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Abstract

Recently, there has been a series of works on the positivity-preserving discontinuous Galerkin methods

for stationary hyperbolic equations, where the notion of mass conservation follows from a straightforward

analogy of that of time-dependent problems, i.e. conserving the mass = preserving cell averages during

limiting. Based on such a notion, the implementations and theoretical proofs of positivity-preserving

limited methods for stationary equations are unnecessarily complicated and constrained. As will be

shown in this paper, in some extreme cases, their convergence could even be problematic. In this work,

we clarify a more appropriate definition of mass conservation for limiters applied to stationary hyperbolic

equations and establish the genuinely conservative high-order positivity-preserving limited discontinuous

Galerkin methods based on this definition. The new methods are able to preserve the positivity of

solutions of scalar linear equations and scalar nonlinear equations with invariant wind direction, with

much simpler implementations and easier proofs for accuracy and the Lax-Wendroff theorem, compared

with the existing methods. Two types of positivity-preserving limiters preserving the local mass of

stationary equations are developed to accommodate for the new definition of conservation and their

accuracy are investigated. We would like to emphasize that a major advantage of the original DG scheme

presented in [24] is a sweeping procedure, which allows for the computation of conservative steady-state

solutions explicitly, cell by cell, without iterations, even for nonlinear equations as long as the wind

direction is fixed. The main contribution of this paper is to introduce a limiting procedure to enforce

positivity without changing the conservative property of this original DG scheme. The good performance

of the algorithms for stationary hyperbolic equations and their applications in time-dependent problems

are demonstrated by ample numerical tests.
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1 Introduction

The hyperbolic balance laws are important tools to investigate the phenomenon of flow and transport. In

one space dimension, the scalar hyperbolic balance law is typically written in the form of

ut + f(u)x = s, (1.1)

where u is the balanced quantity, f is the flux function, and s is the source term. In particular, if s = 0, the

equation is called a hyperbolic conservation law and u is the conserved quantity.

Integrated over the spatial interval [x1, x2], the hyperbolic equation (1.1) is transformed to the conserva-

tive formulation satisfied by the average of u on [x1, x2]

dū

dt
+

1

∆x
(f(x2)− f(x1)) = s̄, (1.2)

where ∆x = x2 − x1, ū(t) =
1
∆x

∫ x2

x1
u(x, t)dx, f(xi) = f(u(xi, t)), i = 1, 2, and s̄ = 1

∆x

∫ x2

x1
s(x, t)dx.

Drawn from the formulation (1.2), numerous numerical schemes have been designed for the hyperbolic

equation (1.1) in the conservative form

dūj

dt
+

1

∆xj

(

f̂j+ 1
2
− f̂j− 1

2

)

= s̄j , (1.3)

under the partition Ij = [xj− 1
2
, xj+ 1

2
], j = 0,±1,±2, . . . , for space, where ∆xj = xj+ 1

2
− xj− 1

2
, f̂j± 1

2
are

numerical fluxes at xj± 1
2
, ūj and s̄j are cell averages of the numerical solution and the source term on Ij ,

respectively.

Conservation is of great importance for numerical methods for hyperbolic equations, as it is not only

a numerical analogy of the theoretical property of hyperbolic balance laws, but more importantly also the

Lax-Wendroff theorem [18], which can be briefly stated as follows,

Theorem 1.1. Consider a sequence of grids with grid sizes ∆xl,∆tl converging to zero as l → ∞, and a

sequence of numerical solutions Ul(x, t), l = 1, 2, . . . computed from a consistent and conservative scheme for

a hyperbolic equation on these grids. If Ul converges boundedly a.e. to a function u as l → ∞, then u is a

weak solution of the hyperbolic equation.

Roughly speaking, conservative schemes guarantee correct shock speed determined by the Rankine-

Hugoniot jump condition thanks to the mass conservation. To make it clear, we sum the equation (1.3)

over the cells Ij , Ij+1, . . . , Ij+r to obtain the equation

d

dt

∫ x
j+r+1

2

x
j− 1

2

udx+
(

f̂j+r+ 1
2
− f̂j− 1

2

)

=

∫ x
j+r+1

2

x
j− 1

2

sdx, (1.4)
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which enforces the correct speed of the shock (if there is a shock in the interval [xj− 1
2
, xj+r+ 1

2
]) since the

total mass
∫ x

j+r+1
2

x
j− 1

2

udx=
∫ ξ

x
j− 1

2

uldx+
∫
x
j+r+1

2

ξ urdx, where ξ is the location of the shock, and ul and ur are

the states on the left and right sides of the shock, respectively. On the other hand, non-conservative schemes

could produce shocks with totally wrong speed and converge to a spurious solution. A well-known example

[20] is the Burgers’ equation in the non-conservative form ut + uux = 0 discretized by a natural upwinding

finite difference scheme un+1
j = un

j − ∆t
∆x

un
j

(

un
j − un

j−1

)

with the initial condition u0
j = 1(j < 0), where 1(·)

is the indicator function. It is easy to check that un
j ≡ u0

j , ∀n for the scheme, which is wrong as the physical

solution u(x, t) with the initial condition u0(x) = 1(x < 0) is u(x, t) = u0(x − 1
2 t). For deeper discussions

about conservative schemes and their significance for time-dependent hyperbolic equations, one can refer to

Chapter 12 in the monograph [20].

The discontinuous Galerkin (DG) method is one of the most popular numerical methods solving hyper-

bolic equations for its advantages in geometric flexibility, local mass conservation, easiness of parallelization

and high order accuracy. The DG method was first proposed in 1973 by Reed et al. [24] to compute the

stationary linear transport equation, and first analyzed by Lesaint et al. [19] in 1974. It was later developed

into the Runge-Kutta discontinuous Galerkin (RKDG) method in a series of papers by Cockburn et al.

[8, 7, 6, 5, 9] for time-dependent nonlinear hyperbolic problems. The classic DG scheme for the hyperbolic

equation (1.1) is to find u ∈ V , such that

∫ x
j+1

2

x
j− 1

2

utvdx −

∫ x
j+1

2

x
j− 1

2

f(u)vxdx+ f̂j+ 1
2
v−
j+ 1

2

− f̂j− 1
2
v+
j− 1

2

=

∫ x
j+1

2

x
j− 1

2

svdx, ∀v ∈ V, (1.5)

for all j, where V is a piecewise polynomial space and v±
j+ 1

2

= limǫ→0+ v(xj+ 1
2
± ǫ) denote the right and

left limits of v at xj+ 1
2
. Taking v = 1 on Ij and zero anywhere else in (1.5), we recover the conservative

formulation (1.3) satisfied by cell averages. Therefore, the unmodulated DG scheme is conservative for

hyperbolic equations.

However, conservation is not the only issue we need to consider for numerical schemes. It is well-known

that the scalar hyperbolic conservation laws satisfy the maximum-principle, e.g. its physical solution satisfies

m ≤ u(x, t) ≤ M, ∀x ∈ R, t > 0, where m = minx∈R u(x, 0) and M = maxx∈R u(x, 0). These results hold

also for periodic boundary condition and for compactly supported solutions, as well as in higher dimensions.

If m = 0, the property is also called positivity-preserving. For the hyperbolic balance law (1.1) with

s ≥ 0, the solution is positivity-preserving, provided the initial condition and inflow boundary conditions

are nonnegative. It is important to keep the positivity/maximum-principle, besides mass conservation, in
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numerical schemes, otherwise the numerical solution is not only physically unacceptable, but also may cause

severe robustness issues due to the change of hyperbolicity, or when coupled with other physical systems.

There have been intensive studies on positivity-preserving and maximum-principle-satisfying methods.

The genuinely high order maximum-principle-satisfying DG method was proposed in 2010 by Zhang and

Shu [35] for scalar hyperbolic equations, and is rapidly developed for different problems ever since, e.g. for

the Euler equations [36, 37], Navier-Stokes equations [34], shallow water equations [29], convection-diffusion

equations [38, 3], and fluid flow in porous media [13, 4, 31, 12], among others. In addition to the Zhang-Shu

framework, there are other techniques for positivity-preserving, such as the flux corrected transport (FCT)

technique [1, 14, 15], the invariant domain preserving method [11, 22], and hybrid FV/DGSEM method [27],

etc.

The framework of the positivity-preserving DG methods proposed by Zhang and Shu [35, 36] is composed

of two parts. The first part is problem-dependent, which is to obtain the solution with provable nonnegative

cell averages, probably under certain CFL conditions, from the unmodulated DG scheme. Once the cell

averages are guaranteed nonnegative, a scaling limiter, which preserves cell averages and does not destroy

the original accuracy of the solution [35], [34], is employed such that the entire solution is modified into

nonnegative. It is of great importance for the scaling limiter to preserve cell averages for time-dependent

problems. We explain the significance of this principle by an example of the positivity-preserving DG method

for (1.1) based on the forward Euler or backward Euler time discretization. The equation satisfied by the

cell average of the solution on Ij is given as follows

ūn+1
j − ūn

j

∆t
+

1

∆xj

(

f̂m
j+ 1

2

− f̂m
j− 1

2

)

= s̄mj , (1.6)

where n denotes the time level tn and m is taken as n or n+1 in the forward-Euler or backward-Euler time

discretization, respectively. We denote the modified solution by ũ to distinguish it from the unmodulated

solution u. Since ¯̃un
j = ūn

j and ¯̃un+1
j = ūn+1

j from the property of the limiter, we have the same equation

satisfied by the modified solution:

¯̃un+1
j − ¯̃un

j

∆t
+

1

∆xj

(

f̂m
j+ 1

2

− f̂m
j− 1

2

)

= s̄mj . (1.7)

Thus the Lax-Wendroff theorem and a discrete analogy of (1.4) are satisfied by the modified solution ũ as

well, which guarantees the numerical solution (if it converges) converging to a weak solution with the correct

shock speed. This is why preserving cell averages is desired in positivity-preserving/maximum-principle

satisfying limiters for time-dependent hyperbolic equations.
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Besides time-dependent problems, the stationary hyperbolic equations have also attracted the attention

of many researchers. The stationary hyperbolic equations have wide applications in steady-state flow and

transport problems. Moreover, they are building blocks of the discrete-ordinate method (DOM) for radiative

transfer equations (RTE), see [10, 16]. They are also encountered in implicit time-discretization for time-

dependent hyperbolic problems. Similar to the time-dependent problems, the physical solutions of stationary

hyperbolic equations are also positivity-preserving, provided the inflow boundary conditions and source terms

are nonnegative. There is a series of works on the positivity-preserving DG methods for stationary hyperbolic

equations to enhance the stability of numerical algorithms. In 2016, Yuan et al. [32] proposed a rotational

limiter based non-conservative positivity-preserving algorithm for constant coefficients stationary hyperbolic

equations in one and two space dimensions on structured meshes. Later on, the algorithm is extended

to triangular meshes in two space dimensions by Zhang et al. [33] based on a rotational limiter defined

on triangles, which is still non-conservative. In 2018, Ling et al. [21] improved the results in [32] in one

dimensional space by proving the positivity of cell averages of the unmodulated DG scheme, which results in

a high order conservative positivity-preserving DG method by adopting the scaling limiter [35] from time-

dependent problems. However, the unmodulated scheme fails to preserve the positivity of cell averages in

two space dimensions [21], thus only a second order conservative positivity-preserving scheme was proposed

therein by an augmentation of the DG function space. The above works only focus on equations with

constant coefficients, and higher than second order conservative methods are unavailable in two and three

space dimensions. More recently, we developed high order conservative positivity-preserving algorithms for

linear variable coefficient and nonlinear stationary hyperbolic equations in one dimension, and constant

coefficients equations in two and three dimensions in [30].

Here, we would like to note that, the notion of conservation in the aforementioned works for stationary

hyperbolic equations are different from the notion to be clarified in this paper. The previous notion of

conservation in positivity-preserving limiters, coming directly from time-dependent problems to preserve the

cell average, is not very suitable for stationary problems.

To show this, we consider the stationary equation

f(u)x + λu = s(x), (1.8)

where f(u) is a smooth flux function with unchanged wind direction: f ′(u) > 0, ∀u, and λ, s(x) ≥ 0

are nonnegative coefficient and source, respectively. The equation (1.8) could come from the backward
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Euler discretization of the time-dependent problem (1.1), with the correspondence u = un, λ = 1
∆t

and

s(x) = 1
∆t

un−1(x)+ s(x, tn). The linear stationary hyperbolic equations, with the main applications in RTE

[32, 21, 33], will also be discussed in later sections. Throughout the paper, we always assume the wind

direction of the flux in hyperbolic equations does not change, for both nonlinear equations and linear ones,

and always use the upwind flux in the DG schemes.

The unmodulated DG scheme with the upwind flux for the equation (1.8) is to find u ∈ V , such that

∫ x
j+1

2

x
j− 1

2

λuvdx−

∫ x
j+1

2

x
j− 1

2

f(u)vxdx+ f(u−
j+ 1

2

)v−
j+ 1

2

− f(u−
j− 1

2

)v+
j− 1

2

=

∫ x
j+1

2

x
j− 1

2

svdx, ∀v ∈ V. (1.9)

In the implementation, because of the upwind mechanism of the equation and scheme, we sweep the com-

putation from the left to the right cells, i.e. we obtain the solution uj−1 on Ij−1 before computing uj on Ij ,

and then solve uj+1 on Ij+1, and so forth. Same as the time-dependent cases, by taking v = 1 on Ij and

zeros on other cells, we obtain the conservation equation satisfied by the cell averages as follows

λ∆xj ūj + f(u−
j+ 1

2

) = f(u−
j− 1

2

) + ∆xj s̄j ,

where the right hand side is known when solving uj . In the positivity-preserving algorithms, the limiter has

been used for uj−1 on the upstream cell Ij−1, to obtain ũj−1(x), before the computation of the DG solution

uj , thus the true identity satisfied by the cell average of the DG solution on Ij , before limiting but after the

solution on Ij−1 has been limited, is

λ∆xj ūj + f(u−
j+ 1

2

) = f(ũ−
j− 1

2

) + ∆xj s̄j , (1.10)

where ũ−
j− 1

2

= ũj−1(xj− 1
2
) denotes the value of the limiter-modified solution ũj−1(x) on Ij−1 evaluated at

xj− 1
2
.

