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Abstract

The three-temperature (3-T) radiation hydrodynamics (RH) equations are widely
used in modeling various optically thick high-energy-density-physics environments,
such as those in astrophysics and inertial confinement fusion (ICF). In this paper,
we will discuss the methodology to construct a high order conservative Lagrangian
scheme solving 3-T RH equations. Specifically, the three new energy variables are de-
fined first, in the form of which the three energy equations of the 3-T RH equations are
rewritten. The main advantage of this formulation is that it facilitates the design of
a scheme with both conservative property and arbitrary high order accuracy. Starting
from one dimension and based on the multi-resolution WENO reconstruction and the
strong stability preserving (SSP) high order time discretizations, taken as an example,
we design a third order conservative Lagrangian scheme both in space and time. To
determine the numerical flux for the conservative advection terms in the 3-T RH equa-
tions, we propose a HLLC numerical flux which is derived from the divergence theorem
rigorously and is suitable for multi-material problems with the ideal-gas equations of
state. After that, we discuss how to design a class of high order positivity-preserving
explicit Lagrangian schemes to solve the 3-T RH equations which only contain the
conservative advection terms in space. Preliminary extension to the two dimensional
case is also considered. Finally, various numerical tests are given to verify the de-
sired properties of the high order Lagrangian schemes such as high order accuracy,
non-oscillation, conservation and adaptation to multi-material problems.
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1 Introduction

In astrophysics and inertial confinement fusion (ICF) and some other high-energy-density-
physics fields, there is the phenomenon of the interaction between radiation and plasmas,
called radiation hydrodynamics (RH). High-energy-density plasmas contain electrons and
ions. The electrons and ions usually have different temperatures since the ions are preheated
by shock waves, the electrons are preheated or cooled through the interaction with the
radiation field etc. In the optically thick limit, radiation can also be described by its own
temperature. Thus, in this case, there are three temperatures to describe the electron, ion
and radiation respectively. The evolution of the interaction between radiation and plasmas
can be governed by the three-temperature (3-T) radiation hydrodynamics (RH) equations.
The 3-T RH equations are widely used in modeling various optically thick high-energy-
density-physics environments [3, 13, 22].

The 3-T RH equations consist of the advection, diffusion and energy-exchange terms
which are highly nonlinear and tightly coupled. The terms also possess multiple scales.
Moreover, in the fields such as astrophysics and ICF, the RH equations usually describe the
interaction between radiation and multi-material matter, where accurate calculation of the
material interfaces is critical. The 3-T RH equations are widely adopted in many astrophysics
and ICF codes such as CRASH, FLASH and RAGE [19, 16, 17].

The 3-T RH system is of a nonconservative form (see (2.1)), which brings much difficulty
to the design of a good numerical method to solve it. In fact, solving the nonconservative
hyperbolic system is a delicate job due to the definition of weak admissible solutions. It has
been demonstrated by Abgrall and Karni [1] that those numerical schemes designed to solve
the nonconservative hyperbolic equations directly may fail to converge to the right solutions.
Only when the partial differential equations (PDEs) are written in the conservative form,
can we easily design a scheme which could keep the conservation. By the Lax-Wendroff
theorem, we know that the conservative property is a very critical issue for the numerical
method solving the advection-dominated PDEs such as the 3-T RH equations, since only the
result of a conservative numerical method can be trusted to converge to the weak solution
of the PDEs, which could guarantee the correct speed of discontinuities such as shocks and
contacts.

There are some pioneering works on designing conservative schemes solving the RH equa-
tions in the nonconservative form in the literature. In [28], by solving the equations of total
energy and electron energy directly, the authors proposed a conservative numerical scheme
for the two-temperature nonequilibrium model so that it could avoid the solution with non-

physical shocks. In [4], the authors presented an arbitrary Lagrangian Eulerian (ALE)



method to simulate multi-material fluid flows on a two-temperature (ion and electron) hy-
drodynamics model. In order to preserve the conservation, the total energy equation is
solved at the Lagrangian step. In [9], by the establishment of an equivalency relationship
between the discretizations of the equations in the forms of the total energy and of the
internal energy, the cell-centered conservative Lagrangian schemes were designed to solve
one and multiple nonconservative internal energy equations directly. In [25, 6], the authors
followed the idea proposed by Abgrall in [2] and employed a structure-preserving strategy on
the two-temperature and three-temperature RH models respectively, which is based on the
key concept that mathematical structures associated with conservative and nonconservative
equations are preserved, even at the discrete level. The proposed schemes maintain global
conservation errors within the round-off level. Although the above mentioned schemes can
keep the conservation, their accuracy is at most second order, and it is very difficult to
generalize them to higher order accuracy (especially higher order in time). Even though
ample progress has been made, the design of conservative schemes for shock solutions to
nonconservative systems and their numerical analysis are far from complete.

The investigation of numerical methods on the three-temperature nonequilibrium models
has become an active research topic in recent years. There are several literatures focusing
on the discretization of the 3-T diffusion equations, for example, in [14], the authors built a
convex combination-based scheme which unconditionally satisfies a maximum principle, at
each sub-iteration of the non-linear iterative process. For the more complicated fully 3-T
RH equations (2.1), there are much less discussion on their numerical methods. In [26, 27],
a 3-T, unstructured-grid, non-equilibrium RH code was developed for the simulation of
intense thermal radiation or high-power laser driven radiative shock hydrodynamics in two-
dimensional (2D) axis-symmetric geometries based on the Lagrangian method. In [6], a first
order positivity-preserving, conservative and entropy-stable numerical scheme was presented
for the 3-T RH model. In [15], the numerical comparisons between three simulation codes
solving 3-T RH models were given. In summary, all the above mentioned methods for the 3-
T radiative diffusion and radiation hydrodynamics models are at most second order accurate
in space and time.

In this paper, we will discuss the methodology to construct a high order conservative
Lagrangian scheme solving one dimensional 3-T RH equations (2.1). We will also briefly
discuss the extension to two dimensions. To be specific, we first define three new energy
variables and rewrite the three energy equations in the 3-T RH equations (2.1) in the form
of these variables. In the new form of the 3-T RH equations, we can easily design a conser-
vative Lagrangian scheme. Besides the maintenance of the conservative property, the major

advantage of this approach is that the scheme can be easily designed to arbitrary high order



accuracy both in space and time. In this paper, based on the multi-resolution WENO recon-
struction [30] and the strong stability preserving (SSP) or total variation diminishing (TVD)
high order time discretizations [23, 18], taking as an example, we design a third order con-
servative Lagrangian schemes both in space and time. To solve the conservative advection
terms of 3-T RH equations, we further propose a HLLC numerical flux which is derived from
the divergence theorem rigorously and is applicable for the multi-material problems with
the ideal-gas equations of state. After that, we discuss how to design a class of high order
positivity-preserving explicit Lagrangian schemes to solve the 3-T RH equations which only
contain the conservative advection terms in space. Then, we extend our one-dimensional
high order Lagrangian scheme to the two-dimensional case. Finally various numerical tests
are given to verify the desired properties of the high order Lagrangian schemes such as high
order accuracy, non-oscillation, conservation and adaptation to multi-material problems.
An outline of the rest of this paper is as follows. In Section 2, we rewrite the system
to facilitate the design of conservative schemes, and document the Jacobian and its eigen
values and eigen vectors to establish hyperbolicity of the convection terms and to help in
local characteristic decompositions needed for high order schemes. In Section 3, we describe
a third order explicit Lagrangian scheme solving the 1D 3-T RH equations. In Section 4, we
discuss the issue of positivity-preserving for the high order Lagrangian scheme. In Section
5, we briefly discuss the two-dimensional high order Lagrangian scheme for the 2D 3-T RH
equations. In Section 6, several numerical examples are given to verify the performance of

the new Lagrangian schemes. In Section 7 we will give concluding remarks.
2 One dimensional three temperature radiation hydro-
dynamics equations

We consider the three-temperature radiation hydrodynamics equations, which has the fol-

lowing form in one dimensional Cartesian coordinate,

Op + Oppu =0
Orpu + Oy (pu? + pe + pi +pr) =0
Orpee + Oppects + POyt = Oy (Ke0yTy) — Wei (T — T) — wer (T = TH) . (2.1)

Oype; + Oppeiu + pi0yu = 0y (K0, 1) + wei(Te — T;)
Orpe, + Oppe,t + pr0yu = O (K0, TH) + wWep (T — TH)

Here, p is the density, u is the velocity. {ee,e; e .}, {pe,pi,p-} and {T.,T;, T,} are the
specific internal energy, pressure and temperature for electron, ion and radiation respectively.
{Ke, Ki, K, } are the conduction coefficients of electron, ion, and radiation respectively. we;, Wer

are the energy-exchange coefficients between electron and ion, and between electron and



radiation respectively. The system (2.1) represents the conservation of mass, momentum
and total energy, where the total energy is defined as E = p(e. + ¢; + e,) + %puz. The
three specific internal energies are related to the corresponding temperatures as e, = aT*/p,
€. = T, and e; = ¢, T;, where a is the radiation constant, c,. and c¢,; are the heat capacity
at constant volume of electron and ion respectively.

The set of equations needs to be completed by the addition of the matter’s equations of

state (EOS) with the following general form,

pe = p(p; €e), pi = p(p,ei). (2.2)

Especially, if we consider the vy-law gas, then the equations of state (EOS) have the following

simpler form,
Pe = (e — 1)pee, pi = (i — 1)pe, (2.3)

where 7., 7; are the constants representing the ratio of specific heat capacities of the electron
and ion respectively. The “EOS” for radiation is given simply as p, = %per. In order to
present the formulation of the eigenvalues and eigenvectors for the advection terms of (2.1)

in a more symmetric way, we rewrite p, in the similar form as p., p;, that is,

Dr = (7r - 1)/061" (24)

4
3
Notice that the last three energy equations in the system (2.1) are written in the non-

where 7, =

conservative form, which brings much difficulty to the design of a conservative numerical
method. To facilitate the design of high order Lagrangian schemes which could keep the
conservation of mass, momentum and total energy, we introduce the following new “energy”

variables,

1 1 1
E, = pe. + gpuz, E; = pe; + épUQ, E, = pe, + gpuz, (2.5)

and then the system (2.1) can be rewritten as follows,

Op + Ozpu =0

Orpu + Oy (pu? + pe + pi +p,) = 0

atEe + ax((Ee +pe)u) - %uam(Qpe —Di — pr) = am(ﬁeazTe) - wei(Te - T‘z) - Wer(TYe4 - T;L)

atEi + az((Ez + pz)u) - %uam(2pz — De — pr) = aa:(/izaa:j‘z) + wei(Te - T;)

atEr + ax((Er +pr)u) - %uax(Qpr — De — pz) = az(ﬁraxT;l) + wer(Tél - T;l)

(2.6)

We observe that the total energy is given by £ = E. + E; + E,. = pe. + pe; + pe, + %puZ,
and the left-hand sides of the last three equations in (2.6) are in conservation form except

for the pressure differential convection terms.



