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A quantum impulse is a brief but strong perturbation that produces a sudden change in a wave function
¥ (x). We develop a theory of quantum impulses, distinguishing between ordinary and super impulses. An
ordinary impulse paints a phase onto ¥, while a super impulse—the main focus of this paper—deforms
the wave function under an invertible map, pu : x — x’. Borrowing tools from optimal-mass-transport
theory and shortcuts to adiabaticity, we show how to design a super impulse that deforms a wave func-
tion under a desired map p and we illustrate our results using solvable examples. We point out a strong
connection between quantum and classical super impulses, expressed in terms of the path-integral formu-
lation of quantum mechanics. We briefly discuss hybrid impulses, in which ordinary and super impulses
are applied simultaneously. While our central results are derived for evolution under the time-dependent
Schridinger equation, they apply equally well to the time-dependent Gross-Pitaevskii equation and thus
may be relevant for the manipulation of Bose-Einstein condensates.
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I. INTRODUCTION

In introductory classical mechanics, an impulse is a very
strong force applied over a very short time, producing a
finite momentum change. Quantum mechanics textbooks
do not routinely discuss how such an impulse affects a
wave function but the answer is straightforward: the wave
function acquires a phase,

¥ (x) = &850y (x), (1)

where v; and Yy denote the wave function immediately
before and after the impulse (see Sec. III).

The present paper concerns super impulses, whereby a
very very strong disturbance is applied over a very short
time. The distinction between ordinary and super impulses
will be made precise in the next paragraph. For now, we
assert that whereas an ordinary impulse paints a phase
onto ¥;, as per Eq. (1), a super impulse abruptly deforms
the wave function. This deformation is described by an
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invertible map pu : x; — X, through the relation

Yy (xr) = ¥i(x;) 3

—1/2
| s Xf == ,\'.L(Kf), (2}

oxr
X;

where |dxf /0x;]| is the Jacobian of the map p. For exam-
ple, a super impulse might produce a sudden displace-
ment, ¥y (x +d) = ¥;(x), described by the map w(x) =
x + d, or else a sudden stretching or squeezing, ¥y (cx) =
¢ P24(x), described by p(x) =cx, where D is the
dimensionality of x space and ¢ > 0 is a constant. More
generally, the map need not be linear in x, as illustrated in
Fig. 1. The aim of this paper is to develop the theory of
quantum super impulses and, in particular, to show how to
design a super impulse that deforms a given initial wave
function under a desired map.

The general setting that we consider involves a system
governed by a Hamiltonian

p’ 1 t
Hx,p,t) = —+ Uo(x,) + U | x,= ), ()
2m € €
where k € {1,2},x e R?,p= —ihV,0 <€ <« 1 and

U(x,t) =0, for 1 &[0,T] (4)

The sum p?/2m + Uy represents a background Hamilto-
nian, which might describe a particle in a time-dependent
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Xi xe(x;) X

FIG. 1. An illustration of a wave function deformed under a
map (i :X; — X7, in one dimension. Writing ¥;; in the form
Y= ﬁeig, the distribution p transforms classically under p
[Eq. (5a)] and the phase e carries over [Eq. (5b)].

potential or a collection of particles of mass m. In the lat-
ter case, x includes the coordinates of all particles. The
background potential Uy will prove to be irrelevant for our
calculations. The impulse term Uj/e* generates a space-
and time-dependent force that is applied during an interval
from f = 0 to €T. We are interested in the evolution of the
system, under the Schrédinger equation, during this inter-
val. As € — 0 with T fixed, the impulse duration becomes
infinitesimal and its strength diverges as ¢*. The cases
k=1 and 2 define ordinary and super impulses, respec-
tively. The strength of a super impulse diverges more
severely (o< €~2) than that of an ordinary impulse (ox €,
giving rise to the rather different responses described by
Egs. (1) and (2).

Writing ¥, in the form ¥ (x) = /p(x)exp[if (x)],
Eq. (2) becomes

P
pr(xr) = pi(x;) 3—3‘ ” (5a)
O (x7) = 6:(x;). (5b)

Equation (5a) describes the transformation of a probabil-
ity distribution, when samples drawn from p; are mapped
under p. We indicate this relation by the notation

W:pi— pr. (6)

Under a super impulse, the distribution p = |y ? is trans-
ported by the map p [Eq. (5a)] and the phase at x; simply
carries over to Xy [Eq. (5b)], as depicted in Fig. 1. When
referring to the sudden evolution described by Eq. (2) or
Eq. (5), we will say that the super impulse “deforms the
wave function under the map p.”

Ordinary and super impulses act on complementary fea-
tures of a wave function. The former suddenly modifies the
phase of the wave function, without affecting the probabil-
ity distribution |y |2 [Eq. (1)]. The latter suddenly modifies

[v]? [Eq. (5a)], while leaving the phase unchanged [in the
sense of Eq. (5b)].

Higher-order impulses, k > 3, seem to produce diver-
gent behavior as € — 0 [1], though this issue deserves to
be explored more fully. Note that an impulse differs from a
sudden quench, in which the Hamiltonian instantaneously
changes from one operator to another: H;.g # H-q. For
an impulse, the “before” and “after” Hamiltonians are both
given by p?/2m + Up(x,0).

Our motivation for studying quantum super impulses
is twofold. First, Eq. (2) represents a novel asymptoti-
cally exact solution of the time-dependent Schrédinger
equation: as € — 0, the postimpulse wave function vy
converges to the result given by Eq. (2), without further
approximations. This solution is constructed entirely from
classical trajectories (see Sec. VI), suggesting an inter-
esting equivalence between the impulsive (¢ — 0) and
semiclassical (A — 0) limits.

Second, our paper contributes to a broader effort to
develop experimental tools for the rapid manipulation of
quantum systems; e.g., to protect against environment-
induced decoherence [2,3]. Techniques for accelerating
adiabatic evolution known as shorfcuts to adiabaticity
(STAs) [4-6] have recently been studied extensively and
have been applied to experimental platforms including
cold atoms, trapped ions, superconducting qubits, optical
waveguides, and diamond nitrogen-vacancy (NV) cen-
ters [5]. Among the various methods in the STA toolkit,
the fast-forward approach [7—10] accelerates known solu-
tions of the time-dependent Schrédinger equation. Super
impulses are extreme shortcuts that (in principle) deform
wave functions instantaneously and (in practice) may be
useful when sufficiently strong and brief external forces
can be applied to a given system. In Sec. 1V, we high-
light a link between super impulses and the fast-forward
approach and in Sec. VIII we discuss further connections
to STAs.

In Sec. 11, we introduce a simple system that illustrates
the general results that we obtain later. In Sec. III, we
briefly analyze the evolution of a wave function under an
ordinary impulse (k= 1). In Sec. IV, we show how to
construct a quantum super impulse (k = 2) that achieves
the desired deformation [see Eq. (2)] for a given map p.
We distinguish between global and local super impulses,
as explained therein. Section V illustrates the construc-
tion of super impulses with examples for which U; can
be determined analytically. In Sec. VI, we discuss the
close correspondence between quantum super impulses
and their classical counterparts. In Sec. VII, we briefly
discuss hybrid impulses, in which ordinary and super
impulses are applied simultaneously. We end in Sec. VIII
with comments and perspectives.