If the limiter is “conservative” in the sense of preserving cell averages, i.e. ¯̃uj = ūj, then from (1.10) we

have the following equation satisfied by the cell average after the limiter in cell Ij is performed:

λ∆xj
¯̃uj + f(ũ−

j+ 1
2

) = f(ũ−
j− 1

2

) + ∆xj s̄j +
(

f(ũ−
j+ 1

2

)− f(u−
j+ 1

2

)
)

, (1.11)

Summing the above equations over cells Ij , Ij+1, . . . , Ij+r yields

λ

∫ x
j+r+1

2

x
j− 1

2

ũdx+f(ũ−
j+r+ 1

2

) = f(ũ−
j− 1

2

)+

∫ x
j+r+1

2

x
j− 1

2

sdx+

j+r
∑

i=j

(

f(ũ−
i+ 1

2

)− f(u−
i+ 1

2

)
)

6= f(ũ−
j− 1

2

)+

∫ x
j+r+1

2

x
j− 1

2

sdx.

(1.12)
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We shall give concrete examples in the numerical section to show that the limiter preserving cell averages

for stationary hyperbolic equations could produce solutions with wrong total mass/ shock location, even for

the simplest hyperbolic equation ut + ux = 0 discretized implicitly in time.

On the other hand, if we define the local mass in stationary hyperbolic equations as the sum of the cell

average and the outflow flux, and develop limiters such that the modified solution ũ preserves the local mass

on Ij in the sense that

λ∆xj
¯̃uj + f(ũ−

j+ 1
2

) = λ∆xj ūj + f(u−
j+ 1

2

), (1.13)

then we have the local conservation formulation

λ∆xj
¯̃uj + f(ũ−

j+ 1
2

) = f(ũ−
j− 1

2

) + ∆xj s̄j , (1.14)

and the global conservation formulation

λ

∫ x
j+r+1

2

x
j− 1

2

ũdx+ f(ũ−
j+r+ 1

2

) = f(ũ−
j− 1

2

) +

∫ x
j+r+1

2

x
j− 1

2

sdx, (1.15)

satisfied by the modified solution ũ.

In this work, we shall develop two types of slope limiters, named type-1 and type-2, to attain the positivity

of the solution, and meanwhile preserve the local mass in the sense of (1.13).

To this end, we would like to give a remark on the definition (1.13) for conservative limiters. Indeed, it

is quite reasonable to preserve the sum of the cell average and outflow fluxes in limiters, as any decrease in

cell average caused by limiters should be remedied to the mass on the downstream cells via increasing the

outflow fluxes in the current cell, and vice versa.

As we will see in later sections, based on this novel definition of conservation, the positivity-preserving

DG methods for stationary hyperbolic equations are straightforward and their implementations are simple.

We only discuss the linear stationary hyperbolic equations in one and two space dimensions, and nonlinear

stationary equations in one dimension to save space, but the method can be directly extended to higher

dimensions with various meshes and a class of nonlinear hyperbolic systems with eigenvalues being of the

same sign. As important applications, the algorithms developed in this paper can be used in the positivity-

preserving algorithm for radiative transfer equations and implicit time discretization for time-dependent

hyperbolic problems, see the numerical section and refer to [21] for more details.

We would like to emphasize that a major advantage of the original DG scheme presented in [24] is a

sweeping procedure, which allows for the computation of conservative steady-state solutions explicitly, cell
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by cell, without iterations, even for nonlinear equations as long as the wind direction is fixed. The main

contribution of this paper is to introduce a limiting procedure to enforce positivity without changing the

conservative property of this original DG scheme.

The rest of the paper is organized as follows. In Section 2, we establish the positivity-preserving discon-

tinuous Galerkin method for stationary linear hyperbolic equations in one space dimension and construct

the conservative limiters with rigorous proofs for the accuracy. We extend the method and limiters to

rectangular meshes and triangular meshes in two dimensions in Section 3 and Section 4, respectively. The

positivity-preserving technique for stationary nonlinear hyperbolic equations is studied in Section 5, which

is focused on one dimension to save space but the method can be extended to higher dimensions directly as

in the linear case. In Section 6, we give ample numerical tests to demonstrate the accuracy and effectiveness

of our positivity-preserving methods for stationary equations as well as the applications in implicit time

discretization for time-dependent problems. Finally, we end up with some concluding remarks in Section 7.

2 Linear stationary hyperbolic equations in one dimension

In this section, we study the high order conservative positivity-preserving discontinuous Galerkin method

for the linear stationary hyperbolic equation

(a(x)u)x + λu = s(x), x ∈ Ω = (0, 1), (2.1)

with 0 < a∗ ≤ a(x) ≤ a∗ for some positive constants a∗, a
∗, and λ, s(x) ≥ 0. We assign the inflow boundary

condition u(0) = u0 ≥ 0 for the equation. The other case a(x) < 0 with boundary condition u(1) = u0 ≥ 0

can be transformed to this case by the change of variable x′ = 1 − x in (2.1), thus we omit the discussion.

We assume λ is constant for simplicity, as we are mainly concerned with the applications of the model in

the discrete-ordinate method (DOM) for radiative transfer equations (RTE) and implicit time-discretization

for time-dependent hyperbolic problems, where λ is constant for both cases. However, there is not essential

difficulty to extend the positivity-preserving technique to the variable case λ(x) ≥ 0.

We adopt the partition 0 = x 1
2
< x 3

2
< · · · < xN+ 1

2
= 1 for Ω and denote the j-th cell by Ij = [xj− 1

2
, xj+ 1

2
]

with the length ∆xj = xj+ 1
2
− xj− 1

2
, for j = 1, 2, . . . , N . The function space V of the P k-DG scheme is

defined as

V =
{

v ∈ L2(Ω) : v|Ij ∈ P k(Ij), j = 1, 2, . . . , N
}

,
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where P k(Ij) denotes the space of polynomials of order no greater than k on the cell Ij . We define the

cell average of v ∈ V on Ij as v̄j = 1
∆xj

∫ x
j+1

2
x
j− 1

2

v(x)dx, and its left and right limits at the interface xj+ 1
2

as

v±
j+ 1

2

= v(xj+ 1
2
± 0). Moreover, we denote by vj = v|Ij for v ∈ V , j = 1, 2, . . . , N , for convenience.

The positivity-preserving P k-DG scheme of the equation (2.1) is to find u ∈ V , such that

−

∫ x
j+ 1

2

x
j− 1

2

a(x)uvxdx+ a(xj+ 1
2
)u−

j+ 1
2

v−
j+ 1

2

+

∫ x
j+1

2

x
j− 1

2

λuvdx = a(xj− 1
2
)ũ−

j− 1
2

v+
j− 1

2

+

∫ x
j+1

2

x
j− 1

2

svdx, ∀v ∈ P k(Ij)

(2.2)

for j = 1, 2, . . . , N , where we define u−
1
2

= u0. We would like to emphasize that, the calculation of uj is

based on the modified solution on the upstream cells, thus we use ũj−1 on the right hand side of the scheme

(2.2). Once uj is solved from the scheme, we employ the positivity-preserving limiter to be introduced later

to obtain the modified solution ũj, and use it in the calculation of uj+1, and so forth.

Assume the quadrature rules adopted in the scheme (2.2) is accurate for integrals of k-th order polyno-

mials. Taking the test function v = 1 on Ij in the scheme (2.2), we obtain the following equation satisfied

by the local mass

λ∆xj ūj + a(xj+ 1
2
)u−

j+ 1
2

= a(xj− 1
2
)ũ−

j− 1
2

+∆xj s̄j , (2.3)

For convenience, we define LHS(wj) = λ∆xjw̄j + a(xj+ 1
2
)w−

j+ 1
2

, for wj ∈ P k(Ij), to be the amount

of local mass of wj on Ij . Since ũ−
j− 1

2

≥ 0 on the right hand side of (2.3), we have LHS(uj) ≥ 0. The

conservative limiter should satisfy LHS(ũj) = LHS(uj), where uj and ũj are the unmodulated and modified

solutions on Ij , respectively.

There are two types of limiters to be developed throughout the paper, where the type-1 limiter requires

the DG scheme to use the Gauss-Radau quadrature rule of k + 1 points for numerical integration and only

guarantees the positivity of modified solution at the Gauss-Radau points (it may be negative at some other

points, while the type-2 limiter does not have such requirement. We denote the Gauss-Radau points on Ij

by x̂α, α = 1, 2, . . . , k + 1 with x̂k+1 = xj+ 1
2
, and the corresponding weights by ω̂α, α = 1, 2, . . . , k + 1 with

∑k+1
α=1 ω̂α = 1.

The type-1 limiter for uj is defined as follows:

ũj(x) = θj ûj(x), ûj(x) =
k+1
∑

α=1

u+
j (x̂α)ℓα(x), (2.4)

where z+ = max{z, 0} is the positive part of a real number z, ℓα(x) is the Lagrange basis at the Gauss-Radau

points {x̂β}
k+1
β=1 with ℓα(x̂β) = δα,β, and θj =

LHS(uj)
LHS(ûj)

∈ [0, 1]. Note that the integral in LHS(·) is evaluated
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by the Gauss-Radau quadrature, thus 0 ≤ LHS(uj) ≤ LHS(ûj). In the case LHS(uj) = LHS(ûj) = 0, we

take θj = 1. In practice, this case can be avoided by taking θj =
LHS(uj)+ε

LHS(ûj)+ε
, where ε is a very small positive

number, e.g. ε = 10−16.

It is clear that the limiter (2.4) is conservative in the sense that LHS(ũj) = LHS(uj), and ũj ≥ 0 at the

Gauss-Radau points {x̂α}
k+1
α=1. More importantly, we have the result of accuracy for the limiter as follows:

Lemma 2.1. Consider the solution uj of the scheme (2.2) with an L∞-error of O(∆xk+1
j ). If λ = 0,

the error introduced by the limiter (2.4) is ||ũj − uj||L∞(Ij) = O(∆xk+1
j ). If λ > 0, the error introduced

by the limiter (2.4) is ||ũj − uj||L∞(Ij) = O(∆xk
j ), but the error is optimal at the downstream point, i.e.

|ũ−
j+ 1

2

− u−
j+ 1

2

| = O(∆xk+1
j ).

Proof. We can decompose the error as

e = uj − ũj = (uj − ûj) + (ûj − ũj) = e1 + e2. (2.5)

For e1 = uj − ûj, we have the estimate

|e1(x)| = |ûj(x)− uj(x)|

=

∣

∣

∣

∣

∣

k+1
∑

α=1

u+
j (x̂α)ℓα(x)−

k+1
∑

α=1

uj(x̂α)ℓα(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k+1
∑

α=1

u−
j (x̂α)ℓα(x)

∣

∣

∣

∣

∣

≤

k+1
∑

α=1

|ℓα(x)| · max
1≤α≤k+1

u−
j (x̂α)

≤ Λk · O(∆xk+1
j ) = O(∆xk+1

j ), ∀x ∈ Ij ,

(2.6)

where z− = −min{z, 0} denotes the negative part of a real number z and Λk = maxx∈Ij

∑k+1
α=1 |ℓα(x)| is the

Lebesgue constant. Note that u−
j (x̂α) = O(∆xk+1

j ), α = 1, . . . , k+1, since the exact solution is nonnegative.

Therefore ||e1||L∞(Ij) = O(∆xk+1
j ).

For e2, we have e2 = ûj − ũj = (1− θj)ûj . If λ = 0, we have e2 ≡ 0 since θj = 1, which follows from the
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observation that u−
j+ 1

2

= û−
j+ 1

2

≥ 0 due to (2.2), (2.3). If λ > 0, we have the estimate for e2(x) as follows,

|e2(x)| = (1− θj) |ûj(x)| =

(

1−
LHS(uj)

LHS(ûj)

)

|ûj(x)| =
LHS(ûj − uj)

LHS(ûj)
|ûj(x)|

=
λ∆xj

(

¯̂uj − ūj

)

+ a(xj+ 1
2
)
(

û−
j+ 1

2

− u−
j+ 1

2

)

λ∆xj
¯̂uj + a(xj+ 1

2
)û−

j+ 1
2

|ûj(x)|

≤
λ∆xj ||e1||L∞(Ij) + a(xj+ 1

2
)||e1||L∞(Ij)

λ∆xj
¯̂uj + a(xj+ 1

2
)û−

j+ 1
2

|ûj(x)|

. (2.7)

In particular, at the Gauss-Radau points, we have the following estimates from (2.7),

|e2(x̂β)| ≤
λ∆xj ||e1||L∞(Ij) + a(xj+ 1

2
)||e1||L∞(Ij)

λ∆xj
¯̂uj

ûj(x̂β)

=
λ∆xj ||e1||L∞(Ij) + a(xj+ 1

2
)||e1||L∞(Ij)

λ∆xj

∑k+1
α=1 ω̂αûj(x̂α)

ûj(x̂β)

≤
λ∆xj ||e1||L∞(Ij) + a(xj+ 1

2
)||e1||L∞(Ij)

λ∆xj ω̂β ûj(x̂β)
ûj(x̂β)

≤

(

ω̂−1
β +

a∗

λω̂β∆xj

)

||e1||L∞(Ij)

= O(∆xk
j ), for β = 1, 2, . . . , k + 1,

(2.8)

thus,

|e2(x)| = |

k+1
∑

α=1

e2(x̂α)ℓα(x)| ≤

k+1
∑

α=1

|ℓα(x)| · max
1≤α≤k+1

|e2(x̂α)| ≤ Λk · O(∆xk
j ) = O(∆xk

j ), ∀x ∈ Ij , (2.9)

i.e. ||e2||L∞(Ij) = O(∆xk
j ).

