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A B S T R A C T

In this report, the relative eciency o cellulose nanocrystals (CNCs) and nanobers (CNFs) to capture circu-
lating tumor cells (CTCs) rom the blood sample o head and neck cancer (HNC) patients was evaluated.
Detection and enumeration o CTCs are critical or monitoring cancer progression. Both types o nanostructured
cellulose were chemically modied with Epithelial Cell Adhesion Molecule (EpCAM) antibody and iron oxide
nanoparticles. The EpCAM antibody acilitated the engagement o CTCs, promoting entrapment within the
cellulose cage structure. Iron oxide nanoparticles, on the other hand, rendered the cages activatable via the use o
a magnet or the capture and separation o entrapped CTCs. The eciency o the network structures is shown in
head and neck cancer (HNC) patients’ blood samples. It was observed that the degree o chemical unctionali-
zation o hydroxyl groups located within the CNCs or CNFs with anti-EpCAM determined the eciency o the
system’s interaction with CTCs. Further, our result indicated that infexible scaolds o nanocrystals interacted
more eciently with CTCs than that o the brous CNF scaolds. Network structures derived rom CNCs
demonstrated comparable CTC capturing eciency to commercial standard, OncoDiscover®. The output o the
work will provide the chemical design principles o cellulosic materials intended or constructing aordable
platorms or monitoring cancer progression in ‘real time’.

1. Introduction

Cellulose-based nanomaterials are a rich repertoire o biopolymers
obtained rom renewable resources. These nanoscale materials exhibit
unique physico-chemical properties, such as biocompatibility,

biodegradability, and environmental sustainability, and have opened
numerous avenues in the area o diagnostics and biomolecular separa-
tion (Abdul Khalil et al., 2020; Calvino et al., 2020; Czaja et al., 2007;
Domingues et al., 2014; Gatenholm & Klemm, 2010; Hazra et al., 2020;
Hazra et al., 2022; Hickey & Pelling, 2019; Jor & Foster, 2015; Joseph
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et al., 2020; Picheth et al., 2017; Rakib Hasan Khan et al., 2022; Unal
et al., 2020). There are two main types o cellulosic nanostructures – 
cellulose nanocrystals (CNCs) and nanobers (CNFs) (Hazwan Hussin
et al., 2019; Pennells et al., 2020; Trache et al., 2016; Trache et al.,
2020). The advantages o these nanomaterials are their relatively high
aspect ratio and specic surace area, multivalency properties, large
number o reactive surace unctional groups, ease o purication post-
manuacturing, better dispersibility in polar solvents, biocompatibility,
and non-toxicity (Hazra et al., 2020; Incani et al., 2013). For example,
numerous hydroxyl groups on the surace o cellulose nanomaterials can
be easily modied using acile and orthogonal chemical conjugation
techniques, such as esterication, etherication, and conversion into
‘clickable’ reactive groups such as azides, alkynes, or thiols. The regular
spacing o these unctional groups on cellulosic backbone thus provides
tunable fexibility, superior mechanical properties, electrical conduc-
tivity, steric selectivity, and anity towards other biomolecules in a
multivalent ashion (Hazra et al., 2021; Jia et al., 2019; Ma et al., 2021;
Rose & Palkovits, 2011). Further, cellulosic materials can be easily pu-
ried ollowing a chemical reaction, are easily dispersed in multiple
hydrophilic media, and have biocompatibility with numerous biological
components, resulting in non-toxicity (Hazra et al., 2020; Incani et al.,
2013). Thus, cellulose nanomaterials have been utilized as an excellent
platorm or preparing optical and enzymatic biosensors with a non-
sticky, carbohydrate-rich surace that promotes specicity with a
target analyte while inhibiting engagement with the non-targeted ones
(Incani et al., 2013).

The central hypothesis o this work is based on the idea that cellulose
nanostructures and its structure-property-aspect ratio relationship
govern their interactions with other synthetic and biological materials o
interest (Edwards et al., 2013; Golmohammadi et al., 2017; Hazra et al.,
2020; Lam et al., 2012). To prove this hypothesis, we investigated the
eect o both types o cellulose nanostructures, i.e., CNCs and CNFs, on
their interactions with a clinically-relevant biological entity, such as
Circulating Tumor Cells (CTCs) o the head and neck cancer (HNC).
Detection, isolation, and enumeration o CTCs in HNC are critical or
monitoring cancer progression and determining therapeutic success
(Buglione et al., 2012; He et al., 2013; Kawada et al., 2017; Kulasinghe
et al., 2015; Kulasinghe et al., 2016; Kulasinghe et al., 2017; Kulasinghe
et al., 2018; Kulasinghe, Hughes, et al., 2019; Kulasinghe, Zhou et al.,
2019; McMullen Kyle et al., 2016; Nichols et al., 2012; Tada et al., 2020;
Tinhoer & Staudte, 2018; Zheng et al., 2019). As a target o clinical
importance, CTCs are extremely valuable because they directly relate to
metastasis. Metastasis is one o the leading causes o cancer-related
deaths world-wide. Approximately 10 million people die rom cancer
annually, and 90 % o these cases are associated either with treatment
ailure or metastasis (Chaer & Weinberg, 2011; Sung et al., 2021).
Correlating the treatment stage and the presence o CTCs in circulation
will reduce the chances o disseminating tumor cells and progression to
secondary tumors in HNCs (Necula et al., 2019). However, detection o
CTCs in peripheral blood is extremely challenging as the concentration
o CTCs is very low, i.e., <0.1 % in peripheral blood (Cristoanilli et al.,
2004). Due to various physiological actors, such as shear stress o blood
fow and immune activity, most CTCs show a limited hal-lie ranging
between 1.0 and 2.4 h (Hu et al., 2021; Meng et al., 2004; Tayoun et al.,
2019). Thus, developing the CTC-capture and enrichment platorm is
challenging owing to such short hal-lie and low abundance o CTC,
non-specicity, low binding eciency, and patient-to-patient variation
(Singh et al., 2021). Thus, multi-pronged approaches have been reported
across the literature to develop an ecient and aordable CTC detection
platorm. Microfuidic chips, or example, are one o the approaches
used extensively or capturing CTC with signicant CTC capture e-
ciency, ranging rom 65 to 95 % (Gleghorn et al., 2010; Hsiao et al.,
2014; Kulasinghe, Zhou et al., 2019; Nagrath et al., 2007; Wu et al.,
2019; Yoon et al., 2016). These microfuidic platorms are decorated
with microposts array grated with anti-EpCAM or Transerrin (T)
glycoproteins. The microfuidic system developed by Chen et al.

