Interpreting Denoising Autoencoders Employing a Gradient Approach

Dharanidharan Arumugam' and Ravi Kiran?

Abstract

The goal of this study is to interpret denoising autoencoders by quantifying the importance
of input pixel features for image reconstruction. The importance of pixel features is evaluated
using the attributions of the pixel features to the latent variables of a denoising autoencoder used
for image reconstruction. Pixel attributions are computed using a highly accurate and automatable
gradient approach and are plotted as saliency maps. Saliency maps highlight the contribution of
the pixels for image reconstruction. Three sanity checks are introduced to verify the fidelity of the
generated saliency maps and also to elucidate the influence of inputs on the latent variables. The
classification accuracy of images is significantly lowered when the most important pixel regions

highlighted by the saliency maps are corrupted validating the proposed approach.

Keywords: Complex step derivative approximation; Saliency maps; Trustworthiness; Pixel

attributions; Sanity checks and Deep Neural Networks (DNNss).
1. Introduction

Deep neural networks (DNNs), for their remarkable predictive performance, are now
extensively used in various decision-making processes involving health care, law enforcement,

finance, and engineering analysis. As the decisions taken by DNNs carry significant social,

! Graduate Research Assistant, Dept. of Civil, Construction & Environmental Engineering, North Dakota State University, Fargo,
ND 58105, email: d.arumugam@ndsu.edu

2 Assistant Professor (corresponding author), Dept. of Civil, Construction & Environmental Engineering, North Dakota State
University, Fargo, ND 58105, email: ravi.kiran@ndsu.edu

political, and economic implications, DNNs are now expected to be fair, transparent, and
trustworthy. The concerns related to the embedded biases in the neural networks limit their use in
high-stake applications such as medical diagnosis, the autonomous bail system, and autonomous
driving [1-4]. In a survey conducted in 2021 across five countries including the United States,
Canada, Germany, the United Kingdom, and Australia, only one-third of 6054 participants are
willing to trust decisions taken by Al in general and 81% of people believe that the use of Al
should be regulated [5]. Since DNNs learn the functional mapping through complex non-linear
interaction of numerous network parameters, they remain as black-box models and offer little
explanation on how the decisions or predictions are made. To make the DNNs trustworthy, the
decisions made by them need to be made more interpretable to humans. Interpretability of DNNs
is also desired to establish the causal links and also to identify the important features in a model.
Several methods have been developed to enhance the interpretability of DNNs with two broader
approaches: construction of interpretable models or white box models and post-hoc interpretation

of black-box models.

White-box models use transparent, human-understandable models like linear models,
decision trees, and elementary rules-based models (addition, subtraction, etc.) to construct
interpretable representations. Generalized linear models (GLMs) [6, 7] allow us to map non-
linearity between the input and predictor variables using linear models with the help of link
functions. Link functions connect the linear predictor with the actual predictor. Wei et al [§]
proposed generalized linear models based on rules-based features for interpretable regression and
classification networks. In addition to offering interpretability, rules-based features enable the
model to capture non-linearity. Generalized additive models (GAMs) [9, 10] involve linear

addition of non-linear smooth functions of predictors to model the non-linearities. Supersparse

linear integer models (SLIM) [11] are made highly interpretable by only using basic elementary
operations on the predictors to make predictions. Boolean rules are also used to construct
interpretable network models [12]. Construction of white-box models offers more interpretability
than the post-hoc approaches, however, the prediction performance is compromised for the sake

of interpretability. Also, most of the white-box models are mainly applied to interpret tabular data.

Post-hoc approaches involve the interpretation of already deployed or trained models.
Since they are applied to the trained models, the prediction performance of the network is not
compromised. Post-hoc approaches are in general attribution-based. Attribution methods find the
relevance or importance (saliency) of input features in the prediction of outputs. Attributions can
be made on various types of input features such as tabular data, image features, and image pixels.
Local interpretable model-agnostic explanations (LIME) and Shapely Additive Explanations
(SHAP) are two popular feature attribution methods. They are also model-agnostic approaches
that can invariably be applied to any black-box models. LIME [13, 14] perturbs an instance and
generates new instances around the original instance, and uses those instances on simple
interpretable models such as linear models and decision trees to obtain interpretable representation.
SHAP [15] which is inspired by game theory estimates the contributions of both individual and
combined effects of features on a particular prediction. Deep neural networks used for image
recognition methods are majorly explained through feature visualization and pixel attribution.
Feature visualization helps to visualize how a neuron or a layer or a feature map in convolutional
neural networks detect image features such as texture, edges, and patterns. Attribution measures
the contribution of input features to the output predictions. Attributions, in general, are quantified
through the gradients of outputs with respect to the input features. Quantifying the attributions

using gradients is justified by the assumption that the model behaves linearly in the local

neighborhood of the inputs. Pixel attribution highlights the importance or saliency of input pixels
in regard to classification or image reconstruction. Pixel attributions are usually presented in the
size of the input image in the form of heat or contour maps. These maps are popularly known as
saliency maps [16]. Zeiler et al [17] proposed a Deconvolutional network (Deconvnet) which
reverses the process of a convolutional network to identify the pixel regions important for
classification. In Deconvnet, the gradient attributions of neurons are backpropagated even when
the activations of those neurons are zero during the feedforward step. Simonyan et al [18]
developed image-specific saliency maps based solely on the gradient values of output neurons with
respect to the input pixel features for image classification models. In this approach, unlike
Deconvnet, the gradient attributions are zeroed out based on the feedforward activations values.
In Guided backpropagation [19] both these approaches are combined in evaluating the gradient
attributions. Deconvnet and Guided backpropagation do not capture the negative influence of
inputs on the outputs since the negative gradients are filtered out. All the three approaches
discussed above suffer from the gradient saturation problem where the inputs near the flat gradient
regions are incorrectly given with low attributions. Integrated gradients [20] approach addresses
this problem by computing the pixel attribution using an average gradient. The pixel attributions
are defined as the element-wise product of original input pixel values and the average gradient
values. The average gradient is calculated by integrating the gradients over the scaled inputs varied
from a baseline value to the original value. The baseline value, in general, is taken at zero. Class
Activation Maps (CAMs) constructed from global averaging pooling layers of convolutional
neural networks were able to identify the discriminative image regions critical for the classification
of the images [21]. Grad-CAM [22] combined the ability of gradient-based techniques to identify

salient pixels and the class discriminative ability of CAMs. DeepLIFT proposed by Shrikumar et

al [23] addressed the zeroing of negative gradients in back-propagation-based gradient methods.
All these post-hoc approaches are model-specific, i.e., can only be applied to a specific type of

DNN.

