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Uncultivated DPANN archaea are ubiquitous inhabitants of 
global oxygen-deficient zones with diverse metabolic potential
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ABSTRACT Archaea belonging to the DPANN (Diapherotrites, Parvarchaeota, Aenig­
marchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have been found 
in an expanding number of environments and perform a variety of biogeochemical 
roles, including contributing to carbon, sulfur, and nitrogen cycling. Generally char­
acterized by ultrasmall cell sizes and reduced genomes, DPANN archaea may form 
mutualistic, commensal, or parasitic interactions with various archaeal and bacterial 
hosts, influencing the ecology and functioning of microbial communities. While DPANN 
archaea reportedly comprise a sizeable fraction of the archaeal community within 
marine oxygen-deficient zone (ODZ) water columns, little is known about their metabolic 
capabilities in these ecosystems. We report 33 novel metagenome-assembled genomes 
(MAGs) belonging to the DPANN phyla Nanoarchaeota, Pacearchaeota, Woesearchaeota, 
Undinarchaeota, Iainarchaeota, and SpSt-1190 from pelagic ODZs in the Eastern Tropical 
North Pacific and the Arabian Sea. We find these archaea to be permanent, stable 
residents of all three major ODZs only within anoxic depths, comprising up to 1% of 
the total microbial community and up to 25%–50% of archaea as estimated from read 
mapping to MAGs. ODZ DPANN appear to be capable of diverse metabolic functions, 
including fermentation, organic carbon scavenging, and the cycling of sulfur, hydrogen, 
and methane. Within a majority of ODZ DPANN, we identify a gene homologous to 
nitrous oxide reductase. Modeling analyses indicate the feasibility of a nitrous oxide 
reduction metabolism for host-attached symbionts, and the small genome sizes and 
reduced metabolic capabilities of most DPANN MAGs suggest host-associated lifestyles 
within ODZs.

IMPORTANCE Archaea from the DPANN (Diapherotrites, Parvarchaeota, Aenigmarch­
aeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have diverse metabolic 
capabilities and participate in multiple biogeochemical cycles. While metagenomics and 
enrichments have revealed that many DPANN are characterized by ultrasmall genomes, 
few biosynthetic genes, and episymbiotic lifestyles, much remains unknown about their 
biology. We report 33 new DPANN metagenome-assembled genomes originating from 
the three global marine oxygen-deficient zones (ODZs), the first from these regions. We 
survey DPANN abundance and distribution within the ODZ water column, investigate 
their biosynthetic capabilities, and report potential roles in the cycling of organic carbon, 
methane, and nitrogen. We test the hypothesis that nitrous oxide reductases found 
within several ODZ DPANN genomes may enable ultrasmall episymbionts to serve as 
nitrous oxide consumers when attached to a host nitrous oxide producer. Our results 
indicate DPANN archaea as ubiquitous residents within the anoxic core of ODZs with the 
potential to produce or consume key compounds.
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I n recent years, metagenomics has enabled the discovery of several prokaryotic 
superphyla lacking pure culture representatives (1–3). One of these novel groups is 

the DPANN archaea, named after the first members of the expanding superphylum 
(Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarch­
aeota), which has come to include at least 10 putative phyla (4, 5). The first DPANN 
described was a Nanoarchaeota, Nanoarchaeum equitans, which remains one of the 
few cultivated members of the superphylum (6). Since then, DPANN phylogeny has 
undergone rapid change. Woesearchaeota and Pacearchaeota (formerly Euryarchaea 
DHVEG-5 and 6, respectively), two of the most ubiquitously distributed DPANN lineages, 
were reclassified within the superphylum in 2015 (7). Undinarchaeota was recently 
described as an independent DPANN lineage (5). Apparent unifying features of these 
DPANN archaea are ultrasmall cell sizes (~0.1–1.5 µm), reduced genomes (~1.5 Mb), 
and limited metabolic capacities (8). These features, along with several enrichments 
and visualizations of DPANN archaeal-host associations (6, 9, 10), suggest a symbiotic 
or commensal lifestyle of DPANN archaea with diverse microbial hosts. Exceptions may 
exist, including Iainarchaeota (formerly Diapherotrites), which has been reported to 
carry sufficient anabolic capabilities for a free-living lifestyle despite its small genome 
(11). However, the putative symbiotic lifestyle of the majority of DPANN organisms may 
explain why they have been challenging to cultivate in isolation.

Since their discovery, DPANN archaea have been found in a variety of diverse 
environments, including hydrothermal vents (12), freshwater and hypersaline lakes (13, 
14), groundwater (15, 16), terrestrial hot springs (17), marine sediments and water 
columns (12, 18, 19), and the Black Sea (20). Archaea writ large play crucial roles in 
global biogeochemical cycles, such as in ammonia oxidation (21), methane cycling 
(22), and organic carbon scavenging (23), and DPANN archaea have been found to 
possess genes for sulfur cycling and organic substrate degradation (15, 18). Additionally, 
certain DPANN archaea in anoxic environments may form consortia with methanogens 
and contribute to anaerobic carbon cycling (24). However, despite their widespread 
abundance, distribution, and diversity (accounting for about half of all archaeal diversity 
[8]), the ecological and biogeochemical roles of DPANN archaea are not fully understood. 
Culture-independent techniques have only begun to unravel the importance of these 
previously overlooked microorganisms within their expanding list of habitats.

