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Abstract—With the increase of computational power and
techniques over the past decades, the use of Deep Learning
(DL) algorithms in the biomedical field has grown significantly.
One of the remaining challenges to using deep neural networks
is the proper tuning of the model’s performance beyond its
simple accuracy. Therefore, in this work, we implement the
combination of the NVIDIA DALI API for high-speed storage
access alongside the TensorFlow framework, applied to the image
classification task of skin cancer. To that end, we use the VGG16
model, known to perform accurately on skin cancer classification.
We compare the performance between the use of CPU, GPU
and multi-GPU devices training both in terms of accuracy and
runtime performance. These performances are also evaluated on
additional models, as a mean for comparison.

Our work shows the high importance of model choice and fine
tuning tailored to a particular application. Moreover, we show
that the use of high-speed storage considerably increases the
performance of DL models, in particular when handling images
and large databases which may be a significant improvement for
larger databases.

Index Terms—High-speed storage, deep learning, image clas-
sification, cancer application, application specific storage

I. INTRODUCTION

With the development of new DL algorithms in various
fields, related challenges have evolved into making more
efficient workflows both in terms of computer runtime, and
validity of the output. As such I/O performance is becoming
an important area of research.

The use of High-Performance Computing (HPC) clusters
in the biomedical field is constantly increasing. In 2013,
HPC systems were primarily used for simulations related to
brain activity, heat capacity calculations, molecular dynamics
simulations, etc. With the emergence of machine learning
in this field, HPC usage has shifted toward classification,
segmentation, and prediction tasks using machine learning and
deep learning algorithms. [1] A main focus of current studies
is toward improving the rate of success of predictions, which,
if highly relevant to avoid misdiagnosis, is also more time
consuming with the addition of data augmentation, and the
requirement for larger databases. To this end, benchmarking
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HPCs for biomedical applications allows for better tailoring
algorithms such as machine learning and deep learning to
the type of hardware used, to improve both scaling and time
computing performances. [2] Studies have been performed
to improve model performance, however, both hardware and
software structure constantly evolve which in turn forces our
approach to deep learning algorithms to change and fit such
structures. [2] Therefore, the number of benchmarking studies
for GPU storage has greatly increased since 2017 to provide a
comprehensive overview of the available computer power and
their related code structure for deep learning applications. [3]

In addition to the ever changing HPC architecture and
hardware, many models are used in biomedical researches such
as VGG16, AlexNet, ResNet50, etc. However, if some have
been highly benchmarked and a significant number of studies
is available, [4], [5] this knowledge remains sparse for other
models. Benchmarking is not easily extended from one model
to another and needs to be tailored to the specificity of each
DL models. Moreover, a model’s efficiency is shown to be
sensitive to the type of hardware used. [4] This makes the
study of deep learning model performance on both CPU and
GPU of high relevance to further improve future discoveries
in many fields. Most of the current research focuses on the
achievement of high performance for a given task to the detri-
ment of a model’s runtime and computing efficiency leading to
long training time and heavy memory workload. [4] However,
appropriate benchmarking of deep learning frameworks need
to consider both the training time and the overall performance
of one’s model. [6]

One of the main runtime and performance limitations for
DL algorithms resides in access to the training database. These
databases are often sizable and for both loading and prepro-
cessing operations, this task remains time consuming under
most systems. [7] Due to the large number of entries required
to obtain accurate model predictions, the time spent loading
data and performing data augmentation can be significant. [8]

This study aims to transfer part of the workload handled by
the CPU to the GPU available during the pre-processing steps.
This is enhanced by the use of an AI400 storage unit from
DataDirect Networks, but also to reduce the training time by
transferring images directly to GPU devices memory, without
needing to use CPUs. Thus, we discuss the performance of



the NVIDIA DALI API combined with an AI400 high-speed
storage unit for DL models in the biomedical field. We analyze
the performance of several deep learning models as well as the
effect of some of the tuning parameters on the performance of
said models. We first discuss previous findings in this field. We
then introduce the simulation method and the machine used
including the structure and hardware of the HPCs. Eventually,
we compare the performance of multiple deep learning models
on both CPUs and GPUs devices while accessing high-speed
storage through DALI.