In particular, at the downstream point xj+ 1
2
, it follows from (2.7) that

|e2(xj+ 1
2
)| ≤

λ∆xj ||e1||L∞(Ij) + a(xj+ 1
2
)||e1||L∞(Ij)

λ∆xj

∑k+1
α=1 ω̂αûj(x̂α) + a(xj+ 1

2
)û−

j+ 1
2

û−
j+ 1

2

=
λ∆xj ||e1||L∞(Ij)

λ∆xj

∑k+1
α=1 ω̂αûj(x̂α) + a(xj+ 1

2
)û−

j+ 1
2

û−
j+ 1

2

+
a(xj+ 1

2
)||e1||L∞(Ij)

λ∆xj

∑k+1
α=1 ω̂αûj(x̂α) + a(xj+ 1

2
)û−

j+ 1
2

û−
j+ 1

2

≤
∆xj ||e1||L∞(Ij)

∆xjω̂k+1û
−
j+ 1

2

û−
j+ 1

2

+
a(xj+ 1

2
)||e1||L∞(Ij)

a(xj+ 1
2
)û−

j+ 1
2

û−
j+ 1

2

≤
(

1 + ω̂−1
k+1

)

||e1||L∞(Ij) = O(∆xk+1
j ).

(2.10)

Gathering all results above and using the triangle inequalities, we finish the proof of Lemma 2.1.

We would like to note that, the error estimates in Lemma 2.1 is sharp and the result cannot be improved

by any conservative limiters, which can be illustrated by a concrete example given as follows.
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Example 2.1. We assume λ > 0. Consider the numerical approximation uj(x) = xj+ 1
2
− x − ∆xk+1

j

of the exact solution uexact

j (x) = xj+ 1
2
− x on the cell Ij = [xj− 1

2
, xj+ 1

2
]. The modified solution ũj of any

conservative limiters should satisfy λ∆xj
¯̃uj+a(xj+ 1

2
)ũ−

j+ 1
2

= λ∆xj ūj+a(xj+ 1
2
)u−

j+ 1
2

. Since u−
j+ 1

2

= −∆xk+1
j

and ũ−
j+ 1

2

≥ 0, we have ūj − ¯̃uj =
a(x

j+1
2

)

λ∆xj

(

ũ−
j+ 1

2

− u−
j+ 1

2

)

≥
a(x

j+1
2

)

λ∆xj

(

0− (−∆xk+1
j )

)

= a(xj+ 1
2
)λ−1∆xk

j ,

which implies that ũj is at most k-th order accurate.

The type-1 limiter only preserves the positivity of modified solutions at the Gauss-Radau points and

we must use the Gauss-Radau quadrature to evaluate integrals in the scheme (2.2), which may not be

satisfactory in some applications. We can define a type-1 limiter that preserves positivity at the k+1 Gauss-

Lobatto points by (2.4) as well. However, the Gauss-Lobatto quadrature has lower algebraic accuracy than

the Gauss-Radau quadrature with the same number of points and may lead to possible loss of accuracy up

to one order [2], hence we do not consider it in this paper. We now introduce the type-2 limiter, which is

positivity-preserving on the whole cell or at any desired points, and exempts the requirement on quadrature

rules.

The type-2 limiter is defined as follows,

ũj(x) = θj ûj(x), ûj(x) = uj(x) + ǫj, (2.11)

where ǫj = −min{minx∈S uj(x), 0}, S ⊂ Ij is the set of points where we want to preserve the positivity of

the solution, and θj =
LHS(uj)
LHS(ûj)

∈ [0, 1].

It is clear that the limiter (2.11) is conservative in the sense that LHS(ũj) = LHS(uj) and ũj ≥ 0 on S.

More importantly, we have the accuracy result for the limiter as follows:

Lemma 2.2. Consider the solution uj of the scheme (2.2) with an L∞-error of O(∆xk+1
j ). If λ = 0, the

error introduced by the limiter (2.11) is ||ũj − uj ||L∞(Ij) = O(∆xj). If λ > 0, the error introduced by the

limiter (2.11) is ||ũj − uj ||L∞(Ij) = O(∆xk
j ). Nevertheless, at the downstream point, the errors in both cases

are optimal, i.e. |ũ−
j+ 1

2

− u−
j+ 1

2

| = O(∆xk+1
j ).

Proof. For simplicity, we assume S = Ij . We have the same decomposition e = uj − ũj = (uj − ûj) +

(ûj − ũj) = e1 + e2 for the error as (2.5).

It is clear that ||e1||L∞(Ij) = ||uj − ûj||L∞(Ij) = ǫj = O(∆xk+1
j ) by the definitions. For e2, we have

e2 = ûj − ũj = (1− θj)ûj. If λ = 0, we have ||e2||L∞(Ij) = (1− θj)||ûj ||L∞(Ij) = O(∆xj), since ||ûj ||L∞(Ij) =

O(∆xj) due to ûj(ξj) = 0 at its minimum point ξj ∈ Ij when θj < 1. If λ > 0, we have the estimates for e2

exactly the same as (2.7), (2.8), (2.9), and end up with the result ||e2||L∞(Ij) = O(∆xk
j ).
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At the downstream point xj+ 1
2
, the estimate for e2 is exactly the same as (2.10), thereby |e2(xj+ 1

2
)| =

O(∆xk+1
j ).

Gathering all results above and using the triangle inequalities, we finish the proof of Lemma 2.2.

The estimates in Lemma (2.2) is sharp, i.e. it could happen that ||ũj − uj ||L∞(Ij) = O(∆xj) if λ = 0,

which can be illustrated by the following example.

Example 2.2. We assume λ = 0. Consider the exact solution uexact

j on Ij with uexact

j (x̂α) = ∆xj for 1 ≤

α ≤ k−1 and uexact

j (x̂α) = 0 for α = k, k+1, and its numerical approximation uj =
∑k+1

α=1 u
exact

j (x̂α)ℓα(x)−

∆xk+1
j ℓk(x). A graph of uj in the case k = 2 is given in Figure 1.

It is clear that LHS(uj) = 0, since λ = 0 and uj(xj+ 1
2
) = 0. On the other hand, we have ǫj > 0 in

the limiter (2.11), since uj(x̂k) = −∆xk+1
j < 0. Thus we can compute θj by definition: θj =

LHS(uj)
LHS(ûj)

=

LHS(uj)
LHS(uj+ǫj)

=
LHS(uj)

LHS(uj)+LHS(ǫj)
= 0

0+a(x
j+1

2

)ǫ = 0, which implies ũj = θj ûj = 0. Since uj is flattened to

ũj ≡ 0, the limiter (2.11) is only of the accuracy O(∆x) in this case.

  x 0

 x

 y

Figure 1: A graph of quadratic polynomial uj in Example 2.2

Remark 2.1. The above discussions are based on the assumption that λ is a constant. However, in the

backward Euler discretization for time-dependent problems, λ is of the order 1
∆t

, as demonstrated in the

introduction. If we take the common CFL condition ∆t ∝ ∆x in this case, the accuracy of both the type-1

and type-2 limiters is optimal, which is clear from the estimates in the proofs. The same conclusion applies

to later sections.

Since the accuracy of both type-1 and type-2 limiters is optimal at the downstream points of cells, the
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possible non-optimal errors introduced by the limiters do not propagate to downstream cells, which makes the

limited positivity-preserving DG solution having the optimal order of accuracy in the sense of downstream

points of cells.

Collecting the Lemmas 2.1 and 2.2, we attain the following theorem for the positivity-preserving DG

method of the equation (2.1).

Theorem 2.3. For the linear stationary hyperbolic equation (2.1), if the source term and inflow boundary

condition are nonnegative, then the solution of the scheme (2.2) modified by the limiter (2.4) or (2.11) is

nonnegative, with the local accuracy established in Lemmas 2.1 and 2.2, respectively.

3 Linear stationary hyperbolic equations in two dimensions on rect-

angular meshes

In this section, we study the high order conservative positivity-preserving discontinuous Galerkin method in

two space dimensions on rectangular meshes for the linear stationary hyperbolic equation

(a(x, y)u)x + (b(x, y)u)y + λu = s(x, y), (x, y) ∈ Ω = (0, 1)2, (3.1)

with 0 < a∗ ≤ a(x, y) ≤ a∗ and 0 < b∗ ≤ b(x, y) ≤ b∗ for some positive constants a∗, a
∗, b∗, b

∗, and

λ, s(x, y) ≥ 0. We assign the inflow boundary conditions u(x, 0) = g1(x) ≥ 0 and u(0, y) = g2(y) ≥ 0 for

the equation. The cases a(x, y) < 0 and/or b(x, y) < 0 can be transformed to this case by the change of

variables x′ = 1− x and/or y′ = 1− y, thus we omit the discussion.

We partition the domain Ω by 0 ≤ x 1
2

< x 3
2

< . . . < xNx+
1
2

= 1 and 0 ≤ y 1
2

< y 3
2

< . . . <

yNy+
1
2

= 1 in the x and y directions, respectively, and denote by Ki,j = Ii × Jj = [xi− 1
2
, xi+ 1

2
] ×

[yj− 1
2
, yj+ 1

2
] the cells in Ω with the area |Ki,j | = ∆xi∆yj, where ∆xi = xi+ 1

2
− xi− 1

2
,∆yj = yj+ 1

2
− yj− 1

2
,

i = 1, 2, . . .Nx, j = 1, 2, . . . , Ny. Moreover, we assume the meshes are regular in the refinement, i.e.

maxi,j{∆xi,∆yj} ≤ ρmini,j{∆xi,∆yj} for some constant ρ that is independent of mesh sizes, and denote

by h = mini,j{∆xi,∆yj}. The function space V of the Qk-DG scheme is defined as

V =
{

v ∈ L2(Ω) : v|Ki,j
∈ Qk(Ki,j), i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny

}

,

where Qk(K) denotes the space of tensor products of polynomials of order no greater than k on the cell K.

14



Similar to the one space dimension, we define the cell average of v ∈ V on Ki,j as v̄i,j =
1

∆xi∆yj

∫ x
i+1

2
x
i− 1

2

∫ y
j+1

2
y
j− 1

2

v(x, y)dxdy,

and its left/right and lower/upper limits on the vertical and horizontal cell interfaces by v(x±
i+ 1

2

, y) =

limǫ→0+ v(xi+ 1
2
± ǫ, y) and v(x, y±

j+ 1
2

) = limǫ→0+ v(x, yj+ 1
2
± ǫ), respectively. Moreover, we denote by vi,j =

v|Ki,j
for v ∈ V, i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny.

The positivity-preserving Qk-DG scheme of the equation (3.1) on rectangular meshes is to find u ∈ V ,

such that

−

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

(auvx + buvy − λuv) dxdy +

∫ y
j+1

2

y
j− 1

2

au(x−
i+ 1

2

, y)v(x−
i+ 1

2

, y)dy +

∫ x
i+1

2

x
i− 1

2

bu(x, y−
j+ 1

2

)v(x, y−
j+ 1

2

)dx

=

∫ y
j+1

2

y
j− 1

2

aũ(x−
i− 1

2

, y)v(x+
i− 1

2

, y)dy +

∫ x
i+1

2

x
i− 1

2

bũ(x, y−
j− 1

2

)v(x, y+
j− 1

2

)dx+

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

svdxdy, ∀v ∈ Qk(Ki,j),

(3.2)

for i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny, where we define u(x, y−1
2

) = I (g1) (x) and u(x−
1
2

, y) = I (g2) (y) on the

inflow boundaries, with I denoting the polynomial interpolation at the quadrature points on cell interfaces.

In the computation, we solve ui,j on cell Ki,j based on the modified solutions ũi−1,j and ũi,j−1 on upstream

cells. Once ui,j is obtained, we employ the positivity-preserving limiters to get the modified solution ũi,j

and use it in the computations on the downstream cells.

Taking the test function v = 1 on Ki,j in the scheme (3.2), we obtain the following equation satisfied by

the local mass

λ∆xi∆yj ūi,j+

∫ y
j+1

2

y
j− 1

2

au(x−
i+ 1

2

, y)dy+

∫ x
i+1

2

x
i− 1

2

bu(x, y−
j+ 1

2

)dx =

∫ y
j+1

2

y
j− 1

2

aũ(x−
i− 1

2

, y)dy+

∫ x
i+1

2

x
i− 1

2

bũ(x, y−
j− 1

2

)dx+∆xi∆yj s̄i,j .