Throughout this paper, 1£(x) denotes a map and xr (x;)
denotes the image of x; under this map. u(-) and x () are
identical functions of their arguments.
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II. TOY MODEL

Before developing the main ideas of this paper, consider

a classical particle in one dimension and define
Ul(x" t) == —'IF(}, TE [01 T] * (7)
During an ordinary impulse generated by this potential
[k =1 in Eq. (3)], a force Fy/e is applied over an inter-
val €T. As € — 0, the resulting force F(f) — FyT8(f)
produces a sudden change of momentum, with no corre-
sponding change in position:
Ax=0, Ap=FyT. (8)
This is the textbook case of a classical impulse, typically

illustrated by a baseball bat, or a foot, striking a ball.
Now consider a super impulse [k = 2 in Eq. (3)], with

—xFy, 0<t<T/2,
Usx,7) = 9
206, 7) {+xF0, TR<t<T ©)

Equation (9) describes a uniform force (e.g., an electric
field acting on a charged particle) that is applied first in
one direction and then in the opposite direction. Within the
interval ¢ € [0, €T, the particle undergoes acceleration and
then deceleration that scale as e 2, leading to momenta (at
intermediate times) that scale as ¢~!. In the limit € — 0,
this super impulse suddenly displaces the particle, with no
net change of momentum:

FyT?
Roprim

Ap = 0. 10
o P (10)

Equations (8) and (10) follow from simple classical cal-
culations. When a quantum wave function is subjected to
the same ordinary and super impulses, the resulting sudden
changes ¥; — Y are described by, respectively,

U @) = Myx) k=1, (1)
with Ap given by Eq. (8), and

Y+ Ax) = ¥i(x) k=2, (12)
with Ax given by Eq. (10). These changes closely match
the classical ones and represent simple examples of the

more general results obtained in Secs. 11l and IV.
Note that the force generated by U, above satisfies

5 5
f F(t)dr =0, (13)
0

which is a special case of the condition of balance dis-
cussed in Sec. VL.

III. ORDINARY IMPULSES

While super impulses are the primary focus of this
paper, let us dispense first with ordinary impulses, during
which the wave function obeys

Ay h?

1 t
ih— = —— VY + Ug(x, )¢ + -Uy (x, —) V. (14)
ot 2m € €

We introduce a convenient fast time variable,
t
t=-¢€[0,T], (15)
€

which marks the progress of time, from T = 0 to 7, dur-
ing the impulse interval f € [0, €T]. This variable will be
useful in the analysis of both ordinary and super impulses.
Rewriting Eq. (14) gives

L 0y R

ih— = —e—V“Y + eUp(x,en)¥ + U (x, 7). (16)
at 2m

In the limit € — 0, the first two terms on the right vanish

and the remaining equation is solved by

V(x,T) = exp [—% fr dt’ Uy(x, T’)] vi(x)  (17)
0
where ¥;(x) = ¥ (x,0). Setting T = T, we obtain

Yy (x) = €250y (x),
T (18)
AS(x) = —f dr Uj(x, ).
0

Thus, to paint a phase exp[iAS(x)/h] onto a wave func-
tion, we can use an ordinary impulse, setting

Ui(x, 1) = —AS(x) v(1), (19)

where fﬂT v(t)dt = 1. We will use this result in Sec. IV B.
Note that Eq. (18) is valid even if U; does not factorize as
in Eq. (19).

Formally, the effect of an ordinary impulse is described
by the quantum propagator

K(x,eT|x;, 0) = 250/m 5(x — x,), (20)

where the limit € — 0 is understood.

If the impulse potential U; is independent of 7 [as in
Eq. (7)], then the last term in Eq. (3) becomes U, (x)T4(¢)
and the impulse paints a phase exp[—iU(x)T/k] onto the
wave function. This result is well known. It has been
used by, e.g., Ammann and Christensen [11] in their
proposed delta-kick-cooling (DKC) method for cooling
atoms. Equation (18) is an essentially trivial extension,
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to r-dependent U;(x, 1), of the known effect of a delta-
function “kick™ on a quantum wave function. DKC and a
related earlier approach by Chu et al. [12,13] involve the
free expansion of an initially trapped particle, or a gas of
noninteracting particles, followed by a kick that removes
energy excitations. Dupays and coworkers [14,15] have
recently extended this approach to scale-invariant dynam-
ics [16] and have allowed for particle-particle interactions.

IV. SUPER IMPULSES

We now move on to super impulses. Since Eq. (2) has
been asserted but not yet derived, it might seem natural at
this point to investigate the evolution of a wave function
under a super impulse, for a given U,(x, T). It turns out,
however, that the evolution ¥; — ¥y generated by a super
impulse diverges as € — 0, unless U, satisfies a balance
condition that generalizes Eq. (13). We defer a detailed
discussion of this condition to Secs. VI and VIII. Here,
we instead show how to construct a super impulse that
deforms a wave function under a chosen map w.

Our starting point is a wave function ¥;(x), x € RP, and
a continuous differentiable invertible map w: x; — xr.
The goal is to design a super impulse that deforms the wave
function under this map [Eq. (2)].

In Sec. IV A, we assume that p can be expressed as the
gradient of a convex function ®. Under this assumption,
we show how to construct a super impulse that deforms
any Y; under the map p. That is, the potential U, is deter-
mined solely by p and is independent of ¢;; we will then
say that the super impulse is global.

In Sec. 1V B, we show how to proceed when p cannot
be expressed as the gradient of a convex function. In that
case, Uz depends on both p and v; (moreover, it must be
supplemented by an ordinary impulse, as discussed below)
and we will say that the super impulse is local.

A. p(x) is the gradient of a convex function

Assume that @ : X; — Xy can be written as

X7 (%) = p(xi) = Vb (x)), (21a)
D 52
Za > 8x;8x; > 0, forall Sx#0 (21b)
Jd=1 P9 0%k

Under this assumption, we first provide a recipe for con-
structing an impulse potential Uz(x, 7). We then verify
that, for any initial wave function ¥;(x), the resulting
super impulse €~2U(x,t/€) produces the instantaneous
deformation given by Eq. (2), as € — 0. Several techni-
cal details are relegated to appendixes, as indicated along
the way.

To begin, choose a differentiable function g(r)
satisfying

2(r) € (0,1), forall T € (0,7) (22b)
£(0) = (1) =0o. (22¢)

g(7) interpolates smoothly, though not necessarily mono-
tonically, from 0 to 1. Here and below, we use the dot () to
denote a partial derivative with respect to t.

Next, combine ®(x) and g(7) to define

1
Fgyx)=50 - @l* +gd(x),

X(x;,7) = VF = (1 — g)x; + g7 (x;).

(23a)
(23b)

In introducing the functions F, X, and (later) ¥, we follow
Aurell et al. [17] (see, e.g., Egs. (5.8)H5.10) therein), who
have used results from optimal mass transport [18,19] in
their derivation of a refined second law of thermodynamics
for overdamped Brownian dynamics.

The function X specifies a family of trajectories x(7) =
X(x;, ), parametrized by initial conditions x;, that interpo-
late from x; to x; (x;):

x(0) = X(x;,0) = x;,

(24)

xX(7) = X(xi, T) = x¢ (x;).
Figure 2 illustrates this construction for a system with
one degree of freedom. When D = 1, an invertible map
W :x; — Xy must be either monotonically increasing,
dxr /0x; > 0, or monotonically decreasing, dxr /dx; < 0.

FIG. 2. A family of trajectories x(t) = X (x;,7) evolving
under the velocity field v(x, 7) [Eq. (26)] from initial conditions
x; (circles) to final conditions x; (crosses). The initial conditions
shown here are distributed according to p;(x) shown in Fig. 1 and
are mapped to final conditions distributed according to pf (x).
As the trajectories do not cross (since dxs /dx; > 0), the func-
tion X (x;, ) can be inverted to give x;(X, ). Here, we choose
g(r) = Si.l'lZ(JTT/QT}, though in general g(t) need not increase
monotonically.
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In both cases, the map can be written as the gradient of a
function @ (x). By assuming that this function is convex
[Eq. (21b)], we assume that x; increases monotonically
with x;, which implies that the trajectories x(r) do not
cross, as shown in Fig. 2.

