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Quantum gas microscopy of fermionic triangular-lattice Mott insulators
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We investigate fermionic Mott insulators in a geometrically frustrated triangular lattice, a paradigm model
system for studying spin liquids and spontaneous time-reversal symmetry breaking. Our study demonstrates the
preparation of triangular Mott insulators and reveals antiferromagnetic spin-spin correlations among all nearest
neighbors. We employ a real-space triangular-geometry quantum gas microscope to measure density and spin
observables. Comparing experimental results with calculations based on numerical linked cluster expansions
and quantum Monte Carlo techniques, we demonstrate thermometry in the frustrated system. Our experimental
platform introduces an alternative approach to frustrated lattices which paves the way for future investigations
of exotic quantum magnetism which may lead to a direct detection of quantum spin liquids in Hubbard systems.
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Electronic systems typically establish long-range order at
zero temperature. Surprisingly, there are systems that do not
have this fundamental property. For example, quantum spin
liquids [1,2] form in the presence of conflicting energetic
constraints that prevent long-range ordering. Interestingly, the
absence of ordering opens the door to a variety of exotic
phenomena. Quantum spin liquids can show fractional quasi-
particle statistics analogous to those underlying the quantum
Hall effect [3].

Time-reversal symmetry breaking has been predicted in
numerical studies on frustrated systems and kinetic con-
straints caused by the frustration lead to complex time-
evolution [4-6]. While frustrated systems with small number
of particles can be accurately simulated with tremendous
computational resources, predictions for the low-temperature
phases in the thermodynamic limit are scarce and often
debated [7-9]. Existing condensed-matter realizations are
complicated materials [4], making well-controlled model sys-
tems a valuable alternative for gaining insight into the physics
of frustration.

Ultracold atoms provide a unique way to explore quan-
tum many-body physics through quantum simulation based
on first principles. Prominent examples of quantum simula-
tion with ultracold atoms include the realization of Hubbard
models [10] and the observation of many-body localization
[11]. While there is widespread evidence for insulating phases
without magnetic ordering in frustrated Hubbard models, their
existence and properties are still controversial on many lattice
geometries, including the triangular lattice which has been
proposed as paradigm model for geometric frustration [2].
Ultracold atoms in optical lattices implement Hubbard models
[10,12,13], where neighboring sites are coupled by hopping,
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and atoms on the same lattice site interact. Atomic Fermi-
Hubbard systems were first realized with ultracold atoms
in square lattices [14,15]. With the realization of quantum
gas microscopes for fermions, it became possible to image
fermionic atoms on the single-atom level [16-20]. Later,
two-dimensional (2d) fermionic Mott insulators (MIs) were
detected with quantum gas microscopes using °Li [21] and
40K [22]. In particular, the characteristic antiferromagnetic
correlations in the repulsive Hubbard model have been inves-
tigated in detail [23-29]. Frustration has been studied with
various ultracold atomic systems, starting with Bose-Einstein
condensates in frustrated lattices [30,31] and recently by the
realization of frustrated spin systems with Rydberg atoms in
optical tweezers [32,33]. Here, we expand quantum simula-
tion of frustrated systems to fermions in a Hubbard model
on a triangular-lattice structure and report on the site-resolved
imaging of fermionic atomic Mott insulators in a triangular
lattice. Although the triangular geometry suppresses antifer-
romagnetic ordering, short-range correlations persist over a
wide range of parameters, and we measure these correlations
and perform thermometry by comparison with numerical cal-
culations, realizing for the first time a detailed comparison
between theory and experiment of the equilibrium properties
of the triangular Hubbard model in an optical lattice. Our
work establishes a novel platform for the study of frustrated
Hubbard physics.

The Hamiltonian of the fermionic system in a
two-dimensional lattice at half filling is H = —t
Z(rr/),cr(ci,acl’/ﬂ + CI/,acr.a) +U Zr N g Ny, — p(r) Zr
(nr4 +nr), where t is the tunneling strength between
nearest-neighbor lattice sites, U is the on-site interaction,
Cr.o (cI,,(,) is the annihilation (creation) operator for a fermion
with spin o on site r, 1y, = c;{,cm is the number operator,
and wu(r) is the chemical potential. This model describes
the transition from a metal to a fermionic Mott Insulator.
The insulating behavior originates from the electron-electron
correlations and cannot be explained in a noninteracting
electron picture. At temperatures below U/kg, double
occupation of sites is suppressed. Single occupation is
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FIG. 1. Triangular-lattice quantum gas microscope. (a) A tri-
angular optical lattice is realized by interfering three circularly
polarized laser beams (71, T2, and 7'3) using 1064 nm light in the
center of a vacuum chamber. The confinement of the atoms into two
dimensions is achieved by a 1d accordion lattice in vertical direction,
formed by the 532 nm laser beams G1 and G2. A combination of
a beam splitter and mirrors allows us to vary the distance between
G1 and G2 via the height of the input beam, therefore forming a
lattice with a variable spacing between 3 and 8 um. A high-resolution
objective enables single-site resolved imaging of the atoms in the
triangular lattice. The inset demonstrates 120° order which is the
classical analog of the spin ordering expected at large interactions.
(b), (c) Triangular-lattice Mott insulators at U/¢f = 10(1) with 109
atoms (top right) and U/t = 26(3) with 203 atoms (bottom right).
The field of view is 32 um x 32 ym.