captured CTCs rom HCT116 cell line with 85 % capture eciency
(Chen et al., 2019). Zhu et al. developed a hierarchical hydrogel system-
based microfuidic chip used as a liver cancer-on-a-chip and drug
screening device (Zhu et al., 2021). Zheng et al. abricated aptamer-
unctionalized barcode particles or capturing CTCs (Zheng et al.,
2014). Similarly, Luan et al. developed olic Acid-conjugated photonic
barcodes or detecting and capturing CTCs (Luan et al., 2018). Droplet
microfuidic systems developed by Liu et al. used bubble-propelled
nanomotors (Liu et al., 2022) and have been harnessed or capturing
CTCs. These systems can be used or capturing CTCs by grating specic
protein molecules. Dielectrophoretic and magnetophoretic microfuidic
chips have also been designed and were used to capture CTCs rom blood
fow (Zhao et al., 2022). Using CNF based microfuidic system, Kumar
et al. successully captured CTCs rom HCT116 cancer cell line using
Anti-EpCAM on the surace o channel (Kumar et al., 2020). A ew o the
challenges omicrofuidic channels are reduction in capturing eciency
due to high fow rate, low contact time with the channel, and low con-
tact point or large volume blood (Nagrath et al., 2007; Schulz et al.,
2009; Shen et al., 2017). Thereore, membrane microlter-based sys-
tems were used to capture CTCs by fowing blood sample through pores
o these lters. As representative example, Khetani et al. developed a
membrane-based lter system to isolate CTCs rom blood fow (Khetani
et al., 2018). Similarly, Boya et al. abricated meshed microwells to
capture CTC clusters rom prostate and ovarian cancer patients at a
throughput o >25 mL/h (Boya et al., 2022). Membrane-based lter
systems also exhibit some challenges, including but not limited to the
clogging o the pores located within the membranes (Adams et al., 2014;
Lee et al., 2019; Zheng et al., 2011). Another technique or isolating CTC
rom blood samples used unctionalized silica-based microbeads (Sun
et al., 2018; Yoo et al., 2016). Major drawbacks o this method involved
precise detection o CTCs (due to the involvement o ree microbeads
mixed in the system) and intererence with fuorescence-based detection
methods due to light diraction within ree microbeads (Xu, 2001; Yoo
et al., 2016). Immunochemistry-based techniques, such as those devel-
oped by CellSearch and MagSweeper, gained clinical acceptance and
popularity (Talasaz et al., 2006; Talasaz et al., 2009). MagSweeper can
isolate CTCs rom blood at a maximum o 62 % capture eciency with
EpCAM biomarker (Deng et al., 2014; Xiong et al., 2016). Li et al.
developed an immunomagnetic system to capture CTCs with 89–91 %
capture eciency (Li et al., 2022). Similarly, Jiang et al. designed
protein corona-coated immunomagnetic nanoparticles to capture CTCs
with 90 % eciency (Jiang et al., 2022). Recently, the Strep-tag®
showed CTC capturing eciency o 79 % with EpCAM, HER2, EGFR
biomarkers under external magnetic eld (Lu et al., 2015). CTC
capturing eciency o a detection platorm increased signicantly when
ber-type materials with large surace area and multiple unctional
groups were used. For capturing CTC eciently, Tseng et al. demon-
strated the importance o nanobers in the orm o electrospun mat
prepared by blending poly (sulobetaine methacrylate) (PSBMA) and
poly (acrylic acid) (PAA) into nylon-6 (Tseng et al., 2016). Similarly, Lee
et al. developed a mat-based CTC assay by blending poly(ethylene
oxide) (PEO) and nylon-6 bers via electrospinning method (Lee et al.,
2018). In recent cases, poly(amidoamine) (PAMAM) dendrimers were
unctionalized with CTC responsive protein molecules to isolate CTCs
rom blood by exploring multivalency properties (Bu et al., 2020; Meng
et al., 2020; Myung et al., 2011; Myung et al., 2015). Based on these
previous reports, this is apparent that network like structures with
multiple unctional groups, multivalency and tunable physico-chemical
properties provide augmented eciency or capturing CTC (Myung
et al., 2012; Zhang & King, 2017). Thus, in the current project, we
designed a CTC capture platorm using CNC and CNF that orm network
structures and investigated how their nanoscale properties impact the
capture eciency o CTCs rom patient blood. To achieve this, the native
hydroxyl unctional groups on CNCs and CNFs were rst converted to
amines, and then chemically modied to thiol to coordinate with iron
oxide nanoparticles (Fe3O4 NPs). The resulting cellulosic product was
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chemically conjugated with anti-EpCAM. This particular class o anti-
body was selected because cancer cells consume a higher amount o iron
and other essential minerals than that o healthy cells or survival. These
nutrients are transported across the membrane via transmembrane
glycoproteins, such as Transerrin (T) and epithelial cell adhesion
molecule (EpCAM) receptor (Gomme et al., 2005; Han et al., 2010;
Zhang et al., 2017). Superparamagnetic Fe3O4 NPs were used to render
the scaold magnetically separable post-interaction with anti-EpCAM-
engaging cells. In this study, unctionalized products ater each chemi-
cal modication step were characterized with X-ray photoelectron
spectroscopy (XPS) and Fourier Transorm Inrared Spectrometer (FTIR)
spectroscopy. The assembly structure o chemically modied CNCs or
CNFs was evaluated using Transmission electron microscopy (TEM),
Dynamic light scattering (DLS), and Zeta (ζ-) potential measurement.
Magnetic measurement with Vibrating Sample Magnetometer (VSM)
was carried out to investigate the eect o temperature on the magnetic
properties o CNC and CNF scaolds. CTC capture eciency was
investigated on the human colon cancer cell line (HCT116) and head and
neck cancer cell lines. This capture eciency was compared with the
commercial standard, OncoDiscover®. We envision that this work will
shed light on the design principles required or constructing magneti-
cally activable, CTC-capturing scaolds with cellulosic nanomaterials
and deconvolute the eect o aspect ratio, and fexibility o scaolds on
their eciency in capturing CTCs rom cancer patients’ blood. The
working principle o the cellulosic nano-scaold and its CTC capture
mechanism is illustrated in Fig. 1.

2. Experiment section

2.1. Materials and methods

Freeze-dried cellulose nanocrystals (CNCs) powder (1 wt% sulur
and sodium orm) was purchased rom the Process Development center
o the University o Maine. CNCs were collected rom biomass. Extrac-
tion processes involved hydrolysis o the biomass with suluric acid
(Postek et al., 2013; Wang et al., 2020). The amorphous part o cellulose
nanobers was dissolved with acid treatment, yielding a highly crys-
talline raction o the nanober, which is 3–20 nm wide and 150–200
nm long. These rod-like nanocrystals (Also known as cellulose nano-

whiskers) (Hazra et al., 2020) showed high axial stiness (~150 GPa),
tensile strength (~7.5 GPa), thermal stability (~300 ◦C), superior aspect
ratio (10100), and low density (~1.6 g/cm3) (Postek et al., 2013).
Cellulose nanobrils (CNFs) were purchased as 3 wt% aqueous slurries
rom the Process Development center o the University o Maine. This
slurry was produced using circulating bleached sotwood pulp over a
specialized rener without any pre- or chemical treatment (Fein et al.,
2020; Ma et al., 2021; Wang et al., 2020). The specic surace area and
density o CNFs were 31–33 m2/g and 1.0 g/cm3, respectively. Nano-
bers used in this study were 50 nm wide and micron-scale long (Chen
et al., 2020; Li, Skolrood, et al., 2019). Other reagents and chemicals,
such as erric chloride hexahydrate, errous chloride tetrahydrate (CAS
13478-10-9), fuorescein isothiocyanate (CAS 27072-45-3), and Traut’s
Reagent (CAS 4781-83-3) were procured rom Sigma Aldrich. Anti-
EpCAM antibody (ab71916) was purchased rom Abcam. A 28 %
ammonium hydroxide was purchased rom Sigma Aldrich (CAS 1336-
21-6).