In the general case (D = 1), since ®(x;) is convex, so is
F(x;, ©), which in turn implies that X(x;, T) is an invertible
function of x; (see Appendix A). We can therefore define a
velocity field

aX
VX, 7) = —(x;, ) = 2(@) [xr () —x],  (25)

where x; = x;(X, 7). By construction, each trajectory
x(1) = X(x;, ) obeys

dx - %6
dr—V(X,T) (26)

and moves along a straight line from x; to xr (x;), with a
speed proportional to g(7), beginning and ending at rest:

vix,0) =v(x,7) = 0. (27)

Borrowing terminology from fluid dynamics, we refer to
x(t) = X(x;, ) as a Lagrangian trajectory, as it evolves
under the Lagrangian flow generated by the velocity field
v(x,T).

We similarly construct an acceleration field

2

0-X
aX,7) = o = £(7) [x (x) — xi]. (28)

which satisfies

a=(v-V)v+v (29)

as follows by taking the total derivative of both sides of
Eq. (26) with respect to . From Eqs. (22¢) and (28), it
follows that the time integral of a(X(x;,7),7) over the
interval [0, T vanishes. Thus, if we think of F(t) = ma as
the force along this trajectory, then the balance condition

T
f F(r)dr =0 (30)
0

is satisfied for every Lagrangian trajectory. This result gen-

eralizes the condition imposed in the simple model of
Sec. Il [see Eq. (13)].

Next, we introduce

W(x,7) = ‘% |i%|li£|2 —x-x; 4 F(x, 1')]

1
=Zix x-S+ o), (D
which satisfies the key property (see Appendix B)
VW(x, 1) = x5 — X, (32)

where x; and x; are the initial and final conditions of the
(unique) Lagrangian trajectory that passes through x at
time . From Egs. (25), (28), and (32), we have
v=gVW¥, a=gVy. (33)
These fields play similar roles to the velocity and accel-
eration fields used in Refs. [20,21] to design fast-forward
shortcuts to adiabaticity. There, however, the aim is to
cause a system to evolve nonadiabatically between energy
eigenstates (or their classical analogues); in the present
work, energy eigenstates do not play a privileged role.
Finally, we construct the impulse potential,
Up(x,7) = —mgW(x, 1), (34)
which generates the acceleration and deceleration of each
Lagrangian trajectory, through Newton’s second law:

F=ma=-VU,. (35)
We claim that if Us(x,T) is substituted into the
Schrédinger equation
oy .
jh— = HY, 36
Lo v (36)

with
p? 1 t
Hx,p,) = —+Ux, 0+ 5l (x,= ), (37)
2m € €

and the limit € — 0 is taken, then the super impulse at f =
0 deforms the wave function under the map .
To establish this result, we first define

S(x, 1) =mgW¥(x, 1), (38)
which satisfies
VS =mv(x, 1), (39)
iAY
ot
S(x,0) =8(x,7) =0, (41)
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where
2

Hy(x,p,7) = ;'—m + Ua(x;%). 42)

[For the derivation of Eq. (40), see Appendix B.]
For t € [0, eT], we now substitute the ansatz

Y0 = o 7) ODSER @3)

with 7 = t/e into the Schrodinger equation and obtain, as
e — 0,

30

— 4v.Vo=0, (44a)
ot '

9

P LV.(vp)=0 (44b)

at

(see Appendix B). These equations describe the dynamics
under a super impulse, in the fast time variable.

Equation (44b) describes the evolution of the probability
density p under the flow field v. Since this flow maps x; to
xr (x;) [Eqgs. (24) and (25)], the initial and final densities
pi(x) = p(x,0) and pr (x) = p(x, T) satisfy

3Xf e
pr (xr) = pi(x;) = (45)

Equations (25) and (44a) imply that (d/dt)0(X(x;, 1), T)
= 0; hence

0(x;,0) = 6(x,T). (46)

Combining these results with Eqs. (41) and (43) yields

a
Uy () = Yi(x) | =

. 12
i | A 47
— | 47)

confirming that the super impulse produces the desired
deformation of the wave function.

Note that the potential Uz(x, T) is constructed entirely
from the map p(x) and the interpolating function g(t) and
does not depend of the choice of ¥/;(x). Once this potential
has been determined, it can be used to deform any initial
Y; under the map p. To emphasize this feature, we will say
that the super impulse generated by U, is global.

While the limit € — 0 formalizes the notion that an
impulse is infinitely brief and strong, in any physical real-
ization the impulse must be finite; hence € is small but
nonzero. During the impulse, the wave function ¥ acquires
a spatially rapidly varying phase /<" [Eq. (43)]. This
phase is locally proportional to &V5*/<"  corresponding
to a local momentum p =¢~'VS. As |y;]2 evolves to
[ |2, matter is displaced by a finite distance over a time
interval €T (see, e.g., Fig. 1), implying a momentum that

scales as €~!. Thus the rapidly varying phase in Eq. (43)
reflects the rapid displacement of matter that occurs during
a super impulse; see also the comments following Eq. (9)
of Sec. II. As € — 0, a quantum super impulse produces
divergent behavior at intermediate times [Eq. (43)] but the
net change in the wave function remains finite [Eq. (2)].
Analogously, an ordinary classical impulse generates “infi-
nite” acceleration at intermediate times but produces a
finite change of momentum.

B. p(x) is not the gradient of a convex function

Now assume that p(x) is not the gradient of any convex
function; hence the construction of U given in Sec. IV A
breaks down [22]. In this situation, we do not have a recipe
for designing a global super impulse that deforms every v
under the map . However, for any particular choice of y;,
we can design a super impulse, supplemented by an ordi-
nary impulse, as described below, that accomplishes the
deformation ¥; — Y given by Eq. (2). We will say that
such a super impulse is local, to emphasize that it imple-
ments the desired deformation for a specific (but arbitrary)
choice of ¥; and not for others.

Given ¥; and p, we set p; = |Yy]? and define pr to be
the distribution obtained by transporting p; under

I py—> pr. (48)

Ur (x) =/ pr ()% © (49)

to be the wave function obtained by deforming v; under
the map p. u, ¥, ¥y, pi, and py are taken to be fixed for
the remainder of this section.

Now let fi:x; — Xy denote an invertible map that
satisfies

Further define

B pi = pr, (50)
X (%) = i1(x) = VO(xy), 1)

for some convex ®(x). That is, both & and 1 transport p;
to or [Egs. (48) and (50)]. Additionally, i (unlike ) is the
gradient of a convex function [Eq. (51)].

The existence—in fact, uniqueness—of [ satisfying
Egs. (50) and (51) follows from a theorem due to Bre-
nier [18,19,23]: among all invertible maps & that satisfy
Eq. (50) [given p; and p, and with py determined by
Eq. (48)], there exists exactly one that is the gradient of
a convex function and this map minimizes the Wasserstein
distance

Wil = [ st o) —xf. @)

i can be constructed numerically using the method of Ben-
amou and Brenier [24]. In what follows, we will make use

010322-6



THEORY OF QUANTUM SUPER IMPULSES

PRX QUANTUM 5, 010322 (2024)

of the existence of j satisfying Eqgs. (50) and (51) but will
not need the property that ft minimizes W.

We now apply the construction of U,(x,t) given in
Eqgs. (22)+34) to the map p. The result is a super impulse
that produces the deformation

Ui = Ve 50T = g ),

(53)

with pr = pr [by Eq. (50)] but, in general,

By (x) # 67 (x) (54)

[see Eq. (49)], since p # . Thus the super impulse con-
structed from [ produces a wave function ¥y with the
correct final amplitude but the wrong phase. This phase
error can be corrected by acting on t,_bf with an ordinary
impulse, obtained by setting

AS(x) = h[6; (x) — 6; (x)] (55)

in Eq. (19). This ordinary impulse erases the wrong phase
and paints the right one.