The majority of the interpretable Al research is focused on the interpretation of neural
networks used for regression tasks and convolutional neural networks for image recognition. Not
much research is available on the interpretation of autoencoders especially on finding input
attributions to the latent space of denoising autoencoders. Autoencoders is a class of unsupervised
neural networks popularly used for image reconstruction, image denoising, feature extraction, and
dimensionality reduction [24, 25]. Some of the important applications of autoencoders include
clustering [26, 27], dimensionality reduction [28, 29], anomaly detection [30, 31], generative
modelling [32, 33], and preferences prediction [34, 35]. Understanding the contribution of inputs
to the latent space of autoencoders is of great research interest for the following reasons:
Autoencoders learn manifold structures of inputs in the lower dimensional latent space [36]. Also,
the latent space features in disentangled variational autoencoders act as the generative factors of
the input feature space [37]. Furthermore, in certain cases, the latent space of autoencoders used
for image reconstruction contains important insights on the decisions or predictions made by neural
networks. Most of the existing research on the interpretation of the latent variables involves the
modification of either encoder or decoder network simpler explainable networks specific to the
problem of interest. Curi. et al [38] restricted certain connections from latent variables nodes to
the output nodes to make the latent variables represent the latent traits in cognitive modelling and
performed relational analysis between the items of assessment (inputs) and the latent space (latent
variables). Sergei et al [39] used an additional linear encoding-decoding structure for the priorly

annotated factors for single-cell RNA-seq data to learn the latent representation using prior

knowledge. In Ref.[40], the inputs important for energy demand is analysed using two separate
latent spaces: one for the main power information and another for auxiliary power information of
the energy demand. Energy demand is predicted from the variables from the two latent spaces and
the inputs majorly influencing the energy demand is explained by identifying the inputs
significantly influencing the auxiliary latent space. All the three approaches we discussed above
are model-specific. Rami et al [41] proposed logic-driven autoencoders which is built with fuzzy
logic operators capturing the underlying logical relationships of the model. Although the logic-
driven autoencoders improve the transparency of network architecture, it is difficult to identify

and implement the under lying logic relationship of the problem.

In this study, we introduce a model agnostic highly accurate gradient-based attribution
method to interpret the relevance of input pixels to the latent space of denoising autoencoders for
image reconstruction. This gradient approach produces saliency maps outlining the importance
(attribution) of each pixel of an image. We have also introduced three sanity checks to verify the
fidelity of the generated saliency maps and elucidate the influence of inputs on the dimensionally
reduced latent variables. The rest of the manuscript is organized as follows: Section 2 explains the
overall research approach adopted in this study, Section 3 talks about the different types of
autoencoders, section 4 discusses the complex step derivative approximation method used in the
study to calculate network gradients, Section 5 details the implementation of the proposed gradient
approach, Section 6 discusses the obtained results and Section 7 provides the conclusions obtained

from this study.

2. Research Approach

Post-hoc interpretation of a deep neural network begins after the neural network is trained

and configured. So, a denoising autoencoder is configured and trained for the adequate

6

reconstruction of the input images. Configuration of the autoencoder involves the selection of an
appropriate number of hidden layers and the number of neurons in each hidden layer and the
training involves the determination of network parameter values (weights and biases). The
interpretation of input space for image reconstruction is described through the attributions of input
pixels to the latent variables. Attribution of an image pixel is defined as the L, norm of the partial
derivatives of latent variables with respect to that input pixel. The partial derivatives of the latent
variables are calculated using a highly accurate and automatable gradient approach that is
discussed in Section 4. The attribution of each pixel of an image is computed by considering one
pixel at a time. Ultimately, saliency maps in the form of contours are constructed based on the
pixel attribution values. The saliency map of an image input gives the overall picture of the
contributions of the input pixels to the latent variables for its reconstruction. In the end, three sanity
checks are performed to verify the fidelity of the generated saliency maps. The flowchart outlining

the research approach employed in the current study is shown in Fig. 1.

3. Basic principles of important autoencoder architectures

The function of the autoencoder is to reconstruct the original input from a dimensionally
reduced latent space and thereby learn the important features in the data. This is done by joining
two contrasting neural nets, namely, an encoder and a decoder. The encoder of the autoencoder
represents the input (x) into a dimensionally reduced latent representation (g) called code and the
decoder expands the code (g) and tries to reconstruct the original input (X) [24, 25] without

significant loss of information. The schematic of a simple autoencoder is shown in Fig. 2. The

performance of the autoencoder is evaluated through the estimation of reconstruction loss or a loss
function which computes the difference between the reconstructed input and the original input
(L(x,X) = f(X —x)). In general, L, norm of the differences (between the original and
reconstructed input) or binary cross-entropy averaged over training instances are used to compute

the reconstruction loss.

Deep autoencoders are prone to overfitting and may learn the trivial identity function. The
problem of overfitting is addressed through the regularization of the network. Different approaches
are evolved to regularize the network which gives rise to four important variants of autoencoders
which are sparse autoencoders, contractive autoencoders, variational autoencoders, and denoising
autoencoders. In sparse autoencoders [42], the activations of selective nodes in the hidden layers
are restricted through a regularizer term which penalizes the weights and biases of the selective
hidden nodes with the higher activation values. The penalty or regularizer term can be based on L,
norm of activations or Kullback-Leibler (KL) divergence term. Sparse autoencoders are previously
used in the detection of heart diseases, recognition of sign language, and identification of structural
damage [43-46]. Contractive autoencoders [47] employ a regularizer that penalizes the Frobenius
norm of the Jacobians (matrix consisting of fist order derivatives) of hidden layer activations with
respect to the inputs. Frobenius norm is a root squared sum of the derivatives in the Jacobian
matrix. This makes the encoded network insensitive to the perturbations in the inputs which
effectively contracts the input region. Variational autoencoders [48] focusses on recreating the
distribution of the data rather than simply reconstructing the inputs. The code activations are
modeled with a probability distribution (prior probability distribution), usually a unit gaussian
distribution. The decoder then uses a reparametrized sample from the prior distribution and tries

to reconstruct the input with the same prior probability distribution. Variational autoencoders have

been successfully applied in molecular design, image segmentation, biological sequence analysis,
and novelty detection [31, 32, 49-53]. The cost functions associated with these autoencoders

including denoising autoencoders are presented in Table. 1.