2.2. Synthesis o iron oxide nanoparticles (Fe3O4 NPs)

Iron oxide nanoparticles were synthesized ollowing slight modi-
cation o previously published procedure (Banerjee& Chen, 2007). Prior
to the modication o CNCs and CNFs, iron oxide nanoparticles (Fe3O4)
were precipitated rom 30 mL, 1:1 (v/v) liquid mixture o Ferrous
chloride tetrahydrate (0.1 M solution, 0.19 g solid dissolved in 15 mL DI
water) and Ferric Chloride, hexahydrate (0.2 M solution, 0.487 g solid
dissolved in 15 mL DI water) ollowed by addition o 28 % concentrated
NH4OH in a dropwise ashion to reach a pH o 10. Such elevation o pH
resulted in the precipitation o Fe3O4 NPs. Precipitated NPs were heated
at 80 ◦C or 30 min. A dark reddish-brown sample was washed by
centriugation with ethanol and DI water. We have used 50 mL centri-
uge tubes and centriuged at 10000 rpm (10,304 ×g) or 10 min. This
allowed to precipitate the nanocrystal to orm a pallet in the bottom o
the centriuge tube.

2.3. Conjugation o Fe3O4 NPs with CNC or CNFs to orm network
structures

Modication o CNCs and CNFs to conjugate Fe3O4 NPs was

Fig. 1. Schematic diagram o anti-EpCAM decorated and Fe3O4 NP conjugated CNC- and CNF-based network structures. In the inset, TEM images are shown rep-
resenting the structural dierence between CNC and CNF scaold. Schematic illustration showing the process o CTC isolation rom blood sample containing RBC,
WBC, platelets, and CTCs. The sample was collected rom HNC patients (n = 6). Strong magnet was used or CTC separation.
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conducted in multiple steps ollowing earlier protocol (Fig. 2) (Hazra
et al., 2020). A dispersibility test was conducted earlier to identiy the
solvent system and cellulose concentration range where cellulose does
not precipitate out rom the aqueous suspension (Supporting inorma-
tion, Fig. S1, and Table S1). Then, 1 g o CNCs or CNFs were dispersed in
22 mL sodium hydroxide solution (1 M), ollowed by the addition o
varying concentrations o epichlorohydrin (48, 96, 144, and 196 mmol/
g o cellulose). The reaction mixture was incubated at 60 ◦C or 2 h and
dialyzed against deionized water (Repligen, Spectra/Por 3 Dialysis
Tubing, 3.5 kD MWCO) until pH was below 12. Ater completion o this
step, centriugation o the reaction mixture at 10,000 rpm (50 mL
centriuge tube, 10,304 ×g) or 10 min was carried out to separate the
desired product at >97 % yield. Then, 28 % ammonium hydroxide (2.5
mL/g cellulose) was added to the product (adjusted pH at 12), and the
mixture was incubated or an additional 2 h at 60 ◦C with constant
stirring. Ater the stipulated reaction period, the sample was again
centriuged at 10,000 rpm (50 mL centriuge tube, 10,304 ×g) or 10
min to discard unreacted ammonium hydroxide. The centriuged prod-
uct was dialyzed against deionized water (Repligen, Spectra/Por 3
Dialysis Tubing, 3.5 kD MWCO) until pH reached ~7 (Final yield o the
product was >95 %). Following the amination step o CNCs or CNFs,
Traut’s reagent (Fig. 2) was added to the modied amino-unctionalized
cellulosic products. To carry out this reaction, a coupling buer was rst
prepared by dissolving 73 mg ethylenediamine tetra acetic acid (EDTA)
in 50 mL phosphate-buered saline (PBS). The pH o the coupling buer
was adjusted to 7.6. Amine unctionalized CNCs and CNFs (8 mg) were
dispersed in the coupling buer (950 μL) and reacted with Traut’s re-
agent (2-iminothiolane) (50 μL rom a mother solution prepared via
dissolving 2 mg Traut’s reagent in 1 mL coupling buer) or 45 min
incubation at room temperature. The nal sample was centriuged at
10,000 rpm (50 mL centriuge tube, 10,304 ×g) or 10 min and washed
with deionized water to obtain thiolated CNCs and CNFs (Yield > 96 %).
Previously prepared Fe3O4 NPs dispersed in water (pH 10) were
immediately added to this thiolated CNC (8 mg/mL) or CNF (12 mg/mL)
suspension solution in a varied amounts (10, 12, 15, 18, 20, and 40 mg/
mL) to obtain magnetically activable CNC or CNF networks. The nal
conjugated product was washed with centriugation (50 mL centriuge
tube, 10,304×g) to remove unconjugated Fe3O4 NPs. The quantication
o conjugated Fe3O4 NPs was evaluated using a calibration curve via
UV–Vis spectroscopic analysis at 370 nm (Hazra et al., 2020).

2.4. Introduction o carboxyl group on network structures via
succinylation and conjugation o anti-EpCAM

Carboxylic acid groups were introduced on CNC or CNF scaolds via
succinylation reaction (Fischer et al., 2011). Introducing these carbox-
ylic acid groups allowed urther modication o the CNC or CNF sca-
olds with epithelial cell adhesion molecule (anti-EpCAM) via an
amidation reaction (Fig. 2). For this reaction, a dispersion o amino-
unctionalized, nanoparticle-conjugated CNC or CNF (1.0 g) network
structures in dimethylormamide (DMF, 15 mL) was reacted with suc-
cinic anhydride (1.8 g, 1.2 M) in the presence o triethylamine (1.17 mL,
0.56 M). The reaction mixture was incubated or 48 h at 50 ◦C. Centri-
ugation was perormed at 10,000 rpm (50 mL centriuge tube, 10,304
×g) or 10 min to discard DMF, and the solid product was washed with
DI water (Yield > 90 %). In the nal step, an equivalent ratio o EDC (12
mM), NHS (12 mM), and (3.5, 4.2, 5.6, and 19.6 μM) anti-EpCAM was
added in a total o 1 mL media containing 8 mg cellulosic materials in
phosphate buered media with pH maintained at 5.5. Quantication o
conjugated anti-EpCAM was measured via Bradord assay (Hazra et al.,
2020) (Supporting inormation, Fig. S2, and Table S2).

2.5. X-ray photoelectron spectroscopy (XPS) and X-ray diraction
analysis (XRD)

Elemental analysis was perormed to conrm the unctionalization.
X-ray photoelectron spectroscopy (XPS) (Thermo Electron K-Alpha X-
ray Photoelectron Spectrometer System) was used to detect the binding
energy based on the modication orm o the elements. Powder samples
were placed on a copper well plate, and pressure was reduced to 1 ×
107 mTorr. The low-pressure condition was maintained or 24 h beore
the measurement. The X-ray spot size was 200 μm, and the food gun was
switched on during the measurement to neutralize the surace charge o
the samples. Survey scans were perormed at a pass energy o 200 eV, 10
scans, dwell time o 10 ms, and energy step size o 1 eV. High-resolution
scans were perormed or N and Ag at pass energy o 50 eV, 10 scans,
dwell time 50 ms, and energy step size o 0.1 eV. Further, we investi-
gated the N/C ratio o CNFs with elemental analysis ater the conversion
o hydroxyl groups to amines. Elemental analysis was conducted in
Atlantic Microlab using combustion techniques with a minimum o 5 mg
o vacuum-dried samples. Further X-Ray diraction analysis (XRD) was
carried out on dried sample pallet using Rigaku Ultima IV Versatile X-
ray diractometer with Kα radiation at 40 kV and 40 mA were recorded
in the range o 2θ at 5–90◦.

Fig. 2. Synthetic route or generating amine and thiol unctional groups on CNC or CNF scaolds. Fe3O4 NPs were conjugated to these cellulosic scaolds via thiol
linkages. Additional hydroxyl groups o CNC or CNF products were partially converted to the carboxylic acid group via succinylation reaction and were conjugated to
the anti-EpCAM using EDC/NHS coupling.
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2.6. Fourier Transorm Inrared Spectrometer (FTIR)

The FTIR experiment was conducted in attenuated total refection
(ATR) mode using a Thermo Scientic Nicolet 8700 system to investi-
gate the unctional groups in CNC and CNF scaolds. The samples were
scanned between 4000 and 500 cm1 or 32 repetitive scans (5 statistical
replicates). All samples were reeze-dried prior to the ATR-FTIR study.