We conclude that for a particular choice of y;, a super
impulse constructed from the map f, supplemented by
an appropriately tailored ordinary impulse, produces the
desired final wave function v satisfying Eq. (2). As men-
tioned above, this recipe is local: different choices of ¥;
lead to different impulse potentials U,.

The map p satisfying Egs. (50) and (51) is particularly
easily determined when D = 1. In one dimension, there is
a unique monotonically increasing map that transports p; to
pr and a unique monotonically decreasing map that does
the same. These maps are determined using cumulative
distribution functions, ¢(x) = fjm dx’ p(x'), as depicted in
Fig. 3. If u is a monotonically decreasing map that trans-
ports p; to pr (and hence cannot be written as the gradient

pi(x)

—_— f—

Xi Yf Xf

FIG. 3. Given a decreasing map p : x; — X that transports p;
to pr, the increasing map [ : x; — X, defined by Eq. (56) also
transports p; to pr. The shaded regions have equal areas, given
by ¢i(x;), ¢r (X7 ), and 1 — ¢f (xr). The stubby arrows indicate that
Xy increases, and that x; decreases, with x;.

of a convex function), then the monotonically increasing
map [ : x; — Xy that transports p; to pr is given by

X () = ¢ ' (ci(xa)). (56)

V. EXAMPLES

Here, we illustrate the methods for constructing the
impulse potential U, described in Sec. 1V, using four maps
for which U; can be determined analytically. These exam-
ples cover both global and local maps and both the D = 1
and D > 1 cases. Throughout this section, the interpo-
lating function g(r) satisfies Eq. (22) but is otherwise
unspecified.

A. Global super impulse in one degree of freedom

Consider the map (with b > a > 0)

xi—b+a, ifx;<—a,
uix;p — xp = { (b/a)x;, if —a <x; <a, (57)
xi—a+b, ifx;> a,

shown in Fig. 4(a) for a = 0.5 and b = 3.0. Under this
map, an initial wave function ¥;(x) is cleaved: the por-
tion corresponding to x < —a is shifted leftward by b — a,
the portion corresponding to x > a is shifted rightward by
the same distance, and the in-between portion is stretched
linearly. Specifically, Eqs. (2) and (57) give

Vi(x + b — a), x < —b,
Yy (x) = { «/a/b Yi(ax/b), —-b<x<b, (58)
Yi(x —b+a), x> b,

as illustrated in Fig. 4(b) for the Gaussian wave packet
Ui(x) = (23?0'2)_”4 e 140 gikx (59)

witho = 1, k= 10.

Since p(x) increases monotonically with x, we can con-
struct a global impulse potential U, (x, ) that deforms any
Y¥i(x) according to Eq. (58).

The map p produces Lagrangian trajectories x(t) illus-
trated in Fig. 4(c). Trajectories with initial conditions
|x;| > a move leftward or rightward, at speed g(b — a),
while the trajectories in between (|x;| < a) spread out from
one another, as the interval [—a,+a] is stretched into
the interval [—b,+b]. Following the steps described in
Sec. IV A, we obtain, after some algebra,

x| — (c/2),

x2/2c,

x| > ¢,

Ux(x,7) = —mg(b —a) x (60)

x| < ¢,
where
c(r)=(1—-gla+gb=X(a,r). (61)

The condition [x(T)] > ¢(7) is equivalent to |x;| > a.

010322-7



CHRISTOPHER JARZYNSKI

PRX QUANTUM 5, 010322 (2024)

(a) 1 xe=pix)
6.
4
2.
—4 -2 _” 2 4y
—4
-6
-8B
(b)
W7 00
04 lwi(x)|? ,
s [ )]
0.2
0.1
0.0
B OS6 4 ¥ 9 2 4 8 B
X
€ ,|  xto=xwx,1
2_
E
b
-.2_
_4_

0.0 0.2 0.4 0.6 0.8 1.0

g(1)

FIG. 4. (a) The map p defined by Eq. (57), with a = 0.5 and
b = 3.0. (b) p deforms a Gaussian wave packet 1;(x) by cleav-
ing it into left and right portions. The offset oscillatory curves
show the real and imaginary parts of the phase of ¥ (x). (c) Tra-
jectories x(7) plotted against g(t). The dashed lines indicate the
trajectories from x; = ta to x; = +b.

When g(t) > 0, the potential U (x, t) forms an inverted
“V.,” whose vertex is rounded in the region |x| < ¢. This
rounded quadratic region of the potential governs the tra-
jectories located between the two dashed lines in Fig. 4(c),
causing them to move away from one another. The
leftward- and rightward-moving trajectories outside this
region [parallel lines in Fig. 4(c)] evolve under the linear
portions of this V-shaped potential, where |x| > c.

The impulse potential U, is discontinuous in its second
derivative at x = =c, resulting in discontinuities in ¥y (x)
at x = b [see Eq. (58) and Fig. 4(b)]. The map

i %; — X+ (b — a) tanh (x—) (62)
a
provides a smoothed version of the one defined by Eq. (57),

leading to a potential U; and a softly cleaved final wave
function ¥, that are continuous in all derivatives. For

this map, we have X (x;, T) = x; + g(7)(b — a) tanh(x;/a),
which cannot be inverted analytically. However, we can
readily construct x;(X, ) numerically, leading to a numer-
ical solution for U (x, T).

B. Local super impulse in one degree of freedom

Now consider the reflection map
WX — —X;. (63)

Since p(x) decreases monotonically with x, we cannot
construct a global super impulse for this map by follow-
ing the recipe described in Sec. IV A. Instead, we illustrate
the construction of a local super impulse, which deforms
a specific choice of y¥; under the map p. As described in
Sec. IV B, this super impulse must be supplemented by an
ordinary impulse that “corrects” the phase of /7.
We choose

vix) = (ZJraz)_IH PR AP L SN} (64)

Under the map p, this Gaussian wave packet is reflected
around the origin:

V{r (x) . (23?0'2)_11;4 e—(x+s)2f40'2€—ib:' (65)
We wish to construct a super impulse, supplemented by an
ordinary impulse, that generates this deformation, for this
particular choice of y;. We follow the steps described in
Sec. IVB.

The cumulative distribution functions c;, obtained from
Vi satisfy ¢r (x — 25) = ¢i(x); hence Eq. (56) gives

X —> X;j — 28. (66)

Applying Egs. (22)~34) to the map jz, we obtain X = x; —
2sg, v = —2sg, and

Ur(x,t) = 2msxg(t) . (67)

This potential generates a force —2msg and the resulting
super impulse simply displaces y; by —2s:

Vi) > Py () = (2mo?) e R (g
We then use an ordinary impulse (Sec. 1II) to paint a phase
e 2% onto fhf, arriving at the desired ¥ [Eq. (65)].

The super impulse generated by Eq. (67) displaces any
Y; by —2s. Because the distribution p; = [ |? given by
Eq. (64) happens to be symmetric about the point x = s,
the displacement of y; by —2s is equivalent, apart from a
phase, to reflection about the point x = 0 [Eq. (63)]. For
a generic choice of ¥;, the steps described in Sec. [VB
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lead to a potential U; that is not linear in x and the result-
ing local super impulse does not simply displace the wave
function.

We have used the reflection map [Eq. (63)] to illustrate
the approach of Sec. IV B. However, it is a peculiarity
of this map that it can be implemented—up to an overall
phase—with a global super impulse, using the potential

U- _l 2,2 2
2(x, T) = zma)x, w= T (69)

During this super impulse, the wave function evolves
under the Schrédinger equation for a harmonic oscillator,
for exactly half a period of oscillation. This evolution pro-
duces a final wave function ¥y (x) = —i;(—x) [25]. We
stress that Eq. (69) does not follow by applying the recipe
of Sec. IV A to the reflection map and should be viewed as
a special solution that is specific to this map.

