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Abstract

The arbitrary Lagrangian-Eulerian (ALE) method is widely used in the field of compress-
ible multi-material and multi-phase flow problems. In order to implement the indirect ALE
approach for the simulation of compressible flow in the context of high order discontinuous
Galerkin (DG) discretizations, we present a high order positivity-preserving DG remapping
method based on a moving mesh solver in this paper. This remapping method is based on
the ALE-DG method developed by Klingenberg et al. [17, 18] to solve the trivial equation
∂u
∂t

= 0 on a moving mesh, which is the old mesh before remapping at t = 0 and is the new
mesh after remapping at t = T . An appropriate selection of the final pseudo-time T can
always satisfy the relatively mild smoothness requirement (Lipschitz continuity) on the mesh
movement velocity, which guarantees the high order accuracy of the remapping procedure.
We use a multi-resolution weighted essentially non-oscillatory (WENO) limiter which can
keep the essentially non-oscillatory property near strong discontinuities while maintaining
high order accuracy in smooth regions. We further employ an effective linear scaling limiter
to preserve the positivity of the relevant physical variables without sacrificing conservation
and the original high order accuracy. Numerical experiments are provided to illustrate the
high order accuracy, essentially non-oscillatory performance and positivity-preserving of our
remapping algorithm. In addition, the performance of the ALE simulation based on the DG
framework with our remapping algorithm is examined in one- and two-dimensional Euler
equations.
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1 Introduction

For the numerical simulation of computational fluid dynamics (CFD), the Eulerian frame-

work and the Lagrangian framework are two classical approaches. In the Eulerian framework,

the fluid flows through a fixed mesh. It has strong robustness and can be used in the flow

field with large deformation, but getting the precise physical interface is challenging. The

Lagrangian framework, in which the mesh moves with the fluid velocity, can naturally and

precisely track the interface between different materials and can capture the contact dis-

continuities sharply. Nevertheless, the computing process in the flow field with significant

deformation may be terminated due to mesh distortion. The arbitrary Lagrangian-Eulerian

(ALE) approach, which allows the grid points to move with an arbitrary velocity, could

combine the best properties of the Lagrangian method and the Eulerian method. The ALE

method has been favored in computing compressible flow with large deformation and is flex-

ible in dealing with multi-material problems and the problems with moving domains. The

simulations of the compressible Euler equations using the ALE technique have attracted a

lot of scientific attention [2, 13, 14, 17, 21, 38, 39, 43].

Generally, ALE methods can be implemented in two manners, i.e., the direct ALE method

and the indirect ALE method. The indirect ALE method consists of three individual steps: a

Lagrangian step, a rezoning step and a remapping step. In the Lagrangian step, the solution

and the computational mesh are updated simultaneously. The nodes of the computational

mesh are adjusted to more optimal positions during the rezoning step to improve the quality

of the mesh and to relieve the error caused by mesh deformation. The remapping step is

then performed, where the Lagrangian solutions are conservatively transferred from the old

distorted Lagrangian mesh to the new rezoned mesh. The last two steps are as critical to the

accuracy of the overall simulation as the first step since they must preserve the characteristic

mesh features as well as the essential mathematical and physical properties of the Lagrangian

solution.

In the application of computational fluid dynamics, we can classify the indirect ALE
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framework as based on the finite volume (FV) method [10, 21, 38] or the Runge-Kutta dis-

continuous Galerkin (RK-DG) method [13,17,39]. The numerical solution of the DG method

is approximated by polynomials within each element. Hence it is easy to handle problems

including discontinuities. It is also flexible for complex mesh geometries and unstructured

meshes. Due to the excellent compactness and high order accuracy of the DG method, it has

been widely applied to deal with fluid dynamic problems. The type of solution projected in

the remapping phase is determined by the discretization methods applied in the Lagrange

phase. The remapping stage of the indirect ALE-FV technique transfers the cell averages

from the old mesh to the new mesh. There has been much research on this strategy given

in [5, 9, 15, 20–22, 30]. Under the indirect ALE framework in conjunction with the DG ap-

proach, it is necessary to transfer the high order polynomials to a different set of high order

polynomials defined on the new rezoned mesh while maintaining good performance. In this

paper, we concentrate on the remapping step in the indirect ALE framework together with

the DG method.