2.7. Transmission electron microscopy (TEM)

For evaluating the ne structures o nanoparticle-loaded cellulose
network structure, transmission electron microscopy (TEM) was per-
ormed. A drop o the diluted pristine (unmodied) and Fe3O4 NPs-
conjugated CNCs/CNFs samples were placed on a 300-mesh ormvar-
carbon coated copper grid (Ted Pella Inc., Redding, Caliornia, USA)
or 2 min. The excess liquid on the grid was absorbed using lter paper.
The sample was stained using phosphotungstic acid (0.1 %, pH 7–8) or
2 min. Images were collected using a JEOL JEM-1400 Flash transmission
electron microscope (JEOL USA) running at 120 kV (JEOL USA, Pea-
body, Massachusetts, USA) at NDSU Electron Microscopy Core acility
(Fargo, North Dakota, USA).

2.8. Dynamic light scattering (DLS) and zeta potential measurement

Dynamic light scattering (DLS) measurements o network structures
were carried out in Malvern Zetasizer Nano-ZS90. Sample solutions at a
concentration o 1 mg/mL were sonicated in DI water or 10 min in a
bath sonicator beore the DLS measurement (3 sample replicates, 5
measurements with 5 run/replicates). Beore the measurement, all
samples were ltered through a syringe lter (Whatman® ReZist® PTFE
membrane-based syringe lter with a pore size o 1 μm). Zeta potential
was also investigated to analyze the surace charge distribution that
governed the electrostatic stability o the colloidal suspensions o
network structures using a similar experimental design.

2.9. Magnetic measurement

Magnetic properties o Fe3O4 NP-immobilized CNC and CNF sca-
olds were measured using a Lakeshore model 7300 Vibrating Sample
Magnetometer (VSM) at ambient temperature and at 311 K.

2.10. Cell culture studies

HCT116 cells were procured rom NCCS, Pune, India, and were
cultured in McCoy media (HiMedia), supplemented with 10 % etal
bovine serum (Invitrogen) and 1 % antibiotic (Penicillin 100 μg/mL,
streptomycin 100 μg/mL, Sigma).

2.11. Microscopic evaluation o HCT116 cell capture eciency o
network structures

The articial cell suspension was prepared by spiking 30 human
colon cancer cell line (HCT116) cells in PBS. The resulting HCT 116 cell
suspension (1.5 mL) was treated ~500 μg o CNC/CNF products or 15
min. Captured HCT116 cells were entrapped within the cellulose sca-
olds and were isolated rom the bulk sample under a strong neodymium
magnet, N52 graded magnet. The pellet was washed with PBS three
times, and ater the removal o the magnetic eld, the suspension was
added to the wells o a 96-well plate. Captured HCT116 cells were xed
with 100 %methanol (chilled at20 ◦C) at room temperature or 5 min.
Cells were washed in PBS three times or 5 min and incubated with 1 %
BSA, 22.5 mg/mL glycine in PBST (PBS + 0.1 % Tween 20) or 30 min to
block the unspecic binding o the antibodies. The captured cells were
then xed and immunostained with CK-18 antibody and nuclear-
staining probe, DAPI. The cells were imaged and counted using a Zeiss
fuorescence microscope (Observer Z1).

2.12. CTC captures eciency analysis by using head and neck cancer
patients’ blood samples

Head and neck cancer patient blood samples were treated with red
blood cell lysis buer or 10 min and then centriuged at 2000 rpm or
15 min. The volume o blood used or CTC isolation is 1.5 mL. The su-
pernatant was discarded, and ~500 μg o CNC/CNF scaolds were
added and incubated with the cell suspension or 15 min. Cell pellets o
captured CTCs were separated under 10 min o the magnetic eld
created by a N52 graded magnet, strong neodymiummagnet (25 × 25×
25 mm3 dimension and 52 Mega Gauss-Oersteds strength). The captured
CTCs were then xed and immune-stained with CK-18, CD 45, and
nuclear-staining probe DAPI. Captured CTCs were scanned using
motorized Zeiss fuorescence microscopy, and images were acquired.

3. Results and discussion

3.1. Synthesis o anti-EpCAM-conjugated CNF/CNC scaolds loaded
with magnetic nanoparticles

We adopted a synthetic route reported earlier to prepare
magnetically-activable, anti-EpCAM-conjugated CNC/CNF scaolds
(Chen et al., 2021; Hazra et al., 2020; Myung et al., 2012; Singh et al.,
2021; Zhang & King, 2017) (Fig. 2). First, hydroxyl groups o CNCs/
CNFs were converted to thiols via a two-step reaction process. In the rst
step, CNCs/CNFs were reacted with epichlorohydrin or 2 h at an
elevated temperature (60 ◦C) under alkaline conditions, ollowed by
ammonium hydroxide treatment. The cellulose-epoxide reaction is
stoichiometry and pH-dependent (Dong & Roman, 2007; Li, Shang,
et al., 2019; Mahmoud et al., 2010; Porath & Fornstedt, 1970; Zhang
et al., 2012). At a higher epichlorohydrin/cellulose ratio, the reaction o
epoxides is successul with cellulose, although at a reduced degree o
unctionalization. Dong et al. reported a condition, where such con-
version is maximized by manipulating pH (Dong & Roman, 2007). In
case o CNCs, urther reactions o sulates, bisulate or organosulates
with epoxides require acid catalysis (Aoki et al., 2020). As such, we do
not expect a signicant infuence o sulates on the reaction that
immobilized the epoxide ring on cellulose. As Dong et al., Mahmoud
et al. and Zhang et al. proposed, this reaction step converted hydroxyl
groups o CNCs/CNFs to amine (Dong & Roman, 2007; Hazra et al.,
2020; Mahmoud et al., 2010; Zhang et al., 2012). In the ollowing step,
these primary amine unctionalized CNFs were reacted with 2-imino-
thiolane (Trout’s salt) at pH 7.6 in the presence o EDTA.
Iminothiolane-mediated unctionalization o polyamines is a well-
established strategy to generate thiol (-SH) unctional groups on
amine-rich macromolecules (Calderón et al., 2010; Calderón et al.,
2011; Hussain et al., 2013). The presence o thiol groups on CNFs was
urther conrmed using elemental analysis (described later). At the end
o these two-step reaction processes, the thiolated CNFs were incubated
with Fe3O4 NPs. Metal-thiol interactions resulted in the ormation o
Fe3O4 NP-conjugated CNF scaolds. These scaolds, ater purication,
were treated with succinic anhydride. Succinylation produced carbox-
ylic acid (-COOH) randomly along the CNF backbone, assembled to
conjugate with the N-terminal o the anti-EpCAM via EDC/NHS
coupling. The amount o antibody immobilized was evaluated using the
Bradord assay. An extensive purication method consisting o centri-
ugation has been adopted to generate the puried target product, i.e.,
anti-EpCAM-conjugated CNFs connected with Fe3O4 NPs. Following a
similar synthetic route, anti-EpCAM-conjugated CNCs loaded with
Fe3O4 NPs have also been prepared or head-to-head comparison with
CNF-variants or evaluating CTC capture eciency.