Denoising autoencoders [54] have many important real-world applications such as
denoising images, medical videos, cluttered radar images, RNA sequences, and seismic data [54-
58]. NASA employs stacked denoising autoencoders to perform bias correction of satellite used
for precipitation detection and prediction of precipitation rates [59]. Unlike the other variants
discussed earlier, denoising autoencoders do not use any explicit regularizer term. This saves a lot
of computational effort when the network parameters are optimized through backpropagation. In
denoising autoencoders, the original inputs (cleaner inputs) are added with noise and fed into the
encoder network. The encoder network transforms the noisy input (X) into latent variables (g).
The decoder then attempts to reconstruct the cleaner (without any noise) input from the latent
variables (X). Here, the loss function computes the difference between the reconstructed input and
the cleaner input (L(x,X) = f (X — x)). The possibility of learning the identity function is avoided
here as the target output (cleaner input, x) differ from the network input (noisy input, X). A
properly trained denoising autoencoder learns the approximate structure of the manifold in a lower
dimension [36]. The inputs to the autoencoder can be added with different types of noises like
Gaussian, salt-pepper, Poisson, and speckle noise [60]. In the current study, a denoising
autoencoder with a bottleneck structure with additive Gaussian noise is interpreted employing a

gradient approach.

4. Computation of network gradients using Complex-step Derivative Approximation

method (CSDA)

The goal of the paper is to generate saliency maps that highlight the important pixels that
are responsible for the image reconstruction using denoising autoencoders. The saliency maps are
generated by plotting contours of gradients. The gradients are obtained by taking derivatives of
the latent variables (g) with respect to the original cleaner input pixel features (x). An accurate
and fully automatable sensitivity method is ideal for the evaluation of these derivatives. Based on
the past experience of the authors [61-64], we employed the complex step derivative
approximation method (CSDA) [65] to evaluate the gradients of latent variables (g) with respect
to the input pixel features (x). CSDA is used in this study as it offers several advantages over other
numerical techniques. The defining feature of CSDA is that it is free of subtractive cancellation
errors [66]. This allows us to obtain gradients at analytic level accuracy by choosing a very small
step size (h « 10~%). While other numerical techniques give erroneous estimates when functions
are evaluated at a discontinuous point, CSDA can give correct estimates right up to the
discontinuities [67]. CSDA can also find one-sided derivatives at discontinuous locations [67].
This is useful especially in the case of neural networks where discontinuous activation functions
are often employed. CSDA has been extended to also calculate higher-order derivatives of scalar
functions and Jacobians and Hessians of vector-valued functions [68]. Because of these
advantages, CSDA has been popularly used in performing sensitivity analysis for engineering
optimization [69, 70], approximating gradients of deep neural networks [63], numerically
evaluating tangent moduli [62, 71, 72], and implementing second-order Kalman filter for non-

linear state estimation [73, 74].

The Taylor’s series expansion of an analytic function, f, developed about a real point with

x with an imaginary step size ih, is expressed as follows:

10

h? h3
fGetih) = fQ) +ihf () — o fUC) = 700 + - (D)
here, i = vV —1 is the unit imaginary number and h is the real step size. It is to be noted that we

assume f is real on the real axis.

When we equate the imaginary component of both sides of the equation (Eq. 1) and truncate
terms higher than the first order, we obtain the approximation for the first-order derivative as
follows

Imag(f (x + in))
h

f1(x0) = +o(h?) @

where, Imag implies the imaginary component and o(h?) refers to the second-order truncation
error. The expression given in Eq. 2 is the complex step derivative approximation to calculate the

first-order derivative of a scalar function.

The gradients (first-order variation of outputs with respect to the input features) of a neural
network is a vector-valued vector function. To obtain the output gradients with respect to the input
features using CSDA, a perturbation-based approach is formulated. This approach is implemented
in three steps: First, the network is configured and trained for a given classification or regression
task. Configuration involves the selection of the appropriate number of hidden layers and the
number of neurons in each hidden layer which provide the best possible network performance and
generalization ability. Training involves the determination of the network weights and biases.
Second, the input features of the trained network are perturbed (added) one at a time with an
imaginary step size ih. The input vector with one perturbed input is fed to the neural network and

the outputs corresponding to it are obtained through feed-forward operation. Finally, the gradients

11

of the output vector with respect to the perturbed input are obtained by dividing the imaginary

components of complex outputs with the real step size h.

The implementation of CSDA in a simple two-layered neural network (see Fig. 3) and the
underlying mathematical operations are illustrated here. The network has an input layer and an
output layer. The input layer consists of 3 nodes which take the input x = (X1 X2 X3)T and the
output layer consists of 2 nodes which produce the output y = (¥1 ¥2)T . The output layer uses a
Rectified Linear Unit (ReLU) activation function. Eq. 3 shows the expression to compute the

activation value of the net input, z for ReLU function.

if z<0 3)

The network is first trained for a regression task and the trained network parameters are

_ [W11 W12 Wiz
W21 Wiz Wps

] and b = [zl] The feedforward operation to calculate y from x involves
2

the calculation of the net input, z = Wx + b, and the application of ReLU activation function to

the net input, y = ¢(z). The partial derivatives of y with respect to x is determined sequentially

by choosing one x; at a time. To calculate the partial derivatives dy, /dx;,0y,/0x; and 0y5/0x;,

the input feature x; is perturbed (added) with an imaginary step size ih and the feed work operation

is carried out. The mathematical operations involved in calculating dy, /0x; is presented here.

The net input of the first node of the output layer is computed as follows,

Zl S Wll(xl + ih) + W21x2 + W31.X3 + bl (4)

This can be rewritten as:

Z1 = Wq1X1 + Wy1Xy + Wy3x3 + by +iwqh %)

12

The ReLU activation function given in Eq. 3 is defined for real inputs. Since, in the current case,
the inputs to the ReLU function are complex in nature, the conditions of the ReLU function is

modified in the following way to find the activation value of z;.

_ (0+0i if Re(z;) <0 (6)
1= {Re(zl) +Im(z;) if Re(z;) >0

where, Re(z;) and Im(z,) are real components of z;.

Assuming the case where Re(z;) > 0, y; can be written as

Y1 = Wi1Xg + WpiXy + Wysxs + by +iwgh (7)

Finally, the partial derivative of y; over x; is calculated as given below,

0y, _ Im(y;))]

The partial derivative calculated in Eq.8 for this simple neural network is the same as that
of the analytic derivative calculated through the chain rule. Although we can implement chain rule
in neural networks to obtain analytical derivatives, it will be very challenging in the case of deep
convolutional neural networks where the implementation involves backpropagating derivatives
through numerous kernel filters and pooling layers. Since CSDA does not involve subtractive
cancellation errors, we can automate the process of finding partial derivatives for the entire

problem by choosing a common very smaller step size.