Amplicon surveys have detected the presence of DPANN archaea within both 
sediments beneath oxygen-deficient zones (ODZs) (25) and the ODZ water column itself 
(26). The three major oceanic ODZs are located in the eastern tropical North Pacific 
(ETNP), the eastern tropical South Pacific (ETSP), and the Arabian Sea. Oxygen profiles 
in these regions display rapid decreases from surface saturation to below the detection 
limit of trace oxygen sensors (<10 nmol L−1) between 50 and 100 m depth, a region 
termed the oxycline (27, 28). Oxygen concentrations then remain below detection and 
with no vertical gradient for approximately 200–800 m (29), although the ODZ thickness 
varies greatly across each basin (30–32). Due to these unique features, ODZ water 
columns contain multiple biogeochemical gradients that support diverse microbial 
assemblages performing nitrogen, carbon, and sulfur cycling (33). In particular, these 
regions disproportionately contribute to marine nitrogen cycling, accounting for about 
30% of marine fixed nitrogen loss despite containing only 0.1–0.2% of oceanic volume 
(29, 34–36).

ODZs are characterized by prevalent denitrification, i.e., the microbially mediated 
stepwise reduction of nitrate to dinitrogen gas. This anaerobic respiratory metabolism 
occurs via reductases encoded by a suite of widely distributed genes (37). The last step 
of denitrification, the reduction of N2O to N2, is catalyzed by nitrous oxide reductase 
encoded by nos. Two clades of the nos catalytic subunit nosZ have been found, a typical 
clade I nosZ associated with complete denitrifiers defined by an N-terminal twin-arginine 
translocation (TAT) motif and an atypical clade II nosZ associated with partial denitri­
fiers defined by an N-terminal Sec-type motif (38). Both variants contain conserved 
copper-binding sites CuA and CuZ, although CuZ sites of clade II nosZ homologs exhibit 
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greater variability and less conservation (39). Recent studies revealed that clade II nosZ 
predominates within ODZs, occurs within diverse marine taxa including archaea, and 
may be associated with low oxygen and enhanced N2O affinity (39). Because N2O 
depletes ozone and is a potent greenhouse gas, organisms with atypical nosZ variants, 
including archaea, merit interest as potential N2O sinks.

Increasing attention has been focused on ODZ archaeal communities (40–42), such 
as members of Thermoproteota (including former Marine Group I Thaumarchaeota) and 
Thermoplasmatota (including former Marine Group II archaea) (43, 44). However, little 
is known about ODZ DPANN archaea, despite reports that they may comprise up to 
15%–26% of total archaeal reads in coastal ODZs (26). Challenges in the cultivation of 
these environmental microbes limit our understanding of the metabolic capabilities of 
clades such as DPANN that lack cultured representatives. We have previously repor­
ted a collection of 962 metagenome-assembled genomes (MAGs) from the ETNP and 
Arabian Sea ODZs (45) and characterized their nitrogen cycling capabilities, focusing on 
abundant taxa. From this data set, we recovered 33 genomes belonging to DPANN phyla 
Nanoarchaeota, Pacearchaeota, Woesearchaeota, Undinarchaeota, and Iainarchaeota, 
several of which carried putative nosZ homologs. However, the contribution of DPANN 
archaea in ODZ microbial assemblages and biogeochemical cycling, as well as the 
abundance, distribution, metabolism, ecology, and phylogeny of these archaea remain 
open questions. We characterize the metabolic capabilities of these ODZ DPANN MAGs, 
place them within the existing phylogeny of known DPANN, and determine their relative 
abundances and distributions within and across global ODZs. Our results demonstrate 
that DPANN are a ubiquitous portion of the microbial community within ODZs and 
comprise several lineages with diverse metabolic potential.

MATERIALS AND METHODS

Sample collection, sequencing, metagenome assembly, and binning

Sampling and sequencing methods for public ETNP metagenomes are described in 
Fuchsman et al. (42), Glass et al. (46), and Tsementzi et al. (47). Sampling and sequencing 
methods for public ETSP metagenomes are described in Stewart et al. (48) and Ganesh 
et al. (49). Raw reads per metagenome were retrieved from the Sequence Read Archive 
using the following National Center for Biotechnology Information (NCBI) BioProject 
IDs: PRJNA350692 (Fuchsman ETNP metagenomes), PRJNA254808 (Glass ETNP meta­
genomes), PRJNA323946 (Tsementzi ETNP metagenomes), PRJNA68419 (Stewart ETSP 
metagenomes), and PRJNA217777 (Ganesh ETSP metagenomes). Sampling locations for 
each metagenome were visualized using Python 3.7.12 and the cartopy package. These 
were plotted against global oxygen concentrations from 300 m below the sea surface 
from Ocean Data Atlas 2018 (Fig. 1A).

Trimming of raw reads, metagenome assembly, and binning methods are described 
elsewhere (45). Metagenome-assembled genomes were defined as bins with comple­
tion > 50% and contamination < 10% according to CheckM (50), although these statistics 
based on single-copy genes may underestimate the true completeness of DPANN 
archaea MAGs due to their limited genome sizes. Taxonomy was assigned to all MAGs 
using GTDB-tk v1.7.0 with the classify_wf workflow (51). Thirty-three MAGs belonging to 
DPANN phyla were annotated with PROKKA v1.14.6 (52) against the HAMAP (53) and 
Pfam databases (54) using the --kingdom Archaea flag. The full set of ODZ MAGs, 
including all DPANN MAGs analyzed in this study, were deposited under NCBI BioProject 
ID PRJNA955304. Bioinformatics and modeling code, sequence alignments, and tree files 
are available at https://github.com/izhang73/DPANN_ODZs. Additionally, MAG names 
and NCBI BioSample accession numbers for ODZ DPANN archaea are included in a 
Supplementary Dataset.