3.2. Elemental, X-ray photoelectron spectroscopy (XPS) and FTIR
analysis or network structure characterization

First, elemental analysis was perormed to conrm the conversion o
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cellulosic hydroxyl groups o CNFs to amines by measuring the N and C
percentage (Supporting inormation, Table S3). The analysis showed an
increment o N percentage due to amine unctionalization o the CNF-
hydroxyl groups with epichlorohydrin/NH4OH treatment (Hazra et al.,
2020). For urther conrmation, XPS analysis was conducted to identiy
the presence o nitrogen in these modied cellulose products. The XPS
analysis ound that the amine-modied CNFs/CNCs showed a prominent
peak or N1s compared to pristine CNFs/CNCs. As shown in Fig. 3A, this
sharp peak was ound at a binding energy o ~399.5 eV, indicating the
presence o primary amines present within the modied CNF/CNC
scaolds. Our previous studies also showed the presence o N1s peak at
399 eV when amine unctionalized CNCs were synthesized ollowing a
similar treatment (Hazra et al., 2020; Lin & Duresne, 2013; Noel et al.,
2011). Two distinct peaks at 163.42 and 169.19 eV binding energy with
a 1:4 and 1:3 intensity ratio were also observed in XPS spectra or thiol-
modied CNFs/CNCs, which conrmed the presence o S2p o sulur
within the macromolecular scaold (Castner et al., 1996; Prathapan
et al., 2016) (Fig. 3B). The intensity ratio represented that disulde in-
teractions were less prominent, which renders the remaining thiol
groups available or conjugation with Fe3O4 NPs. For nanoparticle-
conjugated CNFs, Peaks corresponding to the binding energy o ~711
and ~724 eV observed in the XPS spectra can be attributed to the
presence o Fe 2P3/2 and Fe 2P1/2 which urther conrmed the
immobilization o Fe3O4 NPs within the modied CNF/CNC scaolds
(Descostes et al., 2000; Omran et al., 2015) (Fig. 3C). A similar result
was ound in our previous work, where we conrmed the presence o

two distinct peaks at 164 and 169 eV or S2p, and 711 and 724 eV or Fe
2p3/2 and Fe 2p1/2, respectively, or thiol and Fe3O4 NPs-modied
CNCs, demonstrating the successul modication o the CNC network
structures via this chemical pathways (Hazra et al., 2020).

FTIR also characterized samples o CNFs/CNCs at dierent unc-
tionalization stages. Spectra corresponding to modied CNF are pre-
sented in Fig. 4A, which shows a broad spectral band rom 3000 to 3700
cm1 when hydroxyl groups o CNFs were converted to amines. This is
due to the overlap o O–H and N–H (primary amine) stretching,
indicating the presence o both unctional groups because o epichlo-
rohydrin/NH4OH treatment o native CNFs. With the unctionalization
o CNFs with primary amines, a distinct band rom 1570 to 1630 cm1

was ound, which most likely is attributed to the bending vibrations o
the N–H groups o primary amines (Ottenhall et al., 2018). Following
the iminothiolane reaction and subsequent Fe3O4 NP conjugation, FTIR
was conducted on the puried product. A weak band at 2550–2572
cm1 was observed in the product, which can be attributed to the S–H
stretching (Kim et al., 2005). Succinylation o Fe3O4-conjugated CNFs
partially converted hydroxyl groups to carboxylic groups. Two clear
bands at 1725 and 1658 cm1 were observed in the succinylated, Fe3O4-
conjugated cellulosic products, which could be attributed to the C––O
and C–H stretching o the carboxylic acid moieties (Gipson et al., 2015;
Montanari et al., 2021). With modied CNCs, a similar pattern o FTIR
bands was observed, which is presented in Fig. 4B.

Further XRD analysis demonstrated the crystallinity nature o CNCs/
CNFs in pristine and post-unctionalization conditions (Supporting

Fig. 3. Identication o modied CNF samples using (A) XPS spectra to conrm primary amine groups at ~399.5 eV. (B) Conjugated thiol (-SH) groups ater
iminothiolane reaction, and (C) Fe3O4 NP conjugation where peaks or Fe 2P3/2 and Fe 2P1/2 were identiable. Gaussian tting o the peaks was used to identiy the
peaks corresponding to dierent species.
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Fig. 4. FTIR spectra o pure and modied (A) CNFs and (B) CNCs ater the reaction o the cellulosic materials with amines (via epichlorohydrin/NH4OH), thiols (via
reaction with Traut’s reagent), Fe3O4 NPs, and with succinic anhydride.

Fig. 5. TEM micrograph o (A) pristine (unmodied) CNFs and (B) Fe3O4 NPs decorated CNFs; TEM micrograph o (C) pristine (unmodied) CNCs and (D) Fe3O4 NPs
decorated CNCs. Both CNCs and CNFs were ound to orm interaction between the nanoparticles through secondary interactions operating within the crystalline and
brous domain o these cellulosic products.
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inormation, Fig. S3). Pristine CNCs and CNFs experienced a reduction
in peak intensity ater unctionalization, which was reduced due to the
conversion o unctional groups and a decrease in crystallinity. This
result urther supported the successul unctionalization.

3.3. Particle size, surace charge, and microstructural eatures o Fe3O4
NPs-conjugated CNFs in aqueous solution

Microstructures o pristine and Fe3O4 NP-conjugated CNFs were
analyzed by TEM. As shown in Fig. 5A, pristine CNFs with each string
are composed o bundles o nanobers at micrometer length. Modiying
CNFs with thiol groups and subsequent Fe3O4 NP-conjugation resulted
in the immobilization o Fe3O4 NPs along the surace o nanober
bundles (Figs. 5B and S4). Electron microscopy urther revealed that
Fe3O4 NP was ound to be ~15 ± 6 nm in diameter when stabilized
within the network structure o thiol-modied CNFs. We have previ-
ously reported nanoscale structures o Fe3O4 NPs conjugated within the
CNC scaold, which we urther validated in this study or comparison
purpose (Hazra et al., 2020). Fig. 5C shows the pristine CNCs that are
129 ± 4 nm long and 8 ± 2 nm wide. These crystals were ound to orm
an interaction among them. Post-unctionalization with thiol groups
resulted in the attachment o the Fe3O4 NPs along the surace o the CNC
scaolds (Fig. 5D). The interaction between cellulosic scaold was most
likely ormed due to secondary interactions within the crystalline and
brous domains o CNC and CNFs, respectively. It has been previously
reported that pristine cellulose, whether nanobers or nanocrystals, can
orm an interaction between the bers or crystals (Balakrishnan et al.,
2018; Xu et al., 2013). Cellulose has unique interaction properties, such
as secondary interactions between the cellulose bers or crystals. High
aspect ratios and large surace areas o cellulose nanobers and nano-
crystals enable a high number o interaction sites.

