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Abstract

The three-temperature (3-T) radiation hydrodynamics (RH) equations are widely
used in modeling various optically thick high-energy-density-physics environments,
such as those in astrophysics and inertial confinement fusion (ICF). In this paper,
we will discuss the methodology to construct a high order conservative Lagrangian
scheme solving 3-T RH equations. Specifically, the three new energy variables are de-
fined first, in the form of which the three energy equations of the 3-T RH equations are
rewritten. The main advantage of this formulation is that it facilitates the design of
a scheme with both conservative property and arbitrary high order accuracy. Starting
from one dimension and based on the multi-resolution WENO reconstruction and the
strong stability preserving (SSP) high order time discretizations, taken as an example,
we design a third order conservative Lagrangian scheme both in space and time. To
determine the numerical flux for the conservative advection terms in the 3-T RH equa-
tions, we propose a HLLC numerical flux which is derived from the divergence theorem
rigorously and is suitable for multi-material problems with the ideal-gas equations of
state. After that, we discuss how to design a class of high order positivity-preserving
explicit Lagrangian schemes to solve the 3-T RH equations which only contain the
conservative advection terms in space. Preliminary extension to the two dimensional
case is also considered. Finally, various numerical tests are given to verify the de-
sired properties of the high order Lagrangian schemes such as high order accuracy,
non-oscillation, conservation and adaptation to multi-material problems.
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1 Introduction

In astrophysics and inertial confinement fusion (ICF) and some other high-energy-density-

physics fields, there is the phenomenon of the interaction between radiation and plasmas,

called radiation hydrodynamics (RH). High-energy-density plasmas contain electrons and

ions. The electrons and ions usually have different temperatures since the ions are preheated

by shock waves, the electrons are preheated or cooled through the interaction with the

radiation field etc. In the optically thick limit, radiation can also be described by its own

temperature. Thus, in this case, there are three temperatures to describe the electron, ion

and radiation respectively. The evolution of the interaction between radiation and plasmas

can be governed by the three-temperature (3-T) radiation hydrodynamics (RH) equations.

The 3-T RH equations are widely used in modeling various optically thick high-energy-

density-physics environments [3, 13, 22].

The 3-T RH equations consist of the advection, diffusion and energy-exchange terms

which are highly nonlinear and tightly coupled. The terms also possess multiple scales.

Moreover, in the fields such as astrophysics and ICF, the RH equations usually describe the

interaction between radiation and multi-material matter, where accurate calculation of the

material interfaces is critical. The 3-T RH equations are widely adopted in many astrophysics

and ICF codes such as CRASH, FLASH and RAGE [19, 16, 17].

The 3-T RH system is of a nonconservative form (see (2.1)), which brings much difficulty

to the design of a good numerical method to solve it. In fact, solving the nonconservative

hyperbolic system is a delicate job due to the definition of weak admissible solutions. It has

been demonstrated by Abgrall and Karni [1] that those numerical schemes designed to solve

the nonconservative hyperbolic equations directly may fail to converge to the right solutions.

Only when the partial differential equations (PDEs) are written in the conservative form,

can we easily design a scheme which could keep the conservation. By the Lax-Wendroff

theorem, we know that the conservative property is a very critical issue for the numerical

method solving the advection-dominated PDEs such as the 3-T RH equations, since only the

result of a conservative numerical method can be trusted to converge to the weak solution

of the PDEs, which could guarantee the correct speed of discontinuities such as shocks and

contacts.

There are some pioneering works on designing conservative schemes solving the RH equa-

tions in the nonconservative form in the literature. In [28], by solving the equations of total

energy and electron energy directly, the authors proposed a conservative numerical scheme

for the two-temperature nonequilibrium model so that it could avoid the solution with non-

physical shocks. In [4], the authors presented an arbitrary Lagrangian Eulerian (ALE)
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method to simulate multi-material fluid flows on a two-temperature (ion and electron) hy-

drodynamics model. In order to preserve the conservation, the total energy equation is

solved at the Lagrangian step. In [9], by the establishment of an equivalency relationship

between the discretizations of the equations in the forms of the total energy and of the

internal energy, the cell-centered conservative Lagrangian schemes were designed to solve

one and multiple nonconservative internal energy equations directly. In [25, 6], the authors

followed the idea proposed by Abgrall in [2] and employed a structure-preserving strategy on

the two-temperature and three-temperature RH models respectively, which is based on the

key concept that mathematical structures associated with conservative and nonconservative

equations are preserved, even at the discrete level. The proposed schemes maintain global

conservation errors within the round-off level. Although the above mentioned schemes can

keep the conservation, their accuracy is at most second order, and it is very difficult to

generalize them to higher order accuracy (especially higher order in time). Even though

ample progress has been made, the design of conservative schemes for shock solutions to

nonconservative systems and their numerical analysis are far from complete.

The investigation of numerical methods on the three-temperature nonequilibrium models

has become an active research topic in recent years. There are several literatures focusing

on the discretization of the 3-T diffusion equations, for example, in [14], the authors built a

convex combination-based scheme which unconditionally satisfies a maximum principle, at

each sub-iteration of the non-linear iterative process. For the more complicated fully 3-T

RH equations (2.1), there are much less discussion on their numerical methods. In [26, 27],

a 3-T, unstructured-grid, non-equilibrium RH code was developed for the simulation of

intense thermal radiation or high-power laser driven radiative shock hydrodynamics in two-

dimensional (2D) axis-symmetric geometries based on the Lagrangian method. In [6], a first

order positivity-preserving, conservative and entropy-stable numerical scheme was presented

for the 3-T RH model. In [15], the numerical comparisons between three simulation codes

solving 3-T RH models were given. In summary, all the above mentioned methods for the 3-

T radiative diffusion and radiation hydrodynamics models are at most second order accurate

in space and time.

In this paper, we will discuss the methodology to construct a high order conservative

Lagrangian scheme solving one dimensional 3-T RH equations (2.1). We will also briefly

discuss the extension to two dimensions. To be specific, we first define three new energy

variables and rewrite the three energy equations in the 3-T RH equations (2.1) in the form

of these variables. In the new form of the 3-T RH equations, we can easily design a conser-

vative Lagrangian scheme. Besides the maintenance of the conservative property, the major

advantage of this approach is that the scheme can be easily designed to arbitrary high order
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accuracy both in space and time. In this paper, based on the multi-resolution WENO recon-

struction [30] and the strong stability preserving (SSP) or total variation diminishing (TVD)

high order time discretizations [23, 18], taking as an example, we design a third order con-

servative Lagrangian schemes both in space and time. To solve the conservative advection

terms of 3-T RH equations, we further propose a HLLC numerical flux which is derived from

the divergence theorem rigorously and is applicable for the multi-material problems with

the ideal-gas equations of state. After that, we discuss how to design a class of high order

positivity-preserving explicit Lagrangian schemes to solve the 3-T RH equations which only

contain the conservative advection terms in space. Then, we extend our one-dimensional

high order Lagrangian scheme to the two-dimensional case. Finally various numerical tests

are given to verify the desired properties of the high order Lagrangian schemes such as high

order accuracy, non-oscillation, conservation and adaptation to multi-material problems.

An outline of the rest of this paper is as follows. In Section 2, we rewrite the system

to facilitate the design of conservative schemes, and document the Jacobian and its eigen

values and eigen vectors to establish hyperbolicity of the convection terms and to help in

local characteristic decompositions needed for high order schemes. In Section 3, we describe

a third order explicit Lagrangian scheme solving the 1D 3-T RH equations. In Section 4, we

discuss the issue of positivity-preserving for the high order Lagrangian scheme. In Section

5, we briefly discuss the two-dimensional high order Lagrangian scheme for the 2D 3-T RH

equations. In Section 6, several numerical examples are given to verify the performance of

the new Lagrangian schemes. In Section 7 we will give concluding remarks.

2 One dimensional three temperature radiation hydro-

dynamics equations

We consider the three-temperature radiation hydrodynamics equations, which has the fol-

lowing form in one dimensional Cartesian coordinate,





∂tρ+ ∂xρu = 0
∂tρu+ ∂x(ρu

2 + pe + pi + pr) = 0
∂tρee + ∂xρeeu+ pe∂xu = ∂x(κe∂xTe)− ωei(Te − Ti)− ωer(T

4
e − T 4

r )
∂tρei + ∂xρeiu+ pi∂xu = ∂x(κi∂xTi) + ωei(Te − Ti)
∂tρer + ∂xρeru+ pr∂xu = ∂x(κr∂xT

4
r ) + ωer(T

4
e − T 4

r )

. (2.1)

Here, ρ is the density, u is the velocity. {ee, ei, er}, {pe, pi, pr} and {Te, Ti, Tr} are the

specific internal energy, pressure and temperature for electron, ion and radiation respectively.

{κe, κi, κr} are the conduction coefficients of electron, ion, and radiation respectively. ωei, ωer

are the energy-exchange coefficients between electron and ion, and between electron and
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radiation respectively. The system (2.1) represents the conservation of mass, momentum

and total energy, where the total energy is defined as E = ρ(ee + ei + er) +
1
2
ρu2. The

three specific internal energies are related to the corresponding temperatures as er = aT 4
r /ρ,

ee = cveTe and ei = cviTi, where a is the radiation constant, cve and cvi are the heat capacity

at constant volume of electron and ion respectively.

The set of equations needs to be completed by the addition of the matter’s equations of

state (EOS) with the following general form,

pe = p(ρ, ee), pi = p(ρ, ei). (2.2)

Especially, if we consider the γ-law gas, then the equations of state (EOS) have the following

simpler form,

pe = (γe − 1)ρee, pi = (γi − 1)ρei, (2.3)

where γe, γi are the constants representing the ratio of specific heat capacities of the electron

and ion respectively. The “EOS” for radiation is given simply as pr = 1
3
ρer. In order to

present the formulation of the eigenvalues and eigenvectors for the advection terms of (2.1)

in a more symmetric way, we rewrite pr in the similar form as pe, pi, that is,

pr = (γr − 1)ρer (2.4)

where γr =
4
3
.

Notice that the last three energy equations in the system (2.1) are written in the non-

conservative form, which brings much difficulty to the design of a conservative numerical

method. To facilitate the design of high order Lagrangian schemes which could keep the

conservation of mass, momentum and total energy, we introduce the following new “energy”

variables,

Ee = ρee +
1

6
ρu2, Ei = ρei +

1

6
ρu2, Er = ρer +

1

6
ρu2, (2.5)

and then the system (2.1) can be rewritten as follows,





∂tρ+ ∂xρu = 0
∂tρu+ ∂x(ρu

2 + pe + pi + pr) = 0
∂tEe + ∂x((Ee + pe)u)− 1

3
u∂x(2pe − pi − pr) = ∂x(κe∂xTe)− ωei(Te − Ti)− ωer(T

4
e − T 4

r )
∂tEi + ∂x((Ei + pi)u)− 1

3
u∂x(2pi − pe − pr) = ∂x(κi∂xTi) + ωei(Te − Ti)

∂tEr + ∂x((Er + pr)u)− 1
3
u∂x(2pr − pe − pi) = ∂x(κr∂xT

4
r ) + ωer(T

4
e − T 4

r ).
(2.6)

We observe that the total energy is given by E = Ee + Ei + Er = ρee + ρei + ρer +
1
2
ρu2,

and the left-hand sides of the last three equations in (2.6) are in conservation form except

for the pressure differential convection terms.
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We first consider the left hand side terms of the system (2.6) and rewrite them in the

following form,
∂U

∂t
+ A

∂U

∂x
= 0 (2.7)

where U = (ρ, ρu, Ee, Ei, Er)
T .

If the ideal EOS (2.3) is considered, then the Jacobian matrix A related to the advection

terms is as follows,

A =




0 1 0 0 0
(γe+γi+γr−9)u2

6
− (γe+γi+γr−9)u

3
γe − 1 γi − 1 γr − 1

−γeeeu+ (γe+γi+γr−6)
18

u3 γeee − (2(γe+γi+γr)−9)
18

u2 (γe+2)
3

u (γi−1)
3

u (γr−1)
3

u

−γieiu+ (γe+γi+γr−6)
18

u3 γiei − (2(γe+γi+γr)−9)
18

u2 (γe−1)
3

u (γi+2)
3

u (γr−1)
3

u

−γreru+ (γe+γi+γr−6)
18

u3 γrer − (2(γe+γi+γr)−9)
18

u2 (γe−1)
3

u (γi−1)
3

u (γr+2)
3

u




.