5. Implementation of CSDA in a denoising autoencoder to compute pixel attributions

In the current study, the proposed CSDA method to construct saliency maps is
implemented in two stages. In the first stage, the preprocessed MNIST handwritten [75] digit
images are fed into a denoised autoencoder and the network is trained to reconstruct the denoised

images. In the second stage, a feedforward neural network is constructed using the network

13

parameters of the encoded part of the trained autoencoder network. Then, partial derivatives of
each latent feature with respect to each pixel position are computed and used to develop the
saliency maps. The schematic of the stages involved in evaluating the complex step gradients is
shown in Fig. 4. The details regarding the dataset and the preprocessing involved are described in

Section 5.1 and the detailed implementation procedure is given in Section 5.2.

5.1 Preparation of the input image data

The current study utilizes MNIST handwritten digits dataset for training the denoising
autoencoder. The digital images are in greyscale (one channel) with an image size of 28x28 pixels.
The greyscale values of each pixel range from 0 to 255. The training dataset is denoted by Dy.4in, €
R™ ™ where n is the number of training image examples and m is the number of pixels in an

image example. In the current case, n and m are 60000 and 784 respectively. Similarly, the testing

dataset is denoted by D.s; € R™™, where [is the number of testing images which is 10,000 in

our current case. A p™ row of the dataset (called a datapoint) is defined as x*®) = (xg() -, x,(jf))s
where xik) T x,E,’f) are the pixel features and k ranges from 1 to p or 1 to r . The gray pixel ranges

of the both the datasets Dy 4in and Dy, are normalized by dividing with 255 and kept in the range

of 0 to 1. This is done to improve the convergence rate of the gradient descent algorithm.

In denoising autoencoders, the inputs are added with noise and the clean denoised inputs
are reconstructed from the noisy inputs. The reconstruction from the noisy inputs makes the
denoising autoencoders learn only the important model features and reduces the risk of overfitting.
The noisy datasets to be used in the current denoising autoencoder are obtained by adding gaussian

noise to the normalized datasets. The training and testing datasets added with noise are denoted as

14

D.,4in and D, respectively. The addition of gaussian noise to an image example is given in Eq.

9.
X =q(x+kN) 9)

Here, x is a normalized cleaner image input and X is a noisy image input. q is a clip function which
bounds the pixel intensity values between 0 and 1. k is a scaling factor which alters the noise
variance. Increasing the k value increases the dispersion and sharpness of the added noise. No
noise is added to the images when the A is set zero. N is an array of independent probability values
sampled from a gaussian distribution with zero mean and unit variance and its dimension is same
size as that of x and X. Fig. 5 shows some examples of handwritten digit images before and after

the addition of noises.

5.2 Evaluation of pixel attributions

A denoising autoencoder is configured and trained to reconstruct the images of handwritten
digits of the MNIST database. We employed a trial and error approach to configuring the denoising
autoencoder which involves the selection of an appropriate number of hidden layers and neurons.
The autoencoder is said to be configured when it can reconstruct the input images without
significant loss of information and is generalizable to the unseen images. This is ensured by
limiting the binary cross-entropy of the network (measures the reconstruction loss of the network)
to 0.1 for both the training and testing dataset. To elucidate, a few examples of the handwritten
digit images reconstructed by the configured autoencoder is given in Fig. 6 along with the original
images. The schematic of the configured denoising autoencoder is presented in Fig. 4. The encoder
of the denoising autoencoder comprises an input layer with 784 nodes (corresponding to the total

pixels of a handwritten digit image) and a hidden representation layer with 128 nodes, followed

15

by a bottleneck layer (called ‘code’) consisting of 32 nodes. Thus, in the current autoencoder the
noise-added 784-pixel information, X is compressed into a latent variable vector (g) of
dimensional size 32. The compressed data in the latent space is then expanded and the original
cleaner images are reconstructed through a decoder network. The decoder network follows the
inverted form of the encoder network and thus forms a symmetrical autoencoder network. The last
layer of the decoder (784 nodes) corresponds to the reconstructed image output, X. ReLU
activation function (see Eq. 3) is used for all the intermediate layers of the network and for the
final layer, a Sigmoid activation (Eq. 10, where z is the netput) function is employed.

(10)

Sigmoid(z) = TV

The performance of the network was measured using Binary cross-entropy between the
original image pixel intensities and reconstructed image pixel intensities as shown in Eq. 11. p; in

the equation refers to the predicted probability of a pixel being ‘1°.

(& (11)

L(x,X) = —NZ log p;

i=1

The weights and biases of the encoder and decoder are not tied-in and allowed to vary
independently. The network weights are updated based on ADAM (adaptive moment estimation)
optimization [76] during the training. The configuration parameters ADAM used in our analysis
are presented in Table 2. The model is fitted by running through 100 epochs with a mini-batch size
of 25. The final cross-entropy loss of both the training dataset and testing dataset is in the range of

0.08-0.09.

In the second stage, a simple feedforward neural network is constructed using the encoder

part of the successfully trained autoencoder. The last layer of this network is the ‘code’ layer of

16

the autoencoder. The weights and biases of the encoder are simply transferred to this feedforward
neural network. Thus, when a handwritten digital image is fed into this network as pixel features,
X = (X1, Xz, ... Xpp), its dimensionally reduced latent space variables, g = (g1, 92, .-, gq) are
generated as the output. Here, m denotes the number of input pixels and g denotes the number of

latent variables which are 784 and 32 respectively for our case.

With the latent variables and the network parameters of the decoder, we can reconstruct
the original input images. Therefore, these latent variables contain the necessary information to
reconstruct the original image. Hence, we consider the input pixels which significantly contribute
to the latent variables are important for the image reconstruction. The contribution of input pixels
for the construction of latent space is otherwise known as the pixel attribution to the latent
variables. To determine the attribution, Ry, of an input pixel (x;) (contribution of a pixel feature
for image reconstruction), we employ the CSDA approach discussed in Section 4 and compute the
partial derivatives (0g,/0x;,09,/0x; ...0g,/0x;) of the latent features with respect to the input
pixel feature. The computation of partial derivatives with respect to x; through CSDA involves
perturbation of x;, calculation of complex latent outputs g5, gz, ..., g4 and finally, dividing of the
imaginary components of latent outputs with step size, h (0g,/0x; = Im(g1)/h, ..., 09,/0x; =
Im(gq)/h). The step size in the current analysis is taken as h = 10716 to minimize the truncation
error (see Eq. 2) without increasing the subtractive cancellation error. To determine a single
measure for the attribution (Ry,) of an input, we use the L, norm of the partial derivatives of the
latent features (g = {g; g32}) with respect to each original clean input feature x;—.7g4 Which

is given as

17

R = J(091/0%% + -+ 022/ 0x) (2
The attributions of each pixel feature (Ry, Ry,, ..., Ry, ,,) are computed sequentially using
this process and a saliency map of size 28%28 is constructed for the given input image. This entire
process of generating the saliency maps is automated through a simple loop sub-routine. Higher

saliency values at a pixel position indicate that the corresponding pixel feature significantly

influences the latent representation and therefore the reconstruction.
6. Generation of Saliency maps