The hydrodynamic diameter (DH) o pristine (unmodied) CNCs or
CNFs and their Fe3O4 NP-conjugated variants were investigated using
dynamic light scattering (DLS) measurements. For these experiments, 1
mg/mL o CNCs or CNFs were dispersed in water, and the aqueous
dispersion was ltered through a syringe lter (Whatman® ReZist®
PTFE membrane-based syringe lter with a pore size o 1 μm) (Fig. 6A).
It was ound that pristine or unmodied CNCs showed a hydrodynamic
diameter o 120 ± 14 nm. Interestingly or CNF aggregates, particles
with DH o 160 ± 30 nm and 670 ± 35 nm were observed. While the DH
o Fe3O4 NPs-loaded CNC scaolds was 240 ± 15 nm, nanoparticle-
loaded CNF scaolds (Fig. 6A) demonstrated an average diameter o

530 ± 27 nm. To investigate the origin and compare the aqueous
colloidal stability o Fe3O4 NP-loaded CNC and CNF nano scaolds, zeta
(ζ-) potential was measured. Fig. 6B shows the evolution o the ζ- po-
tential ater dierent stages o unctionalization o CNC and CNF nano
scaolds. We observed that, while ζ- potential o the unmodied CNCs
were 22 mV, unmodied CNFs showed a ζ-potential o 23 mV.
Following the amination reaction o CNCs and CNFs, reaction products
showed reduced ζ- potential o 8 mV and 10 mV, respectively.
Amination reaction generates primary amine (-NH2) groups on the
surace. These groups increase the positive charge density on the surace
o the nanomaterial. The degree o amination (number o amino or
ammonium groups per unit o cellulose) increases the cationic charge
density and reduces the anionic charge density o the surace. Since the
amination reaction is partial, thereore, both CNF and CNC suspensions
still show negative surace charge, but the magnitude is reduced. Thiol
conjugation to amine groups o CNCs and CNFs shited ζ-potential to
18 mV or CNCs and 20 mV or CNF thiols. When thiol groups are
unctionalized onto the surace o the aminated cellulose (less negative
zeta potential product), amino groups are converted to thiols, urther
recovering the negative surace potential. Finally, the addition o Fe3O4
NPs and their attachment to CNCs or CNFs through these thiol groups
increased the zeta potential to reach 31 mV and 32 mV, respectively.
While ζ-potential is a critical parameter to control the stability o
nanostructures in solution, such stability is mostly contributed by ionic/
electrostatic repulsion between the colloidal aggregates. Combined DLS
and ζ-potential studies showed that CNFs showed larger diameter ag-
gregates (at least 2-old) than those o CNC-based systems, and the
surace charges or both species are mostly similar (31 to 32 mV).

To identiy the origin o ζ-potential or CNFs and CNCs, surace
charge densities o cellulose scaolds were evaluated (Supporting in-
ormation, Fig. S5, and Table S4). CNF and CNC-based scaolds showed
a similar pattern o surace charge increment ater the conversion o
hydroxyl to the amine. Hydroxyl (-OH) surace charge density is natu-
rally low, as -OH is not highly charged. The amination process conju-
gated amine groups in the CNC/CNF scaold and elevated the surace
charge density. This happened as -NH2 groups were basic and released
protons due to ionization, resulting in a positively charged surace.
Further unctionalization increased surace charge density ater the re-
action between Traut’s reagent (2-iminothiolane) and primary amines.
Although thiol is a negatively charged group close to neutral in charge
density, Traut’s reagent reaction with primary amine generated an
additional charge density onto the scaold. The addition o thiol groups

Fig. 6. Nanoscale eatures o CNC and CNF scaolds. (A) Hydrodynamic diameter or unmodied CNCs and CNFs, Fe3O4 NP-conjugated CNCs and CNFs, and (B)
Surace charge (ζ-) potential o unmodied CNCs and CNFs, Fe3O4 NP-conjugated CNCs and CNFs (n = 3; Standard deviation based on (n-1); statistical analysis based
on two-sample assuming unequal variances t-test, ns or P > 0.05, * or P < 0.05, ** or P < 0.01 and *** or P < 0.001).

R.S. Hazra et al.



Carbohydrate Polymers 323 (2024) 121418

9

promoted the protonation o nearby amine groups, which increased
overall surace charge density. Followed by Traut’s reaction (thiol
addition), Fe3O4 NP conjugation showed a urther increment o surace
charge density (thiol donated electrons to Fe3O4 NPs). During the
complexation o thiol (-SH) and Fe3O4 NP, negatively charged thiol
groups introduced negative charges to the complex, resulting in an
elevation o surace charge density. This result demonstrated that Fe3O4
NP-conjugated CNC/CNF scaolds were very stable and less likely to
aggregate due to repulsive orce between charged scaolds. Charged
groups repelled each other and expanded over a large area by increasing
surace charge density.

3.4. Magnetic property measurement on Fe3O4 NP-immobilized CNC and
CNF scaolds

Using high-resolution transmission electron microscopy (HRTEM)
crystal plane analysis, earlier, we reported that the Fe3O4 NPs, when
synthesized within the CNC scaolds, were magnetite in nature with a d-
spacing o 2.9 Å (Hazra et al., 2020). Previously explored nanoparticle-
loaded cellulosic scaolds can be separated using the application o a
magnetic eld (Hazra et al., 2020). In this current study, we quantied
the magnetic properties o CNF scaolds loaded with Fe3O4 NPs and
compared the properties o these nanostructures with that obtained rom
CNCs loaded with Fe3O4 NPs. The objective o this experiment was to
evaluate how the presence o magnetic nanoparticles infuences in-
teractions o CNFs or CNC scaolds with a eld o given magnetic
strength. We observed that a magnetic eld created by a permanent
magnet (neodymium magnet, N52 graded magnet) kept adjacent to the
wall o the container loaded with CNF, or CNC scaolds caused the
movement o the scaolds towards the direction o the eld, leading to
the ormation o a thin aggregation lm on the surace o the container
closer to the magnet. Scaold particles were separated rom the solution
even with a moderately intense magnetic eld application. Due to their
size and structure, the magnetic nanocrystals were expected to exhibit
super-paramagnetic behavior at moderate eld and requency (0–150
Oe, 0–1000 kHz) range (Atluri et al., 2018; Fortin et al., 2007). Fe3O4
NP-loaded CNCs and CNFs’ magnetic behavior was probed at room
temperature and 311 K (Fig. 7A–B). Minimal to no hysteresis response
was observed, indicating these systems’ super-paramagnetic behavior.
The magnetic loop o these hysteresis curves was also symmetric about
the center or both temperatures. Slight agitation brought the cellulosic
scaolds back into the solution once the magnetic eld was removed.
Such gentle separation o cellulose scaolds using a magnetic eld is
practically signicant, as magnetic separation will provide ease o sep-
aration o CTCs without exposing the cells to harsh reagents or agitation
during the analytical procedure.

3.5. Cell capture eciency o CNF and CNC network structures

We compared the CTC capture eciency o Fe3O4 NPs-loaded and
anti-EpCAM-conjugated CNF and CNC scaolds against HCT116 cells.
Fig. 8 shows the representative images o cells post-capture. Cells were
co-stained with DAPI and eosin. DAPI was used as a nuclear staining dye,
and eosin was used to stain cell cytoplasm to conrm captured cells
(Biglione et al., 2018).