(2.8)

The matrix A has five eigenvalues as

{u− cs, u, u, u, u+ cs} (2.9)

where cs is the sound speed given by

cs =
√
γe(γe − 1)ee + γi(γi − 1)ei + γr(γr − 1)er. (2.10)

We can see that all the above eigenvalues are real, which means the left hand side of the

system (2.1) is hyperbolic. Denote

gt = γe + γi + γr − 3, ge = γe − 1, gi = γi − 1, gr = γr − 1,

then the right eigenvectors of the matrix A are given as

R1(U) =




1
u− cs

γeee +
1
6
u2 − 1

3
ucs

γiei +
1
6
u2 − 1

3
ucs

γrer +
1
6
u2 − 1

3
ucs




,R2(U) =




1
u

1
6
gt
ge
u2

gr
−gi




,R3(U) =




1
u

−gr
1
6
gt
gi
u2

ge




,

R4(U) =




1
u
gi
−ge
1
6
gt
gr
u2




,R5(U) =




1
u+ cs

γeee +
1
6
u2 + 1

3
ucs

γiei +
1
6
u2 + 1

3
ucs

γrer +
1
6
u2 + 1

3
ucs




.

Denote
He = 6gigr(γiei − γrer) + γegteeu

2,
Hi = 6gegr(γrer − γeee) + γigteiu

2,
Hr = 6gegi(γeee − γiei) + γrgteru

2,
b = gt(36gegigr + gtu

4)c2s,

(2.11)
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then the left eigenvectors of the matrix A can be written in the following form,

L1(U) =
1

12c2s




u(gtu+ 6cs)
−2(gtu+ 3cs)

6ge
6gi
6gr




, L2(U) =




ge
gt
− geu2

6c2s
− gegtu2

b
(He − u2c2s)

geu
3c2s

+ 2gegtu
b

(He − u2c2s)

− g2e
gtc2s

− 6ge
b
(geHe − gtu

2c2s)

−gegi
gtc2s

− 6gegi
b

(He − 6grc
2
s)

−gegr
gtc2s

− 6gegr
b

(He + 6gic
2
s)




,

L3(U) =




gi
gt
− giu

2

6c2s
− gigtu

2

b
(Hi − u2c2s)

giu
3c2s

+ 2gigtu
b

(Hi − u2c2s)

−gegi
gtc2s

− 6gegi
b

(Hi + 6grc
2
s)

− g2i
gtc2s

− 6gi
b
(giHi − gtu

2c2s)

−gigr
gtc2s

− 6gigr
b

(Hi − 6gec
2
s)




, L4(U) =




gr
gt
− gru2

6c2s
− grgtu2

b
(Hr − u2c2s)

gru
3c2s

+ 2grgtu
b

(Hr − u2c2s)

−gegr
gtc2s

− 6gegr
b

(Hr − 6gic
2
s)

−gigr
gtc2s

− 6gigr
b

(Hr + 6gec
2
s)

− g2r
gtc2s

− 6gr
b
(grHr − gtu

2c2s)




,

(2.12)

L5(U) =
1

12c2s




u(gtu− 6cs)
−2(gtu− 3cs)

6ge
6gi
6gr




.

To design a numerical method on the moving mesh, we rewrite the equations (2.6) in the

reference frame of a moving control volume in the integral form as

d

dt

∫

Ω(t)

UdΩ+

∫

Γ(t)

FdΓ +

∫

Ω(t)

NdΩ =

∫

Γ(t)

GdΓ +

∫

Ω(t)

SdΩ (2.13)

where Ω(t) is the moving control volume enclosed by its boundary Γ(t). In the Lagrangian

formulation, the vector of the evolving variables U, the advection flux vector F, the non-

conservative advection term N, the diffusion term G and the energy-exchange terms S are

given by

U =




ρ
ρu
Ee

Ei

Er




, F =




0
p
peu
piu
pru




, N =




0
0

−1
3
u∂x(2pe − pi − pr)

−1
3
u∂x(2pi − pe − pr)

−1
3
u∂x(2pr − pe − pi)




,

G =




0
0

κe∂xTe

κi∂xTi

κr∂xT
4
r




, S =




0
0

−ωei(Te − Ti)− ωer(T
4
e − T 4

r )
ωei(Te − Ti)
ωer(T

4
e − T 4

r )




. (2.14)

7



Remark 2.1. For the purpose of designing the conservative scheme, we can distribute

the kinetic energy arbitrarily among the three energy variables (with non-negative constant

coefficients which sum to 1/2). The details of eigenvalues, eigenvectors etc. would change

but all conclusions would stay the same. If we have some prior knowledge about typical sizes

of the three internal energies ee, er and ei, we would probably want to choose the splitting

coefficients of the kinetic energy in the same proportion. However, if we do not have such

prior knowledge, an equal splitting as done here seems to be the most logical approach.

3 1D high order conservative Lagrangian scheme for

the 3-T RH equations

3.1 High order spatial discretization

The spatial domain Ω is discretized into N computational cells Ij = [xj− 1

2

, xj+ 1

2

], the sizes of

which are ∆xj = xj+ 1

2

− xj− 1

2

with j = 1, . . . , N . The location of the cell center is denoted

by xj for a given cell Ij . The fluid velocity uj− 1

2

, j = 1, ..., N + 1 is defined at the nodes of

the grid. All the variables solved directly are defined at the cell center xj in the form of cell

averages and this cell is their common control volume, that is,

ρj =
1

∆xj

∫

Ij

ρdx, (ρu)j =
1

∆xj

∫

Ij

ρudx,

(Ee)j =
1

∆xj

∫

Ij

Eedx, (Ei)j =
1

∆xj

∫

Ij

Eidx, (Er)j =
1

∆xj

∫

Ij

Erdx.

The finite volume explicit Lagrangian scheme with Euler forward time discretization for the

system (2.13)-(2.14) can be written in the following form,

U
n+1

j ∆xn+1
j −Uj∆xj

= ∆t
{
−

(
F̂(U−

j+ 1

2

,U+
j+ 1

2

)− F̂(U−
j− 1

2

,U+
j− 1

2

)
)
−
(
Nj∆xj + [N]j+ 1

2

+ [N]j− 1

2

)

+
(
G(Uj+ 1

2

)−G(Uj− 1

2

)
)
+ Sj∆xj

}
, (3.1)

where Uj ,Nj ,Sj are the cell averages of the vectors of U,N,S respectively. [N]j±1/2 are the

penalty jump terms for the discretization of the vector of N. The superscript n+1 represents

the values at the (n + 1)-th time step. All the variables without the superscripts represent

the values at the n-th time step. ∆t is the n-th time step which will be determined by the

stability conditions analyzed later. U±
j− 1

2

,U±
j+ 1

2

are the values of U at the left and right sides

of the cell boundary xj− 1

2

, xj+ 1

2

respectively. Uj±1/2 are the single values of U at the cell

boundary xj±1/2 respectively. In order to accomplish the high order spatial approximation,

U±
j±1/2 and Uj±1/2 are obtained from high order reconstructions which will be discussed
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later. Since F and G are two different fluxes (advection and diffusion), U±
j±1/2 and Uj±1/2,

which serve the above two different fluxes, will be reconstructed in different ways. F̂ is the

vector of the numerical fluxes for the advection terms across the cell boundary of Ij(t), i.e.,

F̂ =
(
F̂d, F̂m, F̂e, F̂i, F̂r

)T

. (3.2)

It should be determined in a suitable way to ensure upwinding and stability. It also should

be consistent with the physical flux (2.14) in the sense that F̂(U,U) = F(U).

Next we will discuss the specific procedures to determine the individual terms in the

Lagrangian scheme (3.1).

3.1.1 High order spatial discretization for the advection terms

We first discuss how to discretize the advection terms F andN in the equations (2.13)-(2.14).

I. Third order multi-resolution WENO reconstruction for the advection spa-

tial discretization

To obtain a high order approximation to U±
j±1/2 used in the determination of the numer-

ical flux F̂ and Nj and [N]j±1/2 in the scheme (3.1), we apply the multi-resolution WENO

reconstruction [30] to reconstruct piecewise polynomial functions in each Ij by using the cell-

average information of the cell Ij and its neighbors, such that they are third order accurate

approximations to the functions ρ(x), (ρu)(x) Ee(x), Ei(x) and Er(x) in Ij respectively and

also are essentially non-oscillatory near the discontinuities. The method of local character-

istic decomposition is used in the procedure of the WENO reconstruction. We refer to [24]

for the details of the similar Roe-type characteristic decomposition that we have used in this

paper. In the multi-resolution WENO reconstruction, it chooses a series of unequal-sized

hierarchical central spatial stencils to construct high-order and low-order polynomials on

these stencils respectively. The final reconstruction polynomial is a linear combination of

high-order and low-order polynomials with nonlinear weights. This type of WENO method

can achieve optimal accuracy on the largest stencil in the smooth regions and can keep non-

oscillatory behavior near discontinuities. The linear weights for such WENO reconstruction

can be any fixed positive numbers on the condition that they sum to one, which is particu-

larly suitable for moving meshes. This method can achieve arbitrarily high order accuracy.

We will design a third order scheme as an example in this paper and the procedure of the

third order multi-resolution WENO reconstruction in one-dimension consists of the following

steps.
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Step 1. We choose two central spatial stencils of different sizes. The small stencil is

R1 = {Ij} and the large stencil is R2 = {Ij−1, Ij, Ij+1}. We take the reconstruction of the

first variable ̺ obtained by the local characteristic decomposition performed on U as an

example. For the first order approximation, we use R1 to obtain q1(x) = ¯̺j . For the third

order approximation, we use R2 to obtain the quadratic polynomial q2(x) = a0 + a1(x −
xj) + a2(x− xj)

2, where xj is the coordinate of the center of Ij . Specifically, the coefficients

am, m = 0, 1, 2 of q2(x) are determined by
∫

Ik

q2(x)dx = ̺k∆xk, k = j − 1, j, j + 1. (3.3)

Step 2. Combine q1(x), q2(x) with the linear weights. Take

p1(x) = q1(x), p2(x) =
1

γ2
q2(x)−

γ1
γ2

q1(x)

where γ1, γ2 are two linear weights which are defined as γ1 = 1
11
, γ2 = 10

11
in our paper. We

then have

γ1p1(x) + γ2p2(x) = q2(x).

Step 3. Compute the smoothness indicators β1 and β2, which measure how smooth the

function p1(x) and p2(x) are in the cell Ij respectively.

Denote

ξ1 = |̺j − ̺j−1|, ξ2 = |̺j+1 − ̺j|,

ζ1 =

{
1, ξ1 ≥ ξ2
10, otherwise

, ζ2 = 11− ζ1,

ζ1 =
ζ1

ζ1 + ζ2
, ζ2 = 1− ζ1, (3.4)

σ1 = ζ1(1 +
|ξ21 − ξ22 |
(ξ1 + ε)2

), σ2 = ζ2(1 +
|ξ21 − ξ22 |
(ξ2 + ε)2

), σ = σ1 + σ2,

where ε is a small positive number to avoid the denominator of (3.4) to become zero. In the

numerical tests of this paper, we choose ε = 10−4. Then

β1 =
1

σ2
(σ1(̺j − ̺j−1) + σ2(̺j+1 − ̺j))

2. (3.5)

β2 =
2∑

α=1

∫ x
j+1

2

x
j− 1

2

(∆xj)
2α−1(

dαp2(x)

dxα
)2dx. (3.6)

Step 4. Compute the nonlinear weights based on the linear weights and the smoothness

indicators, which follow the WENO-Z strategy as shown in [5]. The nonlinear weights are

given as

wl =
w̄l

w̄1 + w̄2
, l = 1, 2,
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where

w̄l = γl

(
1 +

τ

(βl + ε)2

)
, τ = (β2 − β1)

2, l = 1, 2.

Step 5. The final reconstruction polynomial for the cell Ij is given by

̺j(x) = w1p1(x) + w2p2(x).

II. The HLLC flux for the conservative advection term in 3-T equations in

the Lagrangian formulation

In this part, we will discuss how to determine the numerical flux F̂ (3.2) in the scheme

(3.1). We consider the following three-temperature equations which only include the conser-

vative advection terms,

∂tU+ ∂xF = 0 (3.7)

where

U =




ρ
ρu
Ee

Ei

Er




, F =




ρu
ρu2 + p

(Ee + pe)u
(Ei + pi)u
(Er + pr)u




, (3.8)

where p = pe + pi + pr. We want to design a HLLC flux for the Lagrangian scheme solving

(3.7)-(3.8), which is derived from the divergence theorem (critical for the proof of positivity-

preserving property discussed in the next section) and is suitable for multi-material problems.