II. RELATED WORK

Storage options and input optimization have been the focus
of several studies either for local physical storage options, [9],
[10] or for cloud computing approaches. [11] One study
has demonstrated that the training time of a DL model is
greatly impacted by the implementation of the input. [12]
In the attempt of improving the dataset access, TensorFlow
has developed its tf.data framework which has showed higher
performance than other approaches. [12] Additionally, many
studies have used the DALI API by NVIDIA, [13], [14] or
similar API, [15] to enhance data loading.

One of the challenges of I/O optimization is its dependency
to the deep learning framework used (TensorFlow, PyTorch,
etc.). By decoupling the I/O from the DL framework, Macedo
et al. significantly decreased the training time required for
several frameworks. [9]

Following the observation that framework can lead to
various performances, some work showed the comparison
of platform performance, from TensorFlow to CAFFE and
PyTorch, [2], [6], [16], [17] with Pytorch currently preferred
in academia and TensorFlow in industry. [16]

The comparison of CPU and GPU performance in deep
learning has also been evaluated by several studies showing
great improvement made with GPU usage. [2], [18], [19]

Moreover, as previously mentioned, most of the current
studies of deep learning in the biomedical field focus on the
improvement of accuracy and metrics related to the prediction
rather than on the runtime efficiency of a model. [20], [21]

The purpose of this work is not to improve the accuracy of
skin cancer prediction because studies have already shown the
tremendous improvement that have been achieved in the past
years, but more so to enhance the runtime performance ability
of such models. [22]

III. SOFTWARE AND HARDWARE USED

A. HPC structure and hardware

In order to assess the effect of high-speed storage on deep
learning models, we use both CPU, and GPU devices, with
the following characteristics: (1): the CPU processors are Intel
Xeon Gold 6140 processors with 36 cores per node and 192Gb
RAM. (2): The GPU devices are 8 NVIDIA Tesla V100 GPUs
per node with 32GB of HBM2 VRAM each (5120 CUDA
cores per card, 640 Tensor cores per card).

The access to the AI400 high-speed storage unit is done
through the NVIDIA DALI API 1.14.0. [23]

B. TensorFlow and deep learning models

In this work, we use Python 3.6 and Tensorflow 2.6’s frame-
work to train three different models: InceptionV3, ResNet50
and VGG16. Deep learning models are well suited to study
GPU performances, because most of their calculations are
done on vectors. [2], [16] The choice of the models is moti-
vated in part by their different structures, but also by their wide
usage in biomedical researches. We use the ResNet50 model
to allow for comparison with literature work as this model
time performance has been widely studied. [7], [24], [25] The
image database is separated into training and testing/validation
with a 80/20 ratio.

C. The database and related performance

For this work, we use the dermoscopic database provided by
the Kaggle community. [26] This database is a combination of
approximately 3000 images separated into benign and malig-
nant categories. This database has been used in various works
and has shown to provide accurate results in the prediction of
skin cancers. Its smaller size allows us to obtain quick results
and is easily scalable for further studies on larger datasets.

IV. EVALUATION

A. CPU calculations

First we look into the overall performance of the deep
learning models chosen on CPUs. This will be used as
benchmarking base to measure the performance improvement
provided by our other approaches. Table I provides the time
performance results for each model as well as the number of
related parameters. Each result is normalized either in terms
of numbers of images per epochs, or in terms of time taken
for one image to be handled which is the time to forward
propagate one image during training.

TABLE I
PERFORMANCE TIME AND MODEL’S STRUCTURE FOR EACH OF THE

MODEL STUDIED.

Model types Time/image/epochs (s) # of parameters # of layers
Inception V3 0.093 ≈ 24 millions 311

ResNet50 0.101 ≈ 23 millions 50
VGG16 0.167 ≈ 138 millions 16

We note that the difference in performance is based on a
combination of the number of layers and the related number of
trainable parameters. The InceptionV3 and ResNet50 models
have similar performance in terms of time and a close number
of parameters. Their difference lies in the number of layers
which may be an explanation for the slightly slower time
provided by the Inception model. On the other hand, the
VGG16 model with about 138 millions trainable parameters
led to the largest performance time of 0.167 s/image/epoch.