Published DPANN MAGs and genomes were manually downloaded from the Joint 
Genome Institute (JGI), while published DPANN from the National Center for Biotechnol­
ogy Information were downloaded using the EntrezDirect utility. These DPANN MAGs 
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and genomes were assessed for completeness and contamination with CheckM v1.0.12 
(50), and detailed taxonomy was determined with GTDB-tk v1.7.0 (51). MAGs and 
genomes below 50% completion and above 10% contamination, along with those that 
did not taxonomically classify within DPANN phyla, were pruned, and the remaining 
genomes were dereplicated with dRep v3.2.2 (55) with the -sa 0.99 flag to remove 
redundant genomes.

TARA Oceans MAGs were retrieved from Delmont et al. (56). To determine if 
DPANN MAGs were present within the TARA Oceans collection, we reclassified the 957 

FIG 1 Metagenome-assembled genomes of DPANN archaea from oxygen-deficient zones. (A) Locations of metagenomes from ETNP, ETSP, and Arabian Sea used 

for metagenome assembly, MAG binning, and relative abundance mapping. (B) Relative abundances of DPANN MAGs across metagenome samples, color-coded 

by phylum-level taxonomy. Depths are listed for each of the samples. Arabian Sea: all samples are from 2007 (45); ETNP: ^ indicates samples from 2016 (45), 

‡ indicates samples from 2018 (45), * indicates samples from 2013 (46), # indicates samples from 2012 (42), + indicates samples from 2013 (47); and ETSP: † 

indicates samples from 2008 (48), and ° indicates samples from 2010 (49). Map is adapted from Zhang et al. (45).
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non-redundant TARA Oceans MAGs with GTDB-tk v1.7.0 (51). These taxonomies were 
then searched for the presence of any DPANN phyla.

For dereplicated ODZ DPANN MAGs, coverage mapping was performed with CoverM 
using the flags minimap2-sr --min-read-aligned-percent 50 --min-read-percent-identity 
0.95 --min-covered-fraction 0 (https://github.com/wwood/CoverM). Relative abundances 
of dereplicated MAGs resulting from CoverM mapping were visualized using R v4.1.3 and 
the packages phyloseq, ggplot2, and dplyr.

Gene searching, metabolic analysis, and tree building

Unique published DPANN and all ODZ DPANN MAGs were queried for 76 archaea-specific 
single copy genes, which were aligned using GToTree v1.6.31 with the -H Archaea -G 
0.25 flags (57). We created a phylogenetic tree based on the output archaeal single copy 
gene alignment with IQ-Tree v1.6.12 (58) using the WAG + R6 model and 1,000 ultrafast 
bootstraps (59).

To determine the metabolic capabilities of ODZ DPANN, we used Anvi’o v7.1 (60). 
Briefly, for each DPANN MAG, we generated a contigs database with anvi-gen-contigs-
database. For metabolic predictions, we ran anvi-run-kegg-kofams to search against the 
KOfam HMM database of Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs 
(61) and automatically assigned hits above the KEGG bitscore thresholds for each KOfam 
profile. Additionally, we ran anvi-run-ncbi-cogs to search against the NCBI Clusters of 
Orthologous Groups (COGs) database (62) and identified archaeal single-copy core genes 
using anvi-run-hmms -I Archaea 76. To predict the presence or absence of metabolic 
pathways, we ran anvi-estimate-metabolism on each MAG. We annotated a metabolic 
pathway as present if over 70% of the genes in the pathway are present in a MAG, 
and partially present if 33%–70% of the genes in a pathway are present in a MAG. 
Additionally, we searched for annotations of genes of interest within PROKKA annota­
tions for each MAG, particularly for genes involved in fermentation, aerobic or anaerobic 
respiration, and energy metabolism. Sequences belonging to genes of interest were 
retrieved from each MAG and further inspected.

Protein sequences belonging to positive hits for denitrification genes from ODZ 
DPANN MAGs were obtained for nosZ. We extracted and aligned with MAFFT v7.450 
using the --auto and --leavegappyregion parameters. Alignments were visualized in 
JalView v2.11.2.6 (63) and inspected for alignment quality and the conservation of key 
enzymatic regions for nosZ. Prediction of membrane-bound regions, protein localization, 
and protein structure were determined via DeepTMHMM (64). To create a protein tree for 
nosZ, bacterial and archaeal nosZ-encoded protein sequences were obtained from NCBI 
using the query esearch -db protein -query “NosZ” | efetch -format fasta, and sequences 
under 200 amino acids and over 800 amino acids were removed. In addition, cytochrome 
c oxidase subunit II proteins from bacteria and archaea were downloaded from NCBI 
using the queries esearch -db protein -query “cytochrome c oxidase subunit ii [PROT] 
AND bacteria [ORGN]” | efetch -format fasta and esearch -db protein -query “cytochrome 
c oxidase subunit ii [PROT] AND archaea [ORGN]” | efetch -format fasta. Sequences under 
200 amino acids and over 800 amino acids were removed. To remove redundant or very 
similar sequences, Usearch v11 was used to cluster NCBI nosZ and cytochrome c oxidase 
subunit II (Cox2) sequences at 90% amino acid identity with the flags -cluster_fast -id 0.9 
-centroids (65). From clustered Cox2 sequences, 15 Cox2 sequences from taxonomically 
diverse organisms were chosen at random. These selected Cox2 were concatenated 
with clustered nosZ sequences and DPANN nosZ sequences and aligned with MAFFT 
v7.450 (66) using the --auto and --leavegappyregion flags. The resulting Cox2 and nosZ 
alignment was trimmed with trimAl 1.4.1 with the -automated1 flag (67). We used the 
trimmed alignment to create a maximum likelihood protein tree using IQ-Tree v1.6.12 
with 1,000 ultrafast bootstraps.
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Methods for modeling producer and consumer dynamics