(3.3)

We define LHS(wi,j) = λ∆xi∆yjw̄i,j +
∫ y

j+1
2

y
j− 1

2

aw(x−
i+ 1

2

, y)dy +
∫ x

i+1
2

x
i− 1

2

bw(x, y−
j+ 1

2

)dx, for wi,j ∈ Qk(Ki,j),

to be the amount of local mass of wi,j on Ki,j . Moreover, we define LHSb(wi,j) =
∫ y

j+1
2

y
j− 1

2

aw(x−
i+ 1

2

, y)dy +

∫ x
i+1

2
x
i− 1

2

bw(x, y−
j+ 1

2

)dx for the total outflow flux. Since ũi−1,j , ũi,j−1 ≥ 0 on the right hand side of (3.3), we

have LHS(ui,j) ≥ 0. In particular, if λ = 0, then LHSb(ui,j) = LHS(ui,j) ≥ 0.

Similar to the one dimensional case, there are two types of limiters, in which the type-1 limiter depends

on the Gauss-Radau quadrature while the type-2 limiter does not.
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The type-1 limiter for ui,j is defined as follows:

ũi,j(x, y) = θ2i,j ûi,j(x, y), ûi,j(x, y) = ûo
i,j(x, y) + θ1i,j û

b
i,j(x, y),

ûo
i,j(x, y) =

k
∑

α=1

k
∑

β=1

u+
i,j(x̂α, ŷβ)ℓα(x)ℓβ(y),

ûb
i,j(x, y) =

k
∑

α=1

u+
i,j(x̂α, y

−
j+ 1

2

)ℓα(x)ℓk+1(y) +

k+1
∑

β=1

u+
i,j(x

−
i+ 1

2

, ŷβ)ℓk+1(x)ℓβ(y),

(3.4)

where {x̂α}
k+1
α=1 and {ŷβ}

k+1
β=1 are the Gauss-Radau points on the intervals [xi− 1

2
, xi+ 1

2
] and [yj− 1

2
, yj+ 1

2
],

respectively, with x̂k+1 = xi+ 1
2

and ŷk+1 = yj+ 1
2
, we abuse notations to denote by ℓα(x) and ℓβ(y) the

Lagrange basis at {x̂α}
k+1
α=1 and {ŷβ}

k+1
β=1, respectively, θ1i,j = max{

LHSb(ub
i,j)

LHSb(ûb
i,j

)
, 0} ∈ [0, 1], θ2i,j =

LHS(ui,j)
LHS(ûi,j)

∈

[0, 1], ub
i,j(x, y) =

∑k

α=1 ui,j(x̂α, y
−
j+ 1

2

)ℓα(x)ℓk+1(y) +
∑k+1

β=1 ui,j(x
−
i+ 1

2

, ŷβ)ℓk+1(x)ℓβ(y). In particular, if λ =

0, we have θ1i,j =
LHSb(ub

i,j)

LHSb(ûb
i,j

)
and θ2i,j = 1. We denote uo

i,j(x, y) =
∑k

α=1

∑k

β=1 ui,j(x̂α, ŷβ)ℓα(x)ℓβ(y) for the

convenience of later discussion.

We have the accuracy results for the conservative positivity-preserving limiter (3.4) as follows:

Lemma 3.1. Consider the solution ui,j of the scheme (3.2) with an L∞-error of O(hk+1). If λ = 0, the

error introduced by the limiter (3.4) is ||ũi,j − ui,j ||L∞(Ki,j) = O(hk+1). If λ > 0, the error introduced

by the limiter (3.4) is ||ũi,j − ui,j||L∞(Ki,j) = O(hk), but the error is optimal on the downstream edges,

i.e. ||ũi,j − ui,j||L∞(I
i+1

2

∪J
j+1

2

) = O(hk+1), where Ii+ 1
2

and Jj+ 1
2

denote the right and upper edges of Ki,j,

respectively.

Proof. We decompose the error as

e = ui,j − ũi,j = (ui,j − ûi,j) + (ûi,j − ũi,j) = e1 + e2, (3.5)

and

e1 = ui,j − ûi,j =
(

uo
i,j − ûo

i,j

)

+
(

ub
i,j − ûb

i,j

)

+
(

ûb
i,j − θ1i,j û

b
i,j

)

= e1,1 + e1,2 + e1,3. (3.6)

Using similar arguments as in (2.6), it is easy to prove that ||e1,1||L∞(Ki,j) = O(hk+1) and ||e1,2||L∞(Ki,j) =

O(hk+1). As for e1,3 =
(

1− θ1i,j
)

ûb
i,j , we consider two cases.

Case I: θ1i,j = 0. We have LHSb(ub
i,j) ≤ 0, i.e.

∆yj

k+1
∑

β=1

ω̂βa(xi+ 1
2
, ŷβ)ui,j(x

−
i+ 1

2

, ŷβ) + ∆xi

k+1
∑

α=1

ω̂αb(x̂α, yj+ 1
2
)ui,j(x̂α, y

−
j+ 1

2

) ≤ 0,
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thus

∆yj

k+1
∑

β=1

ω̂βa(xi+ 1
2
, ŷβ)u

+
i,j(x

−
i+ 1

2

, ŷβ) + ∆xi

k+1
∑

α=1

ω̂αb(x̂α, yj+ 1
2
)u+

i,j(x̂α, y
−
j+ 1

2

) ≤

∆yj

k+1
∑

β=1

ω̂βa(xi+ 1
2
, ŷβ)u

−
i,j(x

−
i+ 1

2

, ŷβ) + ∆xi

k+1
∑

α=1

ω̂αb(x̂α, yj+ 1
2
)u−

i,j(x̂α, y
−
j+ 1

2

),

which implies

k+1
∑

β=1

ω̂βu
+
i,j(x

−
i+ 1

2

, ŷβ) +

k+1
∑

α=1

ω̂αu
+
i,j(x̂α, y

−
j+ 1

2

) ≤
ρmax{a∗, b∗}

min{a∗, b∗}





k+1
∑

β=1

ω̂βu
−
i,j(x

−
i+ 1

2

, ŷβ) +

k+1
∑

α=1

ω̂αu
−
i,j(x̂α, y

−
j+ 1

2

)



 = O(hk+1).

By the definition of ûb
i,j, we have ||ûb

i,j||L∞(Ki,j) = O(hk+1), therefore ||e1,3||L∞(Ki,j) = O(hk+1).

Case II: θ1i,j > 0. We have LHSb(ub
i,j) > 0 and θ1i,j =

LHSb(ub
i,j)

LHSb(ûb
i,j

)
. Therefore,

|e1,3| =(1− θ1i,j)|û
b
i,j |

=
LHSb(ûb

i,j − ub
i,j)

LHSb(ûb
i,j)

|ûb
i,j|

=



∆yj

k+1
∑

β=1

ω̂βa(xi+ 1
2
, ŷβ)û

b
i,j(x

−
i+ 1

2

, ŷβ) + ∆xi

k+1
∑

α=1

ω̂αb(x̂α, yj+ 1
2
)ûb

i,j(x̂α, y
−
j+ 1

2

)





−1

×



∆yj

k+1
∑

β=1

ω̂βa(xi+ 1
2
, ŷβ)

(

ûb
i,j(x

−
i+ 1

2

, ŷβ)− ub
i,j(x

−
i+ 1

2

, ŷβ)
)

+∆xi

k+1
∑

α=1

ω̂αb(x̂α, yj+ 1
2
)
(

ûb
i,j(x̂α, y

−
j+ 1

2

)− ub
i,j(x̂α, y

−
j+ 1

2

)
)

)

· |ûb
i,j |

≤

(

∆yj
∑k+1

β=1 ω̂βa(xi+ 1
2
, ŷβ) + ∆xi

∑k+1
α=1 ω̂αb(x̂α, yj+ 1

2
)
)

||e1,2||L∞(Ki,j)

∆yj
∑k+1

β=1 ω̂βa(xi+ 1
2
, ŷβ)ûb

i,j(x
−
i+ 1

2

, ŷβ) + ∆xi

∑k+1
α=1 ω̂αb(x̂α, yj+ 1

2
)ûb

i,j(x̂α, y
−
j+ 1

2

)
· |ûb

i,j |

(3.7)

In particular, e1,3(x̂γ1
, ŷγ2

) = 0 for γ1, γ2 = 1, 2, . . . , k, since ûb
i,j = 0 at these points by definition. Moreover,

for γ = 1, 2, . . . , k + 1, we have the following estimates from (3.7),

|e1,3(x
−
i+ 1

2

, ŷγ)| ≤

(

∆yj
∑k+1

β=1 ω̂βa(xi+ 1
2
, ŷβ) + ∆xi

∑k+1
α=1 ω̂αb(x̂α, yj+ 1

2
)
)

||e1,2||L∞(Ki,j)

∆yj
∑k+1

β=1 ω̂βa(xi+ 1
2
, ŷβ)ûb

i,j(x
−
i+ 1

2

, ŷβ) + ∆xi

∑k+1
α=1 ω̂αb(x̂α, yj+ 1

2
)ûb

i,j(x̂α, y
−
j+ 1

2

)
ûb
i,j(x

−
i+ 1

2

, ŷγ)

≤
(∆yja

∗ +∆xib
∗) ||e1,2||L∞(Ki,j)

∆yja∗
∑k+1

β=1 ω̂β û
b
i,j(x

−
i+ 1

2

, ŷβ)
ûb
i,j(x

−
i+ 1

2

, ŷγ)

≤
ρ (a∗ + b∗)

a∗ω̂γ

||e1,2||L∞(Ki,j) = O(hk+1),

(3.8)

and similarly, |e1,3(x̂γ , y
−
j+ 1

2

)| = O(hk+1), γ = 1, 2, . . . , k + 1. Therefore, following the similar argument as

(2.9), we have ||e1,3||L∞(Ki,j) = Λ2
k ·O(hk+1) = O(hk+1).
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To sum up, we have ||e1||L∞(Ki,j) ≤ ||e1,1||L∞(Ki,j) + ||e1,2||L∞(Ki,j) + ||e1,3||L∞(Ki,j) = O(hk+1).

We now estimate e2 as follows. If λ = 0, then θ2i,j = 1, thus e2 = (1− θ2i,j)ûi,j = 0. If λ > 0, we have

|e2(x, y)| =

(

1−
LHS(ui,j)

LHS(ûi,j)

)

|ûi,j(x, y)| =
LHS(ûi,j − ui,j)

LHS(ûi,j)
|ûi,j(x, y)|

=



λ∆xi∆yj

k+1
∑

α=1

k+1
∑

β=1

ω̂αω̂β (ûi,j(x̂α, ŷβ)− ui,j(x̂α, ŷβ)) + ∆yj

k+1
∑

β=1

ω̂βa(xi+ 1
2
, ŷβ)

(

ûi,j(x
−
i+ 1

2

, ŷβ)− ui,j(x
−
i+ 1

2

, ŷβ)
)

+∆xi

k+1
∑

α=1

ω̂αb(x̂α, yj+ 1
2
)
(

ûi,j(x̂α, y
−
j+ 1

2

)− ui,j(x̂α, y
−
j+ 1

2

)
)

)

·



λ∆xi∆yj

k+1
∑

α=1

k+1
∑

β=1

ω̂αω̂βûi,j(x̂α, ŷβ)

+ ∆yj

k+1
∑

β=1

ω̂βa(xi+ 1
2
, ŷβ)ûi,j(x

−
i+ 1

2

, ŷβ) + ∆xi

k+1
∑

α=1

ω̂αb(x̂α, yj+ 1
2
)ûi,j(x̂α, y

−
j+ 1

2

)





−1

· |ûi,j(x, y)|

≤ (λ∆xi∆yj + a∗∆yj + b∗∆xi) · ||e1||L∞(Ki,j) ·



λ∆xi∆yj

k+1
∑

α=1

k+1
∑

β=1

ω̂αω̂βûi,j(x̂α, ŷβ)

+a∗∆yj

k+1
∑

β=1

ω̂βûi,j(x
−
i+ 1

2

, ŷβ) + b∗∆xi

k+1
∑

α=1

ω̂αûi,j(x̂α, y
−
j+ 1

2

)





−1

· |ûi,j(x, y)|

(3.9)

In particular, at the Gauss-Radau points, we have the following estimates from (3.9),

|e2(x̂γ1
, ŷγ2

)| ≤ (λ∆xi∆yj + a∗∆yj + b∗∆xi) · ||e1||L∞(Ki,j) ·



λ∆xi∆yj

k+1
∑

α=1

k+1
∑

β=1

ω̂αω̂β ûi,j(x̂α, ŷβ)





−1

· ûi,j(x̂γ1
, ŷγ2

)

≤
λρ2h2 + a∗ρh+ b∗ρh

λh2ω̂γ1
ω̂γ2

||e1||L∞(Ki,j) =

(

ρ2ω̂−1
γ1

ω̂−1
γ2

+
a∗ρ+ b∗ρ

λω̂γ1
ω̂γ2

1

h

)

||e1||L∞(Ki,j)

= O(hk), for γ1, γ2 = 1, 2, . . . , k + 1,

(3.10)

therefore, following the similar argument as (2.9), we have ||e2||L∞(Ki,j) = Λ2
k · O(hk) = O(hk).

