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Abstract—The intricate interplay of regulatory elements, spa-
tial arrangements, and transcription factors shapes the complex
chromatin architecture within individual cells, offering valuable
insights into cellular diversity and heterogeneity in the realm of
chromatin biology. Nevertheless, the analysis of single-cell Hi-
C data presents notable challenges due to its sparse nature
and limited interaction counts. In this study, we introduce
a novel algorithm, scHi-CNN, designed for the detection of
statistically signicant single-cell Hi-C chromatin interactions.
Our method comprises three key steps: imputation of single-
cell matrices, normalization, and identication of statistically
signicant interactions. To assess the robustness and scalability
of scHi-CNN across various conditions, we evaluate its perfor-
mance using three distinct datasets: human cortex cells, mouse
embryonic stem cells, and a mouse cell cycle dataset. Moreover,
we delve into the biological relevance of the derived signicant
interactions by examining CTCF binding sites, known promoter-
related interactions, and the overlap between different datasets
of the same cell type. The results underscore the ability of scHi-
CNN to identify more biologically meaningful interactions from
single-cell data, facilitating a deeper comprehension of regulatory
elements and spatial arrangements within individual cells and
across diverse cell types.

Code and sample data for this paper are available on
the GitHub repository at https://github.com/bignetworks2019/
scHi-CNN

Index Terms—single-cell, Hi-C, chromatin interaction

I. INTRODUCTION

Single-cell chromatin interaction data plays a crucial role
in unraveling the intricacies of three-dimensional chromatin
structure, capturing cellular heterogeneity, and elucidating
genomic variations across diverse cell types. Identifying sig-
nicant interactions from raw interaction data is imperative
for examining regulatory elements, spatial arrangements, tran-
scription factor functions, and other functional elements in
individual cells. However, processing single-cell Hi-C data
presents several challenges due to its inherent sparseness and
limited interaction counts.

Despite the availability of single-cell chromatin interac-
tion datasets to the public, the analysis of signicant intra-
chromosomal interactions within individual cells is still in
its nascent stage. Existing tools primarily focus on imputing

and modeling chromatin interactions in single-cell contact
matrices, utilizing approaches such as analyzing topologically
associating domains, embeddings, and cluster domains [1]–
[4]. Furthermore, a computational tool has been developed
for identifying frequent inter-chromosomal interactions from
single cells using a network-based method [5]. However,
none of these tools effectively address the identication of
signicant intra-chromosomal interactions at the single-cell
level. In many cases, researchers resort to employing bulk Hi-
C technologies like HiCCUPS [6] and FitHiC [7] to derive
signicant interactions by aggregating individual cell interac-
tions. Unfortunately, these methods typically yield suboptimal
results as they are not tailored to identify signicant chromatin
interactions specically within single cells.

Recently, SnapHiC, a random walk algorithm-based
method, has been introduced as a pioneering computational
approach for identifying signicant intra-chromosomal in-
teractions from single-cell Hi-C data [8]. The method has
shown promise in enabling the analysis of very high-resolution
chromatin interactions (e.g., 10kb) from single-cell Hi-C data.
However, the high-resolution nature of these chromatin inter-
actions imposes stringent requirements on the raw single-cell
Hi-C data. It is recommended that each single cell possesses
a minimum of 150,000 raw chromatin contacts, a threshold
that most existing unltered single-cell Hi-C data fails to
meet. Moreover, SnapHiC treats chromatin interactions in each
cell as independent entities, disregarding the local similarities
of chromatin interactions between different cells. Notably,
leveraging local similarities has proven effective in enhancing
the analysis of single-cell Hi-C data [4] and single-cell Hi-
C data clustering [9]. Furthermore, the majority of single-
cell studies [10]–[16] have been conducted at resolutions of
hundreds of kilobases or several megabases. Consequently,
there is a need for new computational methods that can
accommodate a wider range of single-cell Hi-C data while
considering the local similarities of chromatin interactions
between different cells, particularly at a comparatively relaxed
resolution (e.g., 100kb).