Saliency maps in the forms of contours highlighting the attributions of each pixel feature
to the latent features are constructed for each handwritten image using the procedure described in
the previous section. Three examples of such saliency maps constructed are shown in Fig. 7 along
with its input images for the purpose of illustration. As seen in these contours, the regions occupied
by the handwritten digital strokes show higher attribution values whereas the white regions with
no information possess lower attributions. This demonstrates the proposed approach identifies the
important pixels necessary for the reconstruction. As the saliency maps are dependent on the input
image, the contours slightly differ for each example. However, as the differences are not notably
significant, we can make a general interpretation from the local pixel attributions. Furthermore,
we have formulated and performed three sanity checks to confirm the validity of the obtained
contours. These sanity checks are also useful to gain more understanding of how the input space

influences the latent variables.
7. Sanity Checks

Sanity Check-1: training using single-digit image subset: Since the regions occupied by
the strokes of the digits will have more attribution values in the saliency maps, it is expected that

18

saliency contours of the network trained with only one class of digits would closely resemble the
shape of those digits. To verify this premise, images of the database pertaining to each digit are
separated and the autoencoder is trained with images of digits belonging to only one category.
Then, the trained network weights and biases are used to construct the saliency maps. As expected,
and it is clearly seen in Fig. 8, the contours look very similar to the shape of the digits that were

used to train the network.

Sanity Check-2: spatial translation of digits and saliency maps: The contours of the
developed saliency maps are centered in the maps as the handwritten digits used for the training
are also centered in the images of fixed size. Hence, if the digits are translated off from the center,
the contours should show a similar shift. This is verified by offsetting the digit on the top-left
corner of the images and it is carried out by adding rows and columns of white pixels at the bottom
and right side of the original image. The original image of size 28X28 pixels is converted into
42x42 pixels with the digits being pushed to the top-left position (see Fig. 9a). The procedure
mentioned in section 5 is then repeated and a constructed contour is presented in Fig. 9b. The
contour in Fig. 9b clearly shows the corresponding shift of the contours to the top-left position and

validates this supposition.

Sanity Check-3: Corrupting the most and the least important pixels: In the above two
checks, we have qualitatively shown the developed saliency maps are meaningfully highlighting
the pixel attributions. To verify whether saliency values attributed to the pixels for the image
reconstruction are valid, we have formulated another sanity check. As in our current case, the digit
strokes are the only features present in the image, the pixel positions important for the image
reconstruction will also be important for the classification of images. Hence it is expected that if

the most important pixels (identified by the saliency maps) of the image dataset are corrupted and

19

fed into a classifier, the classification accuracy would be decreased. Conversely, if the least
important pixels in the input image dataset to a classifier are corrupted, the classification should
remain unaltered. To verify this assumption, we identified 10%, 20%, and 30% percentages of the
most and least important pixel locations based on a local saliency map and corrupted those pixels.
As the local saliency maps do not differ significantly from each other, a local saliency map is
randomly chosen as the representative of the global saliency map. The pixels are corrupted based
on the grey intensity level, if the grey intensity value is above 100, it is changed to 0 and if the
value is less than or equal to100 it is changed to 255. Fig. 10 shows the extent of alteration of
images due to the applied corruptions. Fig. 10 clearly indicates the corruptions on the important
pixels lead to the significant erasure of digits strokes. These corruptions are made to the testing
dataset of the MNIST handwritten images. The classification accuracies of these corrupted testing
datasets are determined using a convolutional neural network (CNN) trained on the uncorrupted
MNIST handwritten digits. The employed convolutional neural network consists of three
convolutional layers alternated with max-pooling layers. The first convolutional layer uses 32
numbers of 3x3 kernel filters and the second and the third layer use 64 numbers of 3x3 kernel
filters. ReLU activation function is used in all three convolutional layers for non-linear activation.
The last (third) max-pooling layer is flattened to a fully connected layer of size 576. It is further
connected to a hidden layer of size 128 with a ReLU activation function. Finally, the hidden layer
is connected to a softmax layer of size 10 corresponding to each class of the digits. The summary
of the network architecture is presented in Table 3. The classification accuracies of the various
corrupted testing datasets are plotted as in Fig.11. As observed in the plot, the classification
accuracies are reduced considerably from 99.9% to 40% when the percentage of corrupted

important pixels is increased from 10% to 30%. However, the percentage of corrupted least

20

important pixels had little effect on the classification accuracies. All the three checks described
above clearly demonstrate that the proposed gradient attribution method determines the importance
of each pixel location for image reconstruction of denoising autoencoders and offers an

interpretability measure for data scientists and analysts.

8. Conclusions

In this study, we examined the importance of each individual pixel feature of an image for
the image reconstruction. The importance of pixel features was evaluated through the attributions
of the pixel features to the latent variables of a denoising autoencoder used for image
reconstruction. Saliency maps showing the pixel attribution contours were developed in the end.
We also verified the fidelity of the saliency maps using three sanity checks introduced in this study.
Through the saliency maps and sanity checks, we were able to identify the important pixel features

for the image reconstruction. The key outcomes of this study are listed below:

1) Saliency maps in the form of contours depicting the attribution of each pixel feature to image
reconstruction are generated. Higher intensity regions of the saliency maps show the most
important image pixels used by the denoising autoencoder for image reconstruction.

2) The first saliency check is performed to verify whether the attribution contours of a single class
of digits resemble the shape of the trained digit. This is envisaged because the digit strokes of
the same class exhibit less variation in occupying the pixel regions. The saliency maps
developed for a denoising autoencoder trained with a single class of digits validate this
supposition.

3) Since the attribution contours are influenced by the pixel regions frequently occupied with
digit strokes, it is presumed that a translational shift in trained images exhibits a similar shift

in the contours of the saliency maps. This is confirmed through the saliency maps of a

21

denoising autoencoder trained with images whose digits are translated to the top-left corner.
The contours in the saliency maps are also translated to the top-left corner.

4) The third saliency check is formulated to validate the pixel attribution values in the context of
image classification. A drop in the classification accuracy is expected when the most important
pixels (indicated by the attribution values) of the images used for the testing are corrupted. As
expected, the classification accuracy dropped drastically from 99.99% to 40% when 30% of
the most important pixels are corrupted. Also, the classification accuracy is unaltered when

30% of the least important pixels are corrupted.