Since in the Lagrangian formulation, the flux for the first equation of (3.7) is zero (see

(2.14)), we should set

F̂d = 0. (3.9)

For the HLLC flux, two averaged intermediate states U∗
L and U∗

R between the two acoustic

waves sL, sR are considered, which are separated by the contact wave (interface) with the

velocity s∗, see Fig. 3.1. From the definition of HLLC, we have

s∗ =
F̂e + F̂i + F̂r

F̂m

. (3.10)

Apply the divergence theorem in the left region ABCD and the right region DCEF (Fig.

3.1) for the Riemann problem respectively, then we obtain

U∗
L(s∗ − sL) = −ULsL + F(UL)− F̂, (3.11)

U∗
R(sR − s∗) = URsR − F(UR) + F̂, (3.12)
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Figure 3.1: Simplified Riemann fan for the HLLC flux.

where

UL =




ρL
ρLuL

Ee,L

Ei,L

Er,L




, UR =




ρR
ρRuR

Ee,R

Ei,R

Er,R




,

U∗
L =




ρ∗L
ρ∗Lu

∗
L

E∗
e,L

E∗
i,L

E∗
r,L




, U∗
R =




ρ∗R
ρ∗Ru

∗
R

E∗
e,R

E∗
i,R

E∗
r,R




. (3.13)

Suppose the velocity and pressure of electron, ion and radiation are constant in the two

middle regions of HLLC, denoted as u∗(= u∗
L = u∗

R), p
∗
e, p

∗
i , p

∗
r . For simplicity in the form,

here we consider the γ-law equation of state for both electron and ion and suppose they have

the same value denoted as γL and γR in the left and right initial regions respectively. Then

we have,

U∗
L =




ρ∗L
ρ∗Lu

∗

p∗e
γL−1

+ 1
6
ρ∗L(u

∗)2

p∗i
γL−1

+ 1
6
ρ∗L(u

∗)2

3p∗r +
1
6
ρ∗L(u

∗)2




, U∗
R =




ρ∗R
ρ∗Ru

∗

p∗e
γR−1

+ 1
6
ρ∗R(u

∗)2

p∗i
γR−1

+ 1
6
ρ∗R(u

∗)2

3p∗r +
1
6
ρ∗R(u

∗)2




. (3.14)

Substitute (3.13) and (3.14) into (3.11), from the first two formulas of (3.11), we get,

ρ∗L =
ρL(uL − sL)

(s∗ − sL)
, ρ∗R =

ρR(sR − uR)

(sR − s∗)
,

u∗ =
ρLuL(uL − sL) + ρRuR(sR − uR) + pL − pR

ρL(uL − sL) + ρR(sR − uR)
, (3.15)

F̂m = ρL(uL − u∗)(uL − sL) + pL.
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Sum the third formula of (3.11) and (3.12), similarly to the fourth and fifth formulas, then

we get,

p∗e =
(γL − 1)(γR − 1)qe

(γR − 1)(s∗ − sL) + (γL − 1)(sR − s∗)
,

p∗i =
(γL − 1)(γR − 1)qi

(γR − 1)(s∗ − sL) + (γL − 1)(sR − s∗)
, (3.16)

p∗r =
qr

3(sR − sL)
,

where

qe = Ee,L(uL − sL) + Ee,R(sR − uR) + pe,LuL − pe,RuR − 1

6
(ρL(uL − sL) + ρR(sR − uR))(u

∗)2,

qi = Ei,L(uL − sL) + Ei,R(sR − uR) + pi,LuL − pi,RuR − 1

6
(ρL(uL − sL) + ρR(sR − uR))(u

∗)2,

qr = Er,L(uL − sL) + Er,R(sR − uR) + pr,LuL − pr,RuR − 1

6
(ρL(uL − sL) + ρR(sR − uR))(u

∗)2.

(3.17)

Sum the last three formulas of (3.11) and (3.12) respectively, and using (3.10) we get,

(
p∗e + p∗i
γL − 1

+ 3p∗r)(s∗ − sL) = −F̂ms∗ + bL,

(
p∗e + p∗i
γR − 1

+ 3p∗r)(sR − s∗) = F̂ms∗ + bR, (3.18)

where

bL = pLuL + (uL − sL)(EL − 1

2
ρL(u

∗)2),

bR = −pRuR + (sR − uR)(ER − 1

2
(ρR(u

∗)2).

Substitute p∗e, p
∗
i , p

∗
r by (3.16) into (3.18), then we obtain the following relationship for s∗,

( (γR − 1)(qe + qi)

(γR − 1)(s∗ − sL) + (γL − 1)(sR − s∗)
+

qr
sR − sL

)
(s∗ − sL) = −F̂ms∗ + bL. (3.19)

If γR = γL, then

s∗ =
sL(qe + qi + qr) + bL(sR − sL)

qe + qi + qr + F̂m(sR − sL)
. (3.20)

If γR 6= γL, then

s∗ =
d1 +

√
d2

2(γR − γL)(qr + F̂m(sR − sL))
, (3.21)

where

d1 = F̂m

(
(γL + γR − 2)sLsR − (γR − 1)s2L − (γL − 1)s2R

)
+ bL(sR − sL)(γR − γL)
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−(qe + qi)(sR − sL)(γR − 1) + qr
(
sL(2γR − γL − 1)− sR(γL − 1)

)
,

d2 =
(
F̂m(s

2
L(γR − 1) + s2R(γL − 1)− sLsR(γL + γR − 2))− bL(sR − sL)(γR − γL) (3.22)

+(qe + qi)(sR − sL)(γR − 1) + qr(−sL(2γR − γL − 1) + sR(γL − 1))
)2 − 4

(
qr(γR − γL)

+F̂m(γR − γL)(sR − sL)
)(
bL(sLsR(γL + γR − 2)− s2L(γR − 1)− s2R(γL − 1))

−(qe + qi + qr)sL(sR − sL)(γR − 1) + qrsLsR(γR − γL)
)
.

We can check that s∗ ∈ [sL, sR].

After we obtain s∗, then from (3.11) we can determine the HLLC numerical flux for the

3-T RH equations (3.7)-(3.8),





F̂d = 0,

F̂m = ρL(uL − u∗)(uL − sL) + pL,

F̂e = − p∗e
γL−1

(s∗ − sL) + (Ee,L − 1
6
ρL(u

∗)2)(uL − sL) + pe,LuL,

F̂i = − p∗i
γL−1

(s∗ − sL) + (Ei,L − 1
6
ρL(u

∗)2)(uL − sL) + pi,LuL,

F̂r = −3p∗r(s∗ − sL) + (Er,L − 1
6
ρL(u

∗)2)(uL − sL) + pr,LuL,

(3.23)

which is under the assumption that both electron and ion satisfy the γ-law equation of states

and their values of γ are the same. For the case γe 6= γi, similar analysis can be made, but the

form of the numerical flux is more complicated. In principle, we can derive the HLLC solver

for the non-γ-law case in a similar way, however the algebra will be much more involved.

III. The determination of the nonconservative advection terms

The non-conservative terms Nj, [N]j+ 1

2

, [N]j− 1

2

in the scheme (3.1) are determined fol-

lowing the strategy for solving Hamilton-Jacobi equations [12], which is also used in [21] to

discretize the non-conservative terms in the Godunov form of MHD and is equivalent to a

specific form of the usual path-conservative strategy. For our case, it is given by

Nj =




0
0

−
∑Ng

g=1
1
3
ωgug

(
2(pe)x,g − (pi)x,g − (pr)x,g

)
∆xj

−∑Ng

g=1
1
3
ωgug

(
2(pi)x,g − (pe)x,g − (pr)x,g

)
∆xj

−
∑Ng

g=1
1
3
ωgug

(
2(pr)x,g − (pe)x,g − (pi)x,g

)
∆xj




:=




0
0

N j,e

N j,i

N j,r




(3.24)

[N]j+ 1

2

+[N]j− 1

2

=




0
0

max{−1
3
uj− 1

2

, 0}[2pe − pi − pr]j− 1

2

+min{−1
3
uj+ 1

2

, 0}[2pe − pi − pr]j+ 1

2

max{−1
3
uj− 1

2

, 0}[2pi − pe − pr]j− 1

2

+min{−1
3
uj+ 1

2

, 0}[2pi − pe − pr]j+ 1

2

max{−1
3
uj− 1

2

, 0}[2pr − pe − pi]j− 1

2

+min{−1
3
uj+ 1

2

, 0}[2pr − pe − pi]j+ 1

2




(3.25)
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:=




0
0

[N ]j,e
[N ]j,i
[N ]j,r




where g is denoted to be the Gaussian points in the cell Ij, Ng is the number of Gaussian

points. In order to achieve third order accuracy, we choose g = 2, the coordinates of the two

Gaussian points are xj ±
√
3∆xj

6
. (pe)x,g, (pi)x,g, (pr)x,g are determined by the values and the

derivative values of the reconstruction polynomials of U at the Gaussian points g, that is,

(pe)x = (γe − 1)
(
(Ee)x −

(ρu)(ρu)x
3ρ

+
(ρu)2ρx
6ρ2

)
,

(pi)x = (γi − 1)
(
(Ei)x −

(ρu)(ρu)x
3ρ

+
(ρu)2ρx
6ρ2

)
, (3.26)

(pr)x = (γr − 1)
(
(Er)x −

(ρu)(ρu)x
3ρ

+
(ρu)2ρx
6ρ2

)
.

[pe]j± 1

2

= (pe)
+
j± 1

2

− (pe)
−
j± 1

2

, [pi]j± 1

2

= (pi)
+
j± 1

2

− (pi)
−
j± 1

2

, [pr]j± 1

2

= (pr)
+
j± 1

2

− (pr)
−
j± 1

2

. (pe)
±
j± 1

2

,

(pi)
±
j± 1

2

, (pr)
±
j± 1

2

are determined by U±
j± 1

2

from the reconstruction polynomials in the two

neighboring cells.

3.1.2 The determination of the nodal velocity

The fluid velocity uj− 1

2

at each node is determined by

uj− 1

2

= (s∗)j− 1

2

, j = 1, ..., N + 1, (3.27)

where (s∗)j− 1

2

is given by (3.20) or (3.21). Then the mesh moves according to the following

formula,

xn+1
j− 1

2

= xj− 1

2

+ uj− 1

2

∆t, j = 1, ..., N + 1, (3.28)

if the Euler forward time discretization is considered.

3.1.3 The determination of the energy-exchange terms

The terms of Sj in the scheme (3.1) are determined by

Sj =




0
0

−
∑Ng

g=1

(
(ωei)g((Te)g − (Ti)g) + (ωer)g((T

4
e )g − (T 4

r )g)
)

∑Ng

g=1(ωei)g((Te)g − (Ti)g)∑Ng

g=1(ωer)g((T
4
e )g − (T 4

r )g)




:=




0
0

Sj,e

Sj,i

Sj,r




(3.29)

where (Te)g, (Ti)g, (Tr)g and (ωei)g, (ωer)g are the values of the related variables at the Gaus-

sian points which are obtained from the reconstruction polynomials of U introduced in the

above subsection. g, Ng have the same definition as those in the above subsection.
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3.1.4 High order spatial discretization for the diffusion terms

Next we discuss how to discretize the diffusion terms G in the scheme (3.1).

I. Fourth order multi-resolution WENO reconstruction for the diffusion spa-

tial discretization

To obtain a fourth order approximation to Uj±1/2 used in the diffusion flux G, take ρ

as an example, the specific procedures for the multi-resolution WENO interpolation is as

follows.

Step 1. To reconstruct the values of U and its derivatives at xj− 1

2

, we choose two spatial

stencils of different sizes. One small stencil is T1 = {Ij−1, Ij} to reconstruct a linear polyno-

mial q1(x) = a10 + a11(x− xj− 1

2

). One large stencil is T2 = {Ij−2, Ij−1, Ij , Ij+1}, which is used

to reconstruct a cubic polynomial q2(x) = a20+ a21(x−xj− 1

2

)+ a22(x−xj− 1

2

)2+ a23(x−xj− 1

2

)3.