In particular, on the downstream edge Ii+ 1
2
, it follows from (3.9) that

|e2(xi+ 1
2
, ŷγ)| ≤ (λ∆xi∆yj + a∗∆yj + b∗∆xi) · ||e1||L∞(Ki,j) ·



a∗∆yj

k+1
∑

β=1

ω̂βûi,j(x
−
i+ 1

2

, ŷβ)





−1

· ûi,j(x
−
i+ 1

2

, ŷγ)

≤ (λ∆xi∆yj + a∗∆yj + b∗∆xi) · ||e1||L∞(Ki,j) ·
(

a∗∆yjω̂γ ûi,j(x
−
i+ 1

2

, ŷγ)
)−1

· ûi,j(x
−
i+ 1

2

, ŷγ)

≤
λρ2h+ a∗ρ+ b∗ρ

a∗ω̂γ

||e1||L∞(Ki,j) = O(hk+1),

(3.11)
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for γ = 1, 2, . . . , k + 1. Similarly, on the downstream edge Jj+ 1
2
, we have |e2(x̂γ , yj+ 1

2
)| = O(hk+1), for

γ = 1, 2, . . . , k + 1. Following the same lines as in (2.9), we have the estimate ||e2||L∞(I
i+1

2

∪J
j+1

2

) = Λk ·

O(hk+1) = O(hk+1). Thus ||ũi,j − ui,j ||L∞(I
i+1

2

∪J
j+1

2

) = O(hk+1) by the triangle inequality.

Gathering all results above, we finish the proof of Lemma 3.1.

The type-2 limiter is defined as follows,

ũi,j(x, y) = θi,j ûi,j(x, y), ûi,j(x, y) = ui,j(x, y) + ǫi,j , (3.12)

where ǫi,j = −min{min(x,y)∈S ui,j(x, y), 0}, S ⊂ Ki,j is the set of points where we want to preserve the

positivity of solutions, and θi,j =
LHS(ui,j)
LHS(ûi,j)

∈ [0, 1].

We have the accuracy result for the conservative positivity-preserving limiter as follows:

Lemma 3.2. Consider the solution ui,j of the scheme (3.2) with an L∞-error of O(hk+1). If λ = 0, the

error introduced by the limiter (3.12) is ||ũi,j − ui,j||L∞(Ki,j) = O(h). If λ > 0, the error introduced by the

limiter (3.12) is ||ũi,j − ui,j ||L∞(Ki,j) = O(hk). Nevertheless, on the downstream edges, the errors in both

cases are optimal, i.e. ||ũi,j − ui,j||L∞(I
i+1

2

∪J
j+1

2

) = O(hk+1).

Proof. For simplicity, we assume S = Ki,j . Same as (3.5), we decompose the error as e = ui,j − ũi,j =

(ui,j − ûi,j) + (ûi,j − ũi,j) = e1 + e2. It is clear that |e1| = ǫi,j = O(hk+1). Consider e2 = (1− θi,j) ûi,j . If

λ = 0, we have ||e2||L∞(Ki,j) = (1− θi,j) ||ûi,j ||L∞(Ki,j) = O(h), since ||ûi,j||L∞(Ki,j) = O(h) if θi,j < 1. If

λ > 0, we have the same estimates for e2 as (3.9) and (3.10). The estimates for e2 on the downstream edges

are exactly the same as (3.11) for both the cases λ = 0 and λ > 0.

Collecting all results above, we finish the proof of Lemma 3.2.

Since the accuracy of both type-1 and type-2 limiters is optimal on the downstream edges, we do not

need to worry about the pollution of the non-optimal errors introduced by the limiters to the downstream

cells. Thus we have the following theorem for the positivity-preserving DG method of the equation (3.1).

Theorem 3.3. For the linear stationary hyperbolic equation (3.1), if the source term and inflow boundary

conditions are nonnegative, then the solution of the scheme (3.2) modified by the limiter (3.4) or (3.12) is

nonnegative, with the local accuracy established in Lemmas 3.1 and 3.2, respectively.

Remark 3.1. In particular, in the space-time DG discretization for the equation of the form ut+(a(x)u)x =

s(x, t), the accuracy of the solution at the terminal time is optimal, as the terminal time is indeed an outflow

boundary.

19



4 Linear stationary hyperbolic equations in two dimensions on tri-

angular meshes

In this section, we study the high order conservative positivity-preserving discontinuous Galerkin method in

two space dimensions on triangular meshes for the linear stationary hyperbolic equation (3.1) with nonneg-

ative source term and the inflow boundary condition u|Γin(x, y) = g(x, y) ≥ 0, where Γin ⊂ ∂Ω is the inflow

boundary. We still assume λ ≥ 0 in (3.1) but a(x, y) and b(x, y) are not necessarily positive (or negative).

Consider a regular triangulation Ωh of Ω which satisfies diam(K) ≤ ρh, ∀K ∈ Ωh for some ρ ≥ 1

independent of the refinement, where diam(K) is the diameter of an element K, h = minK∈Ωh
hK and hK

is the radius of the largest ball inscribed in K. For any triangle element K ∈ Ωh, we denote by |K| the

area of K, and eiK , i = 1, 2, 3 the three edges of K, with length ℓiK , unit outer normal ni
K = (ni

x,K , ni
y,K)T

and neighboring cells Ki, i = 1, 2, 3. We assume that the coefficients a(x, y) and b(x, y) in (3.1) satisfy

c∗ ≤
∣

∣a(x, y)ni
x,K + b(x, y)ni

y,K

∣

∣ ≤ c∗, ∀K ∈ Ωh, (x, y) ∈ Ω, i = 1, 2, 3, for some positive constants c∗, c
∗.

This assumption was adopted in the optimal order error estimate for the DG method in [26], as the optimal

accuracy is unavailable for general meshes [23]. The assumption can be satisfied, for instance, by the

conditions on the coefficients a(x, y), b(x, y) in Section 3, together with the triangulation obtained by splitting

each cell therein from the skew diagonal of cells, see Figure 2 for an illustration. The function space V of

the P k-DG scheme is defined as

V =
{

v ∈ L2(Ω) : v|K ∈ P k(K), ∀K ∈ Ωh

}

,

where P k(K) denotes the space of polynomials of order no greater than k on the element K. We define the

cell average of v ∈ V on K as v̄K = 1
|K|

∫∫

K
v(x, y)dxdy, and denote by vK = v|K for v ∈ V .

To save space, we only discuss the case that e1K is the upstream edge and e2K , e3K are the downstream

edges, as the discussion of the case of two upstream edges and one downstream edge is almost the same with

the first case.

The positivity-preserving P k-DG scheme of the equation (3.1) on triangular meshes is to find u ∈ V ,

such that

−

∫∫

K

(auvx + buvy − λuv) dxdy +

∫

e2
K

(

an2
x,K + bn2

y,K

)

uKvds+

∫

e3
K

(

an3
x,K + bn3

y,K

)

uKvds

= −

∫

e1
K

(

an1
x,K + bn1

y,K

)

ũK1
vds+

∫∫

K

svdxdy, ∀v ∈ P k(K),

(4.1)
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for K ∈ Ωh, where we define ũK1
|e1

K
= I (g) if e1K ⊂ Γin, with I denoting the polynomial interpolation at

the quadrature points on cell interfaces. In the computation, we solve uK on cell K based on the modified

solution on upstream cells. Once uK is obtained, we employ the positivity-preserving limiter to obtain the

modified solution ũK , and use it in the computation on the downstream cells.

If we take v = 1 on K in the scheme (4.1), the following equation satisfied by the local mass can be

obtained

λ|K|ūK +

∫

e2
K

(

an2
x,K + bn2

y,K

)

uKds+

∫

e3
K

(

an3
x,K + bn3

y,K

)

uKds = −

∫

e1
K

(

an1
x,K + bn1

y,K

)

ũK1
ds+ |K|s̄K .

(4.2)

We define LHS(wK) = λ|K|w̄K+
∫

e2
K

(

an2
x,K + bn2

y,K

)

wKds+
∫

e3
K

(

an3
x,K + bn3

y,K

)

wKds, for wK ∈ P k(K),

to be the amount of local mass of wK on K. Since ũK1
≥ 0 and an1

x,K + bn1
y,K < 0 on the upstream edge in

(4.2), we have the LHS(uK) ≥ 0.

Due to the lack of suitable quadrature rules, we do not have the type-1 limiter available. The type-2

limiter is defined as follows,

ũK(x, y) = θK ûK(x, y), ûK(x, y) = uK(x, y) + ǫK , (4.3)

where ǫK = −min{min(x,y)∈S uK(x, y), 0}, S ⊂ K is the set of points where we want to preserve the positivity

of solutions, and θK = LHS(uK)
LHS(ûK) ∈ [0, 1].

We have the accuracy result for the conservative positivity-preserving limiter as follows:

Lemma 4.1. Consider the solution uK of the scheme (4.1) with an L∞-error of O(hk+1). If λ = 0, the

error introduced by the limiter (4.3) is ||ũK − uK ||L∞(K) = O(h). If λ > 0, the error introduced by the

limiter (4.3) is ||ũK − uK ||L∞(K) = O(hk). Nevertheless, on the downstream edges, the errors in both cases

are optimal, i.e. ||ũK − uK ||L∞(e2
K
∪e3

K
) = O(hk+1).

Proof. For simplicity, we assume S = K. We decompose the error as

e = uK − ũK = (uK − ûK) + (ûK − ũK) = e1 + e2 (4.4)

It is clear that ||e1||L∞(K) = ǫK = O(hk+1).

For e2, we have e2 = ûK− ũK = (1−θK)ûK . If λ = 0, we have ||e2||L∞(K) = (1−θK)||ûK ||L∞(K) = O(h),
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since ||ûK ||L∞(K) = O(h) if θK < 1. If λ > 0, we have the estimate for e2 as follows,

|e2| = (1− θK)ûK =

(

1−
LHS(uK)

LHS(ûK)

)

ûK =
LHS(ûK − uK)

LHS(ûK)
ûK

=
λ|K|

(

¯̂uK − ūK

)

+
∫

e2
K

(

an2
x,K + bn2

y,K

)

(ûK − uK) ds+
∫

e3
K

(

an3
x,K + bn3

y,K

)

(ûK − uK) ds

λ|K|¯̂uK +
∫

e2
K

(

an2
x,K + bn2

y,K

)

ûKds+
∫

e3
K

(

an3
x,K + bn3

y,K

)

ûKds
ûK

≤

(

λ|K|+ c∗ℓ2K + c∗ℓ3K
)

||e1||L∞(K)

λ|K|¯̂uK + c∗ℓ
2
K
¯̂ue2

K
+ c∗ℓ

3
K
¯̂ue3

K

ûK ,

(4.5)

where v̄ei
K
= 1

ℓi
K

∫

ei
K

vKds, for v ∈ V , i = 1, 2, 3.

By the equivalence of norms in the finite-dimensional space P k(K) and the rescaling argument, we have

||v||L∞(K) ≤
Ck

|K| ||v||L1(K) and ||v||L∞(ei
K
) ≤

C′

k

ℓi
K

||v||L1(ei
K
), ∀v ∈ P k(K), i = 1, 2, 3, for some positive constants

Ck and C′
k depending only on k. Therefore,

||e2||L∞(K) ≤

(

λ|K|+ c∗ℓ2K + c∗ℓ3K
)

||e1||L∞(K)

λ|K|

||ûK ||L∞(K)

¯̂uK

≤
(λ|K|+ 2c∗ρh) ||e1||L∞(K)

λ|K|
Ck

≤ Ck

(

1 +
2c∗ρ

πλ

1

h

)

||e1||L∞(K)

= O(hk),

(4.6)

where we have used the fact that ûK ≥ 0. Moreover, we have

||e2||L∞(e2
K
) ≤

(

λ|K|+ c∗ℓ2K + c∗ℓ3K
)

||e1||L∞(K)

c∗ℓ
2
K

||ûK ||L∞(e2
K
)

¯̂ue2
K

≤

(

λρ2h2 + 2c∗ρh
)

||e1||L∞(K)

c∗h
C′

k

= C′
k

(

λρ2h+ 2c∗ρ
)

c∗
||e1||L∞(K)

= O(hk+1),

(4.7)

and, similarly, ||e2||L∞(e3
K
) = O(hk+1).

Gathering all results above and using triangle inequalities, we finish the proof of Lemma 4.1.

Since the accuracy of the limiter (4.3) is optimal on the downstream edges, we have the following theorem

for the positivity-preserving DG method of the equation (3.1).

Theorem 4.2. For the linear stationary hyperbolic equation (3.1), if the source term and inflow boundary

condition are nonnegative, then the solution of the scheme (4.1) modified by the limiter (4.3) is nonnegative,

with the local accuracy established in Lemma 4.1.
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5 Nonlinear stationary hyperbolic equations with invariant sign of

f ′(u) in one dimension

In this section, we study the high order conservative positivity-preserving discontinuous Galerkin method

for the nonlinear stationary hyperbolic equation

f(u)x + λu = s(x), x ∈ Ω = (0, 1), (5.1)

where 0 ≤ f ′(u) ≤ a∗, ∀u, f ′(u) has at most countably many zeros, and λ, s(x) ≥ 0. We assign the inflow

boundary condition u(0) = u0 ≥ 0 for the equation. We would like to note that, the assumption on invariant

sign of f ′(u) for all u is essential, otherwise the stationary hyperbolic equation may need boundary conditions

from both sides for the problem to be well-posed, see [17, 25] for instance. This condition is also necessary

for the limiters to be well-defined.

We adopt the partition for Ω and the function space V exactly the same as in Section 2, as well as the

notations if not otherwise stated.