We first consider the left hand side terms of the system (2.6) and rewrite them in the

following form,

ou ou
+A— =0 2.7
ot Oz (2.7)
where U = (p, pu, E., E;, E,)T.
If the ideal EOS (2.3) is considered, then the Jacobian matrix A related to the advection

terms is as follows,

0 1 0 0 0
(retvityr—9)u? _ Oetrityr=9u YVe—1 ~v—1 ~.—1
6 3 & 7 T
A= —veeu+ (Qet7itr=6), 3 Ve _ COetyitw)=9), 2 (e+2),  (i=D, (=1,
eCe 18 eCe 18 3 3
e+ (Yet+yityr— 6)u3 viei — (2 (78+72+7T> 9)u2 (%*Uu (%+2)u (erl)u
(2 1~ 18
ey B0 s Gl 0y el Gl G,
(2.8)
The matrix A has five eigenvalues as
{u — cq, u,u,u,u+ cs} (2.9)
where ¢, is the sound speed given by
\/% Ye ee + ’71(72 1)62 + 77“(’77’ - ]-)67“' (210)

We can see that all the above eigenvalues are real, which means the left hand side of the

system (2.1) is hyperbolic. Denote

G=Y+%+%n—3 ge=7%—L g=vn-1, g =7%—-1,

then the right eigenvectors of the matrix A are given as

1 1 1
U — Cg U U
Rl(U) = Ve€e + %u2 - %UCS >R2(U) = %g_zu2 aRB(U) = —Gr )
e+ gl = g o s
Yr€r + %uz - éucs —Gi Je
1 1
U U+ Cg
R,(U) = i JR5(U) = | veee + 1u + ucs
l;ge2 Yi€; + 1u2 + ucs
g, U Vrer + U+ ucs

Denote
H, = 6gigr(7i€i — yrer) + Yegreeu?,
Hi = 69697’(77"67" - 'Veee) + 'Yz‘gteiUQ, (2 11)
Hr - 69692‘(7666 - ’7261) + Vrgteru2> ’
b= gt(36gegigr + gtu4)cga
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then the left eigenvectors of the matrix A can be written in the following form,

2 2
Je _ geu? _ gegru 9229
(He — ucs)

u(gyu + 6¢y) " 6c2 » b L
e edtU
1 —2(gtu+303) 3_% + b (He —u Cs)
Ll(U) = ?62 6g€ ) LQ(U) = _;Z—zg - 628 (geHe - gtu2cg) )
s ; edi 6 edi 2
o — 8 — S50 (H. — 6g,c))
gr _% _ gzgr(He—‘l_Ggng)
. _u2 i u2 ” ru2 . u2
I— gy - e (H - v’c) L St — SO (], — y2c?)
g%é + —2gilf“”(Hi — u?c?) g;g + —2grbgi“(Hr — u?c?)
Ly(U) = — 2% — M (H; +6g,c3) |, Ly(U) = — gy — 200 (H, — 6gicy)
2 i i9r 6 igr 2
— oty — G (g:H; — gri’cs) —% — 5% (H, + 6g.c3)
—% — Ggl%(Hz‘ — 6g.c?) _gf—zﬁ — 6? (g-H, — giu*c?)
(2.12)
u(gtu - 663)
1 _2(gtu - 363)
L;(U) = — 67,
5(U) 12¢2 6:3
69,

To design a numerical method on the moving mesh, we rewrite the equations (2.6) in the

reference frame of a moving control volume in the integral form as

i/ UdQ+/ FdF+/ NdQ:/ GdF+/ SdQ (2.13)
dt Jog) r(t) () r(t) Q)

where €2(t) is the moving control volume enclosed by its boundary I'(¢). In the Lagrangian
formulation, the vector of the evolving variables U, the advection flux vector F, the non-

conservative advection term N, the diffusion term G and the energy-exchange terms S are

given by
p 0 0
pu p 0
U=| E |, F=|pu |, N= —%U&E(?pe —pi—pr) |,
E; piu _§uaz(2pi — De — Dr)
E, Pt —3u0,(2p, — pe — pi)
0 0
0 0
G=| koO.T. |, S=| —wa(T. —T;) —we(TH =T |. (2.14)
/{zamj—‘z wei(Te - T;)
KOy T wer (T —TH)

Y



Remark 2.1. For the purpose of designing the conservative scheme, we can distribute
the kinetic energy arbitrarily among the three energy variables (with non-negative constant
coefficients which sum to 1/2). The details of eigenvalues, eigenvectors etc. would change
but all conclusions would stay the same. If we have some prior knowledge about typical sizes
of the three internal energies e., e, and e;, we would probably want to choose the splitting
coefficients of the kinetic energy in the same proportion. However, if we do not have such

prior knowledge, an equal splitting as done here seems to be the most logical approach.

3 1D high order conservative Lagrangian scheme for
the 3-T RH equations

3.1 High order spatial discretization

The spatial domain 2 is discretized into N computational cells I; = [z; 1T, 1|, the sizes of

which are Az; = Tjp1— T 1 with j = 1,..., N. The location of the Cell center is denoted
by z; for a given cell I;. The fluid velocity uj_%,j =1,...,N + 1 is defined at the nodes of
the grid. All the variables solved directly are defined at the cell center x; in the form of cell

averages and this cell is their common control volume, that is,

_ 1 1
Pi=n, | pde. (pu)j=— | pud,
JJI; J /I
_ 1 — 1 — 1
(E.); = Ao E dz, (E;); = Ao E de, (E,);= Ao E dz.
J J J

The finite volume explicit Lagrangian scheme with Euler forward time discretization for the
system (2.13)-(2.14) can be written in the following form,
U, Aet - T Ag,
=At{ — (F(U Y +2) FU,, %)) — (NjAz; + [N]jp1 + [N];_1)
+(G(Uy,1) = G(U; 1)) + SjAz;}, (3.1)

U+
Jj—

where Uj, Nj, §j are the cell averages of the vectors of U, N, S respectively. [N];1,/, are the
penalty jump terms for the discretization of the vector of N. The superscript n—+1 represents
the values at the (n + 1)-th time step. All the variables without the superscripts represent
the values at the n-th time step. At is the n-th time step which will be determined by the
stability conditions analyzed later. Ui L UjE 1 are the values of U at the left and right sides
of the cell boundary z; 1, respectlvely Ujﬂ /2 are the single values of U at the cell
boundary x;+1/2 respectlvely. In order to accomplish the high order spatial approximation,

U:I:

4172 and Uj4/, are obtained from high order reconstructions which will be discussed

8



later. Since F and G are two different fluxes (advection and diffusion), Uj;l /2 and Uj /9,
which serve the above two different fluxes, will be reconstructed in different ways. F is the

vector of the numerical fluxes for the advection terms across the cell boundary of I;(¢), i.e.,
. s A s anNT
F = <Fd7Fm7F€7E7FT) . (32)

It should be determined in a suitable way to ensure upwinding and stability. It also should
be consistent with the physical flux (2.14) in the sense that F(U, U) = F(U).
Next we will discuss the specific procedures to determine the individual terms in the

Lagrangian scheme (3.1).

3.1.1 High order spatial discretization for the advection terms

We first discuss how to discretize the advection terms F and N in the equations (2.13)-(2.14).

I. Third order multi-resolution WENO reconstruction for the advection spa-

tial discretization

To obtain a high order approximation to U;Eﬂ /2 used in the determination of the numer-
ical flux F and N; and [N];4/2 in the scheme (3.1), we apply the multi-resolution WENO
reconstruction [30] to reconstruct piecewise polynomial functions in each I; by using the cell-
average information of the cell I; and its neighbors, such that they are third order accurate
approximations to the functions p(z), (pu)(z) E.(x), E;(z) and E,.(z) in I; respectively and
also are essentially non-oscillatory near the discontinuities. The method of local character-
istic decomposition is used in the procedure of the WENO reconstruction. We refer to [24]
for the details of the similar Roe-type characteristic decomposition that we have used in this
paper. In the multi-resolution WENO reconstruction, it chooses a series of unequal-sized
hierarchical central spatial stencils to construct high-order and low-order polynomials on
these stencils respectively. The final reconstruction polynomial is a linear combination of
high-order and low-order polynomials with nonlinear weights. This type of WENO method
can achieve optimal accuracy on the largest stencil in the smooth regions and can keep non-
oscillatory behavior near discontinuities. The linear weights for such WENO reconstruction
can be any fixed positive numbers on the condition that they sum to one, which is particu-
larly suitable for moving meshes. This method can achieve arbitrarily high order accuracy.
We will design a third order scheme as an example in this paper and the procedure of the
third order multi-resolution WENO reconstruction in one-dimension consists of the following

steps.



Step 1. We choose two central spatial stencils of different sizes. The small stencil is
Ry = {I;} and the large stencil is Ry = {[;_1,I;, [;+1}. We take the reconstruction of the
first variable ¢ obtained by the local characteristic decomposition performed on U as an
example. For the first order approximation, we use R; to obtain ¢;(z) = g;. For the third
order approximation, we use Ry to obtain the quadratic polynomial ¢o(x) = ag + a1(z —
z;) 4 as(x — ;)?, where z; is the coordinate of the center of I;. Specifically, the coefficients
am, m = 0,1,2 of go(x) are determined by

/q2<x>da::@kAa:k,k=j—1,j,j+1. (3.3)
Iy,
Step 2. Combine ¢;(x), g2(x) with the linear weights. Take
1 2!
pi(z) = qi(z), p2(z) = —q2(x) — —aqi(x)
Y2 Y2

where 71,7, are two linear weights which are defined as v; = 1—11, Yo = 77 in our paper. We

10
11
then have
1p1(7) + Yep2(7) = qa(z).
Step 3. Compute the smoothness indicators 5, and (5, which measure how smooth the

function p;(z) and py(x) are in the cell I; respectively.