We adopt the similar way as (3.3) used in the advection term to determine the coefficients

of the above polynomials.

Step 2. Combine q1(x), q2(x) with the linear weights. Take

p1(x) = q1(x), p2(x) =
1

γ2
q2(x)−

γ1
γ2

q1(x)

where γ1 =
1
11
, γ2 =

10
11

are the linear weights. It could make sure

γ1p1(x) + γ2p2(x) = q2(x).

Step 3. Compute the smoothness indicators βl, l = 1, 2, which measure how smooth the

function p1(x) and p2(x) are at xj− 1

2

respectively.

β2 =

3∑

α=2

∫ xj

xj−1

(xj − xj−1)
2α−1(

dαp2(x)

dxα
)2dx. (3.30)

If the formula (3.30) is adopted to compute β1, then β1 = 0. To avoid this, we introduce

extra two small stencils as T3 = {Ij−2, Ij−1, Ij} and T4 = {Ij−1, Ij , Ij+1} to reconstruct two

quadratic polynomials q3(x) = a30+a31(x−xj− 1

2

)+a32(x−xj− 1

2

)2, q4(x) = a40+a41(x−xj− 1

2

)+

a42(x− xj− 1

2
)2. Then,

ξ1 =

∫ xj

xj−1

(xj − xj−1)
3(
d2q3(x)

dx2
)2dx, ξ2 =

∫ xj

xj−1

(xj − xj−1)
3(
d2q4(x)

dx2
)2dx, (3.31)

β1 = min{ξ1, ξ2}. (3.32)

Step 4. Compute the nonlinear weights based on the linear weights and the smoothness

indicators. The nonlinear weights are given as

wl =
w̄l

w̄1 + w̄2

, w̄l = γl

(
1 +

τ

(βl + ε)2

)
, l = 1, 2,
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where ε = 10−4 and τ = (β2 − β1)
2.

Step 5. The final interpolation polynomial at the cell boundary xj− 1

2

is given by

ρj− 1

2

(x) = w1p1(x) + w2p2(x).

The other variables of U can be obtained in the similar way. Notice that in the WENO

reconstruction for the diffusion term, the characteristic decomposition is not needed.

II. The determination of the diffusion terms

We use the following formulas to determine (Te)x, (Ti)x, (T
4
r )x in the diffusion terms G,

(Te)x =
1

cveρ2

(
ρ(Ee)x − Eeρx −

ρu(ρu)x
3

+
(ρu)2ρx

3ρ

)
,

(Ti)x =
1

cviρ2

(
ρ(Ei)x − Eiρx −

ρu(ρu)x
3

+
(ρu)2ρx

3ρ

)
,

(T 4
r )x =

1

a

(
(Er)x −

ρu(ρu)x
3ρ

+
(ρu)2ρx
6ρ2

)
, (3.33)

where {ρ, ρu, Ee, Ei, Er} and their derivatives are obtained by the above fourth order multi-

resolution WENO reconstruction.

3.1.5 The conservation property of the scheme

For the scheme (3.1), we can prove that it can keep the conservation of mass, momentum

and total energy if all the terms in (3.1) are discretized in a compatible way and the periodic

or zero-flux boundary conditions are considered, the proof on the conservation of mass,

momentum is trivial. For the conservation of total energy E = Ee + Ei + Er, we can prove

it as follows.

Sum the last three equations of the scheme (3.1) and notice that N̄j,e + N̄j,i + N̄j,r =

0, [N ]j,e + [N ]j,i + [N ]j,r = 0 and Sj,e + Sj,i + Sj,r = 0, then we have

N∑

j=1

[
E

n+1

e,j + E
n+1

i,j + E
n+1

r,j

]
−

N∑

j=1

[
Ee,j + Ei,j + Er,j

]
= 0 (3.34)

which implies
N∑

j=1

E
n+1

j =

N∑

j=1

Ej. (3.35)

3.2 The high order Runge-Kutta time discretization

To design a Lagrangian scheme with uniformly third order accuracy both in space and time,

the time marching is implemented by a third order total variation diminishing (TVD), or
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strong stability preserving (SSP) Runge-Kutta type method [23, 18], which has the following

form in the Lagrangian formulation [7].

Stage 1,

x
(1)

j− 1

2

= xj− 1

2

+∆tuj− 1

2

,

U
(1)

j ∆x
(1)
j = Uj∆xj +∆tL(Uj); (3.36)

Stage 2,

x
(2)

j− 1

2

= x
(1)

j− 1

2

+
1

4
∆t[−3uj− 1

2

+ u
(1)

j− 1

2

],

U
(2)

j ∆x
(2)
j = U

(1)

j ∆x
(1)
j +

1

4
∆t

(
− 3L(Uj) + L(U

(1)

j )
)
; (3.37)

Stage 3,

xn+1
j− 1

2

= xj− 1

2

+
1

6
∆t

(
uj− 1

2

+ u
(1)

j− 1

2

+ 4u
(2)

j− 1

2

)
,

U
n+1

j ∆xn+1
j = Uj∆xj +

1

6
∆t

(
L(Uj) + L(U

(1)

j ) + 4L(U
(2)

j )
)
; (3.38)

where L is the numerical spatial operator representing the right hand of the scheme (3.1).

3.3 The time step for the Lagrangian scheme solving the 3-T RH

equations

For the explicit Lagrangian scheme (3.1), the time step is limited by the three terms coming

from the 3-T RH equations, namely, the advection term, the diffusion term and the energy-

exchange term.

We rewrite the system (2.1) in the following form,

∂U

∂t
+ A

∂U

∂x
=

∂(B ∂U
∂x

)

∂x
+ S(U) (3.39)

where U = (ρ, ρu, Ee, Ei, Er)
T . The matrix A is defined as (2.8).

Denote

ẽe = ee −
1

6
u2, ẽi = Ei −

1

6
u2, (3.40)

Then the Jacobian matrix B related to the diffusion term can be represented as,

B =




0 0 0 0 0
0 0 0 0 0

−κeẽe
cveρ

− κeu
3cveρ

κe

cveρ
0 0

−κiẽi
cviρ

− κiu
3cviρ

0 κi

cviρ
0

κru2

6a
−κru

3a
0 0 κr

a




. (3.41)
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Its eigenvalues are listed as follows,

{0, 0, κe

cveρ
,
κi

cviρ
,
κr

a
}. (3.42)

S
′

(U) =


0 0 0 0 0
0 0 0 0 0

ωei

ρ
( ẽe
cve

− ẽi
cvi

) + ωer(
4e3eẽe
c4veρ

+ u2

6a
) ωeiu

3ρ
( 1
cve

− 1
cvi
) + ωeru

3
( 4e3e
c4veρ

− 1
a
) − ωei

cveρ
− 4ωere3e

c4veρ
ωei

cviρ
ωer

a

−ωei

ρ
( ẽe
cve

− ẽi
cvi

) −ωeiu
3ρ

( 1
cve

− 1
cvi

) ωei

cveρ
− ωei

cviρ
0

−ωer(
4e3e ẽe
c4veρ

+ u2

6a
) −ωeru

3
( 4e3e
c4veρ

− 1
a
) 4ωere3e

c4veρ
0 −ωer

a




.

(3.43)

Its eigenvalues are in the following,

{0, 0, 0, α1, α2} , (3.44)

where

α1 =
−s1 + s2

s
, α2 =

s1 + s2
s

(3.45)

with

s1 =

√
(aωeic4ve + aωeic3vecvi + 4aωercvie3e + ωerc4vecviρ)

2 − 4aωeiωerc4vecvi (4ae
3
e + c4veρ+ c3vecviρ),

s2 = −(aωeic
4
ve + aωeic

3
vecvi + 4aωercvie

3
e + ωerc

4
vecviρ),

s = 2ac4vecviρ.

The time step is limited by the above three terms as

∆teq ≤ min
j=1,...,N

λ

νj
, νj =

(cs)j
∆xj

+
2dj
∆x2

j

+ sj (3.46)

where (cs)j is defined by (2.10). λ is a positive constant less than 1, which is chosen as 0.5

in this paper.

dj = max{ κe

cveρj
,

κi

cviρj
,
κr

a
}, sj = max{|(α1)j |, |(α2)j |}. (3.47)

To avoid the grid from interacting within the time step, we also need the time step to

satisfy

∆tgrid = µ min
j=1,...,N+1

{
min(∆xj−1,∆xj)/uj− 1

2

}
, (3.48)

where µ is a constant which is chosen as 0.45 in this paper.

Then the final time step ∆t is determined by the following formula,

∆t = min{∆teq,∆tgrid}. (3.49)
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4 The positivity-preserving issue on the Lagrangian

scheme solving the 3-T RH equations (3.7)-(3.8)

4.1 The first order positivity-preserving Lagrangian scheme for

the 3-T RH equations (3.7)-(3.8)

The system (2.13)-(2.14) includes the nonlinear advection, diffusion and source terms. We

are unable to analyze the positivity-preserving property of the full system so far. But for the

simpler form (3.7)-(3.8) which only contains the conservative advection term in space, we

can prove the following first order Lagrangian scheme with the HLLC flux (3.23) can keep

the positivity-preserving property under certain conditions

U
n+1

j ∆xn+1
j −Uj∆xj = −∆t

(
F̂(Uj,Uj+1)− F̂(Uj−1,Uj)

)
, (4.1)

where F̂ is defined by (3.23).

Define the set of admissible states by

G =
{
U = (ρ, ρu, Ee, Ei, Er)

T , ρ > 0, ee > 0, ei > 0, er > 0
}
. (4.2)

Lemma: The set of admissible states G is a convex set for the γ-law EOS given by (2.3).

Proof. Denote ĕe = ρee, ĕi = ρei, ĕr = ρer. It can be easily verified that ĕe, ĕi, ĕr are

concave functions of U = (ρ, ρu, Ee, Ei, Er)
T if ρ > 0. Using Jensen’s inequality, we have

ĕe(dU1 + (1− d)U2) ≥ dĕe(U1) + (1− d)ĕe(U2), if ρ1 ≥ 0, ρ2 ≥ 0,

for U1 = (ρ1, (ρu)1, (Ee)1, (Ei)1, (Er)1)
T , U2 = (ρ2, (ρu)2, (Ee)2, (Ei)2, (Er)2)

T and 0 ≤ d ≤
1. Similar proof could be done for ĕi and ĕr. Thus G is a convex set.

The scheme (4.1) is called positivity-preserving if {Uj ∈ G, j = 1, ..., N} implies {Un+1

j ∈
G, j = 1, ..., N}. Following the design of the HLLC flux, the divergence theorem is satisfied

exactly in the two regions ABCD and DCEF respectively in Figure 3.1, and also u∗, p∗e, p
∗
i , p

∗
r

are continuous along the contact line (CD). Meanwhile, by choosing a suitable CFL condition,

the two waves in Figure 4.1 centered at xj− 1

2
and at xj+ 1

2
do not interact within the time

step ∆t. In this case, U
n+1

j in the scheme (4.1) can be described as the exact integration of

the approximate Riemann solver over [xn+1
j− 1

2

, xn+1
j+ 1

2

] which can be broken into two parts (see

Figure 4.1), that is,

U
n+1

j =
1

∆xn+1
j

∫ xn+1

j

xn+1

j− 1
2

R(x/t,Uj−1,Uj)dx+
1

∆xn+1
j

∫ xn+1

j+1
2

xn+1

j

R(x/t,Uj ,Uj+1)dx (4.3)
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Figure 4.1: The HLLC Riemann solver performed along the Lagrangian cell’s boundaries.

where R(x/t,Uj−1,Uj) is the approximate Riemann solution between the states Uj−1 and

Uj . The similar definition is for R(x/t,Uj,Uj+1). Specifically, for the HLLC Riemann

solver, R(x/t,Uj−1,Uj) in the relevant integration interval will take the value of either U∗
R

(calculated from the two states Uj−1 and Uj) or Uj. Similarly R(x/t,Uj,Uj+1) in the

relevant integration interval will take the value of either Uj or U
∗
L (calculated from the two

states Uj and Uj+1). Thus in order to prove the positivity-preserving property of the scheme

(4.1), we only need to prove the intermediate states U∗
L ∈ G,U∗

R ∈ G if UL ∈ G,UR ∈ G,

which would imply that U
n+1

j given by (4.3) also belongs to G, due to the fact that G is a

convex set and Jensen’s inequality for integrals. Next, we will prove if

{
ρL ≥ 0, ee,L ≥ 0, ei,L ≥ 0, er,L ≥ 0
ρR ≥ 0, ee,R ≥ 0, ei,R ≥ 0, er,R ≥ 0

, (4.4)

then

ρ∗L ≥ 0, ρ∗R ≥ 0, (4.5)

e∗e,L ≥ 0, e∗i,L ≥ 0, e∗r,L ≥ 0, e∗e,R ≥ 0, e∗i,R ≥ 0 e∗r,R ≥ 0. (4.6)

under certain conditions.

