edge servers, which enables more informative 
decisions on ML model training.

ENHANCING THE CORE PROPERTIES OF CFL
While many applications/extensions are possi-
ble from the foundation of D2D/D2S coopera-

tion, we focus on a subset of techniques that can 
enhance the core trade-offs in CFL. We present 
high-level explanations of:
• Multi-hop cooperation due to its benefits for 

resource efficiency (energy efficiency and 
time sensitivity)

• Integration of unlabeled data as it extends 
FL to benefit a wider range of devices (e.g., 
devices with unlabeled data)

• Heterogeneous privacy for its enhancements 
to data/model privacy.
Multi-Hop D2D and D2S Cooperation: Multi-

hop D2D and D2S cooperation refers to extend-
ing the above concepts developed for single-hop 
D2D and D2S cooperation to multiple, sequen-
tial links in between devices. This envisioned 
technology can greatly improve the resource 
efficiency (i.e., less energy consumption and/or 
faster model training) of FL. In particular, multi-
hop cooperation enables greater connectivity/
reach from resource-scarce to resource-abundant 
edge devices or servers.

Integration of Unlabeled Datasets: D2D and 
D2S cooperation can better represent and facil-
itate the contribution of devices with partially 
labeled or unlabeled datasets in FL. Unlabeled 
data refers to data samples that have not been 
tagged with a ground-truth, for example, images 
taken by cameras mounted on smart cars with-
out pre-assigned or pre-identified types of objects 
within the image. In standard FL, only devices with 
labeled data are engaged in ML model training. 
Consequently, edge devices with unlabeled data-
sets are unlikely to have their data properly repre-
sented at the global ML model and so are likely 
to suffer from poor ML performance. Roughly 
speaking, D2D and D2S cooperation can enable 
approximations of the local data distribution of 
each device at its neighboring devices/network 
elements, even if the device has fully or mostly 
unlabeled data. Subsequently, the type of distrib-
uted learning method being applied can be tuned 
to improve ML performance across the network.

Heterogeneous Privacy: Similar to statistical 
(i.e., data-level) and structural (i.e., computation/
communication resources) differences, edge/fog 
devices also exhibit heterogeneity with respect to 
their privacy needs. Heterogeneous privacy needs 
will motivate selective D2D and D2S cooperation. 
For example, D2D cooperation can involve shar-
ing sensitive data only among mutually trusted 
devices (e.g., edge devices belonging to the same 
user or family), while among untrusted neighbors, 
this sharing can be limited to sharing insensitive 
data or even prohibited completely. This is one 
of the future complementary technologies depict-
ed in Fig. 1. With such methods in place, D2D/
D2S cooperative technologies can improve the 
resource efficiency and ML performance while 
meeting data/model privacy requirements of 
edge/fog network elements.

TOWARD NETWORK-AWARE CFL
As depicted in Fig. 1, our vision for CFL relies on 
cooperative edge/fog networks to enhance stan-
dard FL on:
• ML performance — the effectiveness of the 

ML model trained by the network
• Energy efficiency — the network-wide accu-

mulated energy expenditure on data pro-

D2D and D2S cooperation can 
better represent and facilitate 

the contribution of devices 
with partially labeled or unla-

beled datasets in FL.
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cessing, and data/model communication
• Temporal efficiency — the total time includ-

ing idle time consumed by the FL process
• Data and model privacy — the heteroge-

neous privacy needs in large-scale edge/fog 
networks.

Methodologies that develop network-aware CFL 
must carefully balance their contributions to these 
four coupled elements, which contain design 
trade-off s.

The fi rst layer of network-aware CFL consists of 
the pillars of D2D and D2S cooperation and their 
core mechanisms. D2D and D2S cooperation can 
leverage data and model transfers to cope with 
device heterogeneity.For example, data off loading 
through D2D links can yield energy savings, and 
ML model routing through D2S links can mitigate 
straggler eff ects.

With our established frameworks of D2D and 
D2S cooperation, we can then develop comple-
mentary technologies to enhance CFL along the 
four design considerations of ML performance, 
energy efficiency, temporal sensitivity, and data/
model privacy. In Fig. 1, we depict three sam-
ple complementary techniques, with each tech-
nique primarily improving one aspect of CFL. For 
instance, multi-hop collaborations such as those 
seen in industrial IoT [8] enhance resource (ener-
gy and delay) efficiency, integration of unlabeled 
data such as those in autonomous driving [9] can 
improve ML performance, and heterogeneous pri-
vacy as seen in social trust [6] off ers an alternative 
approach to data/model privacy. We next develop 
D2D and D2S cooperation as the two pillars of net-
work-aware CFL, and, as future work, explain how 
complementary technologies can enhance them.