Denote
&1 = |@j - @j—l‘a &= ‘@j—f—l - §j|a
- 17 g Zf - -~
C1 = { 10, otllzerwz?se o = =G,
¢

= =1-—(, 3.4

“ G+ Co “ o (34)
52_52 §2_§2

01:€1(1+ﬁ)a 022@(1‘1'%), 0 =01+ 03,

where ¢ is a small positive number to avoid the denominator of (3.4) to become zero. In the
numerical tests of this paper, we choose € = 10~*. Then

1 2

pr= p(al@j —0j-1) T 02(0j:1 —0;))" (3.5)

A a1,dpa(2)
H=3" / (A (2 (3.6)
a=1 mj—%

Step 4. Compute the nonlinear weights based on the linear weights and the smoothness
indicators, which follow the WENO-Z strategy as shown in [5]. The nonlinear weights are
given as -

wy
w = —_-—-, = 1, 2,
w1 + Wo

10



where

wl:%<1+(ﬁl:—7¢5)2)’ 72(52_51)2’ l:1,2

Step 5. The final reconstruction polynomial for the cell /; is given by
0j(x) = wip1 () + wapa ().
II. The HLLC flux for the conservative advection term in 3-T equations in

the Lagrangian formulation

In this part, we will discuss how to determine the numerical flux F (3.2) in the scheme
(3.1). We consider the following three-temperature equations which only include the conser-

vative advection terms,

U+ 0, F=0 (3.7)
where
p pu
pu pu? +p
u=| B |, F=| (B +p)u |, (3.8)
E; (Ei + pi)u
E, (Er 4+ pr)u

where p = p. + p; + p.. We want to design a HLLC flux for the Lagrangian scheme solving

(3.7)-(3.8), which is derived from the divergence theorem (critical for the proof of positivity-

preserving property discussed in the next section) and is suitable for multi-material problems.

Since in the Lagrangian formulation, the flux for the first equation of (3.7) is zero (see
(2.14)), we should set

F;=0. (3.9)

For the HLLC flux, two averaged intermediate states U} and U}, between the two acoustic

waves sp, sg are considered, which are separated by the contact wave (interface) with the

velocity s., see Fig. 3.1. From the definition of HLLC, we have

_ E+F+E

i (3.10)

Sx

Apply the divergence theorem in the left region ABCD and the right region DCEF (Fig.

3.1) for the Riemann problem respectively, then we obtain

~

[J*L(<S’>,< — SL) = —ULSL + F(UL) - F, (311)

~

UE(SR — S*) = URSR - F(UR) + F, (312)

11



S
A L ]:') SRF
Is,
U N
7> >
F(U, P F(U,)
/
/
U, / Ui
B C E x>

where
PL PR
pLur PRUR
Uy,=| Er |, Ur=| Eer |,
Ei,L Ei,R
Er,L Er,R
L Pr
pLuL PRUR
U; = E; , Uy = E; p ) (3.13)
B Ep
ElL Elr

Suppose the velocity and pressure of electron, ion and radiation are constant in the two
middle regions of HLLC, denoted as u*(= u} = u}),p:, pi, pi. For simplicity in the form,
here we consider the y-law equation of state for both electron and ion and suppose they have

the same value denoted as v, and g in the left and right initial regions respectively. Then

we have,
PL PR
) pru* PRrU”
U = | g +eom@) |, uUh= er -+ apR(u)? . (3.14)
Wfi,l %p*L(u* 2 Wfl 1 6pR( *)2
3pr 6pL(u*)2 3pr 6pR( )2
Substitute (3.13) and (3.14) into (3.11), from the first two formulas of (3.11), we get,
. _ polur —si) « _ PrR(SR — uR)
PL= "7 - PR= "o\
(S* - SL) (SR - S*)
o — prur(ur — s) + prur(Sr — ur) +pr — Pr. (3.15)

pr(ur — si) + pr(sr — ug)
Fon = pr(up —u*)(ur — s1) +pr.

12



Sum the third formula of (3.11) and (3.12), similarly to the fourth and fifth formulas, then

we get,

p* _ (’YL - 1)(’7R - 1)Qe
© (rr—=1D(s« =)+ (7L — D(sr — 54)’
— D) (vr — g
(YR = D)(s« — s) + (7z — 1)(sr — 54)
. G
pr 3(83 — SL)’
where
1
e = Eer(ur, — s1) + Ee r(Sk — UR) + Pe.LUL — Pe,RUR — E(PL(UL —s1)+ pr(Se — UR))(U*)Q,
1
¢ = Eir(up —sp) + Eyp(sgp — ur) + pi,pur — pi,rUR — é(pL(UL —s1) + pr(sr — ugr))(u*)?,
1
¢ =E.(ur, —s.) + Er r(Sr — UR) + Pr.LUL — Dr RUR — E(PL(UL —s1)+ pr(Se — UR))(U*)Q-
(3.17)

Sum the last three formulas of (3.11) and (3.12) respectively, and using (3.10) we get,

* 4 .
(pe Pi +3p2) (s — s1) = —Fus« + bp,
v, — 1
* 4 g R
PPy 35y (sp — 5,) = Eons, + b, (3.18)
Yr—1
where
1 *\2
b, = prur + (ur, — sp)(Ep — §,OL(U )7,
1
br = —prur + (Sr — ur)(Er — §(PR(U*)2)-

Substitute p%, pf, ps by (3.16) into (3.18), then we obtain the following relationship for s,

(( (v — 1)(ge + i) L@ ) (5. — 51) = —Fms. + by (3.19)

Yr—1)(s« —sp) + (o —1)(Sr — 5+)  Sr— 5L

If vg = 1, then
sp(ge + ¢ +qr) +br(sr — s1)

8, = - . (3.20)
G+ G+ ¢+ Fr(sp — s1)
If v # 71, then
dy +/d
S, = L F Ve (3.21)

2(7R - 7L>(QT + Fm(sR - SL))’

di = Fn((vo+vr—2)sesr— (v — 1)s], — (7 — 1)s%) + be(sr — s1)(vr — 71)
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—(ge + @) (sr—s0) (v = 1) + @ (s.(2vr — v — 1) — sr(yp — 1)),
dy = (Fu(si(ye— 1)+ sk —1) = spse(y + 78 —2)) = bi(sr — s2) (e — ) (3.22)
+(qe + ¢i)(sr — s0) (v — 1) + ¢ (—sc(2vr — vz — 1) + sr(7L — 1)))2 —4(q-(vr — 1)
+E(vr — 1) (sr — s0)) (be(sesr(ve + 78 — 2) — si(vr — 1) — skl — 1))

—(¢e + @i + @)s0(sr — sL)(vr — 1) + @espsr(Yr — V1))
We can check that s, € [sp, sg].

After we obtain s,, then from (3.11) we can determine the HLLC numerical flux for the
3-T RH equations (3.7)-(3.8),

;

F, =0,
= pr(ug — u*)(up = s1) + pr,
F. = _wf 1(8* sp) + (Bep — gpn(u)?)(up — s) + pe,pur, (3.23)
@ = —Wfi_l(s* — 1) + (Bir — spp(w)?)(ug, — 1) + pipur,
\ Fr = =3pi(s. — s0) + (Epp — gpo(u)?) (ur — sz) + prour,

which is under the assumption that both electron and ion satisfy the v-law equation of states
and their values of v are the same. For the case 7. # 7;, similar analysis can be made, but the
form of the numerical flux is more complicated. In principle, we can derive the HLLC solver

for the non-y-law case in a similar way, however the algebra will be much more involved.
I11. The determination of the nonconservative advection terms

The non-conservative terms Nj, [N];, 1, [N] 1 in the scheme (3.1) are determined fol-

jf
lowing the strategy for solving Hamilton-Jacobi equations [12], which is also used in [21] to
discretize the non-conservative terms in the Godunov form of MHD and is equivalent to a

specific form of the usual path-conservative strategy. For our case, it is given by

0 0
0 0
Nj = - Zgil éwgug (2(pe)$g - (pi)xg - (pr)z g) ij = Yj,e (324)
- Z%;l éwgug (2(191')179 — (Pe)zg — (Pr)z )ij Eﬂ
- Zgil éwgug (2(]%)1,9 — (Pe)a,g — (Pi)x )A% N
0
0
[N]jJr%—l—[N]ji% = maX{ 3U; 170}[2]7@ — Di _pr]j—% +min{_%uj+%’0}[2pe —Di— pT]j—i—%
maX{_%ujf% 0}[2pz Pe — pr]' 1 + IIllIl{ ;1«; ]+ ,O}[Qpl pr] %
maX{_%uj—% 0}[2pr — pe — pZ] 1 + min{— 3 Ujpl 1,0} [2p, — pz]]+1
(3 25)
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0
0
= | [V]je
[V]j.i
[Njir
where ¢ is denoted to be the Gaussian points in the cell I;, N, is the number of Gaussian

points. In order to achieve third order accuracy, we choose g = 2, the coordinates of the two
\/gAa:]-
6

Gaussian points are z; . (Pe)a.gs (Di)a.gs (Dr)a.g are determined by the values and the

derivative values of the reconstruction polynomials of U at the Gaussian points g, that is,

(pe)e = (e — 1) ((E.)s — (P“)3(5U)m N (pg;pz%
(2= = (= 1){(Bx)= - (puiifU)z +»(P22;px>’ (3.26)
(9o = (= (B, - LN )
[Peljr1 = (m%il—(%Liu[pLi_ (n%il—(mﬁ;?[@Li%Z(n);%—(nq;%,@Ji%,
(Pi)5i1- ()1 ave determined by U7, from the reconstruction polynomials in the two

neighboring cells.

3.1.2 The determination of the nodal velocity

The fluid velocity u;_1 at each node is determined by

1
2

= (s, J=1,..,N+1, (3.27)

where (s.);_1 is given by (3.20) or (3.21). Then the mesh moves according to the following

1
-3
fOl"IIlula,

.%';L % —:L. 1 U] %A]Z, j— l,...’N l, (3.22;)

2
if the Euler forward time discretization is considered.

3.1.3 The determination of the energy-exchange terms

The terms of S; in the scheme (3.1) are determined by

0 0
0
S;= | — 2o (@e)g(To)g = (T)g) + (@er)g (T = (T)g)) | == | Sje (3.29)
Z ( eZ)g((Te)g ( )g> §]Z
Yot (@er)g (T g = (T1),) S

where (T¢),, (T})g, (1).)g and (we;)g, (Wer )4 are the values of the related variables at the Gaus-
sian points which are obtained from the reconstruction polynomials of U introduced in the

above subsection. g, N, have the same definition as those in the above subsection.
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3.1.4 High order spatial discretization for the diffusion terms
Next we discuss how to discretize the diffusion terms G in the scheme (3.1).

I. Fourth order multi-resolution WENO reconstruction for the diffusion spa-

tial discretization

To obtain a fourth order approximation to Uji;/2 used in the diffusion flux G, take p
as an example, the specific procedures for the multi-resolution WENO interpolation is as
follows.

Step 1. To reconstruct the values of U and its derivatives at Tj 1, We choose two spatial
stencils of different sizes. One small stencil is 77 = {I;_1, I;} to reconstruct a linear polyno-
mial ¢;(z) = a} + al(z — z;_1). One large stencil is 75 = {I;—2,1;_1,1;, 111}, which is used
to reconstruct a cubic polynomial go(x) = a2 + a?(z — "L‘jf%) +a3(x — xjfé)Q +a3(z — xjfé)g.
We adopt the similar way as (3.3) used in the advection term to determine the coefficients
of the above polynomials.