We used COMSOL (v5.6) to simulate the concentration field and associated uptake rate 
around a two-cell system consisting of a producer and consumer in three-dimensional 
space. In this simulation, the producer cell is represented as a sphere with a constant 
relative concentration of 1 on its surface. The consumer cell on the other hand is 
represented by a sphere with a relative concentration of 0 on its surface. We represent 
all aqueous concentrations as relative concentrations between producer and consumer 
cells since the estimation of an absolute cell surface concentration for the producer 
requires precise (as yet unknown) knowledge of an individual cell’s N2O production 
or consumption rate. We then strategically vary the relative radius of the producer (R) 
and consumer (r) cells, and the distance between the surface of the two cells (d) to 
disentangle the influence of these different factors on the relative substrate uptake of 
the consumer cell. A list of parameters and their values can be found in Table S2, which 
we cross-combine to create a total of 100 simulations. The whole simulation domain is a 
square domain of 20 µm side length with the consumer and producer cells equidistant 
from the center in the horizontal plane. The relative concentration field around the 
producer and consumer cells is predicted by solving the diffusion equation (equation 1) 
at steady state, where J is the flux of N2O (m−2 s−1), D is the diffusion coefficient (m2 s−1), 
and ∂𝐶∂𝑥 + ∂𝐶∂𝑦 + ∂𝐶∂𝑧  the spatial N2O gradients (m−4). We impose a relative concentration 

of 0 at the boundary of the domain and surface of the consumer cell (reflecting the 
background nitrous oxide concentration) and 1 at the cell surface of the producer. 
Cellular uptake of the consumer cell is calculated by the three-dimensional integration of 
this equation across the cell surface.

(1)𝐽 = 𝐷 ∂𝐶∂𝑥 + ∂𝐶∂𝑦 + ∂𝐶∂𝑧
Genetic engineering methods and determining N2O concentrations

We inserted DNA sequences derived from DPANN putative nitrous oxide reductase genes 
into a Pseudomonas aeruginosa strain PA14 model system on a plasmid integrated into 
the genomic attTn7 site (68). Production and consumption of N2O by these cultures 
were quantified using a microelectrode (Unisense, Denmark). Details are provided in the 
Supplemental Methods.

RESULTS

DPANN within the ODZ archaeal community

From a set of 962 MAGs > 50% completion and <10% contamination binned from 
the ETNP and Arabian Sea ODZs (45), 33 MAGs were taxonomically assigned to the 
DPANN superphylum, with 23 Woesearchaeota, 2 Pacearchaeota, 2 Nanoarchaeota, 1 
Iainarchaeota, 3 Undinarchaeota, and 2 MAGs assigned to SpSt-1190, also known as 
Candidatus Altiarchaeota. The novel SpSt-1190 phylum was previously characterized in 
hydrothermal vents (12) but not in marine water columns. While our Woesearchaeota 
and Pacearchaeota MAGs were classified by GTDB-tk as members of Nanoarchaeota, 
phylogenetic analyses confirmed their placement within these phyla (Fig. 2). DPANN 
MAGs mapped to ODZ metagenomes within all three ODZs, including ETSP and ETNP 
metagenomes spanning multiple cruises, sampling sites, and years (Fig. 1A). However, 
no DPANN MAGs were recovered from oxygenated surface metagenomes from the 
ETNP. Searching the TARA Oceans data set comprising 957 non-redundant MAGs from 
co-assemblies from the global surface oceans (<10 m depth) and deep chlorophyll 
maxima (10–100 m depth) revealed no MAGs belonging to ODZ DPANN groups, and only 
two DPANN MAGs, both of which originated from the Red Sea and were assigned to 
Halobacteriota. The remainder of the 87 archaeal MAGs from TARA Oceans were assigned 
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FIG 2 Species tree of DPANN MAGs and genomes from JGI, NCBI, ODZs, and TARA Oceans collections. Each group is colored by phylum-level taxonomy. Only 

DPANN phyla containing ODZ or TARA MAGs are shown. Black outlined circles indicate ODZ MAGs, blue outlined circles indicate TARA Oceans MAGs, and circles 

without outlines indicate NCBI or JGI genomes. Stars next to tips indicate the presence of a putative nosZ-like gene. Numbers by nodes correspond to bootstrap 

supports.
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to either Thermoplasmatota or Thermoproteota. From 962 ODZ MAGs, 169 archaeal 
MAGs include 133 Thermoplasmatota or Thermoproteota, 2 Hydrothermarchaeota, and 1 
Methanobacteriota to complement the 33 DPANN archaea. The average completion of 
retrieved ODZ DPANN MAGs was 75% with an average contamination of 2.6%. Dereplica­
tion at 99% average nucleotide identity resulted in 16 unique MAGs (one Iainarchaeota, 
two Nanoarchaeota, one SpSt-1190, three Undinarchaeota, one Pacearchaeota, and eight 
Woesearchaeota).

The archaeal population within ODZs, as represented by mapping to non-redundant 
archaeal ODZ MAGs, peaked within the oxycline above the ODZ core, with archaeal 
MAGs comprising 14% of the microbial community at 80 m depth in the ETNP (Fig. 
S1A). At these depths, Thermoplasmatota and Thermoproteota dominated, with DPANN 
MAGs present at 0.25% relative abundance or less. DPANN MAGs also mapped to a 
few reads from surface metagenomes from either the ETNP or ETSP, indicating low 
or absent populations of ODZ DPANN groups in surface waters (Fig. 1B). No surface 
waters from the Arabian Sea were sampled. Within the anoxic ODZ core, DPANN archaea 
comprised about 25%–50% of the archaeal community (Fig. S1B). The highest relative 
abundances occurred around 200 m depth in the ETNP (about 1% of the total com­
munity and 50% of the archaeal community) and the Arabian Sea (about 0.8% of 
the total community and 27% of the archaeal community) (Fig. 1B; Fig. S1B). In the 
ETSP, relative abundances were lower (about 0.3% of the total community and 25% of 
the archaeal community) but peaked approximately at the same depths (100–200 m). 
While abundances and distributions were similar across the various ODZs, the Arabian 
Sea harbored a comparatively larger proportion of Nanoarchaeota, although Woesearch­
aeota were still the most abundant fraction in general. The ETSP and ETNP were primarily 
dominated by Woesearchaeota with smaller contributions by Pacearchaeota, SpSt-1190, 
and Undinarchaeota (Fig. 1B).