There are two fundamentally different strategies for the remapping method. The intersection-

based remapping method, expressed as an integral statement of conservation, can be used

for the two meshes that are entirely independent of one another. The intersections between

the old and the new mesh are precisely computed in this method to determine the contri-

butions of the old cells to the new cells [3, 5, 21–23, 39]. It is suitable for dealing with large

flow distortions and large deformation problems. Although this strategy is intuitive, it has

a considerable computational cost due to the construction of intersections, especially for

curved meshes or higher dimensional situations.

Another common way of remapping is the transport equation based (or flux-based)

remapping method. The fundamental premise of this approach is that old and new meshes

have the same number of cells and the same mesh connectivity topology, which can be

viewed as a deformation of each other. This strategy expresses the remapping procedure

as a dynamic process controlled by a linear transport equation. If the mesh optimiza-
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tion results in little alterations to the original mesh, the node trajectories are restricted to

the nearest neighbor cells, the remapping can be expressed as a flux-form transport algo-

rithm [9, 20, 30, 38]. By solving a linear transport equation over a pseudo-time interval, it

is possible to reduce the limits on the movement of grid nodes, for which there is a lot of

research [1,2,8,24–26,28,29,33,36,40]. Among them, the authors in [8,25,26] design such an

interpolation scheme for the finite element and finite volume schemes on the moving mesh,

respectively. This format works with small mesh deformation and requires only one pseudo-

time step to complete the interpolation. Ortega and Scovazzi [33] propose a conservative

synchronized remap algorithm with nodal finite elements. They point out that the geometric

conservation law (GCL) is the fundamental link between advection and remap algorithms.

Lipnikov and Morgan [28, 29] provide a high order conservative remap for DG schemes on

curved polygonal meshes, extending it to three dimensions. The authors in [40] use the DG

method to solve the linear time-dependent equation on deforming meshes and combine it

with the positivity-preserving limiter to develop a high order, conservative, and positivity-

preserving remapping method applied to radiative transfer for moving grid DG simulations.

The above discussed approach avoids accurate calculation of the intersection area between

the old and new grid cells, thus reducing complexity and computational cost.

In this paper, we will discuss the design of the high order DG remapping method which

will be used in the indirect ALE framework to simulate the compressible fluid flow. Besides

the high order accuracy, we also need to take into account other properties such as conserva-

tion, positivity-preserving and essentially non-oscillation. For the simulation of compressible

fluid flow, the solutions usually contain many discontinuities. The DG method is prone to

produce significant non-physical oscillations and even nonlinear instability, resulting in nu-

merical solution explosion. The application of a nonlinear limiter is a common strategy to

control these spurious oscillations. One type of these limiters is based on the slope methods

such as minmod-type limiters [6, 7, 16]. These limiters are effective in controlling oscilla-

tions. However, the accuracy of DG methods may decrease if they are used incorrectly in
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smooth regions. Another type of limiters is based on the weighted essentially non-oscillatory

(WENO) methodology [34], which can achieve both high order accuracy and non-oscillatory

properties. Zhu, Qiu and Shu proposed a new multi-resolution WENO limiter for the discon-

tinuous Galerkin method based on a set of local L2 projection polynomials in the troubled

cells [44, 45]. Compared with the previous WENO limiters, this new WENO limiter is very

simple to construct and can be easily implemented to arbitrary high order accuracy and in

higher dimensions. The linear weights used in the procedure of the new multi-resolution

WENO limiters can be any positive numbers as long as they sum to one. Since the linear

weights are not needed to be recalculated at each time step, this limiter is particularly ad-

vantageous for the moving mesh methods in which the shape of the mesh cells constantly

changes.

For the ALE-DG method used in computational fluid dynamics, the positivity of cer-

tain physical quantities, such as density or internal energy, must be preserved during the

remapping process to avoid the failure of the numerical solution. Generally speaking, the

remapping algorithm alone may not automatically maintain the positivity of the function

to be remapped, which should be addressed. Classical techniques use some strategies such

as conservative repair procedure [20] and flux corrected method [2, 33, 38] to preserve local

bounds. A very popular technique for high order method is a simple scaling positivity-

preserving limiter [41], which can preserve high order accuracy without losing local con-

servation. Numerous numerical experiments have shown the superior performance of this

positivity-preserving strategy for the simulation of compressible fluid flow using the high

order ALE-DG method [14, 23].