Step 2. Combine ¢;(x), ¢2(x) with the linear weights. Take

pi(x) = q(z), pa(x) = i612(95) - ﬂ(]1(96)
V2 Y2
10

where v, = 1—11, 72 = 77 are the linear weights. It could make sure

Y1p1(7) + Yop2(T) = g2 ().

Step 3. Compute the smoothness indicators 5;,1 = 1,2, which measure how smooth the

respectively.

function p;(x) and pa(z) are at x; L

=3 [ e e (3.30)

dx®

If the formula (3.30) is adopted to compute 3y, then g; = 0. To avoid this, we introduce
extra two small stencils as Ty = {[;_5,I;_1, [;} and Ty = {[;_1, I;, I;41} to reconstruct two

quadratic polynomials g3(z) = a3 +a(z —

jor)taz(r—wz; 1) qu(z) = ag+aj(z—z;_1)+
ay(z — x;_1)% Then,
" d®gs(2) 9 d*qa(z)
& = /zjl(ffj — ;1) 12 )dr, & = /x“(l’j — ;1) 12 )2du, (3.31)
B = min{&, &} (3.32)

Step 4. Compute the nonlinear weights based on the linear weights and the smoothness

indicators. The nonlinear weights are given as
’U_Jl _ T
w=———, W = 14—, [=1,2
ot %( (ﬁz+e>2)
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where ¢ = 107* and 7 = (8, — 51)°.

Step 5. The final interpolation polynomial at the cell boundary x;_1 is given by

_1
2

pi—1(x) = wip1 () + waps(x).

The other variables of U can be obtained in the similar way. Notice that in the WENO

reconstruction for the diffusion term, the characteristic decomposition is not needed.
II. The determination of the diffusion terms

We use the following formulas to determine (7},),, (T}),, (T), in the diffusion terms G,

(L), = — (/O(Ee)x — Fp, — 2P (pu)Qp“”) :

T Cpep? 3 3p
1 pu(pu)e | (pu)’ps
(B, = s (B, — Bipe = 20 )
1 pu(pu)s | (pu)’ps
™, == (E), — , 3.33
1, = 3 (B = 20 4 (3:39

where {p, pu, E., E;, E,.} and their derivatives are obtained by the above fourth order multi-

resolution WENO reconstruction.

3.1.5 The conservation property of the scheme

For the scheme (3.1), we can prove that it can keep the conservation of mass, momentum
and total energy if all the terms in (3.1) are discretized in a compatible way and the periodic
or zero-flux boundary conditions are considered, the proof on the conservation of mass,
momentum is trivial. For the conservation of total energy £ = FE. + F; + E,, we can prove
it as follows.
Sum the last three equations of the scheme (3.1) and notice that N;, + N;; + N;, =
0, [N]je+ [N]ji + [N]j»-=0and S;. + S;; + S;j, = 0, then we have
N N
SEVAE T +E =S [Buy+ By + Ery] =0 (3.34)
j=1 j=1

which implies

SET=NE, (3.35)

3.2 The high order Runge-Kutta time discretization

To design a Lagrangian scheme with uniformly third order accuracy both in space and time,

the time marching is implemented by a third order total variation diminishing (TVD), or
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strong stability preserving (SSP) Runge-Kutta type method [23, 18], which has the following

form in the Lagrangian formulation [7].

Stage 1,
M _
TV A2 = Az, + AL(T)); (3.36)
Stage 2,
@ _ O e

Tili =0 4At[ Bu; 1 +uj7%],

=2\ @ =A@, 1 = ()

U, Ad? =T, Ax§)+ZAt(—3L(Uj)+L(Uj ); (3.37)
Stage 3,

1
x;”} =z. 1 —I—gAt(u- é—I—u.

—n+l o, — 1 — —(1) =—=(2)
U, Azit! :Uijj+6At(L(Uj) +L(U, ") +4L(U,")); (3.38)

where L is the numerical spatial operator representing the right hand of the scheme (3.1).

3.3 The time step for the Lagrangian scheme solving the 3-T RH
equations

For the explicit Lagrangian scheme (3.1), the time step is limited by the three terms coming
from the 3-T RH equations, namely, the advection term, the diffusion term and the energy-
exchange term.

We rewrite the system (2.1) in the following form,
ou ou  9(BZ2)
——— A = Oz’
ot Ox Ox
where U = (p, pu, E., E;, E,)T. The matrix A is defined as (2.8).

Denote

+5(U) (3.39)

1 1
€o = €p — 6u2, e, =B, — 6u2, (3.40)

Then the Jacobian matrix B related to the diffusion term can be represented as,

0 0O 0 0 0
0 0 0 0 0
B=| —uy ey ap 00 (3.41)
—he L (g AL
I W s
% T8 0 0 %
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Its eigenvalues are listed as follows,

K R; K
0,0, ——, —, —}. 3.42
{ ) Vo Cye,O’ Cm‘p, a ( )

’
S(U) =
0 0 0 0 0
0 0 0 0 0
o é; 4e3é 2 ; 1 1 4e3 1 Wei dwere Wei
Wei (€e __ €4 eCe u- Weiw (1 1 Wert e 1 ei er€e ei Wer
14 (Cve Cm') +wer(~0%ep + 6‘1) 3p (Cve Cm') —I— 3 (C%ep a) Cvep C%ep Coip a
_ﬂ(ﬁ _ &) _Weiu (1 L) Wesi Wei 0
P 46116 Cvi2 P Czeg Cyi CveP3 CyiP
_ eeée u- _ Weru €e l 4we'r€5 _ Wer
WeT( c%ep _'_ 60,) 3 (Cf}e a) c%ep (() ) a
3.43
Its eigenvalues are in the followin
9
{0707070417042} ) (344)
where
—81 + 89 S1 + So
e (3.45)
with

_ 4 3 3 4 2 4 n 3 4 3 .

S; = \/ (AWeiCR, + aWeiCl Coi + 4AWerCpi €3 + WerChoCpip)” — daWeiwerChoCyi (daed + cop + c3.cuip),
4 3 3 4

Sy = —(AWe;iCpp + AWeiCopCpi + AWy Cii€o + WerCpCoip),

_ 9,4
5 = 2ac,,Cy;ip-

The time step is limited by the above three terms as

A (cs);  2d;
Ate, < min —, v =~ 4
1= =Ny, T Ay Ax?

+ Sj (346)

where (c;); is defined by (2.10). X is a positive constant less than 1, which is chosen as 0.5
in this paper.
Ke  Ki Ky

Coopy Coipy @) = max{[(an);], [(az);[}- (3.47)

d; = max{

To avoid the grid from interacting within the time step, we also need the time step to

satisfy
Atgrig = 0 min {min(A:pj_l, ij)/uj_%} , (3.48)

j=1,..,N+1
where p is a constant which is chosen as 0.45 in this paper.

Then the final time step At is determined by the following formula,

At = min{At.y, Atgia}. (3.49)
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4 The positivity-preserving issue on the Lagrangian
scheme solving the 3-T RH equations (3.7)-(3.8)

4.1 The first order positivity-preserving Lagrangian scheme for
the 3-T RH equations (3.7)-(3.8)

The system (2.13)-(2.14) includes the nonlinear advection, diffusion and source terms. We
are unable to analyze the positivity-preserving property of the full system so far. But for the
simpler form (3.7)-(3.8) which only contains the conservative advection term in space, we
can prove the following first order Lagrangian scheme with the HLLC flux (3.23) can keep

the positivity-preserving property under certain conditions
_n+1 n _ ~ [RE— _ A —_ _
Uj ijJrl - UjAl‘j = —At(F(UJ, j+1) - F(Uj_l, Uj)), (4].)

where F is defined by (3.23).
Define the set of admissible states by

G = {U = (pa pu, Eea EiaEr)Ta P> Oa €e > 07 €; > O, er > O} . (42>

Lemma: The set of admissible states G is a convex set for the vy-law EOS given by (2.3).
Proof. Denote é. = pe., €; = pe;, €. = pe,.. It can be easily verified that e.,é;, e, are

concave functions of U = (p, pu, E., E;, E,)T if p > 0. Using Jensen’s inequality, we have
ee(dUy + (1 = d)Uy) > dé.(Uy) + (1 — d)e(Uz), if p1 >0, pa >0,

for Uy = (p1, (pu)1, (Eo)1, (B, (E)1)T, Us = (pa, (pu)2, (Ee)2, (Ei)2, (Er)2)” and 0 < d <
1. Similar proof could be done for ¢€; and ¢é,. Thus G is a convex set.

The scheme (4.1) is called positivity-preserving if {ﬁj € G,j=1,..,N}implies {ﬁ?“ €
G,j=1,...,N}. Following the design of the HLLC flux, the divergence theorem is satisfied
exactly in the two regions ABCD and DCEF respectively in Figure 3.1, and also u*, p}, p}, p
are continuous along the contact line (CD). Meanwhile, by choosing a suitable CFL condition,

the two waves in Figure 4.1 centered at x and at x;, 1 do not interact within the time

!
J73
step At. In this case, ﬁ?ﬂ in the scheme (4.1) can be described as the exact integration of

the approximate Riemann solver over [x?ﬁ,x“l
2

J+l] which can be broken into two parts (see
2
Figure 4.1), that is,

n+1 n+1
—n 1 Zj _ _ 1 z, i .
U= —/ R(z/t,U;1,Uj)dx + 7/ U R(@/t,U;,Up)de - (4.3)

J Azt [ i JAV Al
J i-3% J J
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Figure 4.1: The HLLC Riemann solver performed along the Lagrangian cell’s boundaries.

where R(z/t,U;_1,U;) is the approximate Riemann solution between the states U;_; and
U;. The similar definition is for R(z/t,U;,Ujy). Specifically, for the HLLC Riemann
solver, R(z/t,U;_1,U;) in the relevant integration interval will take the value of either U},
(calculated from the two states U;_; and U;) or U;. Similarly R(z/t,U;, U;;,) in the
relevant integration interval will take the value of either U; or U} (calculated from the two
states ﬁj and ﬁjﬂ). Thus in order to prove the positivity-preserving property of the scheme
(4.1), we only need to prove the intermediate states U} € G, Uy € G if Uy € G, Uy € G,
which would imply that ﬁ?“ given by (4.3) also belongs to G, due to the fact that G is a

convex set and Jensen’s inequality for integrals. Next, we will prove if

pr =0, e >0, ¢€r>20, ¢er5=>0 (4.4)
PR Z 07 €e,R Z 07 €i.R Z 07 €r,R Z 0’ ’
then
1, >0, pr >0, (4.5)
eer 20, € >0, €.>0, er>0, x>0 ep5>0. (4.6)

under certain conditions.
Since sy, < s, < sg, from (3.15) it is easy to know (4.5) is valid. For simplicity, we only
prove the validity of (4.6) for U} . Similar proof can be given for the validity for Uy, as well.