A phylogenetic tree of ODZ DPANN MAGs along with MAGs and genomes retrieved 
from NCBI and JGI revealed that ODZ Woesearchaeota MAGs fall within one primary 
clade, although several Woesearchaeota MAGs branched within other groups (Fig. 2). 
Sister taxa falling next to ODZ Woesearchaeota were derived from Mariana Trench 
surficial sediments, coral reefs, and groundwater metagenomes from NCBI. However, 
ODZ MAGs belonging to the Pacearchaeota and Nanoarchaeota did not cluster together 
within these phyla, indicating that these MAGs are not closely related to each other 
despite their common environment. The two SpSt-1190 MAGs from ODZs branched 
outside of the SpSt-1190 clade and potentially form a distinct lineage from other 
SpSt-1190.

Carbon metabolism within ODZ DPANN archaea

Metabolic analysis of ODZ DPANN MAGs showed diverse metabolic capabilities across 
MAGs but limited metabolic and biosynthetic pathways within each MAG (Fig. 3). 
Metabolic capabilities described are based upon annotations against the KEGG and 
COGs databases and require functional verification. While these annotations are 
predictions only, they offer estimates of metabolic potential for these uncultured 
organisms. Regarding anabolic synthesis, MAGs belonging to Nanoarchaeota had the 
most limited capabilities, with the absence of glycolysis of three-carbon compounds, 
no tricarboxylic acid (TCA) cycle genes, no pentose phosphate pathways, no pathways 
detected for the biosynthesis of most amino acids, and limited biosynthetic pathways 
for purine nucleotides. The absence of these pathways, even when considering these as 
partial genomes, suggests extremely limited abilities to synthesize purines, amino acids, 
lipids, vitamins, and other necessary cellular components. Other DPANN MAGs possessed 
more metabolic capabilities, although most lacked evidence of complete glycolysis, 
TCA cycle, and pathways for the synthesis of multiple essential amino acids. Our draft 
Woesearchaeota genomes possessed partial or complete capabilities for the last stages 
of glycolysis, the non-oxidative or reductive portions of the pentose phosphate pathway, 
and pyruvate oxidation. Additionally, most were capable of partial or complete purine 
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and pyrimidine biosynthesis. Other central carbon archaeal pathways varied, with most 
MAGs lacking the shikimate pathway for the biosynthesis of aromatic amino acids (69), 
the biosynthesis pathway for the ubiquitous cofactor coenzyme A, and the DeLey-Dou­
doroff pathway for galactose utilization, which is analogous to the Entner-Doudoroff 
pathway (70). Several MAGs lacked the ability to synthesize the intermediate phos­
phoribosyl diphosphate used in building nucleotides, some amino acids, and essential 
cofactors (71), as well as biosynthesis pathways for isoprenoids (Fig. 3).

In accordance with other published DPANN archaea (4, 6, 9), the genome sizes of 
most ODZ DPANN were small, averaging 1.05 Mb. The exceptions were MAGs belonging 
to SpSt-1190, which had genome sizes of 4 Mb. DPANN MAGs encoded for a number 
of transporters, including ones for zinc, iron, magnesium, and other metals, biotin 
transporters, SemiSWEET transporters for cellular uptake and translocation of sugars, and 
other ABC-type transporters. Peptidases, particularly signal peptidases and membrane-
bound peptidases, were also widespread. Seven DPANN MAGs from four phyla contained 
genes for Type II or IV secretion systems associated with protein transport and DNA 
exchange across membranes. Additionally, three DPANN MAGs encoded a murein-like 
lytic transglycosylase (1, 7). Normally absent in archaea, these large proteins bind and 
degrade peptidoglycan strands such as in bacterial cell walls (72).

Several DPANN MAGs possessed the 3-oxoacyl-ACP reductase FabG, enoyl-ACP 
reductase FabI, and 3-hydroxyacyl-ACP dehydratase FabZ. These acyl carrier protein 
(ACP) fatty acid biosynthesis genes are typically found within bacteria and eukaryotes, 
which possess a bacterial pathway for lipid biosynthesis, the methylerythritol phosphate 
(MEP) pathway, while typical archaea use the non-homologous mevalonate (MVA) 
pathway. This “lipid divide” is a central distinguishing feature between archaea and 
bacteria (3). We found a distinction between Woesearchaeota and Nanoarchaeota MAGs, 
which possessed the MEP pathway, while SpSt-1190, Undinarchaeota, Pacearchaeota, 

FIG 3 Metabolic analysis of unique DPANN MAGs. Circles show the presence/absence of key metabolic pathways, grouped by color according to general 

metabolism categories. Darker circles indicate >70% of genes within the pathway are present, while lighter circles indicate partial pathways (33%–70% present). 

White circles indicate <33% of genes are present, and the pathway is considered absent. Completion/contamination and size of MAGs are shown on the right.
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and Iainarchaeota contained genes for the MVA pathway. Further BLAST searching 
of DPANN ACP pathway proteins against the NCBI non-redundant protein database 
revealed high sequence similarity to other protein sequences from DPANN archaea, 
although the next highest scoring hits primarily belonged to bacteria. Additionally, five 
Woesearchaeota DPANN MAGs carried genes for cyclopropane fatty acid phospholipid 
synthesis, which are used in stabilizing bacterial phospholipid membranes (73) but have 
not been previously reported in archaea.