C. Global super impulse in D > 1 degrees of freedom

Consider the linear map
oox; — Mx;, (70)

where the D x D real matrix M is symmetric and posi-
tive definite. These conditions guarantee that p(x) is the
gradient of a convex function:

p(x) =Mx=V (%KTMX) f (71)

The map p performs linear rescaling along the eigenvec-
tors of M. Letting ; and A; denote these eigenvectors and
associated eigenvalues, the map acts as follows:

D D
X; = Z Xjéj - Xf = Z}ij-féj’ (72]
j=l Jj=1

with ¢; - & = §; and all A; > 0. This map stretches and/or
contracts the coordinates along the orthogonal directions
{&1.

Following Sec. IV A and defining B(r) = (1 — g) +
gM, we obtain

X(x;, ) = Bx;, (73)

1
Us(x,T) = —Emg x'(M — DB 'x. (74)

The super impulse generated by Eq. (74) is global: it
deforms any v¥; under the map p given by Eq. (70).

When D = 1, M becomes a positive constant, U; is a
time-dependent quadratic potential, and the super impulse
linearly stretches or contracts the wave function.

D. Local super impulse in D > 1 degrees of freedom

Finally, taking D = 3, consider the map

a —a 0 ]
n:x;—> Mx;, M=|a a 0}, a=,/-,
0 0 1 2

(75)

which performs a 7 /4 rotation around the z axis. Because
M is not symmetric, the function p(x) = Mx is not the
gradient of a scalar function ®(x) [26]. We illustrate how
to implement & locally, for a particular choice of ;.

We choose

Vi(x) = VN e~ G/ —(1/4?-3/4)2 (76)

with N = (9/87%)!/2. The distribution

pi(x) = |2 = Ne™D/2 D= (a7

oo W
o= o
w oo

is a Gaussian distribution, whose contours are cigar-shaped
ellipsoids oriented along the y axis. Under the map p, this
distribution is rotated by m /4 around the z axis, as illus-
trated in Fig. 5. Using pr (Mx) = p;(x) (since detM = 1),
we have

pr(x) =Ne B2 MTEM =D. (78)

FIG. 5. The solid blue curve shows a contour of p;(x) =
[¥;(x)]2 [Egs. (76) and (77)] at z = 0. The dashed red curve
shows the corresponding contour of pr (x), the image of p;(x)
under the map p, which performs a 7 /4 rotation around the z
axis [Egs. (75) and (78)]. pr (x) is identical to py (x), the image of
pi(x) under the map i [Egs. (79) and (80)], which performs a lin-
ear stretch and contraction, respectively, along the eigenvectors
of M, &5 o (—a, 1 T a,0), with eigenvalues 1, = (4 + V2)b,
where a = 4/T/2 and b = /T/14.
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Now consider the map

5 —b 0 1
pA:xi—>Mx,, M=|-b 3 0], b=, —.
0 0 1 14

(79)

Note that det M = 1. This map performs a linear stretch
by a factor A; along the eigenvector &, of M and a linear
contraction by a factor A3 along é; (see Fig. 5). Under this
map, p; given by Eq. (77) transforms to pr that satisfies
or (Mx) = p;(x); hence

or(x) = Ne B2 jTEM = D. (80)

The matrices £ and E define Gaussian distributions ps
and pr. From Eqgs. (78) and (80) we obtain, by direct
evaluation,

(210
E=E=[1 2 o}; (81)
g 0 I

therefore, py = py. Thus, while the maps p and p dif-
fer—the former rotates around the z axis while the latter
stretches and contracts in the x-y plane—their effects on
the particular distribution p; [Eq. (77)] are the same.

Since M is symmetric and positive definite, f2(x) is the
gradient of a convex function [Eq. (71)]. Proceeding as in
Sec. V 3, we obtain

Ur(x,7) = —%mg x (M — DB 'x, (82)
where
B(t) = (1 —g)I +gM. (83)

An expression for B~!(t) can be obtained analytically but
is not particularly illuminating.

For the specific choice of y; given by Eq. (76), the
potential U, generates a super impulse whose net effect is
a 7 /4 rotation around the z axis, thereby implementing the
map i locally. (Since ¥; has been chosen to be real, there
is no need to follow up with an ordinary impulse to cor-
rect the final phase.) For a different choice of ;, however,
the same super impulse would generate a deformation that
generically would not be equivalent to a rotation.

VI. CLASSICAL AND SEMICLASSICAL
CONSIDERATIONS

In this section, we first consider classical trajectories
generated by the Hamiltonian H; [Eq. (42)] in the fast
time variable. We show that these trajectories are equiva-
lent to the Lagrangian trajectories of Sec. IV and we relate

them to the quantum propagator K from ¥; to Yy, via
the path-integral formulation of quantum mechanics. We
then describe the evolution of a classical phase-space den-
sity ¢ (x, p, ) under a super impulse. Finally, we establish
a semiclassical connection between quantum and classi-
cal super impulses by considering an initial wave function
that has the WKB form of a slowly (in space) varying
amplitude modulated by a rapidly varying phase.

X(x;,7) obeys Newton’s second law [Egs. (28)
and (34)],

32X

m—— = VU)X, 7). (84)

If we define P(x;,7) =maX/adt, then X and P obey
Hamilton’s equations,

axX  8H;

aP  8H;
ar P’

- ax’ (85)

with Hy given by Eq. (42). In other words, the Lagrangian
trajectories of Sec. 1V correspond to Hamiltonian trajec-
tories of Hj. These trajectories satisfy initial and final
conditions

(X, P)r=0 = (x;,0),
(X, P)r=r = (%7 (xi), 0).

(86a)
(86b)

Thus Hj generates trajectories with the following property:
if the system begins at rest, P; = 0, then it also ends at
rest, Pr = 0, and in between the motion in configuration
space follows a straight line from x; to xf [Eq. (23b)].
The initial acceleration of the system along this line is
exactly compensated by later deceleration. We will refer to
this property by saying that the potential U, is balanced.
This property arises by careful design [see Eq. (30)] and is
nongeneric. An arbitrarily chosen U; would generally be
unbalanced: a vanishing momentum at 7 = 0 would not
imply a vanishing momentum at T = 7. We will return to
this point in Sec. VIIL.

By the Hamilton-Jacobi equation [Eq. (40)], the classi-
cal action along a trajectory obeying Eq. (85) is given by
S(X(xs,7), ) [27], which vanishes at t = T [Eq. (41)]:

SX(x;, 1), 7) =0, Vx,. (87)

With these observations in mind, let us consider super
impulses from the perspective of the path-integral formu-
lation of quantum mechanics.

Evolution under the time-dependent Schrédinger
equation can be expressed in terms of a propagator
K(x,t|x',1), whose value is a sum over paths from x’ at
time # to x at a later time ¢ [28]. Each path contributes a
phase ¢/ given by the classical action of the path. In the
semiclassical limit A — 0, the interference between these
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phases causes the propagator to be dominated by paths that
correspond to classical trajectories.

For a super impulse, if we express the evolution from ;
to ¥y in terms of a quantum propagator K, i.e.,

W x) = f P K(x,eTx, 0 Yi(x),  (88)

then Eq. (47) implies

1/2

K(x,eT]x;,0) = a(x —xf (x,-)) Iaaﬁ . (89)
Xi

which reveals that the propagator from x; to x is deter-
mined entirely by a single path, namely, the Hamiltonian
trajectory satisfying x(0) = x; and p(0) = 0.