As the proposed approach is perturbation-based, it can be used to find the attributions of
specific features of the inputs to the outputs. This approach can be readily applied on already
deployed networks and can be extended to other deep autoencoders architectures and convolution
neural networks. The sanity checks introduced in the current work can be used as a framework to

validate the other attributions-based interpretability methods.
Acknowledgment

Research presented in this paper was supported by the National Science Foundation under
NSF EPSCoR Track-1 Cooperative Agreement OIA #1946202. Any opinions, findings, and
conclusions, or recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

References

[1] C. Rudin, Stop explaining black box machine learning models for high stakes decisions and

use interpretable models instead, Nature Machine Intelligence, 1 (2019) 206-215.

22

[2] C. Rudin, C. Wang, B. Coker, The age of secrecy and unfairness in recidivism prediction, arXiv
preprint arXiv:1811.00731, (2018).

[3] A. Vellido, The importance of interpretability and visualization in machine learning for
applications in medicine and health care, Neural computing and applications, 32 (2020) 18069-
18083.

[4] R. Lian, K. Siau, Values of Trust in Al in Autonomous Driving Vehicles, (2020).

[5] N. Gillespie, C. Curtis, R. Bianchi, A. Akbari, R. Fentener van Vlissingen, Achieving
Trustworthy Al: A Model for Trustworthy Artificial Intelligence, (2020).

[6] J.A. Nelder, R.W. Wedderburn, Generalized linear models, Journal of the Royal Statistical
Society: Series A (General), 135 (1972) 370-384.

[7] P. McCullagh, J.A. Nelder, Generalized linear models, Routledge, 2019.

[8] D. Wei, S. Dash, T. Gao, O. Gunluk, Generalized linear rule models, in: International
Conference on Machine Learning, PMLR, 2019, pp. 6687-6696.

[9] T.J. Hastie, R.J. Tibshirani, Generalized additive models, Routledge, 2017.

[10] A. Chouldechova, T. Hastie, Generalized additive model selection, arXiv preprint
arXiv:1506.03850, (2015).

[11] B. Ustun, C. Rudin, Supersparse linear integer models for optimized medical scoring systems,
Machine Learning, 102 (2016) 349-391.

[12] S. Dash, O. Giinliik, D. Wei, Boolean decision rules via column generation, arXiv preprint
arXiv:1805.09901, (2018).

[13] M.T. Ribeiro, S. Singh, C. Guestrin, " Why should i trust you?" Explaining the predictions of
any classifier, in: Proceedings of the 22nd ACM SIGKDD international conference on knowledge

discovery and data mining, 2016, pp. 1135-1144.

23

[14] D. Garreau, U. Luxburg, Explaining the explainer: A first theoretical analysis of LIME, in:
International Conference on Artificial Intelligence and Statistics, PMLR, 2020, pp. 1287-1296.
[15] S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in:
Proceedings of the 3 1st international conference on neural information processing systems, 2017,
pp. 4768-4777.

[16] L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for rapid scene analysis,
IEEE Transactions on pattern analysis and machine intelligence, 20 (1998) 1254-1259.

[17] M.D. Zeiler, R. Fergus, Visualizing and Understanding Convolutional Networks, in, Springer
International Publishing, Cham, 2014, pp. 818-833.

[18] K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: Visualising
image classification models and saliency maps, arXiv preprint arXiv:1312.6034, (2013).

[19] J.T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for simplicity: The all
convolutional net, arXiv preprint arXiv:1412.6806, (2014).

[20] M. Sundararajan, A. Taly, Q. Yan, Axiomatic attribution for deep networks, in: International
Conference on Machine Learning, PMLR, 2017, pp. 3319-3328.

[21] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for
discriminative localization, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 2921-2929.

[22] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: Visual
explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE

international conference on computer vision, 2017, pp. 618-626.

24

[23] A. Shrikumar, P. Greenside, A. Kundaje, Learning important features through propagating
activation differences, in: International Conference on Machine Learning, PMLR, 2017, pp. 3145-
3153.

[24] D. Bank, N. Koenigstein, R. Giryes, Autoencoders, arXiv preprint arXiv:2003.05991, (2020).
[25] W.H.L. Pinaya, S. Vieira, R. Garcia-Dias, A. Mechelli, Autoencoders, in: Machine learning,
Elsevier, 2020, pp. 193-208.

[26] X. Guo, X. Liu, E. Zhu, J. Yin, Deep clustering with convolutional autoencoders, in:
International conference on neural information processing, Springer, 2017, pp. 373-382.

[27] X. Peng, J. Feng, S. Xiao, W.-Y. Yau, J.T. Zhou, S. Yang, Structured autoencoders for
subspace clustering, IEEE Transactions on Image Processing, 27 (2018) 5076-5086.

[28] J. Zabalza, J. Ren, J. Zheng, H. Zhao, C. Qing, Z. Yang, P. Du, S. Marshall, Novel segmented
stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral
imaging, Neurocomputing, 185 (2016) 1-10.

[29] W. Wang, Y. Huang, Y. Wang, L. Wang, Generalized autoencoder: A neural network
framework for dimensionality reduction, in: Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, 2014, pp. 490-497.

[30] C. Zhou, R.C. Paffenroth, Anomaly detection with robust deep autoencoders, in: Proceedings
of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining,
2017, pp. 665-674.

[31] J. An, S. Cho, Variational autoencoder based anomaly detection using reconstruction

probability, Special Lecture on IE, 2 (2015) 1-18.

25

[32] C. Nash, C.K. Williams, The shape variational autoencoder: A deep generative model of
part - segm ented 3D ob ects, in: Com puter G raphics Forum , W iley O nline L ibrary, 2017, pp. k
12.

[33] Y. Wu, Y. Burda, R. Salakhutdinov, R. Grosse, On the quantitative analysis of decoder-based
generative models, arXiv preprint arXiv:1611.04273, (2016).

[34] Y. Wu, C. DuBois, A.X. Zheng, M. Ester, Collaborative denoising auto-encoders for top-n
recommender systems, in: Proceedings of the ninth ACM international conference on web search
and data mining, 2016, pp. 153-162.

[35] S. Sedhain, A.K. Menon, S. Sanner, L. Xie, Autorec: Autoencoders meet collaborative
filtering, in: Proceedings of the 24th international conference on World Wide Web, 2015, pp. 111-
112.

[36] G. Alain, Y. Bengio, What regularized auto-encoders learn from the data-generating
distribution, The Journal of Machine Learning Research, 15 (2014) 3563-3593.

[37] G. Mercatali, A. Freitas, Disentangling Generative Factors in Natural Language with Discrete
Variational Autoencoders, arXiv preprint arXiv:2109.07169, (2021).