To prove (4.6), for the y-law gas, it is equivalent to prove

p:>0,  pi=0,  p >0 (4.7)
From (3.16), we then need to prove

ge = 0, ¢ =0, ¢ > 0. (4.8)

Take ¢, as an example, from (3.15) and (3.17), we have,

_A+B+C

e 9 49
q 5 (4.9)
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where
1

A= preer(ur —sp)* +pr (uL(]% + Pe,r.) — UrPe,r) (UL, — 51.) — 15 (Pr — pr)%,
PR —P 1
B = preer(sg — ur)® + pr (UR( L 3 S Pe,r) + ULPe,L) (sr —ug) — E(pL — pr)*,

1
C = (prees + preer)(ur = s1)(sr = ur) + Zprpr(ur = s1)(sp — ur)(ur — ur)’,
D:pL(uL_SL)+pR(SR_uR)- (410)
Next we will prove A, B, C, D are positive under certain conditions.

If s;, <wup,sgr > ug, then we can prove C, D > 0. In order to make sure A, B > 0, sy, sg

should satisfy

pr(ur (P22 4 pe,r) — URDe,R)
2pL€e,L

\/P%(UL(@ + Pe,r) — URPe,R)* + %pLee,L(pL —Pr)?
- QpLee’L L SC,L)
Pr(UR(PEZEE — per) + ULPe L)

2pR€e,R
\/P%(“R(mgm — De,r) T ULPe,1)? + %PRee,R(pL — Dr)?

2pRee,R

sp <ur+

SRZUR‘l—

‘= Se.R- (4.11)

_l_

Similarly, we can obtain the following conditions for ¢; > 0, ¢, > 0,

pr(ur(PEPE + pi ) — urpiR)
2preir

sp <ur+

\/p%(uL(pR;“ +pi,L) — UrPir)* + %,OLGZ;L(]JL — pr)?
- 2pre;r
pr(up(P25P: — pir) +uLpi L)
2pRrei R

‘= S4,L,

SRZUR‘l—

\/P%(UR(I% —pi,r) FurpiL)? + %pRei,R(pL — Pr)?
_|_

2pREi R ShR ( )

pr(ur (P22 + p. ) — URpr.R)
2prerr
\/ p3 (ur (BR3P + p,. ) — urprr)? + 3p0erL(PL — PR)?
B 2prerr
pr(ur(P" 5P — prr) + uLpr)
2pRrer R

SLSUL—F

‘= S L,

SRZUR+
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\/P%(UR(% — Prr) +uLprr)?® + %pRer,R(pL —pr)?
+

QpRer,R

= SR (4.13)
In summary, to preserve the positivity of the HLLC Riemann solver, sy, sg should satisfy

SL = min{se,La Si,Ls 31",L}7 SR = maX{Se,Ra Si,R; ST',R}' (414)

By the above discussion, we can obtain the following theorem for the Lagrangian scheme

(4.1).

Theorem 4.1. Consider the first order finite volume Lagrangian scheme (4.1) with the
HLLC flux (3.23) solving the 3-T equations (3.7) with the y-law equation of state given
by (2.3). If {TJJ € G,Yj = 1,..,N}, then the scheme is positivity-preserving, that is,
{ﬁ?ﬂ € G,Yj =1,...N} if the HLLC numerical flux given by (3.23) is adopted with the

acoustic wavespeeds sy, and sg in (4.14) and with the time step restriction
(4.15)

where the Courant number A = 0.5.

4.2 The high order positivity-preserving Lagrangian scheme for
the 3-T RH equations (3.7)-(3.8)

Assume the polynomial vector in the cell I; obtained by the multi-resolution WENO recon-
struction with degree k is U;(z), where k > 1. Ujjr% = Uj(z51), U’

=U; (xj_%) are

N

applied in the numerical flux F. U; is the cell average of U;(z) in I;.

Consider a set of Gauss-Lobatto quadrature points in the cell I; as

_ S R Sy S N
S; = {xj_% =T, T5,.., 25,7 —xj+%}.

Define w, to be the quadrature weights such that w, > 0,a=1,...,J and Zizl W = 1.
Next, we will show that if U;(7§) € G for all j and «, then U?H € @G for the following
high order Lagrangian scheme solving the 3-T RH equations (3.7)-(3.8) under suitable time

step restriction,

—n—+1 n —_— fal _ - —
U; " Axpt =Tz = —AHF(U;,,, UL L) ~F(U] U,

itz its i—

). (4.16)

We choose J to be the smallest integer satisfying 2J — 3 > k, then the J-point Legendre

Sl

Gauss-Lobatto rule is exact for the polynomial U,(z), which means

— 1 Tt

7oAz,
N

J J-1
Uj(@)de = ) waUj(35) = ) waUS +wi Uy +wsUy (417)
a=1

a=2

o=
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where U§ = U;(7¢). Here we take the three-point Simpson quadrature rule for the third

order Lagrangian scheme (4.16), i.e. S; = {xj_%,:pj,ijr%}, W) = w3 = %, Wy = %
By adding and subtracting At]_a‘(U;il,Ujjrl) in (4.16), it becomes
2 2
—n+1 n At al _ - —
- At A -
+wy (U, A — o B0 UL, -F(U,, UL L))
= WZU?Al'j +wiF1 + wsFe
where
5 = U Az — g(1?(U+ U ) -FU_ ,,U"))) (4.18)
' ima T wg e it =3 i3’ '
A _ At A _ + al + —

We observe that the terms at the right hand side of both (4.18) and (4.19) have the same
structure as that in the first order Lagrangian scheme (4.1), and w; = ws. Thus if the HLLC
numerical flux (3.23) with the acoustic wavespeeds (4.14) is adopted to determine F, then

@1 and @2 are in the set G under the CFL condition
AZL‘j

At < Awpmin ————— (4.20)
Uk |UJ| + (CS)j
with A = 0.5 and the sufficient condition
U;(25) e G, Vi€ S;, a=1,.,J (4.21)

Therefore we can summarize the above results in the following theorem.

Theorem 4.2. Consider the third order explicit Lagrangian scheme (4.16) solving the 3-T
equations (3.7)-(3.8) with the y-law equation of state given by (2.3). The HLLC numerical
fluz given by (3.23) is adopted where the acoustic wavespeeds are chosen as (4.14). If the
reconstruction polynomial U;(x) for U; satisfies (4.21), then the scheme (4.16) is positivity-
preserving, i.e., ﬁ?“ € G under the time step constraint (4.20) with A = 0.5.

Under the assumption U; € G, in order to ensure the condition (4.21), we need to modify
the multi-resolution WENO reconstruction polynomial Uj;(z) used in the determination of
F into another polynomial

Uj(z) = 0;(Uj(x) — U;) + U; (4.22)

where 6; € [0,1] is to be determined, such that ﬁj (x) € G,Vx € S;. Using the similar idea

as in [29, 10, 11], we take the following specific steps for the implementation.
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1. First, guarantee the positivity of density. Take a small number € such as 1072 so that

p; = ¢ for all j. In each cell I;, compute

pj—€
p; — pj(x)

pj(x) = 9? (pj(x) — ﬁj) + 0, (9? = min {1, } ) (4.23)

mES]'

2. Next, guarantee the positivity of the internal energy e.,e;, e, for all the cells. Define
ﬁj(x) = (pj(z), (pu);(x), E.;(x), E; j(z), B, ;(x))T. For each = € S, set
ce(U;) ei(T;) er(U;)

0, = min{—— — ,—— - , —— — }.
ee(Uj) —ec(Uj(z)) €:(Uj) —e;(Uj(z)) €,(U;) —e,(Uj(z))

If6,>1or6, <0, then set 6, = 1.

Finally we obtain the limited polynomial

U;(z) = 01(Uj(x) — U;) + Uy, 6} = minb,. (4.24)

ZPESJ‘

This positivity-preserving limiter can keep accuracy, conservation and positivity.

5 Two dimensional three temperature radiation hydro-
dynamics equations

In this section, we will briefly extend the above one-dimensional high order Lagrangian
finite volume scheme to the two-dimensional case. We consider the two dimensional three-
temperature radiation hydrodynamics equations,

(

Op + Oppu + Oypv = 0

Opu + 0y (pu? + pe + pi + pr) + 9y (puv) =0

depv + 0r (puv) 4 0y (pv* + pe + pi +p,) =0

Orpec + Oy (pecu) + 0y (pecv) + pe(Oyu + Oyv) = RHSy
Owpe; + 0y (pe;u) + 0y (pe;v) + pi(Oyu + 0yv) = RHS;
owpe, + 0y (peru) + 0y (pe,v) + pr(0yu + 0yv) = RHSq

(5.1)

where
RHS, = 0,(kc0,T0) + 0y (kD T.) — wei(Te — T;) — wer (T — T)
RHS5 = 81(518172) —+ 83,(/@8@,7}) —+ wei(Te — T‘z) (52)
RHSg = 0,.(r,0.T2) + 0y (rk,0,T2) 4+ wer (T — T2)
and u, v are velocities in the x, y directions respectively, {e., €;, €.}, {ke, ki, K}, {Te, Ti, 1)}
are defined as before. We introduce the following new “energy” variables

1 1 1
E. = pe. + ép(vf +v?%), E; = pe; + g,o(u2 +v?), E, = pe, + é,o(u2 +v?),
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and rewrite (5.1) as

p

Op + Oppu + Oypv =0

Orpu + Oy (pu® + pe + pi + pr) + 9y (puv) =0

Opv + 0y (puv) + 0y (puv + pe +pi +pr) =0

OiE. + 0; (Ee + pe) u) + 0y (Ee + pe) v) — 48, (2pe — pi — pr) —
O E; + 0 ((Ei + pi) u) + 0y ((Es + pi) v) — 50, (2pz pr — pe) — 20,
OB, + 0z (Ev + pr)w) + 0y (Br + ) v) — 502 (20 — pe — pi) —

ay (2pe —Pi — pr) = RHS4
(2pz — Dr — pe) = RHS5
ay (2pr — Pe — pz) = RHSG
(5.3)
Denote U = (p, pu, pv, E,, E;, E,)T, and we can represent the equations (5.3) in the reference

wle

S

wle

\

frame of a moving control volume in the integral form as

i/ UdQ+/ F(U)dF+/ N(U)dQ:/ G(U)dP+/ S(U)Q  (5.4)
dt Jow (1) Q(t) (1) Q(t)

where
0 0 0
_ | Py _ 0 _ 0
F(U> B PeW ’ N(U) B _%(Z) ' V(Qpe — Pi — pr) ’ G(U> o ReTb - V(Te) ’
pi T3 (Z) ) V(Qpi — Pe — pr) KT - V(TZ)
Pr —5() - V2pr = pe — i) kem - V(T

and S(U) = (0,0,0, —wei(Ty — T3) — wer(T* = T), wei(To — T3), wer (T4 — TN, Here, we
define w := un, +vny, p = p. +p; +pr and n = (n,, ny) is the outward unit normal vector

of the boundary.