Since sL ≤ s∗ ≤ sR, from (3.15) it is easy to know (4.5) is valid. For simplicity, we only

prove the validity of (4.6) for U∗
L. Similar proof can be given for the validity for U∗

R as well.

To prove (4.6), for the γ-law gas, it is equivalent to prove

p∗e ≥ 0, p∗i ≥ 0, p∗r ≥ 0. (4.7)

From (3.16), we then need to prove

qe ≥ 0, qi ≥ 0, qr ≥ 0. (4.8)

Take qe as an example, from (3.15) and (3.17), we have,

qe =
A +B + C

D
, (4.9)
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where

A = ρLee,L(uL − sL)
2 + ρL

(
uL(

pR − pL
3

+ pe,L)− uRpe,R
)
(uL − sL)−

1

12
(pL − pR)

2,

B = ρRee,R(sR − uR)
2 + ρR

(
uR(

pR − pL
3

− pe,R) + uLpe,L
)
(sR − uR)−

1

12
(pL − pR)

2,

C = (ρRee,L + ρRee,R)(uL − sL)(sR − uR) +
1

6
ρLρR(uL − sL)(sR − uR)(uL − uR)

2,

D = ρL(uL − sL) + ρR(sR − uR). (4.10)

Next we will prove A,B,C,D are positive under certain conditions.

If sL ≤ uL, sR ≥ uR, then we can prove C,D ≥ 0. In order to make sure A,B ≥ 0, sL, sR

should satisfy

sL ≤ uL +
ρL(uL(

pR−pL
3

+ pe,L)− uRpe,R)

2ρLee,L

−

√
ρ2L(uL(

pR−pL
3

+ pe,L)− uRpe,R)2 +
1
3
ρLee,L(pL − pR)2

2ρLee,L
:= se,L,

sR ≥ uR +
ρR(uR(

pR−pL
3

− pe,R) + uLpe,L)

2ρRee,R

+

√
ρ2R(uR(

pR−pL
3

− pe,R) + uLpe,L)2 +
1
3
ρRee,R(pL − pR)2

2ρRee,R
:= se,R. (4.11)

Similarly, we can obtain the following conditions for qi ≥ 0, qr ≥ 0,

sL ≤ uL +
ρL(uL(

pR−pL
3

+ pi,L)− uRpi,R)

2ρLei,L

−

√
ρ2L(uL(

pR−pL
3

+ pi,L)− uRpi,R)2 +
1
3
ρLei,L(pL − pR)2

2ρLei,L
:= si,L,

sR ≥ uR +
ρR(uR(

pR−pL
3

− pi,R) + uLpi,L)

2ρRei,R

+

√
ρ2R(uR(

pR−pL
3

− pi,R) + uLpi,L)2 +
1
3
ρRei,R(pL − pR)2

2ρRei,R
:= si,R. (4.12)

sL ≤ uL +
ρL(uL(

pR−pL
3

+ pr,L)− uRpr,R)

2ρLer,L

−

√
ρ2L(uL(

pR−pL
3

+ pr,L)− uRpr,R)2 +
1
3
ρLer,L(pL − pR)2

2ρLer,L
:= sr,L,

sR ≥ uR +
ρR(uR(

pR−pL
3

− pr,R) + uLpr,L)

2ρRer,R
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+

√
ρ2R(uR(

pR−pL
3

− pr,R) + uLpr,L)2 +
1
3
ρRer,R(pL − pR)2

2ρRer,R
:= sr,R. (4.13)

In summary, to preserve the positivity of the HLLC Riemann solver, sL, sR should satisfy

sL = min{se,L, si,L, sr,L}, sR = max{se,R, si,R, sr,R}. (4.14)

By the above discussion, we can obtain the following theorem for the Lagrangian scheme

(4.1).

Theorem 4.1. Consider the first order finite volume Lagrangian scheme (4.1) with the

HLLC flux (3.23) solving the 3-T equations (3.7) with the γ-law equation of state given

by (2.3). If {Uj ∈ G, ∀j = 1, ..., N}, then the scheme is positivity-preserving, that is,

{Un+1

j ∈ G, ∀j = 1, ..., N} if the HLLC numerical flux given by (3.23) is adopted with the

acoustic wavespeeds sL and sR in (4.14) and with the time step restriction

∆t ≤ λ min
j=1,...,N

∆xj

|uj|+ (cs)j
(4.15)

where the Courant number λ = 0.5.

4.2 The high order positivity-preserving Lagrangian scheme for

the 3-T RH equations (3.7)-(3.8)

Assume the polynomial vector in the cell Ij obtained by the multi-resolution WENO recon-

struction with degree k is Uj(x), where k ≥ 1. U−
j+ 1

2

= Uj(xj+ 1

2

), U+
j− 1

2

= Uj(xj− 1

2

) are

applied in the numerical flux F̂. Uj is the cell average of Uj(x) in Ij .

Consider a set of Gauss-Lobatto quadrature points in the cell Ij as

Sj = {xj− 1

2

= x̃1
j , x̃

2
j , ..., x̃

J−1
j , x̃J

j = xj+ 1

2

}.

Define ωα to be the quadrature weights such that ωα > 0, α = 1, ..., J and
∑J

α=1 ωα = 1.

Next, we will show that if Uj(x̃
α
j ) ∈ G for all j and α, then U

n+1

j ∈ G for the following

high order Lagrangian scheme solving the 3-T RH equations (3.7)-(3.8) under suitable time

step restriction,

U
n+1

j ∆xn+1
j −Uj∆xj = −∆t

(
F̂(U−

j+ 1

2

,U+
j+ 1

2

)− F̂(U−
j− 1

2

,U+
j− 1

2

)
)
. (4.16)

We choose J to be the smallest integer satisfying 2J − 3 ≥ k, then the J-point Legendre

Gauss-Lobatto rule is exact for the polynomial Uj(x), which means

Uj =
1

∆xj

∫ x
j+1

2

x
j− 1

2

Uj(x)dx =

J∑

α=1

ωαUj(x̃
α
j ) =

J−1∑

α=2

ωαU
α
j + ω1U

+
j− 1

2

+ ωJU
−
j+ 1

2

(4.17)
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where Uα
j = Uj(x̃

α
j ). Here we take the three-point Simpson quadrature rule for the third

order Lagrangian scheme (4.16), i.e. Sj = {xj− 1

2

, xj , xj+ 1

2

}, ω1 = ω3 =
1
6
, ω2 =

2
3
.

By adding and subtracting ∆tF̂(U+
j− 1

2

,U−
j+ 1

2

) in (4.16), it becomes

U
n+1

j ∆xn+1
j = ω2U

2
j∆xj + ω1

(
U+

j− 1

2

∆xj −
∆t

ω1
(F̂(U+

j− 1

2

,U−
j+ 1

2

)− F̂(U−
j− 1

2

,U+
j− 1

2

))
)

+ω3

(
U−

j+ 1

2

∆xj −
∆t

ω3
(F̂(U−

j+ 1

2

,U+
j+ 1

2

)− F̂(U+
j− 1

2

,U−
j+ 1

2

))
)

= ω2U
2
j∆xj + ω1F̂1 + ω3F̂2

where

F̂1 = U+
j− 1

2

∆xj −
∆t

ω1
(F̂(U+

j− 1

2

,U−
j+ 1

2

)− F̂(U−
j− 1

2

,U+
j− 1

2

)), (4.18)

F̂2 = U−
j+ 1

2

∆xj −
∆t

ω3
(F̂(U−

j+ 1

2

,U+
j+ 1

2

)− F̂(U+
j− 1

2

,U−
j+ 1

2

)). (4.19)

We observe that the terms at the right hand side of both (4.18) and (4.19) have the same

structure as that in the first order Lagrangian scheme (4.1), and ω1 = ω3. Thus if the HLLC

numerical flux (3.23) with the acoustic wavespeeds (4.14) is adopted to determine F̂, then

F̂1 and F̂2 are in the set G under the CFL condition

∆t ≤ λω1min
j,α

∆xj

|uα
j |+ (cs)αj

(4.20)

with λ = 0.5 and the sufficient condition

Uj(x̃
α
j ) ∈ G, ∀x̃α

j ∈ Sj, α = 1, ..., J. (4.21)

Therefore we can summarize the above results in the following theorem.

Theorem 4.2. Consider the third order explicit Lagrangian scheme (4.16) solving the 3-T

equations (3.7)-(3.8) with the γ-law equation of state given by (2.3). The HLLC numerical

flux given by (3.23) is adopted where the acoustic wavespeeds are chosen as (4.14). If the

reconstruction polynomial Uj(x) for Uj satisfies (4.21), then the scheme (4.16) is positivity-

preserving, i.e., U
n+1

j ∈ G under the time step constraint (4.20) with λ = 0.5.

Under the assumption Uj ∈ G, in order to ensure the condition (4.21), we need to modify

the multi-resolution WENO reconstruction polynomial Uj(x) used in the determination of

F̂ into another polynomial

Ũj(x) = θj(Uj(x)−Uj) +Uj (4.22)

where θj ∈ [0, 1] is to be determined, such that Ũj(x) ∈ G, ∀x ∈ Sj . Using the similar idea

as in [29, 10, 11], we take the following specific steps for the implementation.
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1. First, guarantee the positivity of density. Take a small number ǫ such as 10−13 so that

ρj ≥ ε for all j. In each cell Ij , compute

ρ̂j(x) = θ0j
(
ρj(x)− ρj

)
+ ρj , θ0j = min

x∈Sj

{
1,

∣∣∣∣
ρj − ǫ

ρj − ρj(x)

∣∣∣∣
}
. (4.23)

2. Next, guarantee the positivity of the internal energy ee, ei, er for all the cells. Define

Ûj(x) = (ρ̂j(x), (ρu)j(x), Ee,j(x), Ei,j(x), Er,j(x))
T . For each x ∈ Sj, set

θx = min{ ee(Uj)

ee(Uj)− ee(Ûj(x))
,

ei(Uj)

ei(Uj)− ei(Ûj(x))
,

er(Uj)

er(Uj)− er(Ûj(x))
}.

If θx > 1 or θx < 0 , then set θx = 1.

Finally we obtain the limited polynomial

Ũj(x) = θ1j (Ûj(x)−Uj) +Uj , θ1j = min
x∈Sj

θx. (4.24)

This positivity-preserving limiter can keep accuracy, conservation and positivity.