The positivity-preserving P k-DG scheme of the equation (5.1) is to find u ∈ V , such that

−

∫ x
j+1

2

x
j− 1

2

f(u)vxdx+ f(u−
j+ 1

2

)v−
j+ 1

2

+

∫ x
j+1

2

x
j− 1

2

λuvdx = f(ũ−
j− 1

2

)v+
j− 1

2

+

∫ x
j+1

2

x
j− 1

2

svdx, ∀v ∈ P k(Ij), (5.2)

for j = 1, 2, . . . , N , where we define u−
1
2

= u0. Note that the upstream cells adopt the modified solution in

the scheme.

If we take the test function v = 1 on Ij in the scheme (5.2), the following equation satisfied by the local

mass is obtained,

λ∆xj ūj + f(u−
j+ 1

2

) = f(ũ−
j− 1

2

) + ∆xj s̄j . (5.3)

Same as the linear case, we define LHS(wj) = λ∆xjw̄j + f(w−
j+ 1

2

), for wj ∈ P k(Ij), to be the amount of

local mass of wj on Ij . A notable difference is that, we no longer have LHS(uj) ≥ 0.

The type-1 limiter for uj is defined as follows,

ũj(x) = θj ûj(x), ûj(x) =

k+1
∑

α=1

u+
j (x̂α)ℓα(x), (5.4)

where θj ∈ [0, 1] is taken such that the local mass is conservative, i.e. LHS(ũj) = LHS(uj). Same as before,

the type-1 limiter must be used in cooperation with the Gauss-Radau quadrature.
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If λ > 0, θj ∈ [0, 1] is uniquely determined. To see this, we define h(θ) = LHS(θûj) − LHS(uj). It is

clear that h(0) = f(0)− f(ũ−
j− 1

2

)−∆xj s̄j ≤ 0, h(1) = λ∆xj

∑k+1
α=1 ω̂αu

−
j (x̂α) + f((u−

j+ 1
2

)+)− f(u−
j+ 1

2

) ≥ 0,

and h′(θ) > 0 for θ ∈ [0, 1]. Therefore, the existence and uniqueness of θj is guaranteed by the mean value

theorem and monotonicity of h(θ).

If λ = 0, the identity (5.3) becomes f(u−
j+ 1

2

) = f(ũ−
j− 1

2

)+∆xj s̄j , which implies f(u−
j+ 1

2

) ≥ f(ũ−
j− 1

2

) since

s̄j ≥ 0. From the monotonicity of f , we have u−
j+ 1

2

≥ ũ−
j− 1

2

≥ 0. We always take θj = 1 as u−
j+ 1

2

≥ 0, which

implies LHS(ûj) = f(u−
j+ 1

2

) = LHS(uj).

Moreover, we have the accuracy result of the limiter as follows:

Lemma 5.1. Consider the solution uj of the scheme (5.2) with an L∞-error of O(∆xk+1
j ). If λ = 0,

the error introduced by the limiter (5.4) is ||ũj − uj||L∞(Ij) = O(∆xk+1
j ). If λ > 0, the error introduced

by the limiter (5.4) is ||ũj − uj||L∞(Ij) = O(∆xk
j ), but the error is optimal at the downstream point, i.e.

|ũ−
j+ 1

2

− u−
j+ 1

2

| = O(∆xk+1
j ).

Proof. From θjλ∆xj
¯̂uj + f(θj û

−
j+ 1

2

) = λ∆xj ūj + f(u−
j+ 1

2

), we have the expression of θj as follows,

θj =
λ∆xj ūj + f ′(cj+ 1

2
)u−

j+ 1
2

λ∆xj
¯̂uj + f ′(cj+ 1

2
)û−

j+ 1
2

, (5.5)

where cj+ 1
2
∈ [u−

j+ 1
2

, û−
j+ 1

2

] satisfies the Lagrange mean value theorem f(θj û
−
j+ 1

2

)−f(u−
j+ 1

2

) = f ′(cj+ 1
2
)(θj û

−
j+ 1

2

−

u−
j+ 1

2

). Then the estimates are almost the same to those in the proof of Lemma 2.1, except that a(xj+ 1
2
) is

replaced by f ′(cj+ 1
2
).

The type-2 limiter for uj is defined as follows,

ũj(x) = θj ûj(x), ûj(x) = uj(x) + ǫj, (5.6)

where ǫj = −min{minx∈S uj(x), 0}, S ⊂ Ij is the set of points where we want to preserve the positivity of

solutions, and θj ∈ [0, 1] is uniquely determined by LHS(ũj) = LHS(uj).

We have the accuracy result for the limiter as follows,

Lemma 5.2. Consider the solution uj of the scheme (5.2) with an L∞-error of O(∆xk+1
j ). If λ = 0, the

error introduced by the limiter (5.6) is ||ũj − uj ||L∞(Ij) = O(∆xj). If λ > 0, the error introduced by the

limiter (5.6) is ||ũj − uj||L∞(Ij) = O(∆xk
j ). Nevertheless, at the downstream point, the errors in both cases

are optimal, i.e. |ũ−
j+ 1

2

− u−
j+ 1

2

| = O(∆xk+1
j ).
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Proof. We have the same expression of θj as in (5.5). Therefore the estimates are almost the same with

those in the proof of Lemma 2.2, except that a(xj+ 1
2
) is replaced by f ′(cj+ 1

2
).

Since the accuracy of both type-1 and type-2 limiters is optimal at the downstream point of cells, the

assumption on the optimal accuracy of the unmodulated DG solution is appropriate. Collecting the Lemma

5.1 and 5.2, we attain the following theorem for the positivity-preserving DG method for the equation (5.1).

Theorem 5.3. For the nonlinear stationary hyperbolic equation (5.1), if the source term and inflow boundary

condition are nonnegative, then the solution of the scheme (5.2) modified by the limiters (5.4) or (5.6) is

nonnegative, with the local accuracy established in Lemma 5.1 and 5.2, respectively.

6 Numerical tests

In this section, we show the accuracy and effectiveness of the conservative positivity-preserving DG meth-

ods established in previous sections for stationary hyperbolic equations and time-dependent problems with

implicit time discretization by ample numerical tests. Most of the tests are taken from [21, 30, 33]. For sim-

plicity, the triangular meshes adopted in the two dimensional tests are obtained by splitting the rectangular

grids by the diagonals of every cells, see Figure 2 for an illustration of a 6× 6 mesh.

To save space, we only present the results of the type-2 limiters, as those of the type-1 limiters are almost

the same (even thought the type-1 limiter is formally more accurate than the type-2). For the P k-DG scheme

in one dimension, we adopt the (k + 1)-point Gauss-Legendre rule for volume integration. For the Qk-DG

scheme on rectangular meshes, we use the tensor product of (k + 1)-point Gauss-Legendre rules for volume

integration and (k+1)-point Gauss-Legendre rule for edge integration. For the P k-DG scheme on triangular

meshes, we adopt the quadrature rule developed in [28] with 36 points, which is exact for polynomials of

degree up to 13 for volume integration, and (k + 1)-point Gauss-Legendre rule for edge integration.

In one dimension, we compute the errors in L1 norm using the composite midpoint rule with 100 uniformly

distributed points in each cell. The errors in L∞ norm are computed by evaluating the maximum norm at

these points. Similarly, on rectangular meshes, we compute the errors in L1 norm using the composite

midpoint rule with 20 uniformly distributed points in each dimension of a cell. The errors in L∞ norm are

computed by evaluating the maximum norm of errors at these points. On triangular meshes, we compute

the L1 norm using the same quadrature rule used for the volume integration of the scheme. The L∞ norm

25



is computed by evaluating the maximum norm at these points.

We would like to note that, though the sub-optimal error estimates of the limiters are sharp by artificial

examples in 2.1 and 2.2, in numerical tests we have not observed any degeneracy of orders of accuracy.

Additionally, we have not observed any degeneracy of orders of accuracy when using the type-1 limiter with

the (k + 1)-point Gauss-Radau quadrature.

Figure 2: A typical triangular mesh used in the tests. Triangles are obtained by splitting rectangles diago-

nally.

Example 6.1. (Comparison of the conservation property for different limiters)

We solve the simple hyperbolic equation ut + ux = 0 with implicit time discretization by a variety of

positivity-preserving schemes, and compare the results of different positivity-preserving limiters. We first

compute the solutions using the scaling limiter [35] that preserves cell averages. Then, we replace the scaling

limiter in these algorithms by our conservative limiter that preserves the sum of cell average and outflow

fluxes. Since the only difference is in the use of limiters, it would be convincing that our notion of conservation

is more appropriate if the results of the conservative limiters are better than those of the scaling limiter.

The initial and boundary condition are given below

u(x, 0) =















1, 0 < x ≤ 1

0, otherwise

, x ∈ Ω; u(0, t) = 0, t ∈ [0, T ].

We first compute the equation on the domain Ω = [0, 5], with backward Euler time discretization, CFL

number ∆t
∆x

= 0.01 and spatial partition N = 500, to the terminal time T = 2, based on the positivity-

preserving P 2-DG scheme proposed in [30] for one dimensional linear equations. We plot the cell averages
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of the numerical solutions at the terminal time for the cases with no limiter, with the scaling limiter and

with the conservative limiter, and compare them with the exact solution. The results are shown in Figure 3,

from which we can clearly observe a wrong shock location with the use of the scaling limiter. The total mass

of the exact solution at the terminal time is
∫

Ω
u(x, T )dx = 1. In the numerical solutions, the total mass

has changed 3.10× 10−12, 2.94× 10−12 and 1.54× 10−1 for the cases with no limiter, with the conservative

limiter and with the scaling limiter, respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

exact solution

without limiter

(a) No limiter
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0.2

0.4

0.6

0.8

1

exact solution

conservative limiter

scaling limiter

(b) With limiter

Figure 3: Comparison of results using different limiters in the P 2-DG scheme proposed in [30] for the equation

ut + ux = 0 at T = 2 on the domain Ω = [0, 5] with backward Euler time discretization. The CFL number

is set as ∆t
∆x

= 0.01 and the spatial partition is uniform with N = 500.

We then compute the equation on the space-time box Ω× [0, T ] by the space-time DG discretization, based

on the positivity-preserving R1-DG scheme proposed in [21] for two dimensional linear equations. We take two

space-time boxes Ω1 = [0, 50], T1 = 40 and Ω2 = [0, 100], T2 = 90, on the uniform meshes N1
x×N1

t = 500×400

and N2
x ×N2

t = 1000× 900, respectively. We plot the cell averages of the numerical solutions at the terminal

times for the cases with no limiter, with the conservative limiter and with the scaling limiter, and compare

them with the exact solution. The results are shown in Figure 4, from which we can clearly observe the loss

of mass with the use of the scaling limiter. In the numerical solutions, the total mass in the domain has

changed 4.97× 10−14, 4.77× 10−14 and 8.59× 10−2 at T1 for the cases with no limiter, with the conservative

limiter and with the scaling limiter, respectively, and 1.01× 10−13, 1.11× 10−13 and 1.47 × 10−1 at T2 for

the cases with no limiter, with the conservative limiter and with the scaling limiter, respectively.
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Figure 4: Comparison of results using different limiters in the R1-DG scheme proposed in [21] for the

equation ut + ux = 0 with space-time DG discretization. Solutions of (a), (b) are computed on Ω1 ×

[0, T1] = [0, 50]× [0, 40] with uniform partition N1
x ×N1

t = 500× 400. Solutions of (c), (d) are computed on

Ω2 × [0, T2] = [0, 100]× [0, 90] with uniform partition N2
x ×N2

t = 1000× 900.
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Finally, we compute the equation by the space-time DG based on the Q2 and Q3 schemes (3.2). Note that

these two schemes are not positivity-preserving for cell averages in general, namely, there is no theoretical

guarantee that the cell averages always remain nonnegative with the use of the scaling limiter. However, by

trial and error, we find a setting that keeps the cell averages nonnegative during simulation, with the use of

positivity-preserving scaling limiter. We take the space-time box Ω = [0, 30], T = 25 on the uniform mesh

Nx ×Nt = 300× 250. We plot the cell averages of the numerical solutions at the terminal time for the cases

with no limiter, with the conservative limiter and with the scaling limiter, and compare them with the exact

solution. The results are shown in Figure 5, from which we can clearly observe the loss of mass with the use

of the scaling limiter. The total mass in the domain have changed 8.48×10−14, 8.53×10−14 and 1.88×10−1

in the Q2-DG scheme for the cases with no limiter, with the conservative limiter and with the scaling limiter,

respectively, and 1.87 × 10−13, 1.88 × 10−13 and 7.78 × 10−2 in the Q3-DG scheme for the cases with no

limiter, with the conservative limiter and with the scaling limiter, respectively.

Example 6.2. A linear stationary hyperbolic equation in one dimension

We solve the equation (2.1) with a(x) = 1, λ = 6000 and s(x) = λ
(

1
9 cos

4(x) + ǫ
)

− 4
9 cos

3(x) sin(x) on

the domain Ω = [0, π], where ǫ = 10−14 is taken such that the source term is nonnegative. The boundary

condition of the problem is u(0) = 1
9 + ǫ and the exact solution is u(x) = 1

9 cos
4(x) + ǫ.

We compute the equation using the P k-DG scheme (2.2) with k = 1, 2, 3, 4. The errors, orders of con-

vergence and data about positivity are given in Table 1, where we can observe that the negative values of the

original scheme are eliminated by the limiter and the order of accuracy remains optimal.

Example 6.3. A nonlinear stationary hyperbolic equation in one dimension

We solve the equation (5.1) with f(u) = u3+0.01u, λ = 5 and s(x) = −8 sin(x) cos7(x)
(

3(cos8(x) + ǫ)2 + 0.01
)

+

λ
(

cos8(x) + ǫ
)

on the domain Ω = [0, π], where ǫ = 10−14 is taken such that the source term is nonnegative.