The result that K(x, e7|x;, 0) is determined by a single
classical trajectory (for fixed x; and as € — 0) may seem
suspicious. Intuitively, we expect contributions from non-
classical paths to vanish (due to interference) only in the
semiclassical limit A — 0, whereas we have not assumed
A to be small. To explore this issue, let us write the
Schrodinger equation [Eq. (36)] in the fast time variable
T = t/e. Multiplying both sides by €2 gives, for T € [0, T],

w ()’

3
Heh) T

—— VY + Up(x, €)Y + Us(x, 1)V
(90)

The second term on the right vanishes as € — 0. The
remaining terms have the form of the time-dependent
Schrédinger equation with Hamiltonian Hy and an effective
reduced Planck’s constant:

2
W _ gy v, oyw

i at 2m ’

hier = €h. (91)
This equation governs the evolution from ¥; at T =0 to
Yy at T = T. We see that the impulsive limit (¢ — 0 with
h fixed; hence h.g — 0) acts as a proxy for the usual semi-
classical limit (2 — 0). It is therefore not surprising that as
€ — 0, phase interference suppresses the contributions to
K from nonclassical paths.

Having related the quantum propagator K(x,e7]x;,0)
to classical trajectories generated by the Hamiltonian Hy,
let us now explicitly consider the evolution of a classi-
cal system under a super impulse. Suppose that we have
designed a potential U,(x, t) following the steps outlined
in Sec. IV A. Let ¢p(x, p, ) denote a classical phase-space
distribution that evolves under the Liouville equation

ad d¢ O0H 0d¢ oH
_¢+_¢.___¢. =0, (92)
gt dx adp

with H given by Eq. (3) and k = 2. Let ¢; and ¢y denote
the distributions at f = 0 and €7. As shown in Appendix C,

a trajectory that starts at the phase point (x;,p;) at t =0
evolves to [see Eq. (C15)]

(7 .py) = (6. L(x) i) (93)

att = €T, in the limit € — 0. Here,

0
L(x) = =L (x,,0) (94)
ap;
is a D x D matrix. When p; = 0, Eq. (93) implies that
pr =0
Similarly defining
p(x;)
J(x;) = ( i,0) = T, (95)

and combining Eqgs. (93)+95) with
JIL=1 (96)

(derived in Appendix C), we obtain

ey, %) ) ¢i(x;, pi)

el i) = ‘ a(pi, Xi) O72)
=)L) T di(xip)  (9Tb)
= ¢i(Xs, pi), (97c)

in agreement with Liouville’s theorem. [In going from
Eq. (97a) to Eq. (97b), we have used |dx; /dp;| = 0, which
follows from Eq. (93), and to get to Eq. (97¢), we have used
Eq. (96).] Integrating both sides of Eq. (97b) over py gives

or %) = W (x)I™! pr (x3), (98)

which is Eq. (5a). (This result also follows directly from
Eq. (93).) We conclude that quantum and classical super
impulses with the same U, produce the same transport of
probability distributions in coordinate space.

In the case of one dimension, Eq. (93) becomes

, 99
(,)) s

where y = dxy /dx; by Eq. (96). Thus while x; is trans-
formed under a generally nonlinear map, p; is rescaled
linearly by a factor that guarantees that Liouville’s theorem
is satisfied.

We can gain semiclassical insight into the effect of a
quantum super impulse by assuming that y;(x) has the
WKB form of a slowly varying amplitude modulated by
a rapidly oscillating phase. In the vicinity of a point x?, we
have a wave train Vi(x) = Ae’*™. Expanding j¢(x) to first
order around x?, Eq. (47) implies that the super impulse

&rpr) = (N(x;)
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transforms this wave train as follows, aside from an overall
phase:

[¥i(xi = x)) = 4e™%]

o [v'ff (xr 7 x7) = \/ime"k“’_t"f = j;me"‘f'r"f] !
(100)

where xj! = ,u(x?), J and L are evaluated at x? and we
have used xr ~ xfn +J(x; — x?). The super impulse dis-
places the wave train from x! to x}) and linearly transforms
the wave vector from k to k' = Lk, adjusting the local
amplitude accordingly. In a semiclassical interpretation,
the local momentum is transformed from p; = hk to ik’ =
Lp;. Thus the local effect of the super impulse, on a wave
function in WKB form, corresponds to the phase-space
map
X; = X = p(x:), pi—> pr =L)pis (101)

in agreement with Eq. (93).

Equation (100) becomes particularly transparent in the
case of one degree of freedom:

[Vix: ~ x7) = 4]

ﬁ[wf(xfmxﬁ):%eﬂ“ﬂ?], (102)

with y = dxr /0x; evaluated at x?. If y > 1, then the wave
train is stretched by a factor y (see, e.g., Fig. 4(b) in
the region |x| < b) and the resulting longer wavelength
reduces the local momentum by the same factor, py =
pil v, in agreement with Eq. (99).

VII. HYBRID IMPULSES

If a super impulse is followed immediately by an ordi-
nary impulse, as in Sec. IV B, the outcome combines
Egs. (1) and (2):
axs -172

¥y () = & My | =
X

(103)

The super impulse deforms the wave function and the ordi-
nary impulse then paints a phase. We now show that the
same outcome can be achieved in one go, using a hybrid
impulse

5 1 1
H,p.) = 2+ Uo(x.) + —U1 (6, 1) + U2 (x,7).

(104)

As in earlier sections, U} and U; vanish for T ¢ [0, T].

Given a map that satisfies Eq. (21) and a function AS(x),
we design a hybrid impulse as follows. First, we con-
struct Uz using the recipe given by Egs. (23)+34), which
involves Lagrangian trajectories x(7) defined by Eq. (23b).
Next, U, is given by

Ui(x, 1) = —AS(xr (x, 7)) v(7), (105)
where fﬂrv(t)dr =1 and x7(x, ) is the final point (at
t = T) along the Lagrangian trajectory that passes through
x at time 7.

The construction of U; and U described in the previous
paragraph gives a hybrid impulse that transforms an initial
Y; to a final ¥ given by Eq. (103). This claim is estab-
lished by following steps that are nearly identical to those
of Sec. IV A, with only a minor modification as described
at the end of Appendix B.

For a given xr, Eq. (105) can be rewritten as

Ui(x(7),t) = —AS(xr) v(1), (106)
where the left side is evaluated along the Lagrangian tra-
jectory that ends at x(7) = xy. Just as in the case of a
super impulse (see Sec. VI), the propagator K for a hybrid

impulse is determined by a single classical trajectory.
However, the presence of U) in Eq. (104) now contributes
a term — fDTdr Ui (x(7), T) to the action of the trajectory.
By Eq. (106) this term is equal to AS(xr). Hence Eq. (89)
becomes, for a hybrid impulse,

1/2

g a
K(X., Gﬂxig 0) — elﬂs(h)fﬁa (X = Xf (Xi)) |§ 2 (]07)

which is equivalent to Eq. (103) and combines the expres-
sions for propagators for ordinary and super impulses,
Egs. (20) and (89).

Thus, to deform a given wave function y; under a map
4 that is not the gradient of a convex function, we can
either follow the two-step procedure of Sec. IV B—a super
impulse followed by an ordinary impulse—or else we can
apply a hybrid impulse as described above.

VIIL. DISCUSSION

Section 1V of this paper shows how to design a super
impulse potential U, that suddenly deforms a quantum
wave function ¥; under an invertible map p. When the map
is the gradient of a convex function, the super impulse is
global: any y; can be deformed under p using the same
potential Uz. When the map does not satisfy this criterion,
the super impulse is local. In that situation, U, depends on
Y; and the super impulse must be followed by (or applied
simultaneously with) an ordinary impulse.