energetically preferred at . ~ U/2 and the density variance
approaches zero, leading to a MI. When the chemical potential
is larger than the energy gap, doublons (two atoms on a site)
are formed. They first appear at the center of the trap, forming
a band insulating core, because of the lower harmonic
potential. More than two atoms per site in the lowest band are
forbidden by the Pauli exclusion principle, and higher band
population is strongly suppressed energetically at such low
temperatures. Short-range antiferromagnetic ordering can be
observed in MIs when the temperature is comparable to the
exchange energy J = 4t>/U [34]. In this study, we acquired
experimental data in this temperature regime, demonstrated
consistency of numerical calculations and measurements
characterizing the equation of state of the triangular Hubbard
model, and observed antiferromagnetic correlations on the
triangular lattice.

We started the experiment by preparing a spin-balanced
Fermi gas in a single layer of a one-dimensional (1d) accor-
dion lattice [Fig. 1(a)] with a variable spacing. The gas is
a mixture of the two lowest hyperfine ground states [1) =
|F=1/2,mp =1/2) and ||) = |F =1/2,mp = —1/2) of
®Li, where F and mp are the hyperfine quantum numbers
[35]. Next, the atoms are adiabatically loaded into the trian-
gular lattice of depth 9.7(6)Eg. Here, Exr = Im? / (2ma12an) =
h x 8.2kHz is the recoil energy where 4 is Planck’s constant,
m is the atomic mass, and aj, = 1003 nm. The tunneling
parameter is ¢t = h x 436(40) Hz [35]. The atom number and
density in the lattice is adjustable by varying evaporation
parameters. Once the atoms are in the lattice, we tune the scat-
tering length to 525(4)ap, where qy is the Bohr radius, thereby
adjusting the interaction to U/t = 10(1). To detect the singles
density (n* = n — nyn,), the atom motion is frozen by linearly

increasing the lattice depth up to 100E%. For imaging, we turn
off all magnetic fields and switch to maximum lattice depth
~10*Eg. Images of MIs for different interaction strengths are
shown in Figs. 1(b) and 1(c).

By varying the atom number loaded into the lattice, we
observe MI and band insulators (BIs) at U/t = 10(1) (Fig. 2).
The MI region [Fig. 2(b)] has nearly unit filling and atom
number fluctuations are suppressed. When the chemical po-
tential u exceeds the value of U /2 (approximately half filling),
doubly occupied sites are formed, therefore a BI region in
the center of the trap forms, as shown in Figs. 2(c) and 2(d).
Doubly occupied sites are detected as empty sites due to
light-assisted collisions at the imaging stage [21].

To access the singles density profile, we perform a decon-
volution to determine the site occupation numbers and obtain
singles density (n*) and variance (0,2) via azimuthal averaging
(bottom panel of Fig. 2). We fit the experimental density
profile using determinantal quantum Monte Carlo (DQMC)
and numerical linked cluster expansion (NLCE) calculations
[35]. The temperature and chemical potential of the atoms
in the trap are free parameters in the nonlinear least-squares
fitting. We find good agreement with a global fit relying on a
local density approximation using u(r) = wo — 3mw*r? [35].
The results of the fitting can be found in Fig. 2. We observe
a small deviation at the center of the trap, which we attribute
to the lower statistics and the uncertainty in the determination
of the exact center of the system for azimuthal averaging. We
observe an increased temperature for larger atom numbers as a
result of reduced evaporative cooling. Lifetime measurements
in the lattice show no significant density-dependent heating.

Spin-spin correlations have proven to be essential ob-
servables for the understanding of the Hubbard model on
square lattices [26—29]. The spin-spin correlator is defined as
Ci(r) = 4((S:85a) — (S2)(Siia)), where the spin operator is
8¢ = (nr,4 — e, )/2. Here, the parameter a denotes the shift
in the lattice site number between the two correlated positions,
and r is the current lattice site. We access the observable CZ(r)
via a linear combination of different correlators that can be
measured directly in the experiment [35].