[38] M. Curi, G.A. Converse, J. Hajewski, S. Oliveira, Interpretable Variational Autoencoders for
Cognitive Models, in: 2019 International Joint Conference on Neural Networks (IJCNN), 2019,
pp. 1-8.

[39] S. Rybakov, M. Lotfollahi, F.J. Theis, F.A. Wolf, Learning interpretable latent autoencoder
representations with annotations of feature sets, bioRxiv, (2020) 2020.2012.2002.401182.

[40] J.-Y. Kim, S.-B. Cho, Explainable prediction of electric energy demand using a deep
autoencoder with interpretable latent space, Expert Systems with Applications, 186 (2021)

115842.

26

[41]R. Al-Hmouz, W. Pedrycz, A. Balamash, A. Morfeq, Logic-driven autoencoders, Knowledge-
Based Systems, 183 (2019) 104874.

[42] A. Ng, Sparse autoencoder, CS294A Lecture notes, 72 (2011) 1-19.

[43] P. Rivas, E. Rivas, O. Velarde, S. Gonzalez, Deep Sparse Autoencoders for American Sign
Language Recognition Using Depth Images, in: Proceedings on the International Conference on
Artificial Intelligence (ICAI), The Steering Committee of The World Congress in Computer
Science, Computer ..., 2019, pp. 438-444.

[44] C.S.N. Pathirage, J. Li, L. Li, H. Hao, W. Liu, R. Wang, Development and application of a
deep learning—based sparse autoencoder framework for structural damage identification, Structural
Health Monitoring, 18 (2019) 103-122.

[45] LD. Mienye, Y. Sun, Z. Wang, Improved sparse autoencoder based artificial neural network
approach for prediction of heart disease, Informatics in Medicine Unlocked, 18 (2020) 100307.
[46] B.G. Gebre, O. Crasborn, P. Wittenburg, S. Drude, T. Heskes, Unsupervised feature learning
for visual sign language identification, (2014).

[47] S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio, Contractive auto-encoders: Explicit
invariance during feature extraction, in: Icml, 2011.

[48] D.P. Kingma, M. Welling, An introduction to variational autoencoders, arXiv preprint
arXiv:1906.02691, (2019).

[49] M. Tavakoli, P. Baldi, Continuous representation of molecules using graph variational
autoencoder, arXiv preprint arXiv:2004.08152, (2020).

[50] S. Sinai, E. Kelsic, G.M. Church, M.A. Nowak, Variational auto-encoding of protein

sequences, arXiv preprint arXiv:1712.03346, (2017).

27

[51] E. Puyol-Antén, B. Ruijsink, J.R. Clough, I. Oksuz, D. Rueckert, R. Razavi, A.P. King,
Assessing the Impact of Blood Pressure on Cardiac Function Using Interpretable Biomarkers and
Variational Autoencoders, in, Springer International Publishing, Cham, 2020, pp. 22-30.

[52] S. Mohammadi, B. O'Dowd, C. Paulitz-Erdmann, L. Goerlitz, Penalized Variational
Autoencoder for Molecular Design, (2021).

[53] E. Lin, S. Mukherjee, S. Kannan, A deep adversarial variational autoencoder model for
dimensionality reduction in single-cell RNA sequencing analysis, BMC bioinformatics, 21 (2020)
I-11.

[54] P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust
features with denoising autoencoders, in: Proceedings of the 25th international conference on
Machine learning, 2008, pp. 1096-1103.

[55] V. Teixeira, R. Camacho, P.G. Ferreira, Learning influential genes on cancer gene expression
data with stacked denoising autoencoders, in: 2017 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), IEEE, 2017, pp. 1201-1205.

[56] L. Gondara, Medical image denoising using convolutional denoising autoencoders, in: 2016
IEEE 16th international conference on data mining workshops (ICDMW), IEEE, 2016, pp. 241-
246.

[57] K. Cho, Boltzmann machines and denoising autoencoders for image denoising, arXiv preprint
arXiv:1301.3468, (2013).

[58] O.M. Saad, Y. Chen, Deep denoising autoencoder for seismic random noise attenuation,
Geophysics, 85 (2020) V367-V376.

[59] Y. Tao, X. Gao, K. Hsu, S. Sorooshian, A. Ihler, A deep neural network modeling framework

to reduce bias in satellite precipitation products, Journal of Hydrometeorology, 17 (2016) 931-945.

28

[60] J. Owotogbe, T. Ibiyemi, B. Adu, A comprehensive review on various types of noise in image
processing, International Journal of Scientific and Engineering Research, 10 (2019) 388-393.

[61] R. Kiran, L. Li, K. Khandelwal, Complex perturbation method for sensitivity analysis of
nonlinear trusses, Journal of Structural Engineering, 143 (2017) 04016154.

[62] R. Kiran, K. Khandelwal, Complex step derivative approximation for numerical evaluation
of tangent moduli, Computers & Structures, 140 (2014) 1-13.

[63] R. Kiran, D.L. Naik, Novel sensitivity method for evaluating the first derivative of the feed-
forward neural network outputs, Journal of Big Data, 8 (2021) 1-13.

[64] D.L. Naik, R. kiran, A novel sensitivity-based method for feature selection, Journal of Big
Data, 8 (2021) 128.

[65] J.N. Lyness, C.B. Moler, Numerical differentiation of analytic functions, SIAM Journal on
Numerical Analysis, 4 (1967) 202-210.

[66] J.R. Martins, P. Sturdza, J.J. Alonso, The complex-step derivative approximation, ACM
Transactions on Mathematical Software (TOMS), 29 (2003) 245-262.

[67] D. Wilke, S. Kok, Numerical sensitivity computation for discontinuous gradient-only
optimization problems using the complex-step method, (2012).

[68] K.-L. Lai, J. Crassidis, Extensions of the first and second complex-step derivative
approximations, Journal of Computational and Applied Mathematics, 219 (2008) 276-293.

[69] J. Chun, Reliability-Based Design Optimization of Structures Using Complex-Step
Approximation with Sensitivity Analysis, Applied Sciences, 11 (2021) 4708.

[70] A. Callejo, O. Bauchau, B. Diskin, L. Wang, Sensitivity analysis of beam cross-section

stiffness using adjoint method, in: International Design Engineering Technical Conferences and

29

Computers and Information in Engineering Conference, American Society of Mechanical
Engineers, 2017, pp. VO06T010A058.

[71] M. Tanaka, M. Fujikawa, D. Balzani, J. Schroder, Robust numerical calculation of tangent
moduli at finite strains based on complex-step derivative approximation and its application to
localization analysis, Computer Methods in Applied Mechanics and Engineering, 269 (2014) 454-
470.