NETWORK-AWARE D2D COOPERATION
The first step toward network-aware CFL is to 
develop and maximize the benefits arising from 
D2D cooperation.Well-designed D2D coopera-
tion can enable efficient orchestration of limited 
network resources, leading to improvements in 
the trade-off s of FL from Fig. 1. To this end, we fi rst 
introduce a set of core, overarching technologies 
to enable eff ective D2D cooperation, and thereaf-

ter propose future work on complementary tech-
nologies to further enhance D2D cooperation.

CORE TECHNIQUES FOR EFFECTIVE D2D COOPERATION
Effective D2D cooperation improves network 
resource efficiency and ML model training 
through innovations in data and model off loading, 
which we propose in Fig. 2. At the data level, we 
propose dataset stratification, a method which 
clusters local datasets for higher quality data off -
loading. At the ML model level, we propose local 
model off loading, a technique that involves partial 
local ML model off loading to streamline effi  cient 
ML model aggregations.

Dataset Stratification: After offloading data, 
the sending device (sender) continues local ML 
model training on a smaller local dataset, as keep-
ing a copy of the transferred data leads to bias 
at ML model aggregations from counting the 
same data multiple times. On the other end, the 
receiving device (receiver) may receive data that 
is unrepresentative of the data gathered at the 
sender. As a result, random/naive data off loading 
may hinder rather than help the ML model train-
ing, motivating dataset stratifi cation.

As depicted on the left subplot of Fig. 2, data-
set stratification clusters datasets into strata (i.e., 
categories) based on task-dependent criteria. 
Using the example of clothing recognition (i.e., 
the Fashion-MNIST dataset [10]) for data collected 
by smartphones’ cameras, each stratum may con-
tain data belonging to a unique type of clothing 
(e.g., T-shirts or coats). Then, through sequential 
selection of the most representative data samples 
(i.e., those that are closest to the strata average) 
from the most populous strata, devices can off load 
datapoints which well-capture the distribution of 
their local dataset. In doing so, dataset stratifica-
tion keeps the distribution of the dataset at senders 
relatively intact, and enables receivers to receive a 
representative sample of data from senders.

As an example, consider a smart car communi-
cating with a drone. From its operation, the car has 
images of mostly stop signs and traffi  c lights, which 
the drone may not. Dataset stratifi cation enables the 
car to transmit a small set of representative stop sign 

FIGURE 2. Data and local model off loading form the basis of eff ective D2D cooperation. We envision smart data off loading by edge devices through dataset 
stratification. Additionally, we propose local model off loading, where devices off load segments of their local ML models to other devices. 
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and traffic light pictures, without significantly distort-
ing its local dataset distribution, to the drone.

Local Model Offloading: We propose segment-
ing and sequentially transmitting the devices’ local 
ML models at global ML model aggregations.Each 
segment of an ML model is a subset of model 
parameters. For example, in the case of neural net-
works, each segment may contain the parameters 
associated with a layer of the neural network. Local 
model offloading, depicted in Fig. 2, enables devic-
es with limited access to the server (e.g., due to 
unsatisfactory channel conditions) to offload dif-
ferent segments of their local ML models to inter-
mediary devices with a better accessibility to the 
server. These intermediary devices will combine 
their local ML models with their received partial 
ML models, leading to a set of partially aggregated 
parameters, which are then sent to the central serv-
er. In this way, the central server is able to perform 
the global aggregation using all ML model parame-
ters while saving communication resources.

We have taken initial steps toward formaliz-
ing this D2D cooperation methodology in our 
prior work [10], including optimization formula-
tion, theoretical results, and convergence proofs. 
To evaluate its potential benefits, we compare it 
against the algorithm Nova [11] on two common 
datasets used to evaluate FL methods: MNIST 
(numbers) and Fashion-MNIST (clothes). Simula-
tion results are shown in Fig. 3, where both meth-
ods train a two layer convolutional neural network 
(CNN) across a network of 10 devices. A detailed 
description of the computational infrastructure, 
wireless channel models, and models of energy 
consumption (including energy from both the 
communication and computation processes) can 
be found in [10].We compare against Nova [11], 
a recent and well-established method for aggre-
gations involving heterogeneous training epochs 
across edge/fog devices. Our proposed CFL tech-
nology is seen to yield consistent energy savings, 
and faster ML training times.