In this study, we propose a novel algorithm for statisti-
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cally signicant single-cell Hi-C chromatin interactions with
Nearest Neighbors, named scHi-CNN. The algorithm com-
prises three main steps: imputation of single-cell matrices
utilizing a k-nearest-neighbor-based approach, normalization,
and identication of statistically signicant chromatin interac-
tions. To evaluate the performance of our proposed method, we
primarily compared it with the SnapHiC algorithm. We utilized
three distinct types of single-cell datasets and compared the
counts of signicant interactions as well as the overlapping
interactions between different datasets of the same cell type.
Additionally, we assessed the relevance of the derived sig-
nicant interactions by analyzing CTCF binding sites consid-
ering the fact that CTCF plays an important role in three-
dimensional genome organization and presumely contributes
to the formation of higher-order chromatin structure [17]. To
provide a comprehensive comparison, we utilized bulk Hi-C
data and contrasted the outcomes obtained from the different
methods. Furthermore, we conducted an analysis of chromatin
loops generated using varying numbers of cells, focusing on
known regulatory elements. The results demonstrated that our
proposed algorithm is capable of identifying more biologi-
cally meaningful interactions from single-cell data, even when
utilizing a smaller number of cells compared to SnapHiC.
We rmly believe that our method serves as a valuable tool
for identifying signicant chromatin interactions in single-cell
data, thereby contributing to the analysis of three-dimensional
chromatin organization.

II. METHOD

A. Proposed Algorithm

Our proposed algorithm consists of three key steps: imputa-
tion, normalization, and identication of signicant chromatin
interactions. Our algorithm workow is visually represented
in Fig 1.

1) Imputation of single cell contact matrices: The initial
step involved partitioning each chromosome into equal-sized
bins for each individual cell. One of our aim is to handle
datasets with fewer chromatin interactions, so we’ve chosen
to broaden the bin size resolution of SnapHiC from high
resolution bins (like 10Kb, 25Kb) to 100Kb. We then as-
signed chromatin interactions to specic bin pairs and tallied
these interactions to generate contact matrices. For contact
matrices that contained empty pixels (i.e., zero contact count),
we implemented a strategy to impute these empty pixels.
Specically, we extracted a surrounding region measuring
(2d+1)x(2d+1) (e.g d=5 bin pair differences in each direction
from the empty pixel) to identify the closest neighbors. To
perform imputation, we only considered pixels that had at least
one chromatin interaction within their surrounding region.

Subsequently, we retrieved the surrounding matrices cor-
responding to the same position in the other cells for the
same chromosome. From these matrices, we selected the top
k (e.g k=4, which is also used in [1]) neighbors based on the
Pearson correlation coefcient. The mean of these top k closest
neighbors was then used to impute the empty pixel. Note that

Fig. 1. Workow of the Method - 1. Single-cell contact matrix imputation, 2.
Normalization process, 3. Identication of signicant chromatin interactions

after the imputation, the empty pixel can still be zero if the
same entries are zeros for all top k neighbors.

To maintain the integrity of the analysis, we imposed a
maximum distance threshold (e.g. 1 million base pairs) for
the imputation of interactions. This ensures that the imputed
values are derived from nearby genomic regions that are
more likely to exhibit chromatin interactions. Also, given the
symmetry of a Hi-C matrix, our procedure involved only
the imputation of the upper half matrix within the specied
distance.

2) Normalization: To standardize our contact matrices, we
employed a normalization approach that involved grouping
interactions with the same genomic distance, effectively nor-
malizing them diagonally with the same parameters used
in SnapHiC [8] for a fair comparison. For each diagonal
segment within a contact matrix, we started by ltering the
top 1% of the interactions with the highest contact values.
Subsequently, we computed the mean and standard deviation
using the remaining values and calculated corresponding z-
scores. Diagonals with a standard deviation lower than 10−6

were disregarded, and those segments were lled with zeros
to account for their negligible variability.