A quantitative analysis o such capture eciency is shown in Table 1.
For this experiment, we used HCT116 cells that express antigens or the
anti-EpCAM. It was observed that CTC capture eciency or CNC and
CNF-based scaolds increased with increasing the content o anti-
EpCAM-conjugated on the scaold surace. For example, the
maximum cell capture eciency (~93,33 %) was observed or CNC
scaolds, where 23 μg anti-EpCAM was conjugated per mg o cellulosic
materials. On the other hand, or CNF network structures, the highest
capture eciency (66.66 %) was observed when 55 μg anti-EpCAM was
conjugated per mg o cellulose content. Surprisingly, even at a reduced
level o antibody content, i.e., ~14 μg anti-EpCAM conjugated per mg o
cellulosic materials, CNC scaolds retained 70 % cell capturing e-
ciency. (Sample 1A to Sample 1C in Table 1). While we have increased
>2 old o Fe3O4 NP with respect to Anti-EpCAM rom 0.12 to 0.27
(Fe3O4 NP: Anti-EpCAM), capture eciency remained similar (only ~3
% increment) (Sample 1B to 1C, Table 1). This result demonstrated that
capture eciency slightly depends on the concentration o Fe3O4 NP but
mostly depends on Anti-EpCAM. Despite high antibody content (i.e., 55
μg anti-EpCAM per mg cellulosic content), CNF nanomaterials demon-
strated a maximum o ~67 % CTC capturing capacity (Sample 2A in
Table 1). Scaolds composed o similar concentrations o anti-EpCAM
and Fe3O4 NPs showed similar order o CTC capture eciency (please
note samples 2B and 2C). These results indicate that CNC scaold is
more ecient than CNF in CTC capturing eciency. However, to clariy
this urther evaluation is needed using more comparable Fe3O4 NP
contents between the tested CNF and CNC systems, and this is out o the
scope o the present work. We observed that the hydrodynamic di-
ameters o CNC scaolds were smaller (~250 nm) than those o CNF-
based scaolds (~600 nm). The smaller hydrodynamic diameter o
CNC scaolds most likely promoted ecient interactions and capture o
HCT116 cells by their surace receptors compared to those o CNF
scaolds, leading to higher capture eciency exhibited by CNC
variants.

3.6. CTC capture eciency analysis by using head and neck cancer
patient blood samples

Compared to a clinically validated platorm, i.e., OncoDiscover®,
used or CTC detection, both CNC and CNF scaolds showed signicant
CTC capturing potential. OncoDisover® platorm comprises multiunc-
tional, magneto-polymeric materials bearing anti-EpCAM that interact

Fig. 7. Applied eld vs. magnetization plot or (A) Fe3O4 NP-immobilized CNC and (B) Fe3O4 NP immobilized CNF scaolds at ambient temperature and at 311 K,
demonstrating minimal hysteresis response or the designed systems.
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with CTCs (Khandare et al., 2016). Detection o CTCs either via CNC-,
CNF- or OncoDiscover® platorms was carried out rom 1.5 mL o HNC
patients’ blood samples. The capture eciency o CTCs or these plat-
orms was evaluated by fuorescence microscopy. Fig. 9 shows the

fuorescence imaging o CTCs isolated rom cancer patients’ blood
samples by CNC or CNF scaolds, where CK18 and CD 45 were used as
clinically validated biomarkers or CTCs. In Fig. 9, antibodies recog-
nizing CK18 and CD45 are shown in green and red channels,

Fig. 8. Representative images o HCT 116 cells captured using Fe3O4 NPs and anti-EpCAM-conjugated scaolds composed o CNC (top panel) and CNF (bottom
panel). Cells were stained with DAPI and Eosin. Merged image shows overlay images o cells stained with either DAPI, Eosin and bright led channel.

Table 1
Sample ormulations investigated or the evaluation o cell capture eciency.
Sample Anti-EpCAM contenta Iron oxide contentb Cells captured (30 cells added) Average cells captured Average cell capture eciency (%)

n1 n2 n3

1A- CNC-Fe3O4(+SH, +EpCAM) 23 1.25 27 28 29 28 ± 1 93.33 ± 3.33
1B- CNC-Fe3O4(+SH, +EpCAM) 15 1.87 20 22 19 20.3 ± 1.53 67.77 ± 5.09
1C- CNC-Fe3O4(+SH, +EpCAM) 14 3.75 22 22 19 21 ± 1.73 70.00 ± 5.77
1D- CNC-Fe3O4(SH, EpCAM) 00 5.25 00 00 00 00 00
2A- CNF-Fe3O4(+SH, +EpCAM) 55 1.00 19 20 21 20 ± 1 66.66 ± 3.33
2B- CNF-Fe3O4(+SH, +EpCAM) 15 0.75 18 19 16 17.7 ± 1.53 58.88 ± 5.09
2C- CNF-Fe3O4(+SH, +EpCAM) 10 0.50 15 18 17 16.7 ± 1.53 55.55 ± 5.09
2D- CNF-Fe3O4(SH, EpCAM) 00 4.75 00 00 00 00 00
a The content o Anti-EpCAM in scaolds was measured (Supporting inormation, Fig. S2, and Table S2) via Bradord assay with an absorbance maximum at 595 nm.

The amount was tabulated in μg o Anti-EpCAM per mg o CNC/CNF.
b The iron content o dierent scaolds was measured via UV–Vis spectroscopic analysis at an absorption maxima o 370 nm (Hazra et al., 2020). The amount was

tabulated in mg Fe3O4 NP per mg o CNC/CNF (Supporting inormation, Table S2); Standard deviation evaluated based on (n-1); Statistical analysis: Supporting
inormation, Fig. S6 and Table S5.

Fig. 9. Representative fuorescence images o circulating tumor cells (CTCs) isolated by Fe3O4 NPs and anti-EpCAM-conjugated CNC/CNF scaolds rom blood
samples o head and neck cancer patients (n = 6). CK18 and CD45 markers are shown in green and red channels, respectively. Nuclei are stained with DAPI (blue),
and multichannel composites are merged. Merged image is overlay image o either DAPI, anti-CK18 Ab, anti-CD45 Ab and bright led channels.
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respectively. Cell nuclei were stained with DAPI (blue), and multi-
channel composite images are also illustrated. When analyzed by fuo-
rescence microscopy, brous materials were observed along with cancer
cells or CNC and CNF scaolds (Fig. 9, merged), most likely indicating
the interacting network structures with cell membranes. Further study is
undergoing in our laboratories to conrm these membrane-bound
structures. We also tested the viability o the scaold-captured cells
with CNF scaolds. Cell viability was tested using Alamar Blue assay
(Supporting inormation, Fig. S7). The results demonstrated that cells
were viable ater capture and isolation with the magnetic eld.

Quantitatively, CNC scaolds containing 23, 15, and 14 μg anti-
EpCAM per mg o cellulosic materials showed almost similar CTC
capturing ability as that o the commercially available OncoDiscover®
platorm (Table 2). The dierence in total CTC capture ratio o Onco-
Discover® to CNC scaolds was ound to be 50, 100, and 67 % (or 2:1,
2:2, and 3:2 capture ratio o OncoDiscover®: CNC system). This denes
that the CNC-based system showed an overall ~72 % capture eciency
(or a 7:5 capture ratio o OncoDiscover®: CNC system) irrespective o
the antibody content. However, this dierence is less signicant,
considering the blood samples o cancer patients are highly heteroge-
neous or the presence and distribution o CTCs. Whereas the dierence
in total CTC capture ratio o OncoDiscover® to CNF scaolds was ound
to be 50 and 33 % (or 2:1,0:0, and 3:1 capture ratio o OncoDiscover®:
CNF system). This denes that the CNF-based system showed an overall
~40 % capture eciency (or a 5:2 capture ratio o OncoDiscover®:
CNC system) irrespective o the antibody content. This could be attrib-
uted to the structural fexibility and very high aspect ratio o CNFs that
prevented acile interactions o CTCs with the CNF-based scaold. O
note that the OncoDiscover® platorm, which has been clinically vali-
dated and approved by the regulatory body (Drug Controller General o
India, DCGI, and on Indian phenotypes) when tested on large clinical
sample size (n = 1000) rom patients’ blood samples in various solid
cancers, such as head and neck, lung, breast, and colorectal cancer. CNC-
based systems showed ~28 % lower capture eciency than commer-
cially available OncoDiscover® systems. The main drawback o
commercially available OncoDiscover® systems is using a toxic den-
drimer system to capture CTCs, whereas we have used biocompatible,
nontoxic materials or CTC capturing. The CNC scaolds tested in this
study indicated a CTC capturing ability in a limited number o cancer
patient blood samples, thus warranting urther studies or the potential
use o the scaold in clinical settings.