The fate of antiferromagnetic correlations on frustrated
lattices is not obvious because the ordering is not compatible
with the lattice structure. Despite the geometric frustra-
tion, we find significant antiferromagnetic correlations at
nearest-neighbor sites although our temperatures are above
the exchange energy scale J = 4¢>/U ~ 0.4t. The reduced
antiferromagnetic correlation compared with the maximal
correlation of —1 can be interpreted as incomplete anti-
alignment of the spins. At large interactions, the Hubbard
model maps to the Heisenberg model, and 120° order
is expected [Fig. 1(a)]. Negative nearest-neighbor correla-
tions of G§; = —0.078(22), G, = —0.053(23), and G, _,, =
—0.071(28) are observed for three directions (b1, b2, and
b1 — b2) as depicted in Fig. 3(a) [35]. We compare the ex-
perimental data with a correlation map calculated by DQMC
at U/t =10 and kpT/t = 0.8 [Fig. 3(b)]. The calculated
nearest-neighbor spin-spin correlations agree with the ex-
perimental data within error bars. The observed negative
correlations among all nearest neighbors is consistent with
120° order. Next-nearest-neighbor spin-spin correlations in
the experimental data are consistent with zero within the
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FIG. 2. Triangular-lattice Mott insulators. (a)—(d) (top) Site-
resolved fluorescence images of fermionic Mott insulators with
increasing atom number integrated from fit, 77, 119, 175, and
183 at interaction U/t = 10(1). (a)—(d) (bottom) Comparison of
azimuthally averaged singles density (dots) and variance (triangles)
with theory calculations, QMC (red) and NLCE (orange). The data
points of the variance are horizontally offset by 0.3 lattice sites for
clarity. Both singles density n* and variance o2 are fit with QMC
and NLCE theory using the local density approximation [35]. The
detected variance is the square of the standard deviation of the sam-
ple within a radial bin. The fits yield temperatures kg7 /t = 0.9(2),
0.9(1), 1.5(1), and 2.4(1) with chemical potentials 1o/U = 0.24(10),
0.5(4), 0.91(3), and 1.94(1), respectively, at the trap center for
increasing atom number in both QMC and NLCE calculations. Error
bars on n* are the standard error of the mean and error bars on ¢ are
determined by error propagation from 62 = n* — (n°)*.

typical uncertainty of 0.02, which we believe is limited by the
currently realized temperatures in our experiment. Compared
with the square lattice, where nearest-neighbor spin-spin cor-
relation alternate in sign, the spin-spin correlations in the
triangular lattice are smaller in magnitude and negative for all

(a) (b) Ca
0.10

0.05
—0.01 —0.02 0.01 0.01
>0 —0,02‘ ‘—0.02 ‘ 0 0.00

—0.05
72 —0.02 0 0.02 0 0.01 0
—0.10
-2 0 2 -2 0 2
X X

FIG. 3. Spin-spin correlations. (a) Experimental correlations for
U/t =10(1). The G§,, Ci,, and C;; _,, are observed as anticorrelated
along (1,0), (1/2,+/3/2), and (1/2, —+/3/2). These values are the
same within error bars suggesting tunneling isotropy of our triangular
lattice. The correlations are extracted with postselection from 400
experimental pictures [35]. Typical values of experimental error bars
are ~(.02 and evaluated by bootstrap. (b) Spin-spin correlations
between nearest and next-nearest lattice sites calculated by DQMC
at a temperature of kT /t = 0.8 near half filling and C§ is omitted for
clarity. DQMC theory shows good agreement with experiment. The
measured next-nearest-neighbor spin-spin correlations are consistent
with zero within error bars.

nearest neighbors in the same parameter regimes, which we
attribute to the geometrically frustrated triangular structure.

To extract the temperature, we perform azimuthal aver-
aging of nearest-neighbor correlations as a function of the
distance from the trap center along the equipotential of the
lattice confinement [35] and fit to DQMC and NLCE calcu-
lations using temperature and chemical potential at the trap
center as free parameters [Fig. 4(a)]. We also average the
correlations along the three lattice axes because they are equal
within error bars. We show the result as a band in Fig. 4(b)
and obtain a temperature of kg7 /t ~ 0.8 by comparing cor-
relations between experiment and theory calculations at half
filling. The measured temperature is consistent with the radial
singles density fit in Fig. 2 with half filling at the center of the
system.