3) Identication of signicant chromatin interactions: To
identify signicant chromatin interactions , we implemented
similar criteria used in SnapHiC to determine if a interaction
bin pair qualied as a peak compared to its surrounding
region. For an interaction pair to be considered, its mean
normalized contact counts across all cells needed to exceed
zero. Additionally, we require that at least 10% of single
cells exhibited a normalized contact count greater than 1.96
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(corresponding to a pvalue ≤ 0.05). For interactions that
meet these criteria, we conducted a paired t-test with the local
neighborhood to assess signicance. The local neighborhood
was dened as the surrounding regions within a 2-bin genomic
distance, excluding the closest neighbors (i.e., bin pairs within
a 1-bin genomic difference). Using the mean of the local
neighborhood values, we performed the paired t-test and ob-
tained t-statistics and p-values. Subsequently, we grouped the
p-values based on genomic distance and converted them into
false discovery rates (FDRs) using the Benjamini-Hochberg
procedure. Finally, we identied the signicant chromatin
interactions based on a t-statistic greater than 3 and an FDR
value less than 0.1.

B. Processing Single-Cell Hi-C data

In this study, we utilized several publicly available single-
cell Hi-C datasets. Firstly, for the cell cycle dataset [10],
we obtained contact matrices for single cells categorized into
four distinct cell cycle phases. The labels G1 phase, Early-S
phase, Mid-S phase, and G2 phase correspond to the datasets
1CDX1, 1CDX2, 1CDX3, and 1CDX4 respectively. Each
phase included interaction data for a total of 390 individual
cells. Secondly, we acquired contact matrices for Mouse ES
cells [18] comprising a total of 475 cells. Lastly, we obtained
contact matrices for human frontal cortex single cells [18] that
comprise a total of 4,238 cells. To process the single-cell Hi-C
data, we applied both the proposed algorithm and the SnapHiC
algorithm, allowing for a comparison of the results obtained
from each method.

C. Processing Bulk Hi-C data

In the study, we obtained the Fastq les for the bulk Hi-
C data [19] corresponding to the cell cycle dataset. These
les were then processed using HiC-Pro to generate contact
matrices [20]. For the bulk Hi-C data related to Mouse ES cells
[18], we directly downloaded the contact matrices from the
NCBI database. To identify signicant chromatin interactions
within these contact matrices, we applied the HiCCUPS [6]
and FitHiC2 [7] algorithms. In order to compare these ndings
with the single-cell Hi-C data, we focused on the common
interactions identied by both HiCCUPS and FitHiC2 algo-
rithms.

D. Processing CTCF ChIP-seq Data

The Mouse ES cells CTCF ChIP-seq narrow peak data were
obtained from the ENCODE project (ENCSR362VNF) [21].
Similarly, for Homo sapiens neural cells derived from H1,
the CTCF ChIP-seq data were downloaded from ENCODE
(ENCSR822CEA). To analyze the single-cell Hi-C datasets,
we performed a counting of CTCF-enriched interactions. An
interaction was classied as CTCF-enriched if both ends of
the interaction overlapped with at least one CTCF binding site.
This criterion allowed us to identify and examine interactions
that exhibited a potential association with CTCF binding
events.

Fig. 2. A. Distribution of the percentages of the presence of raw interactions
corresponding to the identied signicant interactions across cells in prefrontal
cortex for scHi-CNN (e.g., 0.5 means 50% of the cells contain the identied
signicant interaction) B. Same as ’A’ for the SnapHiC method C. Signicant
interactions derived using scHi-CNN and SnapHiC for cells in prefrontal
cortex. D. Percentage of CTCF enriched interactions identied using the two
methods for cells in prefrontal cortex. In A,B,C, and D ve random samples
for each number of cells were gathered and represented in the gure with the
error bars. E. Signicant interactions derived using two methods for cell cycle
data organized in each cell cycle. F. Percentage of CTCF enriched interactions
identied using the two methods for cell cycle data.