5 Two dimensional three temperature radiation hydro-

dynamics equations

In this section, we will briefly extend the above one-dimensional high order Lagrangian

finite volume scheme to the two-dimensional case. We consider the two dimensional three-

temperature radiation hydrodynamics equations,





∂tρ+ ∂xρu+ ∂yρv = 0
∂tρu+ ∂x (ρu

2 + pe + pi + pr) + ∂y (ρuv) = 0
∂tρv + ∂x (ρuv) + ∂y (ρv

2 + pe + pi + pr) = 0
∂tρee + ∂x (ρeeu) + ∂y (ρeev) + pe(∂xu+ ∂yv) = RHS4

∂tρei + ∂x (ρeiu) + ∂y (ρeiv) + pi(∂xu+ ∂yv) = RHS5

∂tρer + ∂x (ρeru) + ∂y (ρerv) + pr(∂xu+ ∂yv) = RHS6

(5.1)

where 



RHS4 = ∂x(κe∂xTe) + ∂y(κe∂yTe)− ωei(Te − Ti)− ωer(T
4
e − T 4

r )
RHS5 = ∂x(κi∂xTi) + ∂y(κi∂yTi) + ωei(Te − Ti)
RHS6 = ∂x(κr∂xT

4
r ) + ∂y(κr∂yT

4
r ) + ωer(T

4
e − T 4

r )
(5.2)

and u, v are velocities in the x, y directions respectively, {ee, ei, er}, {κe, κi, κr}, {Te, Ti, Tr}
are defined as before. We introduce the following new “energy” variables

Ee = ρee +
1

6
ρ(u2 + v2), Ei = ρei +

1

6
ρ(u2 + v2), Er = ρer +

1

6
ρ(u2 + v2),
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and rewrite (5.1) as





∂tρ+ ∂xρu+ ∂yρv = 0
∂tρu+ ∂x (ρu

2 + pe + pi + pr) + ∂y (ρuv) = 0
∂tρv + ∂x (ρuv) + ∂y (ρuv + pe + pi + pr) = 0
∂tEe + ∂x ((Ee + pe) u) + ∂y ((Ee + pe) v)− u

3
∂x (2pe − pi − pr)− v

3
∂y (2pe − pi − pr) = RHS4

∂tEi + ∂x ((Ei + pi) u) + ∂y ((Ei + pi) v)− u
3
∂x (2pi − pr − pe)− v

3
∂y (2pi − pr − pe) = RHS5

∂tEr + ∂x ((Er + pr)u) + ∂y ((Er + pr) v)− u
3
∂x (2pr − pe − pi)− v

3
∂y (2pr − pe − pi) = RHS6

(5.3)

Denote U = (ρ, ρu, ρv, Ee, Ei, Er)
T , and we can represent the equations (5.3) in the reference

frame of a moving control volume in the integral form as

d

dt

∫

Ω(t)

UdΩ +

∫

Γ(t)

F(U)dΓ +

∫

Ω(t)

N(U)dΩ =

∫

Γ(t)

G(U)dΓ +

∫

Ω(t)

S(U)dΩ (5.4)

where

F(U) =




0
pnx

pny

pew
piw
prw




, N(U) =




0
0
0

−1
3

(
u
v

)
· ∇(2pe − pi − pr)

−1
3

(
u
v

)
· ∇(2pi − pe − pr)

−1
3

(
u
v

)
· ∇(2pr − pe − pi)




, G(U) =




0
0
0

κen · ∇(Te)
κin · ∇(Ti)
κrn · ∇(T 4

r )




,

and S(U) = (0, 0, 0,−ωei(Te − Ti)− ωer(T
4
e − T 4

r ), ωei(Te − Ti), ωer(T
4
e − T 4

r ))
T
. Here, we

define w := unx + vny, p = pe + pi + pr and n = (nx, ny)
T is the outward unit normal vector

of the boundary.

5.1 2D high order conservative Lagrangian scheme for the 3-T RH

equations

5.1.1 High order spatial discretization

The two-dimensional spatial domain Ω is discretized intoNx×Ny quadrilateral cells {Ij,k}Nx,Ny

j,k=1 ,

where Nx and Ny are the number of cells in the x and y directions, respectively. Each cell

Ij,k has four nodes Pj− 1

2
,k− 1

2

, Pj− 1

2
,k+ 1

2

, Pj+ 1

2
,k− 1

2

, Pj+ 1

2
,k+ 1

2

and the coordinate of Pj+ 1

2
,k+ 1

2

is

(xj+ 1

2
,k+ 1

2

, yj+ 1

2
,k+ 1

2

), for all 1 ≤ j ≤ Nx, 1 ≤ k ≤ Ny. The fluid velocity (uj+ 1

2
,k+ 1

2

, vj+ 1

2
,k+ 1

2

)

are defined at the nodes and the variables Uj,k = (ρ,M
x
,M

y
, Ee, Ei, Er)

T
j,k solved directly

are defined at the cell center (xj,k, yj,k) in the form of cell averages,

ρj,k =
1

|Ij,k|

∫

Ij,k

ρdxdy, M
x

j,k =
1

|Ij,k|

∫

Ij,k

ρudxdy, M
y

j,k =
1

|Ij,k|

∫

Ij,k

ρvdxdy,

(Ee)j,k =
1

|Ij,k|

∫

Ij,k

Eedxdy, (Ei)j,k =
1

|Ij,k|

∫

Ij,k

Eidxdy, (Er)j,k =
1

|Ij,k|

∫

Ij,k

Erdxdy,
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where Mx := ρu, My := ρv and |Ij,k| is the area of the cell Ij,k. Then the semi-discrete

finite volume scheme for the system follows as,

d

dt
(Uj,k|Ij,k|) =−

∫

∂Ij,k

F̂(Uin,Uex,n)dl +

∫

∂Ij,k

Ĝ(U,n)dl

−
∫

Ij,k

Ñ(U,Uin,Uex,n)dxdy +

∫

Ij,k

S(U,n)dxdy,

(5.5)

and these numerical fluxes F̂, Ĝ are consistent with the physical fluxes in (5.4). Uin and

Uex are the values of the variables U on the cell Ij,k and its neighboring cell, respectively.

Suppose that the cell Ij,k has M edges (for our case M = 4) and the quadrature points

on each edge are denoted as (xm
α , y

m
α ) for m = 1, · · · ,M , α = 1, · · · , K, where we omit the

subscript j, k. Then we can write the line integral for the numerical fluxes as
∫

∂Ij,k

F̂dl ≈
M∑

m=1

|lm|
K∑

α=1

ωαF̂
(
Uin(xm

α , y
m
α ),U

ex(xm
α , y

m
α ),n

m
)
,

∫

∂Ij,k

Ĝdl ≈
M∑

m=1

|lm|
K∑

α=1

ωαĜ (Um(xm
α , y

m
α ),n

m) ,

(5.6)

where ωα, α = 1, · · · , K are the weights in the quadrature rule, |lm| represents the length

of the edge lm and n
m = (nm

x , n
m
y )

T is the outward unit normal vector of lm. In fact, we use

the Gauss-Lobatto quadrature rule, where (xm
1 , y

m
1 ) and (xm

K , y
m
K) are the two endpoints of

the edge lm, and in this work we take K = 3. The other two integral terms can be written

as
∫

Ij,k

Ñdxdy ≈ |Ij,k|Nj,k +

M∑

m=1

|lm|
K∑

α=1

ωαβ
m
α

[
N(Uex(xm

α , y
m
α ))−N(Uin(xm

α , y
m
α ))

]
,

∫

Ij,k

Sdxdy ≈ |Ij,k|Sj,k,

(5.7)

where βm
α = max{−wm

α

3
, 0} and Sj,k, Nj,k are the cell averages. U

in(xm
α , y

m
α ) and Uex(xm

α , y
m
α )

are the values of the variables on the cell Ij,k and its neighboring cell along the edge lm in

the advection term, respectively. Um(xm
α , y

m
α ) are the values of the variables on the common

edge lm in the diffusion term. Later, we will discuss how to get these values.

For the advection terms F̂, Ñ, we utilize the multi-resolution WENO reconstruction [30,

31] method to reconstruct high-order polynomials for the variables on each cell Ij,k,

Uj,k(x, y) = (ρ(x, y),Mx(x, y),My(x, y), Ee(x, y), Ei(x, y), Er(x, y))
T
j,k.

With these polynomials, we can calculate the values at each quadrature point Uin(xm
α , y

m
α )

and Uex(xm
α , y

m
α ) in F̂ and Ñ. Since we have given the description of the WENO reconstruc-

tion in the one-dimensional case in Section 3.1.1 and Section 3.1.4. For the simplicity, we

will omit the details here.

27



For the diffusion term, we still follow the WENO idea to reconstruct high order polyno-

mials Um
j,k(x, y), on each edge lm of the cell Ij,k, and these stencils should include the cells

at the both sides of lm, for stability. These WENO reconstruction polynomials can guar-

antee high order accuracy in the smooth region and avoid numerical oscillation near large

gradient or shock regions. Then, we will use the values of the variables and their derivatives

Um
j,k(x, y), ∂xU

m
j,k(x, y) and ∂yU

m
j,k(x, y) to calculate ∂xTe, ∂yTe, ∂xTi, ∂yTi, ∂xT

4
r , ∂yT

4
r , on the

cell boundary lm for

Ĝ (Um(xm
α , y

m
α ),n

m) =




0
0
0

κen
m
x ∂xTe(U

m(xm
α , y

m
α )) + κen

m
y ∂yTe(U

m(xm
α , y

m
α ))

κin
m
x ∂xTi(U

m(xm
α , y

m
α )) + κin

m
y ∂yTi(U

m(xm
α , y

m
α ))

κrn
m
x ∂xT

4
r (U

m(xm
α , y

m
α )) + κrn

m
y ∂yT

4
r (U

m(xm
α , y

m
α ))




. (5.8)

We denote the two-dimensional HLLC numerical flux for the three-temperature equation

(5.3) as,

F̂ = (F̂d, F̂mnx, F̂mny, F̂e, F̂i, F̂r)
T .

Actually, the two-dimensional HLLC numerical flux is as same as the one-dimensional case

(3.23) by substituting the velocities uL, uR, u
∗ into the normal velocities wL, wR, w

∗, so we

have,

w∗ =
ρLwL (wL − sL) + ρRwR (sR − wR) + pL − pR

ρL (wL − sL) + ρR (sR − wR)
,

where wL = uLnx + vLny, wR = uRnx + vRny, w∗ = u∗nx + v∗ny. Following the same

notations in (3.23), the HLLC numerical fluxes for the two-dimensional 3-T RH equations

are, 



F̂d = 0,

F̂m = ρL (wL − w∗) (wL − sL) + pL,

F̂e = − p∗e
γL−1

(s∗ − sL) +
(
Ee,L − 1

6
ρL (w

∗)2
)
(wL − sL) + pe,LwL,

F̂i = − p∗i
γL−1

(s∗ − sL) +
(
Ei,L − 1

6
ρL (w

∗)2
)
(wL − sL) + pi,LwL,

F̂r = −3p∗r (s∗ − sL) +
(
Er,L − 1

6
ρL (w

∗)2
)
(wL − sL) + pr,LwL,

(5.9)

under the assumption that γe = γi, γr =
4
3
.

For the derivatives ∂xpe, ∂ype, ∂xpi, ∂ypi, ∂xpr, ∂ypr in the non-conservative term N, we

will use the values and derivative values of Uj,k(x, y) to approximate them, just like the

one-dimensional case in (3.26).

Finally, we will use the reconstruction polynomials Uj,k(x, y) to approximate the values

of temperatures Te, Ti, T
4
r in the energy-exchange terms S.
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5.1.2 The high order Runge-Kutta time discretization

Based on the two-dimensional semi-discrete Lagrangian scheme (5.5), combined with the

first-order explicit Euler forward time discretization method, we have the following first-

order explicit scheme

U
n+1

j,k |In+1
j,k | −U

n

j,k|Inj,k| =∆t

∫

∂In
j,k

[
−F̂(Un,in,Un,ex,n) + Ĝ(Un,n)

]
dl

+∆t

∫

In
j,k

[
−Ñ(Un,Un,in,Un,ex,n) + S(Un,n)

]
dxdy

:=∆tL(Uj,k)

(5.10)

where we denote L(Uj,k) as the spatial operator. Then, combined with the third order strong

stability-preserving Runge-Kutta (SSP-RK) time discretization method [23, 18], we have the

following two-dimensional high order explicit Lagrangian formulation,

Stage 1,

x
(1)

j+ 1

2
,k+ 1

2

= xn
j+ 1

2
,k+ 1

2

+∆tun
j+ 1

2
,k+ 1

2

,

y
(1)

j+ 1

2
,k+ 1

2

= yn
j+ 1

2
,k+ 1

2

+∆tvn
j+ 1

2
,k+ 1

2

,

U
(1)

j,k|I
(1)
j,k | = U

n

j,k|Inj,k|+∆tL(U
n

j,k); (5.11)

Stage 2,

x
(2)

j+ 1

2
,k+ 1

2

= x
(1)

j+ 1

2
,k+ 1

2

+
1

4
∆t

[
−3un

j+ 1

2
,k+ 1

2

+ u
(1)

j+ 1

2
,k+ 1

2

]
,

y
(2)

j+ 1

2
,k+ 1

2

= y
(1)

j+ 1

2
,k+ 1

2

+
1

4
∆t

[
−3vn

j+ 1

2
,k+ 1

2

+ v
(1)

j+ 1

2
,k+ 1

2

]
,

U
(2)

j,k |I
(2)
j,k | = U

(1)

j,k |I
(1)
j,k |+

1

4
∆t

[
−3L(U

n

j,k) + L(U
(1)

j,k)
]
; (5.12)

Stage 3,

xn+1
j+ 1

2
,k+ 1

2

= xn
j+ 1

2
,k+ 1

2

+
1

6
∆t

[
un
j+ 1

2
,k+ 1

2

+ u
(1)

j+ 1

2
,k+ 1

2

+ 4u
(2)

j+ 1

2
,k+ 1

2

]
,

yn+1
j+ 1

2
,k+ 1

2

= yn
j+ 1

2
,k+ 1

2

+
1

6
∆t

[
vn
j+ 1

2
,k+ 1

2

+ v
(1)

j+ 1

2
,k+ 1

2

+ 4v
(2)

j+ 1

2
,k+ 1

2

]
,

U
n+1

j,k |In+1
j,k | = U

n

j,k|Inj,k|+
1

6
∆t

[
L(U

n

j,k) + L(U
(1)

j,k) + 4L(U
(2)

j,k)
]
. (5.13)

In the next section, we will verify this two-dimensional Lagrangian scheme is high order

accurate and non-oscillatory.
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6 Numerical results

In this section, we perform some numerical experiments on our third order explicit La-

grangian schemes solving the 3-T RH equations (2.6) which is equivalent to (2.1). Purely

Lagrangian computation are used to do all the following tests. The radiation constant a is

taken to be 1 unless otherwise stated. The reference solutions for the following discontinuous

problems are obtained by grid-refinement converged numerical solutions by the same scheme

and are referred to as the “converged solutions”.