5.1 2D high order conservative Lagrangian scheme for the 3-T RH
equations

5.1.1 High order spatial discretization

Ny ,Ny
] k=1 >

where N, and N, are the number of cells in the x and y directions, respectively. Each cell

The two-dimensional spatial domain (2 is discretized into N, x N, quadrilateral cells {/; .}

I; i has four nodes P; ity Pagn, Py 1, Prag1and the coordinate ofPJr Kyl S
(%41 ke ds Yjad pyd) for all 1 <j <N, 1 < k < Ny. The fluid velocity (u; 1 441,011 401)
are deﬁned at the nodes and the Varlables U] v = (p, M, M FE, E,E ) & solved dlrectly

are defined at the cell center (z;,y;%) in the form of cell averages,

Pik = Al / pdzdy, M ', | / pudzxdy, M .7 Al / pvdxdy,
>y >y

E dxdy, (E )ik =

dedy, (En)jx = E rdxdy,

1
1Lkl Ji
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where M® := pu, MY := pv and |[;| is the area of the cell I;;. Then the semi-discrete

finite volume scheme for the system follows as,

d — . N
= (Ol L) = — / F(U™, U™, n)dl + G(U,n)dl
ol ol i,

N (5.5)
—/ N(U,Ui“,UeX,n)dxdy—l—/ S(U, n)dxdy,
Ik I

7,k
and these numerical fluxes f‘, G are consistent with the physical fluxes in (5.4). U™ and
U®* are the values of the variables U on the cell [}, and its neighboring cell, respectively.
Suppose that the cell I, has M edges (for our case M = 4) and the quadrature points
on each edge are denoted as (z',y7") form =1,--- M, a =1, -, K, where we omit the

subscript j, k. Then we can write the line integral for the numerical fluxes as

M K
[ Rdim SIS el (U ), U ) ),
gk m=1 a=1

" K (5.6)
Gdl~ Y |I"DwaG (U™ (@, yir), ™),
0l x m=1 a=1
where w,, o = 1,--- K are the weights in the quadrature rule, |I"™| represents the length

of the edge I™ and n™ = (nl", n;”)T is the outward unit normal vector of ["*. In fact, we use
the Gauss-Lobatto quadrature rule, where (z7*,y7") and (2%, y}¢) are the two endpoints of
the edge [, and in this work we take K = 3. The other two integral terms can be written

as

M K
/ Ndzdy = |1 Njk+ > 1" waBy [N(U™ (2, y) = N(U™ (2, u)]
iy m=1 a=1 (5.7)

/ Sdxdy ~ |I; xS,

Ij,k
where 8" = max{—%, 0} and S, x, N; are the cell averages. U™ (2™, y™) and U™ (2™, y™)

are the values of the variables on the cell I;; and its neighboring cell along the edge I in

m

m y™) are the values of the variables on the common

the advection term, respectively. U™ (z
edge I"™ in the diffusion term. Later, we will discuss how to get these values.
For the advection terms ]/5\‘, N, we utilize the multi-resolution WENO reconstruction [30,

31] method to reconstruct high-order polynomials for the variables on each cell I,

Uji(x,y) = (pla,y), M (x,y), MY(2,y), Ec(2,y), Ei(x,y), E(2,9))] -
With these polynomials, we can calculate the values at each quadrature point U™(2™, y™)
and U™ (27, y) in F and N. Since we have given the description of the WENO reconstruc-
tion in the one-dimensional case in Section 3.1.1 and Section 3.1.4. For the simplicity, we

will omit the details here.
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For the diffusion term, we still follow the WENO idea to reconstruct high order polyno-
mials U?fk(:p, y), on each edge {™ of the cell ;, and these stencils should include the cells
at the both sides of I, for stability. These WENO reconstruction polynomials can guar-
antee high order accuracy in the smooth region and avoid numerical oscillation near large
gradient or shock regions. Then, we will use the values of the variables and their derivatives
U7 (z,y), 0: U7y (z,y) and 9,U7% (z,y) to caleulate 0,1, 9, T, 0,T;, 0,T;, 9, T}, 9,T?, on the

cell boundary I for

0

0

G (U™ (. y).m™) = !
arvar Keny 0. T (U™ (20}, yo')) + “en;nayTe(Um(x;na y'))
king 0, T (U™ (23, yiy')) + ’{in;nayTi(Um(le> ya'))
ﬁrn?asz(Um(le> ya')) + ’{rn;nany(Um(xgla ya'))

(5.8)

We denote the two-dimensional HLLC numerical flux for the three-temperature equation
(5.3) as,
f‘ = (Fda anxa anya Fea Ea Fr>T-

Actually, the two-dimensional HLLC numerical flux is as same as the one-dimensional case
(3.23) by substituting the velocities ur, ug, u* into the normal velocities wy, wg, w*, so we

have,
« _ PLWL (wr — sp) + prwR (SR — WR) + Pr. — PR
pr (wr — sp) + pr (Sk — Wr)

_ _ * % * :
where wy, = urn, +vpny, wWr = Ugrng + VrN,, W* = u'n, + v*n,. Following the same

?

notations in (3.23), the HLLC numerical fluxes for the two-dimensional 3-T RH equations

are,
((Fy=0,
E, = pr (wp, —w*) (wp, — s1) + pr,
f?e = _Wffil (8¢ —sL) + (Ee,L — %,OL (IU*)Q) (wg — s1) + pe,Lwr, (5.9)
i = =P (se = s0) + (B — gpr (w*)?) (wp — s1) + pipwr,
Fro==3pt (s, — s1) + (Brp — Lpr (w)?) (wp — sp) + prrwr,

\
under the assumption that v, = v;, v = %.

For the derivatives O,p., Oype, OuDi, Oypi, OxDr, Oypr in the non-conservative term N, we
will use the values and derivative values of U;(z,y) to approximate them, just like the
one-dimensional case in (3.26).

Finally, we will use the reconstruction polynomials U;x(x,y) to approximate the values

of temperatures T,,T;, T in the energy-exchange terms S.
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5.1.2 The high order Runge-Kutta time discretization

Based on the two-dimensional semi-discrete Lagrangian scheme (5.5), combined with the
first-order explicit Euler forward time discretization method, we have the following first-

order explicit scheme
?Zl|ln+1 - ]k| | / [_fﬂ(Un,in7Un,ex’n) + G(Una’n’)} dl
arr

+ At/ [_N(Un7 Un,in’ Un,ex’ n) + S(Un, 'I’I,)] dl'dy (510)
I;.fk

IAtL(ﬁLk)

where we denote L(ﬁj,k) as the spatial operator. Then, combined with the third order strong
stability-preserving Runge-Kutta (SSP-RK) time discretization method [23, 18], we have the
following two-dimensional high order explicit Lagrangian formulation,

Stage 1,

ey

T =2z" 1., 1+ AW

Jt+3.k+3 J+3.k+3 jt+ak+3
yj(i)l k+d T ]+ k41 + Atvg+2,k+
US| = U] + AL(T]); (5.11)
Stage 2,
x;?%,k-f—% - xﬁ)yk# + iAt [ Wirtket T “(Bl,mé] ’
y(i)Q,k+2 - y(ir)Q,kJr; + 1At [ SV ks +U(+)2,k+ ]
T2 =T + ZN —3L(T},) + L(T))] (5.12)
Stage 3,
n+1 1 o) 2)
Tiilrel = Tirpaey T g0t U [ jAdkrd T 4“j+5 k+§] ’
y?:;m% =Yt T éAt [ j+dktd T U(22,k+; +4UJ+2,k+J
Ty I = Tl + A [L(T7) + LOW) + L0 (5.13)

In the next section, we will verify this two-dimensional Lagrangian scheme is high order

accurate and non-oscillatory.
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6 Numerical results

In this section, we perform some numerical experiments on our third order explicit La-
grangian schemes solving the 3-T RH equations (2.6) which is equivalent to (2.1). Purely
Lagrangian computation are used to do all the following tests. The radiation constant a is
taken to be 1 unless otherwise stated. The reference solutions for the following discontinuous
problems are obtained by grid-refinement converged numerical solutions by the same scheme

and are referred to as the “converged solutions”.

6.1 The accuracy test

First we develop a manufactured solution to the system (2.1) to test the accuracy of our
schemes. We add a source term s = (sy, S9, 3, 54, 85)7 to the right hand side of (2.1) such
that a given vector U(z) is a solution of the system (2.1). To be specific, we will solve the
following equations,

Op + Ozpu = 51

Opu + 0y (pu* + pe + i + pr) = 52

O Ee + 0, ((Ee + pe)u) — 3ud,(2pe — pi — pr) = Op(ke0pTe) — wei(Te — T;) — wer (T} — T)) + 53

OE; + 0.((Ei + pi)u) — %uaz(Qpi = Pe = Pr) = 0 (8:0,T;) + wei(Te — Ti) + 54

OE, + 0,((E, + pr)u) — 2uds(2p, — pe — pi) = 0p(k, 0, TE) + wer (T4 — T2) + s5.

(6.1)

It has the following exact solutions,
p(x,t) =1+ 0.5sin(z + 1)
u(z,t) =2+ cos(z + t)
pee(z,t) = by (1 + bycos(x +t)) (6.2)
pei(x,t) = by (1 + bysin(x + t))
per(x,t) = bs(1+ by cos(z +t))
where v, = v; = g Wej = Wer = 1. Ke = K; = K, = 1. In this test, the initial computational
domain is [0,27]. The initial condition is obtained by (6.2) with ¢ = 0. The periodic
boundary condition is applied.
We test the problem with by = 3,0y = 0.2,b3 = 2,b4 = 0.1. Tables 6.1 shows the errors
and orders for the our third order Lagrangian scheme. In the table, we observe that the

scheme achieves third order accuracy both in L; and L., norms for all the variables we solve.