The objective of this paper is to develop a high order positivity-preserving DG remapping

method, based on the numerical solution of the trivial equation ∂u
∂t

= 0 on a moving mesh,

which is the old mesh before remapping at t = 0 and is the new mesh after remapping

at t = T . The simplex meshes in one- and two-dimensions are used as examples. To

obtain a high order accurate remapping algorithm, we solve this equation ∂u
∂t

= 0 with
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the moving mesh DG technique [17, 18] for the spatial discretization and the high order

strong stability preserving (SSP) Runge-Kutta method for the time discretization. The

novelty of this moving mesh DG technique is that high order accuracy and stability can

be proved under very mild conditions on mesh movements. In our remapping method,

no smoothness beyond Lipschitz continuity is required for the mesh movement velocity to

ensure high order accuracy, which is always achieved by selecting the ending pseudo-time T

appropriately. T can be very tiny when the new mesh is only a slight modification of the old

mesh, which will reduce the number of pseudo time steps and computing costs. As a result,

our remapping approach is beneficial for problems with small mesh modifications, such as

ALE algorithm with frequent use of the remapping procedure. We will utilize the Zhang-Shu

positivity-preserving framework for preserving the positivity of variables, including density

and internal energy, by using a positivity-preserving limiter that is valid under a suitable

time step constraint. Furthermore, we will introduce the multi-resolution WENO limiter

into our remapping procedure to make the scheme more robust and have better resolutions

without oscillation.

An outline of the rest of this paper is as follows. Section 2 describes the high order DG

remapping method in 1D and 2D with the multi-resolution WENO limiter and the positivity-

preserving limiter in detail. Numerical results are presented in Section 3 to demonstrate the

excellent properties of our remapping algorithm, such as high order accuracy, essentially

non-oscillatory performance, and positivity-preserving. Afterward, we apply our remapping

algorithm in an indirect ALE method and show its performance on certain benchmark flow

problems in Section 4. Finally, concluding remarks are given in Section 5.

2 Remapping algorithm

Suppose Ω ⊂ Rd (d = 1 and 2) is a connected bounded computational domain. We assume

that the old distorted mesh and the new rezoned mesh are given. Note that these two

meshes have the same number of cells and vertices and the same connectivity. The old mesh
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is considered as the initial mesh configuration at t = 0, denoted as T 0
h . The new mesh is

regarded as the final mesh configuration at the final time t = T , denoted as T T
h , where T is

the pseudo time we have introduced. For the sake of consistency, we use the superscript 0 or

T to be cells, nodes, and node coordinates of the old or new mesh, respectively. The moving

mesh is obtained by connecting the corresponding nodes of the old and new meshes with

straight lines in [0, T ]. We assume that u is the function of the variable to be remapped,

such as density, momentum or total energy. In order to obtain the high order polynomials

on the new mesh, we can solve this trivial equation

∂u

∂t
= 0, (2.1)

on the moving mesh, since the function u is a time independent quantity in the remapping

procedure. We use the scalar function u as an example to illustrate the remapping techniques.

2.1 Mesh movement velocity

We first need to consider the motion of the mesh node before describing the DG scheme

for solving the equation (2.1) on the moving mesh. We introduce a variable ω to describe

the mesh movement velocity in one dimension and a variable ω = (ωx, ωy) to describe the

moving speed in two dimensions.

In one dimension, assume that the old and new mesh generating points are given, denoted

as
{
x0
j− 1

2

}N

j=1
and

{
xT
j− 1

2

}N

j=1
. We give the definition of the mesh movement velocity

ωj− 1
2
=

xT
j− 1

2

− x0
j− 1

2

T
. (2.2)

We can get the spatial coordinates of the points xj− 1
2
(t) from the straight lines

xj− 1
2
(t) = x0

j− 1
2
+ ωj− 1

2
t, t ∈ [0, T ].