The boundary condition of the problem is u(0) = 1 + ǫ and the exact solution is u(x) = cos8(x) + ǫ.

We compute the equation using the P k-DG scheme (5.2) with k = 1, 2, 3, 4. The errors, orders of conver-

gence and data about positivity are given in Table 2. Same to the linear case, we can observe that the negative

values of the original scheme are eliminated by the limiter and the order of accuracy remains optimal.

Example 6.4. A nonlinear time-dependent hyperbolic equation in one dimension with backward

Euler time discretization

We solve the equation (1.1) with backward Euler time discretization, and take f(u) = u3

3 , s(x) = 0. The
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Figure 5: Comparison of results using different limiters in the scheme (3.2) for the equation ut + ux = 0

with space-time DG discretization. Solutions of are computed on Ω× [0, T ] = [0, 30]× [0, 25] with uniform

partition Nx ×Nt = 300× 250.
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no Limiter with Limiter

k N L
1 error order L

∞ error order min uh L
1 error order L

∞ error order Limited cells (%)

1 20 4.62E-04 - 9.00E-04 - -4.67E-05 4.63E-04 - 9.00E-04 - 20.00

40 1.16E-04 1.99 2.28E-04 1.98 -3.34E-06 1.16E-04 2.00 2.28E-04 1.98 10.00

80 2.90E-05 2.00 5.83E-05 1.97 -2.19E-07 2.90E-05 2.00 5.83E-05 1.97 5.00

160 7.26E-06 2.00 1.50E-05 1.96 -1.43E-08 7.26E-06 2.00 1.50E-05 1.96 2.50

320 1.82E-06 2.00 3.90E-06 1.94 -9.54E-10 1.82E-06 2.00 3.90E-06 1.94 1.25

2 20 2.04E-05 - 3.88E-05 - -2.30E-06 2.05E-05 - 3.88E-05 - 10.00

40 2.54E-06 3.01 4.84E-06 3.00 -1.49E-07 2.54E-06 3.01 4.84E-06 3.00 5.00

80 3.19E-07 2.99 5.98E-07 3.02 -9.58E-09 3.19E-07 2.99 5.98E-07 3.02 2.50

160 4.01E-08 2.99 7.33E-08 3.03 -6.28E-10 4.01E-08 2.99 7.33E-08 3.03 1.25

320 5.09E-09 2.98 8.86E-09 3.05 -4.25E-11 5.09E-09 2.98 8.86E-09 3.05 0.63

3 20 7.72E-07 - 1.57E-06 - -9.43E-07 9.58E-07 - 4.24E-06 - 10.00

40 4.79E-08 4.01 1.03E-07 3.93 -6.21E-08 5.38E-08 4.16 2.76E-07 3.94 5.00

80 3.01E-09 3.99 6.74E-09 3.93 -4.05E-09 3.19E-09 4.07 1.73E-08 4.00 2.50

160 1.89E-10 4.00 4.48E-10 3.91 -2.69E-10 1.94E-10 4.04 1.06E-09 4.02 1.25

320 1.19E-11 3.98 3.06E-11 3.87 -1.83E-11 1.21E-11 4.00 6.46E-11 4.04 0.63

4 20 2.44E-08 - 4.80E-08 - -1.12E-08 2.71E-08 - 4.80E-08 - 10.00

40 7.60E-10 5.01 1.47E-09 5.03 -1.83E-10 7.81E-10 5.12 1.47E-09 5.03 5.00

80 2.39E-11 4.99 4.45E-11 5.04 -3.02E-12 2.41E-11 5.02 4.45E-11 5.04 2.50

160 7.57E-13 4.98 1.32E-12 5.07 -4.17E-14 7.58E-13 4.99 1.32E-12 5.07 1.25

320 2.43E-14 4.96 3.97E-14 5.06 9.10E-15 2.43E-14 4.96 3.97E-14 5.06 0.00

Table 1: Results for the equation ux + 6000u = 6000(19 cos
4(x) + 10−14) − 4

9 cos
3(x) sin(x) in Example 6.2

using the P k-DG scheme (2.2) on the domain Ω = [0, π]
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no Limiter with Limiter

k N L
1 error order L

∞ error order min uh L
1 error order L

∞ error order Limited cells (%)

1 20 7.45E-03 - 3.02E-02 - -1.49E-04 7.45E-03 - 3.02E-02 - 30.00

40 1.91E-03 1.96 7.97E-03 1.92 -8.48E-07 1.91E-03 1.96 7.97E-03 1.92 17.50

80 4.91E-04 1.96 2.03E-03 1.97 -6.90E-09 4.91E-04 1.96 2.03E-03 1.97 8.75

160 1.26E-04 1.96 5.11E-04 1.99 -5.30E-11 1.26E-04 1.96 5.11E-04 1.99 3.13

320 3.22E-05 1.97 1.28E-04 2.00 -3.36E-13 3.22E-05 1.97 1.28E-04 2.00 0.63

2 20 4.57E-04 - 2.12E-03 - -1.27E-06 4.57E-04 - 2.12E-03 - 20.00

40 5.72E-05 3.00 2.62E-04 3.01 -1.18E-08 5.72E-05 3.00 2.62E-04 3.01 10.00

80 7.22E-06 2.98 3.20E-05 3.03 -7.14E-11 7.22E-06 2.98 3.20E-05 3.03 5.00

160 9.17E-07 2.98 3.96E-06 3.01 -2.48E-13 9.17E-07 2.98 3.96E-06 3.01 1.88

320 1.16E-07 2.98 4.92E-07 3.01 9.44E-15 1.16E-07 2.98 4.92E-07 3.01 0.00

3 20 2.30E-05 - 1.19E-04 - -9.63E-07 2.30E-05 - 1.19E-04 - 20.00

40 1.44E-06 3.99 7.83E-06 3.93 -5.10E-09 1.44E-06 3.99 7.83E-06 3.93 10.00

80 9.24E-08 3.97 4.95E-07 3.98 -2.42E-11 9.24E-08 3.97 4.95E-07 3.98 5.00

160 5.86E-09 3.98 3.11E-08 3.99 -1.07E-13 5.86E-09 3.98 3.11E-08 3.99 0.63

320 3.71E-10 3.98 1.94E-09 4.00 9.43E-15 3.71E-10 3.98 1.94E-09 4.00 0.00

4 20 1.05E-06 - 6.46E-06 - -6.21E-09 1.05E-06 - 6.46E-06 - 10.00

40 3.31E-08 4.98 1.88E-07 5.10 -3.05E-11 3.31E-08 4.98 1.88E-07 5.10 5.00

80 1.05E-09 4.97 5.80E-09 5.02 -8.17E-14 1.05E-09 4.97 5.80E-09 5.02 2.50

160 3.35E-11 4.98 1.79E-10 5.02 9.65E-15 3.35E-11 4.98 1.79E-10 5.02 0.00

320 1.06E-12 4.98 5.54E-12 5.01 1.00E-14 1.06E-12 4.98 5.54E-12 5.01 0.00

Table 2: Results for the equation (u3 + 0.01u)x + 5u = −8 sin(x) cos7(x)
(

3(cos8(x) + 10−14)2 + 0.01
)

+

5
(

cos8(x) + 10−14
)

in Example 6.3 using the P k-DG scheme (5.2) on the domain Ω = [0, π]
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initial and boundary condition of the equation are given below

u(x, 0) =















1, x ≤ 1

0, otherwise

, x ∈ Ω; u(0, t) = 1, t ∈ [0, T ],

where Ω = [0, 3] and T = 2.5.

We compute the equation using the P k-DG scheme (5.2) with k = 1, 2, 3, 4, CFL number ∆t
∆x

= 0.5 and

spatial partition N = 150. We zoom in the pre-shock zone and draw the cell averages of the numerical solu-

tions in this area in Figure 6, with a comparison with the exact solution and the results without limiter. From

the figures, we can observe that the negative cell averages of the original numerical scheme are eliminated by

the limiter.

Example 6.5. Linear stationary hyperbolic equations in two dimensions with smooth solutions

We solve the equation (3.1) with constant coefficients a(x, y) ≡ a = 0.7, b(x, y) ≡ b = 0.3 and s(x, y) ≡ 0

in the domain Ω = [0, 1] × [0, 1]. The inflow boundary conditions are u(x, 0) = 0, 0 < x ≤ 1 and u(0, y) =

sin6(πy), 0 ≤ y ≤ 1. The exact solution of the problem is

u(x, y) =















0, y < b
a
x

sin6(π(y − b
a
x))e−

λ
a
x y ≥ b

a
x.

We take λ = 1, which corresponds to the purely absorbing medium in RTE, and λ = 0, which corresponds to

the transparent medium in RTE, in the tests.

We compute the equations using the Qk-DG scheme (3.2) on rectangular meshes, and the P k-DG scheme

(4.1) on triangular meshes. The errors, orders of convergence and data about positivity are given in Table

3 - Table 6, from which we can observe that the positivity and optimal accuracy are both attained by the

algorithms.

Example 6.6. Linear stationary hyperbolic equations in two dimensions with discontinuous

solutions

We solve the equation (3.1) with constant coefficients a(x, y) ≡ a = 0.7, b(x, y) ≡ b = 0.3, s(x, y) ≡ 0 in

the domain Ω = [0, 1]× [0, 1]. The inflow boundary conditions are u(x, 0) = 0, 0 < x ≤ 1 and u(0, y) = 1, 0 ≤

y ≤ 1. The exact solution of the problem is

u(x, y) =















0, y < b
a
x

e−
λ
a
x y ≥ b

a
x.
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Figure 6: A zoomed-in view of the results for the equation ut +
(

u3

3

)

x
= 0 in Example 6.4 using the P k-DG

scheme (5.2) at T = 2.5 on the domain Ω = [0, 3] with backward Euler time discretization. The CFL number

is set as ∆t
∆x

= 0.5 and the spatial partition is uniform with N = 150.
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no Limiter with Limiter

k Nx ×Ny L
1 error order L

∞ error order min uh L
1 error order L

∞ error order Limited cells (%)

1 20× 20 1.43E-03 - 2.66E-02 - -3.07E-04 1.42E-03 - 2.66E-02 - 35.00

40× 40 3.38E-04 2.08 6.94E-03 1.94 -2.06E-05 3.38E-04 2.07 6.94E-03 1.94 29.25

80× 80 8.21E-05 2.04 1.76E-03 1.98 -1.03E-06 8.21E-05 2.04 1.76E-03 1.98 25.98

160× 160 2.03E-05 2.02 4.42E-04 1.99 -4.61E-08 2.03E-05 2.02 4.42E-04 1.99 24.05

320× 320 5.04E-06 2.01 1.11E-04 2.00 -1.99E-09 5.04E-06 2.01 1.11E-04 2.00 22.95

2 20× 20 6.32E-05 - 1.26E-03 - -1.59E-06 6.32E-05 - 1.26E-03 - 14.50

40× 40 7.79E-06 3.02 1.63E-04 2.96 -2.73E-08 7.79E-06 3.02 1.63E-04 2.96 13.13

80× 80 9.71E-07 3.01 2.07E-05 2.98 -4.36E-10 9.71E-07 3.01 2.07E-05 2.98 12.58

160× 160 1.21E-07 3.00 2.60E-06 2.99 -6.86E-12 1.21E-07 3.00 2.60E-06 2.99 12.23

320× 320 1.51E-08 3.00 3.26E-07 3.00 -1.15E-13 1.51E-08 3.00 3.26E-07 3.00 12.06

3 20× 20 2.77E-06 - 6.61E-05 - -3.64E-07 2.78E-06 - 6.61E-05 - 18.50

40× 40 1.72E-07 4.01 4.35E-06 3.92 -7.14E-09 1.72E-07 4.01 4.35E-06 3.92 16.56

80× 80 1.07E-08 4.00 2.76E-07 3.98 -1.21E-10 1.07E-08 4.00 2.76E-07 3.98 15.55

160× 160 6.71E-10 4.00 1.73E-08 3.99 -1.94E-12 6.71E-10 4.00 1.73E-08 3.99 15.20

320× 320 4.19E-11 4.00 1.08E-09 4.00 -3.06E-14 4.19E-11 4.00 1.08E-09 4.00 14.98

4 20× 20 1.08E-07 - 2.56E-06 - -2.03E-08 1.09E-07 - 2.56E-06 - 19.50

40× 40 3.37E-09 5.01 8.33E-08 4.94 -3.45E-10 3.38E-09 5.01 8.33E-08 4.94 17.94

80× 80 1.05E-10 5.00 2.62E-09 4.99 -5.55E-12 1.05E-10 5.00 2.62E-09 4.99 17.31

160× 160 3.29E-12 5.00 8.19E-11 5.00 -9.54E-14 3.29E-12 5.00 8.19E-11 5.00 16.75

320× 320 1.07E-13 4.94 2.57E-12 5.00 -2.15E-15 1.07E-13 4.94 2.57E-12 5.00 16.53

Table 3: Results for the equation 0.7ux + 0.3uy + u = 0 in Example 6.5 using the Qk-DG scheme (3.2) on

rectangular meshes in domain Ω = [0, 1]2
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no Limiter with Limiter

k Nx ×Ny L
1 error order L

∞ error order min uh L
1 error order L

∞ error order Limited cells (%)