This temperature is clearly below the interaction energy
U/t = 10(1), and lower than the tunneling energy scale and
therefore quantum effects in the motion and interaction of
the atoms can be observed. From comparisons to square
lattice Mott insulators in our apparatus, we attribute the ele-
vated temperature partially to the more complex lattice beam
geometry which relies on the interference of three laser
beams. Obtaining high contrast in three-beam interference
is more sensitive to polarization purity and air-movement-
induced beam pointing than for two-beam interference. The
resulting time-dependence of the lattice potential leads to
heating. Heating and thermalization in triangular lattices, as
well as the loading dynamics into the lattice, merit further
theoretical and experimental study in the future.

In Fig. 4(c), we demonstrate our ability to tune interac-
tions. The strongest nearest-neighbor spin-spin correlations
in the triangular lattice are found for U/t ~ 10, whereas the
strongest correlations in the square lattice occur near U/t =~ 8
Ref. [28]. We observe atom loss when increasing the scatter-
ing length beyond a value of ~650a,. Therefore, we change
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FIG. 4. Thermometry and interaction dependence of spin-spin
correlations. (a) Spatial variation of nearest-neighbor correlations.
Blue, violet and green dots are measured correlations along a = b1,
b2, and b1l — b2, respectively. We perform an azimuthal average
along the equipotential of the lattice confinement. The experimental
data is fit to DQMC (red dashed line) and NLCE (orange solid line)
and we extract a temperature kg7'/t = 0.80(10). Error bars are the
standard error of the mean. (b) Nearest-neighbor spin-spin correla-
tion as a function of temperature. The experimental correlations at
the center of the trap are visualized by the light-blue shaded band
with average indicated by the blue line compared with calculations
from DQMC (red dots) and NLCE (orange squares) at half filling.
Orange solid and red dashed lines are a guide to the eye. The width
of the blue band indicates the error of nearest-neighbor spin-spin
correlation evaluated by the error propagation of nearest-neighbor
spin-spin correlations established in Fig. 3(b). We find kT /t =
0.80(25) (blue dashed line). (c) Interaction dependence of nearest-
neighbor spin-spin correlations. Measured correlations (blue dots)
are compared with DQMC (red dots) and NLCE (orange square)
theory for temperature kg7 /t ~ 0.9 at half filling. Blue diamonds
are measured using lattice depth of 12.0(7)Eg to avoid losses at
large values of U [35]. Error bars are the standard error of the mean
evaluated by bootstrap [35]. (d) DQMC calculation of spin-spin cor-
relations at kgT /t = 0.4 at half filling for shifts (1,0), (1.5,0.9), and
(2,0) (red dots, blue triangles, and violet pentagons, respectively).
The next-nearest-neighbor spin-spin correlations show a sign change
versus U /t.

the lattice depth to reach larger U/t [35]. We find good agree-
ment with theory and note that the experimental temperature
kgT /t =~ 0.9 is almost independent of U /z.

Next-nearest-neighbor spin-spin correlations are challeng-
ing to measure as can be seen in Fig. 4(d). DQMC calculations
show a suppression of spin-spin correlations for next-nearest
neighbors by a factor of eight compared with that for nearest
neighbors at a temperature kg7 /t = 0.4 and half filling. As
interactions are increased, the next-nearest-neighbor spin-spin
correlations are expected to cross over from negative in a pos-
sible spin-liquid regime to positive in the 120 ° ordered phase
in contrast to the situation in 2d square lattices at half filling
[26-28]. Experimental temperatures around kzT /t = 0.4 or
lower would therefore allow for the detection of next-nearest
neighbor correlations and may make it possible to distinguish
predictions for 120 © order and spin liquid correlations.

In conclusion, we prepared fermionic Mott insulators on
a triangular optical lattice and performed single-site resolved
imaging to detect spin-spin correlations which allow us to
infer the temperature of our systems. The radial density pro-
files of the observed Hubbard systems are in agreement with
DQMC and NLCE calculations. Reducing the temperatures
in our system is an outstanding challenge. Possible ways to
significantly reduce the temperature are a redesign of the
trapping configuration during the final evaporation, the im-
plementation of entropy redistribution techniques [36] or the
addition of "Li to the system for sympathetic cooling [37].
Future experiments will access spin-density correlations to
study kinetic magnetism [27,38,39], enabling the study of
polarons with special properties caused by the frustrated na-
ture of the triangular lattice [40—42]. Binding energies are
expected to scale with the tunneling ¢ and may be detectable
at higher temperatures compared with square lattices [41].
Systems with increased binding energy are interesting because
they may provide a path towards realizing repulsive pairing at
higher temperatures and, therefore, higher-temperature super-
conductivity. Additional future directions where our experi-
mental platform can challenge state-of-the-art numerical cal-
culations include the study of transport properties [43] and the
experimental search for chiral ordering predicted for triangu-
lar Hubbard systems [3,9].

Note added. Recently, related work on triangular fermionic
Mott insulators by Xu et al. appeared [44].
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