FUTURE DEVELOPMENT OF COMPLEMENTARY TECHNOLOGIES
Further extension of D2D cooperation can further 
enhance the trade-offs in FL and subsequently CFL 
depicted in Fig. 1. A few open research directions 
are summarized below:

D2D Cooperation in Non-Stationary Net-
works: In non-stationary networks, devices will 
enter and exit the network, leading to varying net-

work size, changing compute resource availability, 
and time-varying D2D links. Here effective cooper-
ation should consider the physical stability of edge/
fog devices to determine effective time-varying 
anchor devices.These anchors will receive near-
by ML models from devices as they leave the net-
work and transmit the latest global ML model to 
new devices as they join the network. In doing so, 
anchor devices improve ML training by enabling 
more devices to contribute to the training process 
in-between global model aggregations.

n-Hop Cooperation: n-hop cooperation aims 
to broaden the scope of D2D cooperation, pro-
viding resource-scarce devices with greater access 
to resource-abundant ones through intermediary 
devices. Consequently, this technology can further 
enhance the resource and time savings introduced 
by single-hop D2D cooperation. This calls for novel 
optimization methodologies to characterize the 
benefits and trade-offs of n-hop cooperation.

Heterogeneous Privacy Needs in D2D 
Cooperation: Edge/fog devices may have het-
erogeneous privacy needs. For example, D2D 
connections may be allowed based on trust or 
familiarity. In such cases, devices often band 
together into cliques, which are private groups 
with a certain level of mutual trust.Data trans-
ferring can be restricted to links between mutu-
ally trusted devices (e.g., smart devices such as 
a smartphone, laptop, and tablet of the same 
owner). In intra-clique cooperation, then, devic-
es can share data without any restrictions, while, 
in inter-clique cooperation, devices may only be 
willing to share model parameters or insensitive 
data. Furthermore, dataset stratification can be 
designed to separate data based on sensitivity, 
with restricted offloading of sensitive strata (e.g., 
personal health data or biometrics) among intra-
clique devices and unrestricted offloading of 
insensitive strata (e.g., weather information).

Inclusion of Devices With Unlabeled Data: In 
practical edge/fog networks, some devices may 
have mostly or fully unlabeled datasets. Standard 
FL neglects all these devices and obtains a glob-
al ML model by only engaging the devices with 
labeled datasets.Through D2D cooperation, edge 
devices can share small quantities of data, labeled 
or unlabeled, to develop estimates of data distribu-
tions at devices with unlabeled datasets. This tech-
nique, termed unlabeled distribution estimation, 
will then involve determining unique combinations 
of ML models trained by devices with labeled data-
sets for use at devices with unlabeled datasets.

NETWORK-AWARE D2S COOPERATION
Edge servers, especially in large-scale edge/fog 
networks, offer an untapped resource in stan-
dard FL.D2S cooperation aims to facilitate effi-
cient utilization of these resources, for example, 
by enabling devices with limited computation 
capabilities to transfer local training data to edge 
servers. In doing so, edge servers can leverage 
their powerful and efficient processors to improve 
energy efficiency and training delay of ML model 
training, thus enhancing the trade-off between 
energy consumption and ML performance. In the 
following, we introduce a set of core technologies 
that enable effective D2S cooperation, and there-
after explain complementary future technologies 
to further enhance it.

FIGURE 3. Our D2D cooperation-driven method incurs both less compute time and energy consumption relative to the 
state-of-the-art NOVA methodology on two commonly used machine learning datasets (MNIST for numbers and 
Fashion-MNIST for clothes).
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CORE TECHNIQUES FOR EFFECTIVE D2S COOPERATION

Edge servers can have a diverse set of function-
alities when assisting ML. They can act as com-
putational resources to train ML models, as 
communication gateways to reroute ML mod-
els during global aggregations, and as the model 
aggregation points. Starting at the computation-
al level, we propose a novel technology called 
load balancing of data processing tasks, that relies 
on data offloading from edge devices to edge 
servers. Then, we propose efficient ML model 
parameter and data routing from edge devices 
to edge servers using base stations and network 
routers. Finally, we develop a concept called float-
ing aggregation point, a method to optimize the 
selection of the aggregation server to save com-
munication resources and minimize communica-
tion delay. We present a visual summary of these 
new technologies in Fig. 4, and explain them in 
detail below.

Load Balancing of Data Processing: In stan-
dard FL, edge devices perform all of the compu-
tationally intensive ML model training tasks. We 
propose a novel technology of load balancing for 
data processing tasks in order to make use of the 
computational power at edge servers, similar to 
mobile edge computing frameworks in large-scale 
edge/fog networks [12]. As part of load balanc-
ing, resource-constrained edge devices have the 
option to transfer a subset or all of their local data 
to nearby base stations (or road-side units), which 
through efficient data routing (another innovation 
which we explain next) relay the data to one or 
many edge servers.