6.2 The non-oscillatory tests

In some of the following tests, to minimize the effect of the boundary condition, we dupli-
cate the wave symmetrically and extend it periodically so that we could apply the periodic

boundary conditions at the boundaries.
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Table 6.1: Errors and orders for the accuracy test performed by the one-dimensional third
order Lagrangian scheme solving one-dimensional 3-T RH equations (2.6) at t = 1

N L P k pu k E, k E; k E, k
40 | Ly | 7.37E-4 3.28E-3 3.78E-3 4.55E-3 6.47E-3
L | 3.65E-3 1.99E-2 2.08E-2 2.54E-2 1.91E-2

80 | Ly | 4.83E-5|3.93 | 1.99E-4 | 4.05 | 2.09E-4 | 4.18 | 2.47E-4 | 4.20 | 3.96E-4 | 4.03

Lo | 1.25E-4 | 4.87 | 2.04E-3 | 3.29 | 1.59E-3 | 3.70 | 1.54E-3 | 4.04 | 1.72E-3 | 3.48

160 | Ly | 6.56E-6 | 2.88 | 1.41E-5 | 3.82 | 1.65E-5 | 3.67 | 2.65E-5 | 3.22 | 3.56E-5 | 3.47

Lo | 1.49E-5 | 3.07 | 1.04E-4 | 4.29 | 9.32E-5 | 4.09 | 5.75E-5 | 4.74 | 1.10E-4 | 3.97

320 | Ly | 8.04E-7 | 3.03 | 1.28E-6 | 3.46 | 1.90E-6 | 3.12 | 3.20E-6 | 3.05 | 4.03E-6 | 3.14

Lo | 1.88E-6 | 2.99 | 3.23E-6 | 5.01 | 6.26E-6 | 3.90 | 6.88E-6 | 3.06 | 1.26E-5 | 3.13

640 | Ly | 1.02E-7 | 2.98 | 1.51E-7 | 3.09 | 2.37E-7 | 3.00 | 3.63E-7 | 3.14 | 4.50E-7 | 3.16

Lo | 2.36E-7 | 3.00 | 4.19E-7 | 2.95 | 7.66E-7 | 3.03 | 7.39E-7 | 3.22 | 1.52E-6 | 3.05

Example 1 (The 3-T double Lax radiative shock tube problem).

We first consider a one-dimensional double Lax shock tube problem with the initial

computational domain [-10, 30]. The initial condition is

p=0.445, u=0698, p.=pi=p =1176, —10<z<0
p=0.5, u=0, Pe = pi = pr = 0.19, 0<xz<20 (6.3)
0= 0445, u=0698, p.=pi=p =1176, 20<z <30

Ve = Vi = % The periodic boundary condition is applied. The results of our third order
Lagrangian scheme with 200 initially uniform cells compared with the converged solution at
t = 1 are shown in Figure 6.1-6.2. In Figure 6.1, we give the numerical results of p, u, 1., T;, T
obtained by our third order Lagrangian scheme solving the 3-T RH equations (2.6) with
We; = Wer = 0 and kK, = K; = K, = 0, which demonstrate that the magnitude and the
position of the shocks are consistent with the converged solution well, there is no oscillation
near the shocks. In Figure 6.2, we present the numerical results of our third order Lagrangian
scheme solving the fully 3-T RH equations (2.6) with we; = w,, = 1 and k. = k; = K, = 1,
where we observe that the solution is more smooth due to the effects of diffusion. The
electron, ion and radiation have different temperatures at the final time due to the effect of

energy exchange.

Example 2 (The 3-T RH problem of double two-interacting blast waves).
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= —ao=— - Numerical 200 L = —ao=— = Numerical 200 = —o=— = Numerical 200

Figure 6.1: The numerical results of Example 1 with 200 cells against the converged solution
at t = 1 by using the third order Lagrangian scheme solving the 3-T RH equations (2.6)
without the diffusion and energy-exchange terms. Left and Top: density, Right and Top:
velocity, Left and Bottom: electron temperature, Middle and Bottom: ion temperature,
Right and Bottom: radiation temperature.
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converged ed
— —=— - Numerical 200 E — —s— - Numerical 200 | — —s— - Numerical 200

Figure 6.2: The results of Example 1 with 200 cells against the converged solution at ¢t = 1
by using the third order Lagrangian scheme solving the fully 3-T RH equations (2.6). Left
and Top: density, Right and Top: velocity, Left and Bottom: electron temperature, Middle
and Bottom: ion temperature, Right and Bottom: radiation temperature.
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Figure 6.3: The results of Example 2 with 400 cells against the converged solution at ¢ =
0.038 by using the third order Lagrangian scheme solving the 3-T RH equations (2.6). Left
and Top: density, Right and Top: velocity, Left and Bottom: electron temperature, Middle
and Bottom: ion temperature, Right and Bottom: radiation temperature.

For this problem, the initial condition is

1000, 0<z<0.1
0.01, 01<z<09 X
pzla u=0, p= 100, 09<z<11 , pc=pi=p-=5p (64>
001, 11<z<19 3
1000, 19<z<2

The initial computational domain is [0, 2]. 7. = 7 = 1.4, Wy = Wep = 0. ke = K; =
0.01, k. = 0.001. The periodic boundary condition is applied. The results of our third order
explicit Lagrangian scheme solving the 3-T RH equations (2.6) with 400 initially uniform
cells compared with the converged solution at ¢ = 0.038 are shown in Figure 6.3. We can see
the very satisfactory resolution and non-oscillation in the results of high order Lagrangian

scheme.
Example 3 (The 3-T radiative shock tube problem involving two rarefaction waves).

This shock tube problem involves two rarefaction waves moving towards the opposite

34




Numerical 400 Numerical 400

Numerical 400

Numerical 400 Numerical 400

o
o

Figure 6.4: The results of Example 3 with the different k., k;, k, at t = 0.2 by using the
third order schemes solving the 3-T RH equations (2.6) with 400 cells. Left and Top: density,
Right and Top: velocity, Left and Bottom: electron temperature, Middle and Bottom: ion
temperature, Right and Bottom: radiation temperature.

directions. Its initial condition is

{

Ve =Y = g We; = Wer = 0. The Dirichlet boundary condition is applied at the boundaries.

u=-1, p.=p;=p,=0.333333, —2<2<0

L,
1, u=1, Pe =p; = pr = 0.333333, 0< <2 (6.5)

For this problem, we test the problem containing the diffusion terms with k. = k; = Kk, =
0,0.1,0.5, 1 respectively. Figure 6.4 shows the results of our third order Lagrangian scheme
by using 400 cells at t = 0.2. We observe that the diffusion effect is more severe as k., k;, K,

increases, which is quite reasonable with the common sense in physics.
Example 4 (The Shu-Osher 3-T RH problem).
For this problem, the initial condition is

{ p= 3857143, u=2620369, p.=pi=p =344, —0<a<—d oo

p=1+esinkz, u =0, Pe=p; =pr =0.333333, —4<x<15

where € and k£ are the amplitude and wave number of the entropy wave. In our test, we
take e = 0.2,k = 5. 7. = = 14. wy = 1L,w, = 0.01. kK, = k; = Kk, = 0.01. The

35




converged —— converged
——————— 1st order 400 —+—-=-~ 1st order 400
———— 3rd order 400 3rd order 400

velocity
o
Bma

converged converged —— converged
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Figure 6.5: The results of Example 4 with 400 cells against the converged solution at ¢t = 1.8
by using the first order and third order Lagrangian scheme solving the 3-T RH equations
(2.6) respectively. Left and Top: density, Right and Top: velocity, Left and Bottom: electron
temperature, Middle and Bottom: ion temperature, Right and Bottom: radiation tempera-
ture.

Dirichlet boundary condition is applied at the boundaries. The final time is ¢t = 1.8. This
problem is very suitable for testing the advantage of a high order scheme when the solution
contains both shocks and complex smooth structures. The comparison results of our first
and third order explicit Lagrangian scheme solving (2.6) with 400 initially uniform cells
compared with the converged solution at ¢ = 1.8 are shown in Figure 6.5. We observe that
the third order scheme can capture the fine structure in the profiles of p,u,T.,T;, T, much
better than the first order scheme, which verifies the advantage of the high order scheme.
Meanwhile, we observe some overshoots in the figures of p, T,,T;. Such overshoots are caused
by the Lagrangian framework rather than by the high order WENO reconstruction, since
this phenomenon appears and even is more severe in the first order Lagrangian scheme. This

issue has been illustrated in our previous paper [7].
Example 5 (The steady-state 3-T radiative shock problem).

In [20], Johnson and Klein obtained a series of steady-state solutions for 3-T radiative

shocks by using the relaxation-based approach. In the model they investigated, both electron
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Figure 6.6: The results of Example 5 with 150 cells against the converged solution by using
the third order Lagrangian scheme solving the 3-T RH equations (2.6). Left and Top: density,
Right and Top: velocity, Left and Bottom: electron temperature, Middle and Bottom: ion
temperature, Right and Bottom: radiation temperature.

and ion conduction are included, as well as ion viscosity. Here we test a similar 3-T radiative
shock problem, in which the ion viscosity is not considered. The initial condition for the
case with the Mach number M = 1.423025 is as follows,

= (6.7)

p = 40, u =3, T.=T, =T, =2, —1<x<0
p = 64477616, u= 1861111, T, =T,=T, =2.83044, 0<x<0.5

Ve = Vi = % Coe = Covi = 1. a = 0.01372. w,; = 6000, w,, = 411.320038. k., = 1072,
k; = 107°, K, = 0.2. The Dirichlet boundary condition is used at the boundaries. Figure 6.6
shows the steady state solution given by our third order Lagrangian scheme with 150 initially
uniform cells. By comparison, we observe that our scheme can produce the non-oscillatory

and high-resolution solution for this kind of 3-T radiation shock problems.
Example 6 (The multi-material 3-T radiative shock tube problem).

Last we consider a one-dimensional multi-material 3-T radiative shock tube problem.
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Figure 6.7: The results of Example 6 with 200 cells against the converged solution at ¢t = 1.5
by using the third order Lagrangian scheme solving the 3-T RH equations (2.6). Left and
Top: density, Right and Top: velocity, Left and Bottom: electron temperature, Middle and
Bottom: ion temperature, Right and Bottom: radiation temperature.

The initial condition is

p=1,  u=0, p.=p=p=0333333, =v=1,  —H<x<0

p=0.125 u =0, Pe = pi = pr = 0.033333, ’ye:’yl-zg, 0<x<10

p=1, u =0, Pe = pi = pr = 0.333333, ’ye:’yi:%, 10<x2 <15
(6.8)

The initial computational domain is [-5,15]. we; = 10, we, = 1. ke = k; = Kk, = 2. The
periodic boundary condition is applied. The results of our third order Lagrangian scheme
with 200 initially uniform cells compared with the converged solution at ¢ = 1.5 are shown
in Figure 6.7. In the figures, we can see that the interface is very sharp and there is no
oscillation near the interface, which verifies the advantage of the Lagrangian scheme and the

capability of our scheme to treat multi-material problems.