[72] H. Liu, W. Sun, Computational efficiency of numerical approximations of tangent moduli for
finite element implementation of a fiber-reinforced hyperelastic material model, Computer
methods in biomechanics and biomedical engineering, 19 (2016) 1171-1180.

[73] K.-L. Lai, J. Crassidis, Y. Cheng, J. Kim, New complex-step derivative approximations with
application to second-order kalman filtering, in: AIAA Guidance, Navigation, and Control
Conference and Exhibit, 2005, pp. 5944.

[74] V. Vittaldev, R.P. Russell, N. Arora, D. Gaylor, Second-order Kalman filters using multi-
complex step derivatives, in: Proceedings of the AAS/AIAA Space Flight Mechanics Meeting,
Kauai, Hawaii, 2012.

[75] L. Deng, The mnist database of handwritten digit images for machine learning research [best
of the web], IEEE Signal Processing Magazine, 29 (2012) 141-142.

[76] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint

arXiv:1412.6980, (2014).

30

31

Tables

Table 1: Cost functions of various autoencoders

Autoencoders Cost function

Sparse autoencoders L(x,%) + 2 Zlail
i

L(x, %) + AlJx0)|IZ
Contractive autoencoders

Jx) = %4;(0g;/0x,)°

Variational autoencoders L(x,%)+1%;KL(q;(g|x)|lp(9))

Denoising autoencoders L(x,X)

where, £ denotes the reconstruction loss, x is the input, X is the reconstructed input with some
information loss, g is the latent vector, A is the regularization parameter, a; is i*" activation of the
latent layer, J is the Jacobian of the partial derivatives, g; is the j th latent variable, x; is the it"
input feature. KL is the divergence function, q;(g|x) — is the learned distribution of a dimension

of the code layer and p(g)) is a true prior distribution which is assumed to follow unit gaussian

distribution.

Table 2: Parametric Values of the ADAM optimizer employed in the study

Parameter b1 B € a

Value 0.9 0.999 | 1078 | 0.001

32

Table 3: Network architecture details of CNN used in the Sanity Check-3: Corrupting the most

and the least important pixels

Activation Data Size
Layer Layer size
function
Input - - 28x28x1
Convolutional Layer 1 32%3x%3 ReLU 28x%28x%32
Max pool Layer 1 2x2 - 14x14x32
Convolutional Layer 2 64%3%3 ReLU 14x14%64
Max pool Layer 2 2x2 - TxT7x64
Convolutional Layer 3 64%3%3 ReLU TxT7x64
Max pool Layer 3 2x2 - 3x3x64
Fully connected layer 1 576x1 - 576x1
Hidden layer 128x1 ReLU 128x1
Output layer 10x1 SoftMax 10x1
Figures

33

()
Training and configuring a denoising autoencoder (DA) for image

reconstruction
. J

Y
Implementing a highly accurate gradient approach in the encoder
part of the trained DA

Y

Obtaining gradients of latent variables with respect to input pixels

Y

Evaluating the pixel attributions using the obtained gradients

A 4

Generating saliency maps in the form of pixel attribution contours

A 4
Verifying the fidelity of the saliency maps and elucidate the
influence of inputs using sanity checks

Fig. 1: Flow chart of the research approach employed in the current study.

34

Y

3

Fig. 2: A schematic of a simple autoencoder. The autoencoder consists of three components: an

Encoder decoder

encoder — compresses the input (x), a code layer (g) — dimensionally reduced latent space and a

decoder — reconstructs the input (¥) with some loss of information.

Netinput,z Output, y

Input, x

Fig. 3: Structure of the simple feedforward network used to illustrate the implementation of CSDA.
The network consists of three input features (x4, x, and x5) and two outputs (y; and y,). ReLU

function is used to activate the net input values (z; and z,).

35

Z

Extracted for stage 2

Original Pl N analysis
input (x) E 784 nodes T TT=-_ 784 nodes .
I X \ O L
Noisy i ‘ .(” Recqnstru!cted
input (%) : denmsiE()j input
' x

Perturbing %, \ R(g;) +Im(g;)

dag; _Im(g;)
0%, h

Stage 2: Perturbation of input nodes to evaluate complex step
gradients

Fig. 4: Schematic of the stages involved for evaluating partial derivatives of latent variables with
respect to input features. Stage 1 involves training and configuration of the denoising autoencoder
and Stage 2 involves sequential perturbation of inputs with an imaginary step size and ih and

calculation of partial derivatives of latent variables with respect to the input features.

36

Fig. 5: Handwritten digit images before (top row) and after (bottom row) the addition of gaussian

noises

“H

Fig. 6: Top row shows the original input handwritten images, and the bottom row shows the

reconstructed handwritten digit images by the configured denoising autoencoder. The structure of
the autoencoder is configured such that the binary cross entropy of training and testing is less than

0.1

37

10 t

15}

20+t

25}

Fig.7: Image based saliency maps for three examples of MNIST handwritten digits. The input
images are shown on the top-left corner of the maps. Red regions of the maps indicate the high
attribution values of the pixel features and white regions indicate the almost zero attributions of

pixel regions.

Fig. 8: Saliency maps of digit images used in the denoising autoencoders trained with one class of
digits. Red regions of the maps indicate the high attribution values of the pixel features and white
regions indicate the almost zero attributions of pixel regions. The saliency maps resemble the shape

of the digits class the network is trained with.

39

5 5

107} 1 10}

157 1 151

207} 1 20t

257 1 25¢

30t 1 301

357t 1 35¢

40 1 ,,] ‘ B 40 1 ,,] ‘ ‘
10 20 30 40 10 20 30 40

Fig. 9: a) an example of images offset into top left corner b) corresponding saliency map of
complex step gradient norms. The contours in the saliency maps shows the same shift as that of

the shift introduced in the trained images.

40

Fig. 10: Examples of testing images used by the classifier. a), b) and c) shows the image examples
in which 10%, 20% and 30% of the most important regions are corrupted. d), e) and f) shows the
image examples in which 10%, 20% and 30% of the least important regions are corrupted. Most
and least important pixel regions of the images are identified through the generated saliency map.
The corruption of most important regions shows the significant erasure of strokes of the

handwritten digits.

41

90 least important
L 80 4 pixels
>
(@]
g 70 +
3 most important
< 60 t+ pixels
50 +
40 t t t t t >l
0 5 10 15 20 25 30

Percentage of

Fig. 11: Plot between classification accuracy (%)

pixels corrupted

and percentage of pixels corrupted. An almost

flat dashed line pertains to the corruption of the least important pixels and the solid line with

accuracy dropping to 40% pertains to the corruption of most important pixels.

42