E. Processing promoter related interactions

In this study, we utilized a previously reported set of
promoter-related interactions, including promoter-promoter
and promoter-other interactions, as a reference dataset [22].
These interactions were derived from a study conducted on
human cortex cells. To evaluate the performance of our
proposed methodology, we compared our results with those
obtained from SnapHiC with varying numbers of cells. We
then examined the overlap between these interactions and the
reference promoter-related interactions. This analysis allowed
us to assess the accuracy and effectiveness of our methodology
in capturing relevant chromatin interactions within the context
of promoter activity in human cortex cells.
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III. RESULTS

A. Quantity of signicant chromatin interactions

For the analysis of human cortex cells, we used both
methodologies across varying cell numbers, namely 10, 25, 50,
100, 200, and 500 cells. To ensure unbiased and representative
results, we performed multiple random selections of cell
numbers, as depicted by the error bars in Figure 2C. The
outcomes consistently demonstrate that scHi-CNN identies
a signicantly higher number of chromatin loops, even when
applied to a small cell population. In contrast, SnapHiC’s per-
formance appears to be less effective, particularly in detecting
interactions among smaller cell groups. To extend our evalu-
ation, we applied both methodologies to the whole and each
cell phase in the cell cycle dataset. The performance remains
consistent across the cell phases, as illustrated in Figure 2E.
Also scHi-CNN is capable of identifying the increasing trend
of signicant chromatin interactions in cells at varying stages
of the cell cycle, a phenomenon attributed to DNA replication
during the S phase. In contrast, SnapHiC is unable to capture
these inherent biological states of the cell. Furthermore, we
quantied the raw interactions corresponding to the identied
signicant interactions (Figure 2A and B). Notably, when
analyzing smaller cell groups (around 10 cells), scHi-CNN
identies interactions that were present in approximately 60%
of the cells, whereas the interactions identied by the SnapHiC
method are present in a much smaller fraction of cells. This
showcases the superiority of scHi-CNN in identifying fre-
quently occurring chromatin interactions among cells, thereby
highlighting its potential to derive more relevant chromatin
loops.

B. CTCF enriched interactions

CTCF plays an important role in three-dimensional genome
organization and presumely contributes to the formation of
higher-order chromatin structure [17]. We assessed the CTCF
enrichment of the signicant interactions obtained from scHi-
CNN and SnapHiC by leveraging previously collected CTCF
methylation data (Figure 2D,F). Our analysis reveals that
the percentage of CTCF-enriched interactions derived from
scHi-CNN remains consistent across different cell quantities,
whereas SnapHiC struggles to generate CTCF-enriched inter-
actions, especially when dealing with smaller cell populations.
SnapHiC requires a minimum of 50-100 cells to produce
50% of the CTCF-enriched interactions. In contrast, scHi-
CNN consistently identies more than 60% of CTCF-enriched
interactions in both human cortex cell and cell cycle datasets,
regardless of the number of cells used. These ndings sug-
gest that the results obtained using scHi-CNN encompass a
higher proportion of biologically meaningful data, indicating
an improvement over existing methodologies in terms of data
quality and relevance.

C. Common interactions between different datasets from the
same cell type

To investigate the overlap of interactions between differ-
ent datasets, we analyzed the cell cycle dataset and mouse

embryonic stem cell (mESC) dataset, which used the same
cell type. We specically examined the common interactions
between each phase of the cell cycle and mESC cells for
both scHi-CNN and SnapHiC (Figure 3). Additionally, we
determined the common interactions across each cell phase
within the cell cycle dataset (Figure 4). Interestingly, scHi-
CNN consistently identies a signicantly higher percentage
of common interactions in both cases. In addition, the Figure
3 illustrates that scHi-CNN outperforms SnapHiC in terms of
stability, as evidenced by a lower maximum variation in the
common percentage (6.36% for scHi-CNN compared to 7.86%
for SnapHiC). This observation suggests that scHi-CNN excels
in deriving meaningful interactions by effectively identifying
a greater number of common interactions within the same cell
type.