Energy metabolism and nutrient cycling within ODZ DPANN archaea

Lactate, malate, and pyruvate dehydrogenases were present in seven out of eight 
unique Woesearchaeota and two out of three unique Undinarchaeota MAGs, indi­
cating fermentative capabilities (Fig. 3). These genes were absent in most Pacearch­
aeota, Nanoarchaeota, SpSt-1190, and Iainarchaeota MAGs. Two unique DPANN MAGs 
(Arabian11_MAG21 and ETNP3_MAG14) also carried the A and B subunits of assimila­
tory anaerobic sulfite reductase, but none carried dissimilatory sulfur cycling genes. 
Additionally, several DPANN MAGs contained desulfoferredoxin, manganese superoxide 
dismutases, and thioredoxin, which are involved in antioxidant systems (16), despite 
living in anoxic water columns. Formaldehyde assimilation genes were found within a 
number of Woesearchaeota MAGs, suggesting the ability to use one-carbon compounds 
for growth. MAGs belonging only to SpSt-1190 also encoded nearly complete pathways 
for methanogenesis, along with a number of other methane metabolisms including the 
ribulose monophosphate pathway and methanofuran biosynthesis.

Several DPANN MAGs encoded hydrogenases (Fig. 3), with two MAGs (ETNP3_MAG31 
and ETNP7_MAG89) encoding an FeFe-type hydrogenase potentially used in fermen­
tative metabolism, while two (Arabian11_MAG21 and ETNP3_MAG14) encoded an 
NiFe-type hydrogenase that may catalyze hydrogen oxidation for energy, which 
has recently been shown to be widespread among archaea (73) and marine bacte­
ria (74). Additionally, several ODZ DPANN (Arabian11_MAG21, ETNP3_MAG31, Ara­
bian11_MAG39, ETNP7_MAG89, and ETNP_Fu_MAG26) contained genes for urea cycling. 
These metabolic capabilities indicate diverse roles in carbon, sulfur, hydrogen, and 
nitrogen cycling for DPANN archaea within ODZs.

Potential nitrous oxide reduction capability within ODZ DPANN

Within our 33 DPANN MAGs, 21 encoded a gene annotated as the nosZ gene for nitrous 
oxide reductase, which catalyzes the reduction of N2O to N2. An HMM search against the 
HMM profile from validated nosZ sequences returned expectation values between 8.4 × 
10−17 and 2.2 × 10−5 and bit scores from 57.9 to 20.1, compared to canonical nosZ e-values 
of less than 1.2 × 10−33 and bit scores > 113. In comparison, cytochrome c oxidase subunit 
II proteins returned expectation values of 0.003–7.5 × 10−5 and bit scores of 13–18.4. 
While bit score cutoffs vary, a bit score > 50 is considered almost always significant (75).

However, other denitrification genes were absent within these MAGs. A gene tree 
built with canonical nosZ from bacteria and archaea, the DPANN nosZ-like protein, and 
the closely related homolog cytochrome c oxidase subunit II protein indicated that 
DPANN nosZ-like genes comprised a monophyletic clade branching in between Cox2 
and clade II Sec-type nosZ (Fig. 4). Further investigation of multiple-sequence protein 
alignments of nosZ-encoded nitrous oxide reductase and the DPANN nosZ-like protein 
revealed the presence of a conserved copper-binding site, the CuA site, which has been 
reported within nosZ and Cox2 proteins. This site is exemplified by the C1X3C2X3H 
binding motif (76–78). The CuZ catalytic site typically found within nosZ was not 
found within the DPANN nosZ-like proteins, and DPANN nosZ-like proteins were shorter 
(56–617 amino acids) than canonical nosZ proteins (200–796 amino acids, although 
sequences varied in completeness). The CuZ site, which lacks a specific conserved motif, 
is characterized by seven conserved histidine residues (38, 78, 79). Within two DPANN 
MAGs (ETNP8_MAG25 and ETNP3_MAG31), we found a short cupredoxin-like domain 
protein directly upstream of the nosZ-like protein containing five conserved histidine 
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residues, which clustered with clade II nosZ sequences containing the CuZ site within the 
protein phylogeny (Fig. 4).

The mature NosZ protein resides in the periplasmic space in known denitrifiers 
(38). Predictions of protein location for NCBI nosZ sequences and the DPANN nosZ-
like gene indicated that both contain a signal sequence followed by the majority of 
the protein located outside the inner membrane, perhaps indicating a function more 
similar to nosZ (Fig. S2). In contrast, the Cox2 protein contained two transmembrane 
regions. A heterologous complementation test performed by separately introducing 
three DPANN nosZ-like sequences into a Pseudomonas aeruginosa ∆nosZ mutant did 
not yield significant differences in N2O consumption between P. aeruginosa ∆nosZ with 
DPANN nosZ-like gene insertion vs the ∆nosZ parent strain (Fig. S3). One strain carrying a 
putative DPANN nosZ-like gene variant displayed reduced N2O concentrations compared 
to the ∆nosZ parent, indicating potential N2O consumption, but this difference was not 
statistically significant (P = 0.26). Our positive control, the wild-type P. aeruginosa PA14 

FIG 4 Protein tree of DPANN nosZ-like proteins (green) within the larger tree of canonical nosZ proteins (typical TAT type in teal, atypical Sec type in orange, 

and type unknown in pink). Tree is rooted on cytochrome c oxidase subunit II proteins, shown in yellow. Diamonds at nodes correspond to ultrafast bootstrap 

(UFboot) supports, while numbers are SH-aLRT values. (B) Sequence motifs for the conserved CuA copper-binding site for each protein. (C) Historical nitrous 

oxide concentration profiles are replotted from the oxygen-deficient zones of the Eastern Tropical North Pacific (80), Eastern Tropical South Pacific (81, 82), and 

the Arabian Sea (83).
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containing a functional nosZ gene, displayed reduced N2O concentrations (P < 0.001), 
validating the ability of our experimental system to detect N2O reduction ability.