6.1 The accuracy test

First we develop a manufactured solution to the system (2.1) to test the accuracy of our

schemes. We add a source term s = (s1, s2, s3, s4, s5)
T to the right hand side of (2.1) such

that a given vector U(x) is a solution of the system (2.1). To be specific, we will solve the

following equations,




∂tρ+ ∂xρu = s1
∂tρu+ ∂x(ρu

2 + pe + pi + pr) = s2
∂tEe + ∂x((Ee + pe)u)− 1

3
u∂x(2pe − pi − pr) = ∂x(κe∂xTe)− ωei(Te − Ti)− ωer(T

4
e − T 4

r ) + s3
∂tEi + ∂x((Ei + pi)u)− 1

3
u∂x(2pi − pe − pr) = ∂x(κi∂xTi) + ωei(Te − Ti) + s4

∂tEr + ∂x((Er + pr)u)− 1
3
u∂x(2pr − pe − pi) = ∂x(κr∂xT

4
r ) + ωer(T

4
e − T 4

r ) + s5.
(6.1)

It has the following exact solutions,




ρ(x, t) = 1 + 0.5 sin(x+ t)
u(x, t) = 2 + cos(x+ t)
ρee(x, t) = b1(1 + b2 cos(x+ t))
ρei(x, t) = b1(1 + b2 sin(x+ t))
ρer(x, t) = b3(1 + b4 cos(x+ t))

, (6.2)

where γe = γi =
5
3
. wei = wer = 1. κe = κi = κr = 1. In this test, the initial computational

domain is [0, 2π]. The initial condition is obtained by (6.2) with t = 0. The periodic

boundary condition is applied.

We test the problem with b1 = 3, b2 = 0.2, b3 = 2, b4 = 0.1. Tables 6.1 shows the errors

and orders for the our third order Lagrangian scheme. In the table, we observe that the

scheme achieves third order accuracy both in L1 and L∞ norms for all the variables we solve.

6.2 The non-oscillatory tests

In some of the following tests, to minimize the effect of the boundary condition, we dupli-

cate the wave symmetrically and extend it periodically so that we could apply the periodic

boundary conditions at the boundaries.
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Table 6.1: Errors and orders for the accuracy test performed by the one-dimensional third
order Lagrangian scheme solving one-dimensional 3-T RH equations (2.6) at t = 1

N L ρ k ρu k Ee k Ei k Er k
40 L1 7.37E-4 3.28E-3 3.78E-3 4.55E-3 6.47E-3

L∞ 3.65E-3 1.99E-2 2.08E-2 2.54E-2 1.91E-2
80 L1 4.83E-5 3.93 1.99E-4 4.05 2.09E-4 4.18 2.47E-4 4.20 3.96E-4 4.03

L∞ 1.25E-4 4.87 2.04E-3 3.29 1.59E-3 3.70 1.54E-3 4.04 1.72E-3 3.48
160 L1 6.56E-6 2.88 1.41E-5 3.82 1.65E-5 3.67 2.65E-5 3.22 3.56E-5 3.47

L∞ 1.49E-5 3.07 1.04E-4 4.29 9.32E-5 4.09 5.75E-5 4.74 1.10E-4 3.97
320 L1 8.04E-7 3.03 1.28E-6 3.46 1.90E-6 3.12 3.20E-6 3.05 4.03E-6 3.14

L∞ 1.88E-6 2.99 3.23E-6 5.01 6.26E-6 3.90 6.88E-6 3.06 1.26E-5 3.13
640 L1 1.02E-7 2.98 1.51E-7 3.09 2.37E-7 3.00 3.63E-7 3.14 4.50E-7 3.16

L∞ 2.36E-7 3.00 4.19E-7 2.95 7.66E-7 3.03 7.39E-7 3.22 1.52E-6 3.05

Example 1 (The 3-T double Lax radiative shock tube problem).

We first consider a one-dimensional double Lax shock tube problem with the initial

computational domain [-10, 30]. The initial condition is





ρ = 0.445, u = 0.698, pe = pi = pr = 1.176, −10 ≤ x ≤ 0
ρ = 0.5, u = 0, pe = pi = pr = 0.19, 0 ≤ x ≤ 20
ρ = 0.445, u = 0.698, pe = pi = pr = 1.176, 20 ≤ x ≤ 30

(6.3)

γe = γi =
5
3
. The periodic boundary condition is applied. The results of our third order

Lagrangian scheme with 200 initially uniform cells compared with the converged solution at

t = 1 are shown in Figure 6.1-6.2. In Figure 6.1, we give the numerical results of ρ, u, Te, Ti, Tr

obtained by our third order Lagrangian scheme solving the 3-T RH equations (2.6) with

wei = wer = 0 and κe = κi = κr = 0, which demonstrate that the magnitude and the

position of the shocks are consistent with the converged solution well, there is no oscillation

near the shocks. In Figure 6.2, we present the numerical results of our third order Lagrangian

scheme solving the fully 3-T RH equations (2.6) with wei = wer = 1 and κe = κi = κr = 1,

where we observe that the solution is more smooth due to the effects of diffusion. The

electron, ion and radiation have different temperatures at the final time due to the effect of

energy exchange.

Example 2 (The 3-T RH problem of double two-interacting blast waves).
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Figure 6.1: The numerical results of Example 1 with 200 cells against the converged solution
at t = 1 by using the third order Lagrangian scheme solving the 3-T RH equations (2.6)
without the diffusion and energy-exchange terms. Left and Top: density, Right and Top:
velocity, Left and Bottom: electron temperature, Middle and Bottom: ion temperature,
Right and Bottom: radiation temperature.
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Figure 6.2: The results of Example 1 with 200 cells against the converged solution at t = 1
by using the third order Lagrangian scheme solving the fully 3-T RH equations (2.6). Left
and Top: density, Right and Top: velocity, Left and Bottom: electron temperature, Middle
and Bottom: ion temperature, Right and Bottom: radiation temperature.
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Figure 6.3: The results of Example 2 with 400 cells against the converged solution at t =
0.038 by using the third order Lagrangian scheme solving the 3-T RH equations (2.6). Left
and Top: density, Right and Top: velocity, Left and Bottom: electron temperature, Middle
and Bottom: ion temperature, Right and Bottom: radiation temperature.

For this problem, the initial condition is

ρ = 1, u = 0, p =





1000, 0 ≤ x ≤ 0.1
0.01, 0.1 ≤ x ≤ 0.9
100, 0.9 ≤ x ≤ 1.1
0.01, 1.1 ≤ x ≤ 1.9
1000, 1.9 ≤ x ≤ 2

, pe = pi = pr =
1

3
p. (6.4)

The initial computational domain is [0, 2]. γe = γi = 1.4. wei = wer = 0. κe = κi =

0.01, κr = 0.001. The periodic boundary condition is applied. The results of our third order

explicit Lagrangian scheme solving the 3-T RH equations (2.6) with 400 initially uniform

cells compared with the converged solution at t = 0.038 are shown in Figure 6.3. We can see

the very satisfactory resolution and non-oscillation in the results of high order Lagrangian

scheme.

Example 3 (The 3-T radiative shock tube problem involving two rarefaction waves).

This shock tube problem involves two rarefaction waves moving towards the opposite
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Figure 6.4: The results of Example 3 with the different κe, κi, κr at t = 0.2 by using the
third order schemes solving the 3-T RH equations (2.6) with 400 cells. Left and Top: density,
Right and Top: velocity, Left and Bottom: electron temperature, Middle and Bottom: ion
temperature, Right and Bottom: radiation temperature.

directions. Its initial condition is
{

ρ = 1, u = −1, pe = pi = pr = 0.333333, −2 ≤ x ≤ 0
ρ = 1, u = 1, pe = pi = pr = 0.333333, 0 ≤ x ≤ 2

(6.5)

γe = γi =
5
3
. wei = wer = 0. The Dirichlet boundary condition is applied at the boundaries.

For this problem, we test the problem containing the diffusion terms with κe = κi = κr =

0, 0.1, 0.5, 1 respectively. Figure 6.4 shows the results of our third order Lagrangian scheme

by using 400 cells at t = 0.2. We observe that the diffusion effect is more severe as κe, κi, κr

increases, which is quite reasonable with the common sense in physics.

Example 4 (The Shu-Osher 3-T RH problem).

For this problem, the initial condition is

{
ρ = 3.857143, u = 2.629369, pe = pi = pr = 3.444444, −10 ≤ x ≤ −4
ρ = 1 + ǫ sin kx, u = 0, pe = pi = pr = 0.333333, −4 ≤ x ≤ 15

(6.6)

where ǫ and k are the amplitude and wave number of the entropy wave. In our test, we

take ǫ = 0.2, k = 5. γe = γi = 1.4. wei = 1, wer = 0.01. κe = κi = κr = 0.01. The
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Figure 6.5: The results of Example 4 with 400 cells against the converged solution at t = 1.8
by using the first order and third order Lagrangian scheme solving the 3-T RH equations
(2.6) respectively. Left and Top: density, Right and Top: velocity, Left and Bottom: electron
temperature, Middle and Bottom: ion temperature, Right and Bottom: radiation tempera-
ture.

Dirichlet boundary condition is applied at the boundaries. The final time is t = 1.8. This

problem is very suitable for testing the advantage of a high order scheme when the solution

contains both shocks and complex smooth structures. The comparison results of our first

and third order explicit Lagrangian scheme solving (2.6) with 400 initially uniform cells

compared with the converged solution at t = 1.8 are shown in Figure 6.5. We observe that

the third order scheme can capture the fine structure in the profiles of ρ, u, Te, Ti, Tr much

better than the first order scheme, which verifies the advantage of the high order scheme.

Meanwhile, we observe some overshoots in the figures of ρ, Te, Ti. Such overshoots are caused

by the Lagrangian framework rather than by the high order WENO reconstruction, since

this phenomenon appears and even is more severe in the first order Lagrangian scheme. This

issue has been illustrated in our previous paper [7].

Example 5 (The steady-state 3-T radiative shock problem).

In [20], Johnson and Klein obtained a series of steady-state solutions for 3-T radiative

shocks by using the relaxation-based approach. In the model they investigated, both electron
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Figure 6.6: The results of Example 5 with 150 cells against the converged solution by using
the third order Lagrangian scheme solving the 3-T RH equations (2.6). Left and Top: density,
Right and Top: velocity, Left and Bottom: electron temperature, Middle and Bottom: ion
temperature, Right and Bottom: radiation temperature.

and ion conduction are included, as well as ion viscosity. Here we test a similar 3-T radiative

shock problem, in which the ion viscosity is not considered. The initial condition for the

case with the Mach number M = 1.423025 is as follows,

{
ρ = 40, u = 3, Te = Ti = Tr = 2, −1 ≤ x ≤ 0
ρ = 64.477616, u = 1.861111, Te = Ti = Tr = 2.83044, 0 ≤ x ≤ 0.5

(6.7)

γe = γi = 5
3
. cve = cvi = 1. a = 0.01372. wei = 6000, wer = 411.320038. κe = 10−2,

κi = 10−5, κr = 0.2. The Dirichlet boundary condition is used at the boundaries. Figure 6.6

shows the steady state solution given by our third order Lagrangian scheme with 150 initially

uniform cells. By comparison, we observe that our scheme can produce the non-oscillatory

and high-resolution solution for this kind of 3-T radiation shock problems.