Fig. 3. Common interactions percentages between the cell cycle and mESC
datasets using scHi-CNN and SnapHiC

Fig. 4. Common interactions percentages among cell cycle phases using scHi-
CNN and SnapHiC

D. Identied promoter centered interactions

To gain further insights into the identied interactions,
we conducted an evaluation using Layer 2/3 (L2/3) type
cells from human cortex cells, considering different quantities
of cells. In order to facilitate more comparison, we also
employed SnapHiC at 10kb resolution with 100 L2/3 cells.
We specically focused on four known promoters and genes
associated with cortex and neural cells, as highlighted in
previous studies [22]–[24], to assess the identied chromatin
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Fig. 5. Identied signicant interactions in human cortex cell lines related to known Promoter-centered interactions using scHi-CNN and SnapHiC. A.
Identied signicant interactions for each cell quantity using scHi-CNN and SnapHiC within the marked areas associated with the four known promoters. B.
Number of signicant interactions derived using scHi-CNN and SnapHiC. C and E. Percentage of overlap with known promoter-promoter interactions and
promoter-other interactions. D and F. Overlapping interaction count with known promoter-promoter interactions and promoter-other interactions.

interactions. Figure 5A showcases the identied interactions
for each cell quantity using scHi-CNN, while highlighting
the promoters of interest. Remarkably, scHi-CNN successfully
identies these promoter-related interactions even with a very
low cell count, whereas SnapHiC fails to detect most of these
interactions even with a higher cell count at 100kb resolution.
Although SnapHiC manages to identify a few promoter-
related interactions at 10kb resolution, its performance fells
short compared to scHi-CNN. Furthermore, Figure 5C,D,E,F
illustrates the overlapping promoter-centered interactions iden-
tied using 100 cortex single cells, in comparison with the
promoter-centered interactions reported in a previous study
[22]. Though scHi-CNN identies less number of signicant
interactions (Figure 5B) than SnapHiC, our method, scHi-
CNN, reports a signicantly higher percentage of promoter-
centered interactions compared to SnapHiC (Figure 5C,D,E,F).
These ndings further highlight the superior performance of
scHi-CNN in identifying a greater proportion of biologically
meaningful interactions.

IV. CONCLUSION

In conclusion, this study presents a novel and robust
methodology for identifying signicant intra-chromosomal
chromatin loops from single-cell Hi-C data, addressing the
limitations of existing tools and expanding our understanding
of chromatin architecture in individual cells. Our method
consists of three primary steps: 1) imputing contact matrices
using a K-nearest-neighbour-based approach, 2) normalization,
and 3) identifying signicant chromatin interactions using a
statistical test. We evaluated the performance of our proposed
approach using three distinct datasets, including human cortex
cells, mouse embryonic stem (ES) cells, and a mouse cell cycle
dataset, with varying numbers of cells to assess the robustness
and scalability of our method across different conditions.

To validate the biological relevance of the interactions iden-
tied by our approach, we utilized several criteria, including
CTCF binding sites, analysis of known promoter-related in-
teractions, and quantication of common interactions between
different datasets of the same cell type. Our method shows a
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greater ability to generate a signicantly higher number of
biologically meaningful interactions compared to SnapHiC.
The capabilities were demonstrated through a higher per-
centage of CTCF-enriched interactions, greater overlap with
known promoter-centered interactions, and increased common
interactions between the same cell types, thus highlighting the
potential of our method in deciphering complex regulatory
networks in single cells.

Future research could focus on rening and optimizing the
methodology to further enhance its performance, sensitivity,
and generalizability across diverse cell types and conditions.
Additionally, integrating our method with other single-cell
genomics data modalities, such as single-cell RNA-seq, ATAC-
seq, or ChIP-seq, could provide a more comprehensive view of
the molecular mechanisms associating with chromatin archi-
tecture and gene regulation in single cells. This multi-modal
integration would enable researchers to better understand the
complex interplay between chromatin structure and function,
ultimately leading to novel therapeutic strategies for various
diseases, including cancer and developmental disorders, which
are often characterized by aberrant chromatin organization and
gene expression patterns.
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