N2O in the ODZ typically exists at bulk nanomolar concentrations (84), raising 
the question of whether specialization on N2O consumption is metabolically feasible. 
However, local N2O concentrations may vary in the presence of N2O producers such 
as partial denitrifiers carrying upstream denitrification capabilities. We simulated the 
conditions under which local N2O concentrations differ from bulk conditions by varying 
a set of parameters representing the distance between the N2O consumer and N2O 
producer and the size ratio of the two cells (Fig. 5). Generally, two conditions favored 
elevated N2O uptake rates for the consumer normalized to cell volume: when the 

FIG 5 (A) Schematic showing the spatial N2O concentration for two inter-cell distances of d = 0 µm (attached) and d = 2 µm (free living). The relative surface N2O 

concentration for the producer is set to 1, while the relative surface N2O concentration of the consumer is set to 0. The radius of the producer, the radius of the 

consumer, and the distance between the cells are varied according to the values in Table S2. (B) Volume-normalized uptake rate of N2O for the consumer at 0 µm 

separation (attached) and 2 µm separation (free living) for all values of the consumer and producer cell sizes. Numbers indicate the actual volume-normalized 

uptake rates (multiplied by 10−12). (C) Uptake rates as a function of the inter-cell distance normalized to the attached scenario of the same consumer-producer 

cell size combination. A value of, e.g., 0.2 indicates that this combination of producer and consumer cell size shows a reduction of 80% in the consumer N2O 

uptake rate at this distance compared to if they were attached. The spread within a given inter-cell distance is a result of varying the producer and consumer cell 

sizes (cross-combining five consumer with four producer sizes as shown in panel B). n = 20 simulations plotted for each bar, with box representing ±1 s.d. and the 

whiskers showing ±2 s.d.
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consumer cell was small relative to the producer cell (Fig. 5B) and when the distance 
between the producer and consumer cells was small (Fig. 5C). Rates were normalized 
to cell volume to reflect the important consideration that resource requirements are 
proportional to cell size (85). Consumer cell size has a decisive influence on the N2O 
uptake rate for two reasons. First, a smaller cell size directly increases the uptake rate 
normalized to cell volume, allowing a cell to obtain relatively more resources. Second, a 
large producer-to-consumer size ratio surrounds the consumer cell within the diffusive 
boundary layer of the producer cell, increasing the absolute concentrations a consumer 
sees and thus again increasing the volume-normalized uptake rate. For example, an 
increase in the ratio of consumer-to-producer radii from ~0.1 to ~1 resulted in an average 
100-fold decrease in N2O uptake for attached consumer cells. Similarly, increasing the 
producer cell size threefold increased the attached consumer N2O uptake rate from 
~14% for small consumer cells to 67% for larger consumer cells. Incredibly, increasing 
distances between cells from 0 to 0.1 µm reduced the maximal N2O uptake rate by ~65% 
on average, and a consumer cell merely 2 µm from a producer received 93% less than 
those attached (Fig. 5C). Therefore, when bulk N2O was low, as in the ODZ (80), consumer 
cells experienced high N2O supply only when they were in physical contact with an N2O 
producer (d = 0 µm) and when they were much smaller in size relative to the producer, as 
would be the case for episymbiotic DPANN archaea.

DISCUSSION

DPANN archaea were found to be a stable resident population within all three perma­
nent pelagic ODZs. Abundances of DPANN archaea, including Nanoarchaeota, SpSt-1190, 
Iainarchaeota, Woesearchaeota, and Undinarchaeota, increase as oxygen decreases, 
while few or no DPANN archaea were found in the surface oceans (Fig. 1B). While 
a few population differences were found between ODZs, Woesearchaeota were the 
dominant phylum within all three ODZs, with Nanoarchaeota in the Arabian Sea and 
Pacearchaeota, Undinarchaeota, and SpSt-1190 in the ETNP and ETSP forming the next 
most abundant groups (Fig. 1B).

ODZ DPANN archaea were phylogenetically and metabolically diverse and grouped 
together with other DPANN from non-ODZ environments, although several Woesearch­
aeota clustered within the same clade (Fig. 2). Similar to DPANN across various environ­
ments (4, 12, 14, 15), most ODZ DPANN had small genome sizes and limited capacity for 
the biosynthesis of essential amino acids and nucleotides, limited energetic capabilities, 
and partial or absent pentose phosphate pathways despite overall high MAG completion 
estimates (Fig. 3). Additionally, completion metrics may underestimate the completeness 
of DPANN MAGs due to their limited genomes and high number of absent genes 
considered essential in other organisms. Numerous studies have reported microscopy 
images of environmental DPANN attached to host cells (6, 15, 86). While most ODZ 
DPANN genomes suggest a host-associated rather than free-living lifestyle, SpSt-1190 
genomes averaged 4 Mb in size, possessed a number of biosynthesis pathways, and 
carried pathways for methanogenesis. ODZs contain large reservoirs of oceanic methane, 
the bulk of which has been ascribed to sedimentary methanogenesis (87). SpSt-1190 
may represent novel free-living DPANN organisms (88–90) involved in water column 
methane cycling.