4. Discussion

The rarity and heterogeneity o CTCs in patient blood samples render
ecient isolation, enumeration, and comprehensive characterization o

these cells extremely challenging. These challenges include tumor evo-
lution, staging, biomarker expression, epithelial-to-mesenchymal, and
mesenchymal-to-epithelial transition (EMT/MET) phenomena, and
distributional heterogeneity even or the same cancer patient, urther
complicate the reliability o CTC enumeration as a measure or clinical
diagnosis, prognosis and clinical decision making (Alix-Panabières &
Pantel, 2014). To address such unmet challenges, designing and utilizing
a novel and ecient CTC capture and enumeration platorm and vali-
dated CTC enrichment approaches become the crucial need o the hour.
Herein, two novels, magnetically separable CTC isolation scaolds, i.e.,
anti-EpCAM-conjugated cellulose nanobers (CNFs) and cellulose
nanocrystals (CNCs), have been developed and tested or capturing CTC-
mimicking (HCT116 cell lines) in vitro, and primary CTCs rom HNC
patients’ blood samples. In both cases, the CNC scaolds indicated
similar eciency and sensitivity towards capturing EpCAM+ CTCs
compared to their CNF-based analogues. This is most likely due to the
smaller hydrodynamic diameters o CNCs, the primary scaold-orming
materials o the ormer, that promoted suitable interactions between the
cells and the scaold. Our results dier signicantly rom the CTC-
capturing scaolds prepared earlier by dierent groups using syn-
thetic nanobers. For example, Tseng et al. reported the manuacturing
o synthetic nanobers-based Anti-EpCAM conjugated electrospun mats
composed o a mixture o poly(sulobetaine methacrylate) (PSBMA) and
poly(acrylic acid) (PAA) into nylon-6. This system demonstrated ~75,
55.6, and 70 % capturing eciency or DLD-1, HCT116, and HT-29
colorectal cancer cell lines respectively (Tseng et al., 2016). Similarly,
Anti-EpCAM conjugated electrospun mats composed o poly(ethylene
oxide) (PEO), and nylon-6 bers showed 40–70 % capture eciency or
DLD-1, HCT116, and HT-29 colorectal cancer cell lines (Lee et al., 2018).
Unlike PSBMA, PAA, PEO, or nylon-based bers, CNFs show a signi-
cantly higher number o sites where probable secondary interactions can
take place. These sites are more available in CNFs than those in CNCs.
CNFs are long and brous, whereas CNCs are short, rigid, and crystal-
like particles. This structural variation results in CNFs demonstrating a
comparatively higher number o interaction sites (secondary interac-
tion) than CNCs. CNFs have a high aspect ratio, which enhances the
chances o intermolecular interactions (Balakrishnan et al., 2018; Xu
et al., 2013). Due to these higher number o interaction sites, CNFs tend
to exist as bundles o nanobers within the scaolds, potentially
providing steric hindrance against antibody presentation and engage-
ment with CTCs. In the comparison capturing process, Kumar et al.
developed CNF basedmicrofuidic chip unctionalized with Anti-EpCAM
and captured the HCT116 cell line with 79–98 % eciency with 5 μL/
min or 10 min fow (Kumar et al., 2020). One o the challenges o these
microfuidic channels is low capturing eciency in high fow rate, low
contact time with the channel, and low contact point or large volume
blood. Our magnetic suspension does not have potential clogging chal-
lenges and has whole access to contact with CTCs, even in large-volume
blood. To overcome the challenges related to pore-clogging or lter-
type CTC capturing scaolds (Adams et al., 2014; Lee et al., 2019;
Zheng et al., 2011), nanoscale CTC-entrapment platorms composed o
multivalent dendrimers (such as PAMAM) have been reported (Bu et al.,
2020; Meng et al., 2020; Myung et al., 2011; Myung et al., 2015). These
PAMAM-derived CTC capturing platorms were conjugated with
EpCAM, epidermal growth actor receptor (EGFR), olic acid receptors
(FR), carbonic anhydrase IX (CA9), hepatocyte growth actor receptor
(c-Met). These systems showed ~80–90 % capture eciency towards
nonsmall cell lung cancer (NSCLC) cells, ovarian cancer cells (SKOV3)
cells, ACHN, and 786-O renal cell carcinoma (RCC) cell lines. In com-
parison, the CNC-based CTC capturing scaold presented in this study
showed ~93 % capture eciency. Compared to the clinically validated
OncoDiscover® platorm, CNC scaolds emerged as promising candi-
dates or urther evaluation as clinically relevant CTC isolation plat-
orms. Furthermore, we observed that CNC scaolds could capture and
separate CTCs rom other blood components under very mild conditions.
This could greatly enhance downstream analyses o captured CTCs

Table 2
Anti-EpCAM content in CNC or CNF scaolds and comparison o CTC capture
eciency o these scaolds with that o OncoDiscover® platorm rom blood
samples o head and neck cancer patients (N = 6).
Sample Anti-EpCAM content

(μg)a
No. o CTCs captured

OncoDiscover® CNC/
CNF

1A- CNC-Fe3O4(+SH,
+EpCAM)

23 2 1

1B- CNC-Fe3O4(+SH,
+EpCAM)

15 2 2

1C- CNC-Fe3O4(+SH,
+EpCAM)

14 3 2

2A- CNF-Fe3O4(+SH,
+EpCAM)

55 2 1

2B- CNF-Fe3O4(+SH,
+EpCAM)

15 0 0

2C- CNF-Fe3O4(+SH,
+EpCAM)

10 3 1

a Per mg o cellulosic content.
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through comprehensive molecular and single-cell genomic/tran-
scriptomic techniques or characterization, thereby accelerating the
identication o actionable therapeutic targets and anti-cancer drug
development (Li et al., 2018). The implications o such novel in-
novations are ar-reaching in transorming cancer disease management
and precision oncology, which we envision to impact the progression-
ree/disease-ree survival (PFS/DFS) o cancer patients.

5. Conclusions

In this current study, we successully designed anti-EpCAM-
conjugated and Fe3O4 NP-immobilized nanocellulose scaolds to
enumerate CTCs. We compared CNCs and CNFs as nanoscale scaold-
orming materials or capturing and isolating CTCs rom patients’ 
blood samples. We compared the eciency o the nanocellulose sca-
olds against a clinically validated and commercially available product,
OncoDiscover®. Chemical unctionalization o the hydroxyl group o
CNCs/CNFs was conducted or immobilizing Fe3O4 NPs to the scaolds,
thus rendering the scaolds magnetically active. Finally, anti-EpCAM
was conjugated onto the scaold suraces to promote scaold in-
teractions with CTCs overexpressing the EpCAM receptors. We observed
that the presentation and distribution o anti-EpCAM on scaold sur-
aces, the presence or absence omagnetically active modules within the
scaold network, and the hydrodynamic eatures o the scaolds played
a pivotal role in determining their CTC capture eciency. Further, this
current study also revealed that scaold composed o CNCs seems to
perorm better in capturing CTCs than CNFs. Compared with commer-
cially standard OncoDiscover®, anti-EpCAM-conjugated, Fe3O4 NP-
immobilized CNC scaolds showed comparable capture eciency,
warranting urther studies or potential use in clinical settings. New CTC
capture platorms with commercial accessibility, sustainability, and
aordability, are a critical and unmet need or cancer patients’ man-
agement, especially in low-resource settings.
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