Example 6 (The multi-material 3-T radiative shock tube problem).

Last we consider a one-dimensional multi-material 3-T radiative shock tube problem.
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Figure 6.7: The results of Example 6 with 200 cells against the converged solution at t = 1.5
by using the third order Lagrangian scheme solving the 3-T RH equations (2.6). Left and
Top: density, Right and Top: velocity, Left and Bottom: electron temperature, Middle and
Bottom: ion temperature, Right and Bottom: radiation temperature.

The initial condition is




ρ = 1, u = 0, pe = pi = pr = 0.333333, γe = γi =
7
5
, −5 ≤ x ≤ 0

ρ = 0.125, u = 0, pe = pi = pr = 0.033333, γe = γi =
5
3
, 0 ≤ x ≤ 10

ρ = 1, u = 0, pe = pi = pr = 0.333333, γe = γi =
7
5
, 10 ≤ x ≤ 15

(6.8)

The initial computational domain is [-5,15]. wei = 10, wer = 1. κe = κi = κr = 2. The

periodic boundary condition is applied. The results of our third order Lagrangian scheme

with 200 initially uniform cells compared with the converged solution at t = 1.5 are shown

in Figure 6.7. In the figures, we can see that the interface is very sharp and there is no

oscillation near the interface, which verifies the advantage of the Lagrangian scheme and the

capability of our scheme to treat multi-material problems.

6.3 The two-dimensional accuracy test

Next, we test the accuracy of our two-dimensional Lagrangian schemes for the system (5.1).

In order to obtain the exact solution, an artificial source term is added to the right hand

side of (5.1).
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First, we take the velocities as constants u = v = 1, and the exact solutions follow as,




ρ(x, y, t) = 1 + 0.5 sin(x+ y − 2t)
u(x, y, t) = v(x, y, t) = 1
ρee(x, y, t) = b1(1 + b2 sin(x+ y − 2t))
ρei(x, y, t) = b1(1 + b2 cos(x+ y − 2t))
ρer(x, y, t) = b3(1 + b4 sin(x+ y − 2t))

, (6.9)

where γe = γi =
5
3
. wei = wer = 0. κe = κi = κr = 0. b1 = 3, b2 = 0.2, b3 = 2, b4 = 0.1.

The initial computational domain is [0, 2π]× [0, 2π], and be uniformly divided into Nx ×Ny

rectangular cells. The periodic boundary condition is applied.

Table 6.2 shows the errors and orders for our two-dimensional third order Lagrangian

scheme under different mesh sizes Nx = Ny = 40, 80, 120, 160, 200. In this table, we observe

that the scheme achieves third order accuracy which verifies our spatial discretization and

time discretization are both high order accurate. But taking u = v = 1 is too special which

means that the meshes are only moving without any change in the cell shapes and sizes,

hence higher order accuracy is observed.

Table 6.2: Errors and orders for the accuracy test performed by the two-dimensional high-
order Lagrangian scheme solving the two-dimensional 3-T RH equations (5.1) at time t = 0.1
with the exact solutions (6.9).

Nx L ρ k ρu k Ee k Ei k Er k
40 L1 2.59E-4 2.62E-4 5.02E-4 4.16E-4 2.34E-4

L∞ 8.02E-4 8.10E-4 1.34E-3 1.31E-3 6.80E-4
80 L1 3.23E-5 3.00 3.26E-5 3.01 6.34E-5 2.98 5.18E-5 3.01 3.05E-5 2.94

L∞ 1.01E-4 2.99 1.02E-4 3.00 1.70E-4 2.98 1.69E-4 2.96 8.77E-5 2.95
120 L1 9.56E-6 3.00 9.65E-6 3.00 1.92E-5 2.95 1.55E-5 2.98 9.49E-6 2.88

L∞ 2.99E-5 3.00 3.01E-5 3.00 5.24E-5 2.91 5.16E-5 2.93 2.68E-5 2.93
160 L1 4.03E-6 3.00 4.07E-6 3.00 8.32E-6 2.91 6.67E-6 2.93 4.20E-6 2.83

L∞ 1.26E-5 3.00 1.27E-5 3.00 2.30E-5 2.87 2.24E-5 2.90 1.16E-5 2.90
200 L1 2.06E-6 3.00 2.08E-6 3.00 4.39E-6 2.86 3.51E-6 2.87 2.26E-6 2.79

L∞ 6.46E-6 3.00 6.49E-6 3.00 1.22E-5 2.84 1.18E-5 2.87 6.14E-6 2.87

Then, we take the velocities as the cosine function u = v = 2 + cos(x+ y − 2t), and the

exact solutions follow as,




ρ(x, y, t) = 1 + 0.5 sin(x+ y − 2t)
u(x, y, t) = v(x, y, t) = 2 + cos(x+ y − 2t)
ρee(x, y, t) = b1(1 + b2 sin(x+ y − 2t))
ρei(x, y, t) = b1(1 + b2 cos(x+ y − 2t))
ρer(x, y, t) = b3(1 + b4 sin(x+ y − 2t))

. (6.10)

where γe = γi =
5
3
. wei = wer = 0.1. κe = κi = κr = 0.5. b1 = 3, b2 = 0.2, b3 = 2, b4 = 0.1.

The initial computational domain and boundary condition are as same as the previous case.
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Table 6.3 shows the errors and orders and we observe our two-dimensional Lagrangian scheme

achieves second-order accuracy with the cosine velocities. This is expected as we are using

a pure Lagrangian scheme with straight-line edged cells, hence the order of accuracy is

restricted to two regardless of the orders of reconstruction and time discretization [8]. Curved

cells or arbitrary Lagrangian-Eulerian (ALE) methods must be used to achieve higher than

second order accuracy in 2D, which will be studied in the future.

Table 6.3: Errors and orders for the accuracy test performed by the two-dimensional high-
order Lagrangian scheme solving the two-dimensional 3-T RH equations (5.1) at time t = 0.1
with the exact solutions (6.10).

Nx L ρ k ρu k Ee k Ei k Er k
40 L1 1.39E-3 3.01E-3 6.92E-3 6.35E-3 4.79E-3

L∞ 2.99E-3 9.31E-3 1.78E-2 1.78E-2 1.50E-2
80 L1 3.35E-4 2.05 6.66E-4 2.18 1.64E-3 2.08 1.53E-3 2.05 1.10E-3 2.12

L∞ 7.08E-4 2.08 1.84E-3 2.34 3.57E-3 2.32 3.51E-3 2.34 2.88E-3 2.38
120 L1 1.47E-4 2.03 2.89E-4 2.06 7.14E-4 2.05 6.70E-4 2.04 4.77E-4 2.07

L∞ 3.08E-4 2.06 7.61E-4 2.18 1.48E-3 2.17 1.43E-3 2.21 1.17E-3 2.22
160 L1 8.23E-5 2.03 1.61E-4 2.04 3.97E-4 2.05 3.74E-4 2.03 2.63E-4 2.07

L∞ 1.71E-4 2.04 4.11E-4 2.14 8.04E-4 2.12 8.38E-4 1.87 6.28E-4 2.16
200 L1 5.24E-5 2.02 1.02E-4 2.05 2.51E-4 2.05 2.37E-4 2.04 1.65E-4 2.08

L∞ 1.09E-4 2.03 2.56E-4 2.13 5.25E-4 1.91 5.54E-4 1.85 4.12E-4 1.89

6.4 The two-dimensional non-oscillatory test

We consider the two-dimensional 3-T double Lax radiative shock tube problem on a quarter

of the circular domain 0 ≤ R ≤ 40 with the initial condition as




ρ = 0.5, uR = 0, pe = pi = pr = 0.19, 0 ≤ R ≤ 10,
ρ = 0.445, uR = 0.698, pe = pi = pr = 1.176, 10 ≤ R ≤ 30,
ρ = 0.5, uR = 0, pe = pi = pr = 0.19, 30 ≤ R ≤ 40,

(6.11)

where γe = γi = 5
3
and uR is the radial velocity. The symmetric boundary condition is

applied.

In Figure 6.8, we show the computational meshes with 200 × 10 cells and wei = wer =

0, κe = κi = κr = 0 at time t = 0 and t = 1. We show the contours of density, electron

temperature, ion temperature and radiation temperature in Figure 6.9 with wei = wer =

0, κe = κi = κr = 0 and Figure 6.10 with wei = wer = 0.1, κe = κi = κr = 0.5 on the

400 × 10 mesh respectively. The radial cuts of the results with 200 × 10 and 400× 10 cells

compared with the converged solution at t = 1 are shown in Figure 6.11 and Figure 6.12.

From these results, we observe the positions of the contacts and shocks obtained by our two-

dimensional high order Lagrangian scheme consist with the converged solution well, which
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(a) t = 0 (b) t = 1

Figure 6.8: Computational meshes of the non-oscillation test at different time with 200× 10
cells and wei = wer = 0, κe = κi = κr = 0.

verifies the advantage of the Lagrangian scheme. Based on the WENO reconstruction, there

is no oscillation near the contacts and shocks.

7 Concluding remarks

In this paper, we discuss the methodology to construct a class of high order conservative

Lagrangian schemes for one and two dimensional three-temperature (3-T) radiation hydro-

dynamics (RH) equations. The 3-T RH equations contain the nonlinear advection, diffusion

and relaxation terms which have different scales. Due to the nonconservative form of the

(a) density (b) electron temperature (c) ion temperature (d) radiation temperature

Figure 6.9: Contours of the two-dimensional non-oscillatory test with 400× 10 cells at t = 1
by using the 2D high order Lagrangian scheme solving the 3-T RH equations (5.1) with
wei = wer = 0, κe = κi = κr = 0.
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(a) density (b) electron temperature (c) ion temperature (d) radiation temperature

Figure 6.10: Contours of the two-dimensional non-oscillatory test with 400 × 10 cells at
t = 1 by using the 2D high order Lagrangian scheme solving the 3-T RH equations (5.1)
with wei = wer = 0.1, κe = κi = κr = 0.2.

3-T RH equations, it is difficult to design a high order and conservative scheme. In fact,

there has been rare discussion on this topic in the literature so far. In order to design a

Lagrangian scheme with both high order accuracy and the conservative property, we intro-

duce three new energy variables, in the form of which the three energy equations of 3-T

RH equations are rewritten. Based on the multi-resolution WENO reconstruction and the

strong stability preserving (SSP) high order time discretizations, as an example, we design a

class of conservative Lagrangian schemes with third order accuracy both in space and time.

The methodology could be extended to arbitrary accuracy. We also develop an approximate

HLLC Riemann solver for the Lagrangian scheme solving the 3-T RH equations which could

be used to determine the numerical flux of the conservative advection terms in the equa-

tions. Furthermore, we prove the positivity-preserving property of a class of first order and

high order Lagrangian schemes based on the above HLLC flux to solve the one-dimensional

3-T RH equations which only contain the conservative advection terms in space. The global

positivity of the scheme is not guaranteed because the discretizations of the non-conservative

terms, diffusion terms, and energy exchange terms have not been taken into consideration,

which needs to be further investigated. Various numerical tests are given to verify the desired

properties of the high order Lagrangian schemes such as high order accuracy, non-oscillation,

conservation and adaptation to the multi-material problems. Preliminary extension to the

two dimensional case is also considered. The design of the implicit high order conserva-

tive Lagrangian scheme, and more studies on the extension of the high order conservative

Lagrangian schemes to multi-dimensional 3T RH equations, constitute our future work.
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(a) density (b) electron temperature

(c) ion temperature (d) radiation temperature

Figure 6.11: Radial cuts of the two-dimensional non-oscillatory test with 200×10 and 400×10
cells against the converged solution at t = 1 by using the 2D high order Lagrangian scheme
solving the 3-T RH equations (5.1) with wei = wer = 0, κe = κi = κr = 0.
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(a) density (b) electron temperature

(c) ion temperature (d) radiation temperature

Figure 6.12: Radial cuts of the two-dimensional non-oscillatory test with 200×10 and 400×10
cells against the converged solution at t = 1 by using the 2D high order Lagrangian scheme
solving the 3-T RH equations (5.1) with wei = wer = 0.1, κe = κi = κr = 0.2.
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