In biomedical studies, data augmentation is widely used to
provide larger database leading higher prediction performance
with fewer mistakes. Therefore, we compare the models per-
formance using different types of data augmentation: random
flip, random zoom, and random rotation. Fig. 1, 2, and 3 show



that if data augmentation may affect the accuracy of a model, it
does not impact the running time of small databases by much.
However, because this process consists of scaling the original
database, the bigger the original training set, the more impact
from the data augmentation process will be observed. This
difference may become significant in larger databases studies
and must be taken into account then.

Fig. 1. Hardware performance for the InceptionV3 model for both 1 and 25
epochs.

Fig. 2. Hardware performance for the ResNet50 model for both 1 and 25
epochs.

Fig. 3. Hardware performance for the VGG16 model for both 1 and 25
epochs.

B. Single GPU calculations

In this section, we implement the NVIDIA DALI API to
assess the impact of the use of the AI400 high-speed storage
device. This API has provided the best results when used
in conjunction with GPU devices, therefore, we compare the
performance of the use of a single GPU device with and
without high-speed storage access.

First, Fig. 1, 2, and 3 all show that single- and multi-
GPU usage provide significant improvement from the CPU
calculations. We also note that using data augmentation had
less impact on runtime performance on GPU than on the CPU.
Table II provides the ratio of time decrease between CPU and
single-GPU device usage.

Table II shows that the use of GPU devices provide signifi-
cant improvement of the training time for each of the models.
However, we also note that the increase is not the same for
each models. This finding confirms the results of Zhu et al.
showing that hardware architecture directly correlates with the

TABLE II
PERFORMANCE DIFFERENCES BETWEEN CPU AND SINGLE GPU

PERFORMANCES FOR BOTH THE FIRST EPOCH AND THE FOLLOWING 24
EPOCHS. THE NUMBERS ARE A RATIO OF THE NUMBER OF IMAGES PER

SECOND PER EPOCH.

Model types 1st epoch: 1GPU/CPU 24 epochs: 1GPU/CPU
Inception V3 ≈ 14 ≈ 23

ResNet50 ≈ 22 ≈ 31
VGG16 ≈ 22 ≈ 34

model’s performance. [4] For instance, the VGG16 model,
which has the largest number of trainable parameters is the
one with the largest increase and therefore is the one we will
focus on for the remainder of this work.

Lastly, Fig. 1, 2, and 3 also demonstrate that the first
epoch is significantly slower than the following ones. This
phenomenon has been the topic of many discussions and has so
far been attributed to the amount of disk work required during
the first epoch, which is not perform during the following
epochs. This is in part due to the fact that some layers
(particularly the final layer of softmax distribution for binary
prediction) is initialized with nodes of random value for
which the gradient descent performed during the first epoch
of training may require time before reaching convergence.

We now turn to the results obtained when using the NVIDIA
DALI API to access our database. Combining AI storage
access with GPU calculation significantly increases the speed
of the training overall. For the VGG16 model, the performance
goes from ≈ 203 image/s compared to up to ≈ 804 image/s on
high-speed storage when using the model.fit method provided
in TensorFlow. We also compared the performance of a custom
training loop that along side high-speed storage still performed
better than classical storage (211 image/s), but remain less time
efficient that the model.fit method.

In addition, we analyze the effect of the batch size on the
performance of the VGG16 model. Decreasing the batch size
leads to fewer images handled per second. This result is ex-
pected because the workload on each of the GPU significantly
increases, which has been thoroughly explained by Kouchura
et al. [27] However, we observed that the batch size influences
the performance of each methodology with an optimum batch
size found at 16 to 32, which is in agreement with literature
work and current common practices in deep learning training.
This may be further explained as we kept the learning rate
constant throughout the workflow. As mentioned by He et
al., the monitoring of the learning rate as a linear function
of the batch size may significantly increase the models’
performance. [28] Similar works have show the importance of
the learning rate choice particularly with learning rate warm-
ups. [29]