Studies have suggested the role of DPANN archaea in carbon cycling, such as by 
scavenging organic carbon in the form of nucleotides, lipids, and amino acids (23, 
91), participating in the exchange of carbon compounds with hosts, and even directly 
parasitizing upon hosts (14). In addition, some may perform fermentation and consume 
or produce acetate (8). We found conserved pathways for amino acid salvage and 
fermentation across ODZ DPANN genomes (Fig. 3). While various sugar, protein, and 
DNA transporters indicated potential resource exchange with host cells, the existence 
of a peptidoglycan-degrading enzyme and secreted peptidases within several MAGs 
may point to a potentially parasitic relationship between the host and DPANN cell. 
Future experimental tests will be needed to clarify these metagenomic predictions. The 
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identification of ODZ DPANN hosts, whether a single host, various hosts, or a community, 
may hold keys to their distribution and survival within ODZ environments.

While other nitrogen cycling genes were absent, a majority of ODZ DPANN carried 
a gene similar to the nitrous oxide reductase gene nosZ that catalyzes the reduction 
of nitrous oxide (N2O) to N2. Further investigation of this gene, annotated as nitrous 
oxide reductase, indicated the presence of a conserved CuA copper-binding site typical 
of nosZ and cytochrome c oxidase subunit II (77, 78) (Fig. 4). The cellular location of 
the protein product of the DPANN nosZ-like gene was postulated as outside of the 
membrane, possibly in the periplasmic space (Fig. S2). DPANN archaea are thought to 
possess two membranes (92), and canonical nosZ is a periplasmic protein unlike the 
membrane-bound cytochrome c oxidase subunit II (76). Cytochrome c oxidase performs 
the last step of aerobic respiration, but no other components of aerobic respiration, such 
as other cytochrome oxidase subunits or electron transport chain proteins, were found 
within these archaea (Fig. 3). The CuZ catalytic center, typically found upstream of the 
CuA center in nosZ, was absent within DPANN nosZ-like genes. The CuZ center lacks a 
consensus motif but is characterized by seven histidine residues that bind copper ions 
(93). While the majority of DPANN MAGs possessed several acyl carrier protein genes 
for fatty acid biosynthesis surrounding the nosZ-like gene, two DPANN MAGs encoded 
a protein containing five histidine residues directly upstream of the nosZ-like gene. This 
protein, annotated to the same family as nosZ, grouped phylogenetically with clade II 
nosZ sequences (Fig. 4) and may perform a function related to that of the CuZ site. 
This hypothetical histidine-rich region was absent within other DPANN MAGs and was 
not includedin the complementation test. The activity of these or other proteins within 
these genomes may be required for N2O reduction. While the function of putative 
nosZ-like genes within DPANN archaea remains hypothetical, their presence only in ODZs 
and conservation within these small, streamlined genomes suggest the involvement of 
these genes in N2O reduction or another redox process with metabolic or physiological 
importance for ODZ DPANN.

Complementation of P. aeruginosa ∆nosZ with DPANN nosZ-like genes did not 
result in significant N2O consumption. While heterologous complementation may offer 
convincing evidence for the function of unknown genes, negative results are difficult to 
interpret. Large evolutionary distances between DPANN archaea and the Gram-negative 
bacterium P. aeruginosa, likely resulting in different intracellular conditions, may inhibit 
the proper transcription, translation, or maturation of the DPANN NosZ-like protein. 
The protein may also be adapted to specific environmental conditions necessary for 
its activity, which differ from those used during standard cultivation of P. aeruginosa. 
Deletion and complementation of the nosZ-like gene within native DPANN archaea 
would be an ideal functional test, but currently, no cultured representatives or genetic 
toolkits are available for these organisms, limiting our knowledge of many of their 
metabolic features to predictions from gene annotations.

N2O exists in nanomolar concentrations in ODZs compared to the higher concentra­
tions of nitrate and nitrite (84), posing challenges for N2O-reducing specialists lacking 
upstream denitrification genes. However, an N2O-consuming lifestyle may be feasible if 
local N2O concentrations are elevated in proximity to an N2O source, such as a partial 
denitrifier lacking nosZ. Previous studies have indicated the widespread occurrence of 
partial denitrifiers lacking nosZ within ODZ regions (42, 45). We tested this scenario by 
modeling the local flux of N2O from a producer (the source) to an N2O consumer (Fig. 
5). The N2O uptake rate of the consumer was elevated 100-fold when the two cells are 
in physical contact vs when they are a short distance of 2 µm away (Fig. 5C). However, 
this increase in N2O uptake rate dropped off steeply as the consumer-to-producer cell 
size ratio increased (Fig. 5). Under low bulk N2O concentrations, partial denitrifiers may 
provide elevated local N2O only to much smaller surface-attached episymbiotic N2O 
consumers. DPANN archaea within ODZs, similar to those found within other environ­
ments (6, 9, 15), potentially exist as host-associated episymbionts and likely possess 
small cell sizes. The average cell volume of DPANN archaea has been reported as 0.004 
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µm3 (15), while the average marine bacterial cell volume has been reported at up to 
0.096 µm3 (94), resulting in a consumer-to-producer cell size ratio of <0.05. Thus, DPANN 
archaea may be uniquely adapted to consume N2O and other resources that are scarce 
under bulk conditions but locally elevated in proximity to host cells.

DPANN archaea possess a high number of unknown or unannotated genes, 
representing “microbial dark matter.” Within our ODZ DPANN, we found over 20,000 
hypothetical proteins across all MAGs. Further studies, possibly using genetic manip­
ulations, isolation or enrichment cultures, imaging, and computational proteomics 
approaches are required to characterize the functions of putative or hypothetical 
proteins. The expanding knowledge of these organisms may make these questions more 
tractable in the near future. At a large scale, the scavenging of carbon, potential nitrogen, 
sulfur, and hydrogen cycling capabilities, and ecological effects on host populations via 
symbiosis or parasitism by DPANN archaea in the ODZs warrant future investigation.
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