Then the mesh configuration Th(t) at any moment can be obtained. Besides, the mesh

movement velocity is a piecewise linear mesh velocity function on the computational domain
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[17, 18]. For the time-dependent cell Kj(t) = [xj− 1
2
(t), xj+ 1

2
(t)], it is given by

ω(x, t) = ωj+ 1
2

x− xj− 1
2
(t)

△j(t)
+ ωj− 1

2

xj+ 1
2
(t)− x

△j(t)
, △j(t) = xj+ 1

2
(t)− xj− 1

2
(t).

Similarly, in two dimensions, the old and new grids are composed of non-overlapping

triangular cells
{
K0

j

}N
j=1

and
{
KT

j

}N
j=1

, where N is the number of the cells. The three

vertices of the triangle are represented by Pl (l = 1, 2, 3). We have the definition of the mesh

velocity ωl and the node Pl(t) = (xl(t), yl(t)),

ωxl
=

xT
l − x0

l

T
, xl(t) = x0

l + ωxl
t, t ∈ [0, T ],

ωyl =
yTl − y0l

T
, yl(t) = y0l + ωylt, t ∈ [0, T ],

(2.3)

and these vertices form the time-dependent triangular cell Kj(t) = △P1(t)P2(t)P3(t). The

mesh movement velocity at any point on the edge connecting nodes Pl1(t) and Pl2(t) can

also be obtained by linear interpolation

ωx(x, y, t) = ωxl2
θ(x, y, t) + ωxl1

(1− θ(x, y, t)),

ωy(x, y, t) = ωyl2
θ(x, y, t) + ωyl1

(1− θ(x, y, t)),

where

θ(x, y, t) =

√
(x− xl1(t))

2 + (y − yl1(t))
2√

(xl2(t)− xl1(t))
2 + (yl2(t)− yl1(t))

2
.

The authors pointed out in [17, 18] that the mesh movement velocity should satisfy the

following boundedness and Lipschitz continuity requirements to guarantee the accuracy of

the scheme on a moving mesh. For instance, in one-dimensional space, we restrict the mesh

movement velocity to that which satisfies

max
(x,t)∈Ω×[0,T ]

|ω(x, t)| ⩽ C0, max
(x,t)∈Ω×[0,T ]

|∂xω(x, t)| ⩽ C0,1.

Similarly, the mesh movement velocity in two-dimensional space needs to satisfy

|ωx| ⩽ C0, |ωy| ⩽ C0,

∣∣∣∣∂ωx

∂x

∣∣∣∣ ⩽ C0,1,

∣∣∣∣∂ωy

∂x

∣∣∣∣ ⩽ C0,1,

∣∣∣∣∂ωx

∂y

∣∣∣∣ ⩽ C0,1,

∣∣∣∣∂ωy

∂y

∣∣∣∣ ⩽ C0,1,
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for all points (x, y, t) in Ω× [0, T ]. Here C0 and C0,1 are constants independent of the mesh

size. We apply C0 = C0,1 = 10 to impose these constraints in the following one- and two-

dimensional numerical examples. Furthermore, these constraints can be transformed into

the constraint of the final pseudo-time T . Specifically, in one dimensional space, T is taken

as

T = max
j

 |xT
j− 1

2

− x0
j− 1

2

|

C0

,
|(xT

j+ 1
2

− x0
j+ 1

2

)− (xT
j− 1

2

− x0
j− 1

2

)|

C0,1

(
x0
j+ 1

2

− x0
j− 1

2

) ,
|(xT

j+ 1
2

− x0
j+ 1

2

)− (xT
j− 1

2

− x0
j− 1

2

)|

C0,1

(
xT
j+ 1

2

− xT
j− 1

2

)
 .

We can also get T in the similar way in two dimensions. After selecting a suitable final

pseudo-time T , we can obtain the mesh movement velocity according to (2.2) and (2.3).

2.2 High order spatial discretization

We define the approximation space as

Vh,d(t) = {v ∈ L2(Ω) : v ∈ P k(Kj(t)), ∀Kj(t) ∈ Th(t)},

where the index d ∈ {1, 2} denotes the spatial dimension, P k(Kj(t)) is the space of polyno-

mials of degree at most k on Kj(t). The space Vh,d(t) contains discontinuous functions. For

v ∈ Vh,1(t), the values at the cell boundaries of xj− 1
2
(t) are defined as

v−
j− 1

2

= lim
ϵ→0+

v(xj− 1
2
(t)− ϵ), v+

j− 1
2

= lim
ϵ→0+

v(xj− 1
2
(t) + ϵ).