1 20× 20 1.92E-03 - 2.37E-02 - -2.89E-03 1.89E-03 - 2.37E-02 - 22.13

40× 40 4.40E-04 2.13 6.85E-03 1.79 -1.32E-04 4.40E-04 2.10 6.85E-03 1.79 17.22

80× 80 1.05E-04 2.07 1.81E-03 1.92 -5.02E-06 1.05E-04 2.07 1.81E-03 1.92 14.23

160× 160 2.57E-05 2.03 4.67E-04 1.96 -1.88E-07 2.57E-05 2.03 4.67E-04 1.96 12.62

320× 320 6.38E-06 2.01 1.18E-04 1.98 -7.32E-09 6.38E-06 2.01 1.18E-04 1.98 11.77

2 20× 20 9.43E-05 - 1.92E-03 - -2.44E-05 9.47E-05 - 1.92E-03 - 10.38

40× 40 1.14E-05 3.05 2.62E-04 2.87 -4.59E-07 1.14E-05 3.05 2.62E-04 2.87 8.28

80× 80 1.42E-06 3.01 3.45E-05 2.92 -7.72E-09 1.42E-06 3.01 3.45E-05 2.92 7.74

160× 160 1.77E-07 3.00 4.39E-06 2.97 -1.23E-10 1.77E-07 3.00 4.39E-06 2.97 7.42

320× 320 2.21E-08 3.00 5.54E-07 2.99 -1.95E-12 2.21E-08 3.00 5.54E-07 2.99 7.34

3 20× 20 5.87E-06 - 1.04E-04 - -1.03E-05 6.77E-06 - 1.04E-04 - 14.75

40× 40 3.70E-07 3.99 7.30E-06 3.83 -2.32E-07 3.78E-07 4.16 7.30E-06 3.83 11.94

80× 80 2.31E-08 4.00 4.85E-07 3.91 -4.05E-09 2.32E-08 4.03 4.85E-07 3.91 10.50

160× 160 1.44E-09 4.00 3.13E-08 3.96 -6.52E-11 1.44E-09 4.00 3.13E-08 3.96 9.86

320× 320 9.02E-11 4.00 1.98E-09 3.98 -1.03E-12 9.02E-11 4.00 1.98E-09 3.98 9.43

4 20× 20 3.16E-07 - 5.85E-06 - -5.81E-07 3.32E-07 - 5.85E-06 - 9.75

40× 40 9.83E-09 5.01 2.05E-07 4.83 -1.08E-08 9.97E-09 5.06 2.05E-07 4.83 8.75

80× 80 3.03E-10 5.02 6.72E-09 4.93 -1.89E-10 3.04E-10 5.03 6.72E-09 4.93 8.59

160× 160 9.41E-12 5.01 2.21E-10 4.93 -3.08E-12 9.41E-12 5.01 2.21E-10 4.93 8.36

320× 320 3.06E-13 4.94 7.25E-12 4.93 -4.90E-14 3.06E-13 4.95 7.25E-12 4.93 8.31

Table 4: Results for the equation 0.7ux + 0.3uy + u = 0 in Example 6.5 using the P k-DG scheme (4.1) on

triangular meshes in domain Ω = [0, 1]2
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no Limiter with Limiter

k Nx ×Ny L
1 error order L

∞ error order min uh L
1 error order L

∞ error order Limited cells (%)

1 20× 20 2.66E-03 - 2.81E-02 - -1.12E-03 2.64E-03 - 2.81E-02 - 35.00

40× 40 6.10E-04 2.12 7.23E-03 1.96 -8.44E-05 6.10E-04 2.11 7.23E-03 1.96 29.25

80× 80 1.46E-04 2.06 1.82E-03 1.99 -4.12E-06 1.46E-04 2.06 1.82E-03 1.99 25.97

160× 160 3.59E-05 2.03 4.56E-04 2.00 -1.87E-07 3.59E-05 2.03 4.56E-04 2.00 24.05

320× 320 8.89E-06 2.01 1.14E-04 2.00 -8.21E-09 8.89E-06 2.01 1.14E-04 2.00 22.95

2 20× 20 1.14E-04 - 1.32E-03 - -1.65E-06 1.14E-04 - 1.32E-03 - 14.50

40× 40 1.40E-05 3.03 1.67E-04 2.98 -2.78E-08 1.40E-05 3.03 1.67E-04 2.98 13.19

80× 80 1.74E-06 3.01 2.09E-05 3.00 -4.39E-10 1.74E-06 3.01 2.09E-05 3.00 12.56

160× 160 2.17E-07 3.00 2.61E-06 3.00 -1.32E-11 2.17E-07 3.00 2.61E-06 3.00 12.21

320× 320 2.71E-08 3.00 3.27E-07 3.00 -4.61E-13 2.71E-08 3.00 3.27E-07 3.00 12.07

3 20× 20 4.96E-06 - 7.10E-05 - -4.14E-07 4.97E-06 - 7.10E-05 - 19.25

40× 40 3.08E-07 4.01 4.48E-06 3.98 -7.61E-09 3.08E-07 4.01 4.48E-06 3.98 16.69

80× 80 1.92E-08 4.00 2.81E-07 4.00 -1.24E-10 1.92E-08 4.00 2.81E-07 4.00 15.53

160× 160 1.20E-09 4.00 1.76E-08 4.00 -3.10E-12 1.20E-09 4.00 1.76E-08 4.00 15.21

320× 320 7.50E-11 4.00 1.10E-09 4.00 -8.31E-14 7.50E-11 4.00 1.10E-09 4.00 15.01

4 20× 20 1.94E-07 - 2.68E-06 - -2.70E-08 1.95E-07 - 2.68E-06 - 19.25

40× 40 6.04E-09 5.01 8.42E-08 4.99 -5.42E-10 6.05E-09 5.01 8.42E-08 4.99 17.88

80× 80 1.88E-10 5.00 2.63E-09 5.00 -1.18E-11 1.88E-10 5.00 2.63E-09 5.00 17.30

160× 160 5.88E-12 5.00 8.24E-11 5.00 -2.73E-13 5.88E-12 5.00 8.24E-11 5.00 16.74

320× 320 1.92E-13 4.93 2.78E-12 4.89 -6.56E-15 1.92E-13 4.93 2.80E-12 4.88 16.48

Table 5: Results for the equation 0.7ux + 0.3uy = 0 in Example 6.5 using the Qk-DG scheme (3.2) on

rectangular meshes in domain Ω = [0, 1]2
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no Limiter with Limiter

k Nx ×Ny L
1 error order L

∞ error order min uh L
1 error order L

∞ error order Limited cells (%)

1 20× 20 3.67E-03 - 2.70E-02 - -5.59E-03 3.58E-03 - 2.70E-02 - 22.38

40× 40 8.02E-04 2.19 7.41E-03 1.87 -4.09E-04 8.02E-04 2.16 7.41E-03 1.87 17.22

80× 80 1.86E-04 2.11 1.91E-03 1.96 -1.85E-05 1.87E-04 2.10 1.91E-03 1.96 14.21

160× 160 4.52E-05 2.04 4.80E-04 1.99 -7.38E-07 4.52E-05 2.04 4.80E-04 1.99 12.61

320× 320 1.12E-05 2.02 1.20E-04 2.00 -2.94E-08 1.12E-05 2.02 1.20E-04 2.00 11.77

2 20× 20 1.68E-04 - 2.05E-03 - -2.81E-05 1.69E-04 - 2.05E-03 - 11.63

40× 40 2.02E-05 3.05 2.64E-04 2.96 -4.80E-07 2.02E-05 3.06 2.64E-04 2.96 9.25

80× 80 2.50E-06 3.02 3.32E-05 2.99 -7.89E-09 2.50E-06 3.02 3.32E-05 2.99 8.54

160× 160 3.12E-07 3.00 4.16E-06 3.00 -1.25E-10 3.12E-07 3.00 4.16E-06 3.00 8.27

320× 320 3.89E-08 3.00 5.21E-07 3.00 -1.96E-12 3.89E-08 3.00 5.21E-07 3.00 8.18

3 20× 20 1.02E-05 - 1.14E-04 - -1.22E-05 1.19E-05 - 1.14E-04 - 15.38

40× 40 6.43E-07 3.99 7.90E-06 3.85 -2.52E-07 6.58E-07 4.17 7.90E-06 3.85 12.50

80× 80 4.02E-08 4.00 5.10E-07 3.95 -4.20E-09 4.03E-08 4.03 5.10E-07 3.95 11.00

160× 160 2.51E-09 4.00 3.21E-08 3.99 -6.67E-11 2.51E-09 4.00 3.21E-08 3.99 10.34

320× 320 1.57E-10 4.00 2.01E-09 4.00 -1.05E-12 1.57E-10 4.00 2.01E-09 4.00 9.87

4 20× 20 5.55E-07 - 6.22E-06 - -6.07E-07 5.85E-07 - 6.22E-06 - 10.13

40× 40 1.71E-08 5.02 2.16E-07 4.85 -1.19E-08 1.73E-08 5.08 2.16E-07 4.85 9.34

80× 80 5.26E-10 5.02 6.96E-09 4.96 -1.99E-10 5.28E-10 5.04 6.96E-09 4.96 8.84

160× 160 1.63E-11 5.01 2.20E-10 4.98 -3.16E-12 1.63E-11 5.01 2.20E-10 4.98 8.48

320× 320 5.36E-13 4.93 7.06E-12 4.96 -4.96E-14 5.36E-13 4.93 7.06E-12 4.96 8.32

Table 6: Results for the equation 0.7ux + 0.3uy = 0 in Example 6.5 using the P k-DG scheme (4.1) on

triangular meshes in domain Ω = [0, 1]2
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We test the cases of λ = 1 and λ = 0, which correspond to the purely absorbing medium and transparent

medium in RTE, respectively.

The solutions are computed by the Qk-DG scheme (3.2) on rectangular meshes, and by the P k-DG scheme

(4.1) on triangular meshes, with the spatial partition Nx × Ny = 100 × 100. We draw the contours of the

solutions on rectangular meshes in Figures 7 and 9 for the cases λ = 1 and λ = 0, respectively. The

contours of the solutions on triangular meshes are given in Figures 11 and 13 for the cases λ = 1 and λ = 0,

respectively. Moreover, we slice the solutions along y = 0.25 and plot the averages of the solution along the

line in Figures 8, 10, 12 and 14. From the figures, we can observe that the negative averages of the solution

in the original scheme are eliminated by the positivity-preserving technique.

7 Concluding remarks

In this paper, we have constructed high order conservative positivity-preserving discontinuous Galerkin

methods for various stationary hyperbolic equations in one and two space dimensions, based on a novel

definition of conservation for stationary equations. Two types of conservative positivity-preserving limiters

are introduced, where the type-1 limiter relies on particular Gauss-Radau quadratures for the schemes while

the type-2 limiter does not. The errors introduced by the limiters are of optimal order on downstream edges,

thus the limiter does not pollute from the original high order accuracy on downstream cells. Moreover, for

time-dependent hyperbolic problems with implicit time discretization, the errors introduced by limiters are

always optimal.

The positivity-preserving technique proposed in this paper is easy to implement, simple to prove for the

positivity, and applicable for general types of stationary hyperbolic equations, compared with the previous

works. Moreover, it is possible to apply this positivity-preserving approach to certain time-dependent advec-

tion systems using implicit discretization for target variables and explicit discretization for velocities in the

advection terms. In the future, we will extend the methods to the bound-preserving DG for the multi-phase

flow system and the positivity-preserving DG for the multi-components gas flow system in porous media in

two space dimensions with implicit time discretization, based on the this methodology.
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 7: Solutions of 0.7ux + 0.3uy + u = 0 in Example 6.6 using the Qk-DG scheme (3.2) on rectangular

meshes in domain Ω = [0, 1]2 with uniform partition Nx ×Ny = 100× 100.
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Figure 8: Solutions of 0.7ux + 0.3uy + u = 0 in Example 6.6 using the Qk-DG scheme (3.2) on rectangular

meshes in domain Ω = [0, 1]2 with uniform partition Nx ×Ny = 100× 100, cut along y = 0.25

41



(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 9: Solutions of 0.7ux+0.3uy = 0 in Example 6.6 using the Qk-DG scheme (3.2) on rectangular meshes

in domain Ω = [0, 1]2 with uniform partition Nx ×Ny = 100× 100.
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Figure 10: Solutions of 0.7ux + 0.3uy = 0 in Example 6.6 using the Qk-DG scheme (3.2) on rectangular

meshes in domain Ω = [0, 1]2 with uniform partition Nx ×Ny = 100× 100, cut along y = 0.25
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 11: Solutions of 0.7ux + 0.3uy + u = 0 in Example 6.6 using the P k-DG scheme (4.1) on triangular

meshes in domain Ω = [0, 1]2 with uniform partition Nx ×Ny = 100× 100.
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Figure 12: Solutions of 0.7ux + 0.3uy + u = 0 in Example 6.6 using the P k-DG scheme (4.1) on triangular

meshes in domain Ω = [0, 1]2 with uniform partition Nx ×Ny = 100× 100, cut along y = 0.25
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 13: Solutions of 0.7ux+0.3uy = 0 in Example 6.6 using the P k-DG scheme (4.1) on triangular meshes

in domain Ω = [0, 1]2 with uniform partition Nx ×Ny = 100× 100.
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Figure 14: Solutions of 0.7ux+0.3uy = 0 in Example 6.6 using the P k-DG scheme (4.1) on triangular meshes

in domain Ω = [0, 1]2 with uniform partition Nx ×Ny = 100× 100, cut along y = 0.25
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