These results offer a potentially useful tool for manipu-
lating quantum systems, e.g., to prepare them in desired
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states. To assess the feasibility of this tool, one must
account for practical limitations related to the speed with
which the potential U, can be varied and the degree of
experimental control over its shape and magnitude. Within
these limitations, can the desired deformation be achieved
to an acceptably good approximation? In particular, how
small must € be in order for Eq. (2) to be reliable? We
expect that if (1) the term €2Uj in Eq. (90) is negligible
and (2) the effective Planck’s constant fi.g = € is suf-
ficiently small that a semiclassical treatment accurately
solves Eq. (91), then Eq. (2) will accurately describe the
postimpulse state of the wave function. Numerical simu-
lations will help to clarify this issue and ultimately super
impulses may be tested in the laboratory. Cold atoms,
which have been used to validate and implement quan-
tum shortcuts to adiabaticity [29-38], provide a potential
platform for such tests.

While the analysis of Secs. [II-1V has been developed
using the time-dependent Schrodinger equation, it applies
equally well to evolution under the Gross-Pitaevskii
equation,

iha (x,0) = [H+g W &P ¥(xn,  (108)

which is often used to model the evolution of Bose-
Einstein condensates (BECs). Here, H is a single-particle
Hamiltonian given by Eq. (3), including the impulse
e *U, and g|1{;|2y’/ models particle-particle interactions at
the mean-field level. Because ghjrlzy'f remains finite during
the interval [0, €T}, its effect on the evolution of the wave
function during the impulse vanishes when € — 0. Thus
the ordinary and super impulses derived in Secs. 1II-IV
for unitary evolution can also be applied to manipulate the
evolution of BECs, within a mean-field approximation.

We have approached super impulses as a design prob-
lem: how do we construct a potential U, that deforms a
wave function v; under a map p? One can turn the ques-
tion around to ask: given a potential U, (x, 7) in the interval
T € [0, T] and an initial wave function v, what is the effect
of the corresponding super impulse?

To address this question, let S(x, ) solve the Hamilton-
Jacobi equation

s (VS)?

Jt 2m

8 =D (109)

for the given Us(x,t), with S(x,0) = 0. Substituting
Eq. (43) into ihdr = Hyr, with H given by Eq. (3),
and following the steps taken in Sec. IV, we again obtain
Eq. (44) for p and 6. The wave function Vr (x) = ¥ (x,€7)

is therefore given by

wf (Xf) — Illpf (Xf ) el‘t?r (xr )efs(l'f,f)feﬁ

—12
= v/ pi(x;) i £tixi) iS(xy ,T)/eh
3)(;‘
I e
= ¥i(x;) f 50 D/eh (110)

where p;r and 6; are evaluated at Tt =0 and T, and xy =
(x;) [see Egs. (45) and (46)].

In Sec. IV, § has been designed to vanish at T = 7. By
contrast, in Eq. (110), § is determined from Us, through
Eq. (109), and in general S(x, T) # 0. As aresult, the phase
of ¥y given by Eq. (110) is ill behaved as € — o0o. This
behavior traces back to the fact that an arbitrarily cho-
sen potential U, is unbalanced: for a classical trajectory
(x(1),p(r)) evolving under Eq. (85), and for a generic
choice of Uz, p(0) = 0 does not imply that p(T) = 0 (see
Sec. VI). But p(r) = VS(x, ) [27]; hence a nonvanish-
ing p(7) implies a nonvanishing nonconstant S(x7, T) in
Eq. (110).

Thus, in order for a quantum super impulse to produce
a well-behaved final wave function v, the potential U
must be balanced, in the sense introduced in Sec. VI. By
design, the recipe provided in Sec. IV A leads to balanced
potentials.

Recall from Sec. VI that, as e — 0,

1/2
(111)

K(x,eT]x;, 0) — 5(x — (x,-)) ’33%

This does not imply that K — 0 for all x # x; (x;). Rather,
in this limit, K oscillates ever more rapidly with x, except
at x = x;. When X is integrated with ¥; to give ¥y, only
the classical transition x; — Xy contributes. If Ux(x, 1) is
linear or quadratic in x and if Uy = 0, then the propaga-
tor K(x, €T]x;, 0) can be solved analytically for any € > 0,
which may provide insight into how the limit in Eq. (111),
and by extension Eq. (2), is approached.

Equation (44), which governs the dynamics of the wave
function during the interval [0, €T, has been derived by
combining the ansatz of Eq. (43) with the Schrédinger
equation to obtain Eq. (B4) and then taking the limit e —
0. If we instead define £ = S + ¢/f and separate the real
and imaginary terms in Eq. (B4), we obtain (for finite €),

. VZ
0:p+V-(—p),
m

(VE)?
2m

(112a)

h)? v?
U+ Uy~ EV VAP 110w
2m  /p
Equation (112a) is the continuity equation under the flow

field v + €AVO/m, while Eq. (112b) is the Hamiltonian-
Jacobi equation for a particle moving in a potential given

0:ﬁ+

+
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by the last three terms on the right. Equation (112) is equiv-
alent to the Madelung equations [39,40] and arises in the
de Broglie-Bohm formulation of quantum mechanics [41].
The last term in Eq. (112b) is Bohm’s quantum potential,
with an effective Planck’s constant f.gq = ¢h. Upon tak-
ing the limit € — 0, both the background potential Uy and
the quantum potential drop out of Eq. (112b). In this limit,
the Bohmian particle trajectories become the Lagrangian
trajectories X(x;, t) of Sec. IV.

Sanz ef al. [42] use the Madelung equations to
study light flow through a Y-junction optical waveguide,
which resembles the wave-function cleaving of Sec. V 1.
The optical streamlines of Ref. [42] correspond to the
Lagrangian trajectories X(x;, t) of the present paper. It will
be interesting to elucidate the optical counterpart of the
limit € — 0 and to consider whether analogues of super
impulses have potential applications in the field of optical
waveguides.

Scaling properties often provide useful tools for study-
ing nonadiabatic quantum dynamics. Deflner ef al. [16]
have developed a general strategy for designing shortcuts
to adiabaticity for scale-invariant driving. Modugno ef al.
[43] combine the Madelung equations with an effective
scaling approach [44] to obtain approximate solutions of
the Gross-Pitaevskii equation for the free expansion of a
BEC and Huang et al. [45] adopt a similar strategy to
design shortcuts to adiabaticity for harmonically trapped
BECs. Bernardo [46] has proposed to accelerate quantum
dynamics by rescaling the entire Hamiltonian by a time-
dependent factor f (7). It will be interesting to explore
potential applications of these and related scaling-based
methods to the context of super impulses.

The Wasserstein distance [Eq. (52)] has been shown by
Aurell et al. [17,47] to be related to entropy production in
Langevin processes and has been used by Nakazato and [to
[48], Van Vu and Saito [49], and Chennakesavalu and Rot-
skoft [50] to develop a geometric understanding of optimal
(minimally dissipative) protocols for driven nonequilib-
rium systems. These results establish a fascinating connec-
tion between the fields of optimal transport [18,19] and
stochastic thermodynamics [51,52]. Separately, Defther
[53] has used the Wasserstein distance [54] to obtain a
quantum speed limit for the Wigner representation of quan-
tum states. It will be interesting to explore further the
connection between optimal transport and rapidly driven
quantum systems and, in particular, to attempt to develop a
geometric framework encompassing quantum speed limits,
shortcuts to adiabaticity, and super impulses.

It is natural to consider whether our results can be
extended to include charged particles in magnetic fields.
Masuda and Rice [55] have shown how magnetic fields
can be used to rotate quantum wave functions rapidly
and Setiawan ef al. [56] have shown how such fields
can generate nonequilibrium steady states. Replacing p
in Eq. (3) by p—eA/c leads to a term proportional to

P-A+A-:p in the Hamiltonian H. Terms of this form
often appear in the counterdiabatic approach to shortcuts
to adiabaticity [5,16,20,21,57-62], and are related to fast-
forward potentials by gauge transformations [5,16,61,62].
It may be fruitful to explore this connection in the context
of quantum impulses.