6.3 The two-dimensional accuracy test

Next, we test the accuracy of our two-dimensional Lagrangian schemes for the system (5.1).
In order to obtain the exact solution, an artificial source term is added to the right hand
side of (5.1).
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First, we take the velocities as constants u = v = 1, and the exact solutions follow as,

plx,y,t) =1+ 0.5sin(z +y — 2t)

u('r? y7 t) = /U(x7 y’ t) = 1

pee(x,y,t) = by (1 + bgsin(x +y — 2t)) (6.9)
pei(x,y,t) = by (1 + by cos(x +y — 2t))

per(x,y,t) = b3(1 + bysin(x +y — 2t))

where v, = v; = g We; = Wep = 0. Ke = K; = K, = 0. by = 3,bp = 0.2,b3 = 2,04 = 0.1.
The initial computational domain is [0, 27] x [0, 27], and be uniformly divided into N, x N,
rectangular cells. The periodic boundary condition is applied.

Table 6.2 shows the errors and orders for our two-dimensional third order Lagrangian
scheme under different mesh sizes N, = N,, = 40, 80, 120, 160, 200. In this table, we observe
that the scheme achieves third order accuracy which verifies our spatial discretization and
time discretization are both high order accurate. But taking u = v = 1 is too special which
means that the meshes are only moving without any change in the cell shapes and sizes,

hence higher order accuracy is observed.
Table 6.2: Errors and orders for the accuracy test performed by the two-dimensional high-

order Lagrangian scheme solving the two-dimensional 3-T RH equations (5.1) at time ¢ = 0.1
with the exact solutions (6.9).

N, | L p k pu k E, k E; k E, k
40 | Ly | 2.59E-4 2.62E-4 5.02E-4 4.16E-4 2.34E-4
L | 8.02E-4 8.10E-4 1.34E-3 1.31E-3 6.80E-4

80 | Ly | 3.23E-5 | 3.00 | 3.26E-5 | 3.01 | 6.34E-5 | 2.98 | 5.18E-5 | 3.01 | 3.05E-5 | 2.94

Lo | 1.01E-4 | 2.99 | 1.02E-4 | 3.00 | 1.70E-4 | 2.98 | 1.69E-4 | 2.96 | 8.77E-5 | 2.95

120 | Ly | 9.56E-6 | 3.00 | 9.65E-6 | 3.00 | 1.92E-5 | 2.95 | 1.55E-5 | 2.98 | 9.49E-6 | 2.88

Lo | 2.99E-5 | 3.00 | 3.01E-5 | 3.00 | 5.24E-5 | 2.91 | 5.16E-5 | 2.93 | 2.68E-5 | 2.93

160 | Ly | 4.03E-6 | 3.00 | 4.07E-6 | 3.00 | 8.32E-6 | 2.91 | 6.67E-6 | 2.93 | 4.20E-6 | 2.83

Lo | 1.26E-5 | 3.00 | 1.27E-5 | 3.00 | 2.30E-5 | 2.87 | 2.24E-5 | 2.90 | 1.16E-5 | 2.90

200 | Ly | 2.06E-6 | 3.00 | 2.08E-6 | 3.00 | 4.39E-6 | 2.86 | 3.51E-6 | 2.87 | 2.26E-6 | 2.79

Lo | 6.46E-6 | 3.00 | 6.49E-6 | 3.00 | 1.22E-5 | 2.84 | 1.18E-5 | 2.87 | 6.14E-6 | 2.87

Then, we take the velocities as the cosine function u = v = 2 + cos(x + y — 2t), and the

exact solutions follow as,

plx,y,t) =1+ 0.5sin(z +y — 2t)

u(z,y,t) =v(x,y,t) =2+ cos(x +y — 2t)

pee(x,y,t) = by (1 + bysin(x +y — 2t)) : (6.10)
pei(x,y,t) =bi(1+ bycos(x +y — 2t))

per(z,y,t) = b3(1 + bysin(x 4+ y — 2t))

where v, = v; = g We; = Wer = 0.1. ke = K; = K, = 0.5. by =3, =0.2,b5 =2,b, =0.1.

The initial computational domain and boundary condition are as same as the previous case.
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Table 6.3 shows the errors and orders and we observe our two-dimensional Lagrangian scheme
achieves second-order accuracy with the cosine velocities. This is expected as we are using
a pure Lagrangian scheme with straight-line edged cells, hence the order of accuracy is
restricted to two regardless of the orders of reconstruction and time discretization [8]. Curved
cells or arbitrary Lagrangian-Eulerian (ALE) methods must be used to achieve higher than
second order accuracy in 2D, which will be studied in the future.

Table 6.3: Errors and orders for the accuracy test performed by the two-dimensional high-

order Lagrangian scheme solving the two-dimensional 3-T RH equations (5.1) at time ¢ = 0.1
with the exact solutions (6.10).

N, | L p k pu k E, k E; k E, k
40 | Ly | 1.39E-3 3.01E-3 6.92E-3 6.35E-3 4.79E-3
L | 2.99E-3 9.31E-3 1.78E-2 1.78E-2 1.50E-2

80 | Ly | 3.35E-4 | 2.05 | 6.66E-4 | 2.18 | 1.64E-3 | 2.08 | 1.53E-3 | 2.05 | 1.10E-3 | 2.12

Lo | 7.08E-4 | 2.08 | 1.84E-3 | 2.34 | 3.57E-3 | 2.32 | 3.51E-3 | 2.34 | 2.88E-3 | 2.38

120 | Ly | 1.47E-4 | 2.03 | 2.89E-4 | 2.06 | 7.14E-4 | 2.05 | 6.70E-4 | 2.04 | 4.77E-4 | 2.07

Lo | 3.08E-4 | 2.06 | 7.61E-4 | 2.18 | 1.48E-3 | 2.17 | 1.43E-3 | 2.21 | 1.17TE-3 | 2.22

160 | Ly | 8.23E-5 | 2.03 | 1.61E-4 | 2.04 | 3.97TE-4 | 2.05 | 3.74E-4 | 2.03 | 2.63E-4 | 2.07

Lo | 1.7T1E-4 | 2.04 | 4.11E-4 | 2.14 | 8.04E-4 | 2.12 | 8.38E-4 | 1.87 | 6.28E-4 | 2.16

200 | Ly | 5.24E-5 | 2.02 | 1.02E-4 | 2.05 | 2.51E-4 | 2.05 | 2.37E-4 | 2.04 | 1.65E-4 | 2.08

Lo | 1.09E-4 | 2.03 | 2.56E-4 | 2.13 | 5.25E-4 | 1.91 | 5.54E-4 | 1.85 | 4.12E-4 | 1.89

6.4 The two-dimensional non-oscillatory test

We consider the two-dimensional 3-T double Lax radiative shock tube problem on a quarter

of the circular domain 0 < R < 40 with the initial condition as

p=0.5, urp =0, Pe = pi = pr = 0.19, 0 < R <10,
p=0.445, wur=0.698, p.=p;=p,=1.176, 10 < R < 30, (6.11)
p=0.5, ug = 0, Pe = p; = pr = 0.19, 30 < R < 40,

where v, = v = g and upg is the radial velocity. The symmetric boundary condition is

applied.

In Figure 6.8, we show the computational meshes with 200 x 10 cells and we; = we, =
0, ke = k; = Kk, = 0 at time ¢t = 0 and ¢t = 1. We show the contours of density, electron
temperature, ion temperature and radiation temperature in Figure 6.9 with we; = we, =
0, ke = k; = Kk, = 0 and Figure 6.10 with w.; = w,, = 0.1, ke = k; = Kk, = 0.5 on the
400 x 10 mesh respectively. The radial cuts of the results with 200 x 10 and 400 x 10 cells
compared with the converged solution at ¢ = 1 are shown in Figure 6.11 and Figure 6.12.
From these results, we observe the positions of the contacts and shocks obtained by our two-

dimensional high order Lagrangian scheme consist with the converged solution well, which
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Figure 6.8: Computational meshes of the non-oscillation test at different time with 200 x 10
cells and we; = wer =0, ke = K; = K, = 0.

verifies the advantage of the Lagrangian scheme. Based on the WENO reconstruction, there

is no oscillation near the contacts and shocks.

7 Concluding remarks

In this paper, we discuss the methodology to construct a class of high order conservative
Lagrangian schemes for one and two dimensional three-temperature (3-T) radiation hydro-
dynamics (RH) equations. The 3-T RH equations contain the nonlinear advection, diffusion

and relaxation terms which have different scales. Due to the nonconservative form of the

(a) density (b) electron temperature (c) ion temperature  (d) radiation temperature

Figure 6.9: Contours of the two-dimensional non-oscillatory test with 400 x 10 cells at t =1
by using the 2D high order Lagrangian scheme solving the 3-T RH equations (5.1) with
We; = Wer = 0, Ke = Ky = Ky = 0.
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(a) density (b) electron temperature (c) ion temperature  (d) radiation temperature

Figure 6.10: Contours of the two-dimensional non-oscillatory test with 400 x 10 cells at
t = 1 by using the 2D high order Lagrangian scheme solving the 3-T RH equations (5.1)
with we; = we, = 0.1, k. = K; = Kk, = 0.2.

3-T RH equations, it is difficult to design a high order and conservative scheme. In fact,
there has been rare discussion on this topic in the literature so far. In order to design a
Lagrangian scheme with both high order accuracy and the conservative property, we intro-
duce three new energy variables, in the form of which the three energy equations of 3-T
RH equations are rewritten. Based on the multi-resolution WENO reconstruction and the
strong stability preserving (SSP) high order time discretizations, as an example, we design a
class of conservative Lagrangian schemes with third order accuracy both in space and time.
The methodology could be extended to arbitrary accuracy. We also develop an approximate
HLLC Riemann solver for the Lagrangian scheme solving the 3-T RH equations which could
be used to determine the numerical flux of the conservative advection terms in the equa-
tions. Furthermore, we prove the positivity-preserving property of a class of first order and
high order Lagrangian schemes based on the above HLLC flux to solve the one-dimensional
3-T RH equations which only contain the conservative advection terms in space. The global
positivity of the scheme is not guaranteed because the discretizations of the non-conservative
terms, diffusion terms, and energy exchange terms have not been taken into consideration,
which needs to be further investigated. Various numerical tests are given to verify the desired
properties of the high order Lagrangian schemes such as high order accuracy, non-oscillation,
conservation and adaptation to the multi-material problems. Preliminary extension to the
two dimensional case is also considered. The design of the implicit high order conserva-
tive Lagrangian scheme, and more studies on the extension of the high order conservative

Lagrangian schemes to multi-dimensional 3T RH equations, constitute our future work.
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Figure 6.11: Radial cuts of the two-dimensional non-oscillatory test with 200x 10 and 400x 10
cells against the converged solution at t = 1 by using the 2D high order Lagrangian scheme
solving the 3-T RH equations (5.1) with we; = we, = 0, ke = K; = K, = 0.
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solving the 3-T RH equations (5.1) with we; = we, = 0.1, ke = k; = K, = 0.2.
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