Thus, we study the impact of batch sizing and learning rate
tuning on the single GPU performance. To do so, we compare
the runtime performance of the change of batch size keeping a
fixed learning rate with the change of batch size and a varying
learning rate. The learning rate is tuned using the same method
as He et al.: 0.0001 ∗ b/16 with b the new batch size. [28]



TABLE III
COMPARISON OF LEARNING RATE TUNING PERFORMANCE

Fixed Tuned
Batch size 1st average 1st average

1 15.13 12.44 12 9.155
16 7.25 4.18 7.25 4.18
32 8 4 8 3.8

Table III shows that tuning the learning rate as a function
of the batch size may slightly improve the time performance
of a model in the case of smaller batch sizes (batch size of 1).
However, the change is less significant in the case of larger
batch sizes. In addition, we monitor the change in accuracy for
both approaches. If no overfitting is observed, the accuracy of
batch size 1 is significantly decreased by 4− 5%. This is not
observed when using fixed learning rate, and therefore shows
that the runtime performance increase comes to the detriment
of prediction accuracies.

C. Multi-GPU approach

We now turn to the use of multiple GPUs in the same
HPC compute node. In this section we analyze the impact
of using multiple GPUs (2 to 8 devices) and investigate the
performance on the VGG16 model.

First, we look at Fig. 1 through 3, which show that
the model’s performance strongly depends on its CPU/GPU
training. This finding is in agreement with previous work on
CPU/GPU comparison for deep learning applications. [19]

Fig. 4 shows that the first epoch is more impacted by the
change in batch size than the remaining part of the training.
which is similar to what is observed for single GPU usage.

Fig. 4. Time performance evolution of the VGG16 model using different
architecture approaches as a function of the batch size.

To emphasize this finding, Fig. 4 also shows the evolution
of the performance for the first and averaged epochs using

Fig. 5. Performance evolution as a function of the number of GPU devices
used for smaller batch size. The learning rate is not updated and kept at
0.0001.

several processors as a function of the batch size. We note
that for batch size greater than 64, the performance remained
rather constant. We can attribute this behavior to the small
database used. This has been widely studied, in particular in
correlation with learning rate tuning in order to find the most
suitable approach to obtain the most efficient training for the
VGG16 model. [30], [31]

In order to assess the best architecture possible, we also
analyze the impact of the number of threads used during
the loading and processing of the database. If using a larger
number of threads does not improve the time performance
of a model, it instead increases the ability to use multi-GPU
devices.

Lastly, Fig. 5 shows that the increase in batch size per num-
ber of GPUs, does not necessarily increase the performance
of a model. On the contrary, we note that regardless of the
batch size chosen, increasing the number of GPUs for different
batch size tends to decrease the number of images handled
per second per epoch. This could also be tied to the need for
multiple access to the database and the storage.

Eventually, we turn to the accuracy performance, which
remains the same when using normal storage and AI storage
for 1 GPU, however, the performance decreases when looking
at 8 GPU devices with AI storage. The average accuracy value
for most of the models is 0.80 with a standard deviation +-
0.006. The validation accuracy is close with 0.81 on average.
On the other hand, the accuracy for the multi-GPU + AI
combination is 0.85/0.90 for the training and 0.80 for the
validation set which shows overfitting and misrepresentation
of the dataset. We attribute this results to the sharding of the
dataset to appropriately use all GPUs.

V. CONCLUSION

In this work, we have shown different approaches to
improve deep learning efficiency using high-speed storage
through the NVIDIA DALI API. We have shown that the
use of this API can significantly improve the performance
of deep learning models. We have also demonstrated that the
performance of a model will be altered differently depending
on the CPU/GPU architecture that is chosen. We note that
the combination of multi-GPU approach with direct access
to the AI 400 storage unit through the DALI API provides



the best results in terms of time efficiency. It should be
kept in mind that the choice of the approach used may have
dramatic consequences on the accuracy performance of a
model particularly when using sharding approach to separate
the dataset. Future work should emphasize on scaling this work
to larger database to possibly analyze data starvation issue and
optimization of such algorithms.
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