Finally, Carolan ef al. [63] have studied counterdiabatic
control of systems driven smoothly from an adiabatic to
an impulsive regime, and then back to adiabatic, via the
Kibble-Zurek mechanism [64,65]. They find that if is ener-
getically efficient to apply counterdiabatic control only
during the impulsive regime, i.e., when it is most urgently
needed. It will be interesting to clarify how their results
relate to those of the present paper.
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APPENDIX A: INVERTIBILITY OF X(x;, 7)

Consider two points xp) # x‘@ and define

2)

sx =x?@ —x X =Xx?, 1) - X(x", 7). (AD)

We then have

D 1
d
5x-8X =Y jaxkf ds =X (xf." +s3x,r)
k=1 ¢ o

D 1 D X, -
= Zcﬁxk ds Z — (xf + s6x, 1:) 8x;
0 = ij
k=1 j=l

1 2
:fo dsjzkw(xf +s§x,1’) Ox;8xp.  (A2)

Since F'(x, 7) is convex [which follows from the convexity
of @; see Eq. (21b)], the integrand on the last line above is
strictly positive for all s; hence §x - 8X > 0 and therefore

Xx?, 1) # X(x, 7). (A3)
Thus no two points x}l) # xl(.z) produce the same output X,
i.e., X(x;, T) is invertible with respect to x;.

In fact, since X(x;,7) = VF(x;,T) for convex F, it
follows that x;(X, ) = VG, where

G(X,7) = sup {X -x; — F(x;,7)}

x;cRD

(A4)

is the Legendre-Fenchel transform of F.
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APPENDIX B: DERIVATIONS OF EQS. (32), (40),
(44), AND (103)

Letting A(x, x;, T) denote the quantity in square brackets
on the first line of Eq. (31), we have

1 8A+BA 3x,
{'r) Ix; ax "

Xi=x;(x,T)

o (g OF B
~ g() s = ax; ox

:L(x—x)—yg

g()

VU (x, 1) =

(BT)

which establishes Eq. (32). Here, we have used the fact
that 84/0x; = —x + dF /9x; vanishes when x; = x;(x, T),
as follows from Eq. (23b).

We also have

ov gl“_l +BF Bx,-+8F
it g g ax; / a9t Ot
g
g

: 19F
=20 f ——
g ot
S .
=2 Ep 1 Len)
g 2 8
= _gm =%, (B2)

which combines with Eqs. (32), (34), (38), and (42) to give
Eq. (40):

a5 m
0 o ip 2 _‘r_z
5 mg 2g|xf X;|

1
=—-Uy——|VSP} =—H;(x,VS,7). (B3)
2m

Substituting Eq. (43) into the Schrédinger equation
ihd,r = Hyr, with H given by Eq. (37), and dividing both
sides by i, we obtain

1 S K[ pVZp — (Vp)?
I (2 +9+’) —[—p £ 2( ) 1 v
P

eh 2m 2p
ivi§  (Vp)? VS)? iVp-V8
eh 4p e’k P
iVp-VS V6 .VS§ U-
g E B 5 5 =2 (B4)
peh eh e?

Collecting terms by powers of € gives

£Fe  ioeES
€ 2m

h ip . iV3S iVp.-VS V6.VS
. N =
2p 2m

=1

2mp m

20— (VO] +Us.  (BS)

The €2 terms cancel by Egs. (40) and (B3). Multiplying
both sides by e, separating the real and imaginary terms,
and using VS = mv [Eq. (39)] leads to

0=064v-V8+O(),

: (B6)
0=p+(V-V)p+v-Vp+O(e),
which in the limit € — 0 gives Eq. (44).

For a hybrid impulse [Eq. (104)], the quantity U;/€? in
Eq. (B4) is replaced by (U, /€) + (Ua/e?), leading to the
following evolution equations for 8(x, ) and p(x, 1), in
the limite — 0:

0+v-V0=-U/h

p+V - (vp) =0; e
hence
0(xr, T) = 6(x;, 0) — %fo dt Ui (x(v), 7)
= 0(x:,0) + ?_11 £ dt AS(x;) v(7)
= 0(x:,0) + AS(x/)/h, (BS)
p(xr, 1) = p(x;, ; B 3 (B9)

where x(7) is the Lagrangian trajectory evolving from x;
to x; and we have used Eq. (105). These results combine
with Eq. (43) to give Eq. (103).

APPENDIX C: CLASSICAL SUPER IMPULSES

Consider a classical system evolving under Hamilton’s

equations of motion,
1 t
— = V5 (x, —) . (C1)
€ €

Let x7(x;,pi:€) and pr(X;, pii€) denote the final phase
point of a trajectory that evolves during the interval f €
[0,eT], from initial conditions (x;, p;), for a given €. For
fixed (x;, p;), we wish to solve for (x7, ps) in the limite —

d d
Z_P P v
dt m dt
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0. These dynamics describe a trajectory evolving under a
classical super impulse.
Rewriting Eq. (C1) in terms of the variables

t
X=X, p=¢p, T=-, (C2)
€
we obtain
& P dp
d—: = %, ﬁ =~V (%, €7) — VUL (E, 7). (C3)

Let Xr (X;, pi; €) and pr (X;, pi: €) denote the final conditions
(at T = T) as functions of the initial conditions and €. Note
that Eq. (C3) implies
ox ap
T pi0) =0, SLGps0) =0 (C4)
de de
When evaluated at € = 0, Eq. (C3) gives

d*x

mo— = —VU; =ma(x, 1)

(C5)
[see Egs. (33) and (34)]. Thus, given a Hamiltonian trajec-
tory (X(t), p(r)) evolving from initial conditions (X;, p;)
under Eq. (C3), with € = 0, the coordinates X(7) satisfy the
same second-order differential equation as the Lagrangian
trajectories of Sec. IV [see Eq. (28)]. If we further set p; =
0 so that dx/dt = 0 at T = 0, then X(7) becomes identi-
cal to the Lagrangian trajectory X(X;, ), which begins and
ends at rest [Eqgs. (25) and (27)]. Thus,

% (%,0:0) = uE). BrGn0:0)=0.  (C6)
Because the transformation from initial to final conditions
is canonical, the 2d x 2d matrix

axr /0%; 9%s /313,-)
=5 = Z 5 C7
(3Pf/BXs opr /9p; €N
(for any X;, p:, €) satisfies [66]

MaM=9, Q= (_? é) (C8)

where 0 and I are the D x D null and identity matrices.
Equation (C6)b gives

o
¥ (%.0;0) = 0. (C9)
8Xj

If we further define
I Xy _

J(X) = —(%;,0:0), (C10)
BXI‘
-

L&) = 2 (5,,0:0), (C11)
ap;

then Eq. (CR), evaluated at p; = 0 and € = 0, implies
JIL=1. (C12)
Returning to the original variables (x, p), we obtain
Xr (Xi, pis €) = Xy (X;,€pii €)
= 5 (5.0:0) + 5 (3.0 )ep, + (e
= p(x) + O(e), (C13)
pr (xi,pii€) = élm’f (x;, €pi€)

1. ap
= [Pf (x;,0,0) + ail_;(xh 0; 0)ep; + @(ez)]

= L(x;) pi + O(e). (C14)
Taking e — 0 gives
xr = u(x), pr =L(x)p (C15)

Thus, under the Hamiltonian dynamics generated by a

super impulse [Eq. (Cl)], the coordinates x transform

under the map u, while the momenta p transform linearly.
We note that Eq. (C12) implies that

Xy
Xi

(C16)

-
Pi

which is a statement of Liouville’s theorem for the evolu-
tion from (x;, p;) to (xr, pr) given by Eq. (C15).
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