Efficient Data and Parameter Routing: To 
enable D2S cooperation, we propose efficient 
data and model parameter routing through 
the use of routers/switches as shown in Fig. 4. 
Through a combination of base stations and rout-
ers/switches, we can finely control the routing 
of data and ML models based on communica-
tion factors, such as channel congestion (a base 
station may be serving many users), and systems 
factors, such as computation power availability 
(an edge server may be running intensive data 
backups). This fine-grained control of data and 
ML model routing enables energy efficient and 
fast ML training.

Floating Aggregation Point: In scenarios with 
many edge servers, we can improve resource effi-
ciency by dynamically selecting the aggregation 
server. Specifically, we propose floating aggre-
gation point, a novel technology that adjusts the 
aggregation server based on changing edge/
fog network properties. As shown in Fig. 4, the 
choice of global aggregation server changes in 
response to devices’ positions and dataset sizes, 
which influence the total communication/com-
putation resource consumption for ML model 
training and parameter aggregation (uplink) and 
broadcasting (downlink).

We have taken initial steps toward formalizing 
such a D2S cooperation methodology in [13], 
including corresponding mathematical formula-
tions and a proof-of-concept testbed implemen-
tation. To demonstrate the potential benefits, we 
compare our method to FedAvg [2] and Nova 
[11] on two common benchmark datasets in FL 
literature: Fashion-MNIST (clothes) and CIFAR-10 
(common objects) in Fig. 5. In this experiment, 
we consider a network of 20 edge devices and 
10 edge servers training a two layer CNN. Other 
system parameters, such as the wireless channels 
and edge server links, can be found in [13]. This 
shows that CFL obtains substantial improvements 
over both baselines in terms of energy and time 
savings for the same target ML performance.

FUTURE DEVELOPMENT OF COMPLEMENTARY TECHNOLOGIES
D2S cooperation can be further extended to 
enhance the existing trade-offs in FL and CFL 
depicted in Fig. 1.The following outlines a few 
open research directions.

Non-Stationary Servers: Given current trends 
leveraging unmanned aerial vehicles (UAVs) as 
mobile communication servers (e.g., at sporting 
events), a natural next step for D2S collaboration 
involves non-stationary edge/fog servers [14].
Since mobile servers’ locations can be controlled, 
efficient server placement methods can be pur-
sued to improve data/model routing and offload-
ing. These methods should carefully investigate 
the trade-offs involved in server positioning. For 
example, placing a server near a dense neighbor-
hood of devices may ease aggregation delay, but 
placing a server near a few resource-scarce devic-
es may save more computation energy.

FIGURE 4. Device-to-Server (D2S) cooperation via data/model transfers can improve the resource efficiency and performance of FL. Additionally, intelligent 
selection of the aggregation server can further reduce aggregation delay.
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Joint D2D and D2S Collaboration: Frame-
works combining D2D and D2S can yield further 
benefits to ML performance, resource consump-
tion, and time efficiency.Such frameworks can 
enable simultaneous D2D and D2S data/model 
offloading. For example, as an edge device off-
loads data to another device, this secondary 
device could simultaneously can offload data to 
an edge server. This combined D2D and D2S 
cooperation ensures that resource-abundant 
edge devices do not become overburdened, and 
resource consumption of data offloading (i.e., 
energy and delay) is optimized.

Inclusion of Unlabeled Data: D2S coopera-
tion can also be used to extend FL to edge/fog 
networks with fully unlabeled data, such as auton-
omous driving where camera-equipped cars take 
images without labels. One possible approach 
is to extended the well-known concept of con-
trastive learning [15] to FL. Standard contrastive 
learning differentiates among datapoints in cen-
tralized settings via determining their similarities 
and differences. However, in federated settings, 
edge devices’ datasets may simply be too small or 
lack sufficient data for standard contrastive learn-
ing to be effective. Through D2S collaboration, 
contrastive learning can be enabled in FL by lever-
aging edge servers as caches of data. As caches, 
edge servers can then supplement edge devices’ 
local datasets with their cached data so that the 
compare and contrast steps of contrastive learn-
ing are feasible/effective in FL.

CONCLUSION
We proposed cooperative federated learn-
ing (CFL), a paradigm that extends the notion 
of cooperation in federated learning (FL) and 
unlocks the potential of edge/fog networks in the 
execution of distributed machine learning tasks. 
Through device-to-device (D2D) and device-to-
server (D2S) cooperation, CFL counteracts the 
heterogeneity of edge/fog networks to improve 
ML model performance, energy efficiency, tem-
poral sensitivity, and data/model privacy. We pro-

posed novel technologies that enable efficient 
D2D and D2S cooperation in CFL. Finally, we 
illustrated how CFL can extend the frontiers of 
research in FL. 
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