In two dimensions, we define the values of the function v ∈ Vh,2(t) at any point on the cell

boundary e ∈ ∂Kj(t) with the outer normal vector ne as

vint|e = lim
ϵ→0+

v(x− ϵne), vext|e = lim
ϵ→0+

v(x+ ϵne).

In the discontinuous Galerkin method, the numerical solution uh(t) ∈ Vh,d(t) is a piece-

wise polynomial which can be denoted as

uh(x, t)|Kj(t) =

nb∑
r=1

uKj(t)
r (t)ϕKj(t)

r (x, t), x ∈ Kj(t), ∀Kj(t) ∈ Th(t),

9



where nb = (k+d)!
d!k!

is the number of basis functions and
{
ϕ
Kj(t)
1 (x, t), · · · , ϕKj(t)

nb (x, t)
}

is a

basis of the space P k(Kj(t)). The coefficients u
Kj(t)
r (t), r = 1, · · · , nb are the unknowns of

the method.

Nest, we give the following lemma [18], which will lead to the semi-discrete scheme.

Lemma 2.1. Let d ∈ 1, 2 and u : Ω × [0, T ] → R be a sufficiently smooth function in any

cell Kj(t) ∈ Th(t). Then for all v ∈ Vh,d(t) holds the transport equation

d

dt
(u, v)Kj(t)

= (∂tu, v)Kj(t)
+ (∇ · (ωu) , v)Kj(t)

. (2.4)

We multiply the equation (2.1) by a test function v ∈ Vh,d(t) and apply the transport

equation (2.4) as well as the integration by parts. The one-dimensional semi-discrete scheme

can be written as follows: Find a function uh ∈ Vh,1(t) such that for all v ∈ Vh,1(t) and

j = 1, · · · , N

d

dt
(uh, v)Kj(t)

= (f(ω, uh), ∂xv)Kj(t)
−f̂(ωj+ 1

2
, u−

h,j+ 1
2

, u+
h,j+ 1

2

)v−
j+ 1

2

+f̂(ωj− 1
2
, u−

h,j− 1
2

, u+
h,j− 1

2

)v+
j− 1

2

,

(2.5)

where f(ω, u) = −ωu and f̂ is the numerical flux. Here we use the upwind flux (Roe flux)

numerical flux to reduce the numerical dissipation,

f̂(ωj+ 1
2
, u−

h,j+ 1
2

, u+
h,j+ 1

2

) =


f(ωj+ 1

2
, u−

h,j+ 1
2

), ωj+ 1
2
⩽ 0,

f(ωj+ 1
2
, u+

h,j+ 1
2

), ωj+ 1
2
> 0.

(2.6)

The two-dimensional semi-discrete scheme can be written as follows: Find a function

uh ∈ Vh,2(t) such that

d

dt
(uh, v)Kj(t)

= (f(ω, uh),∇v)Kj(t)
−
〈
f̂
(
ω, uint

h , uext
h ,n

)
, vint

〉
∂Kj(t)

, (2.7)

for all v ∈ Vh,2(t) and cells, where f(ω, u) = −(ωxu, ωyu)
T , nKj(t) is the unit outward normal

to the cell boundary ∂Kj(t). The upwind flux is defined as

f̂(ω, uint
h , uext

h ,n) =


f(ω, uint

h ) · n, ω · n ⩽ 0,

f(ω, uext
h ) · n, ω · n > 0.
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2.3 Fully discrete scheme

In this paper, we will adopt the high order strong stability preserving Runge-Kutta (SSP-RK)

method for the time discretization, which is also known as total variation diminishing Runge-

Kutta (TVD-RK) method. We use the two-dimensional case as an illustration. The one-

dimensional case is similar to the two-dimensional case. Note that the motion of the vertices

causes the basis function to depend on t. We first introduce the connection between test

functions at different time levels and their counterparts on the reference element. The vertices

of the two-dimensional triangle reference cell are (0, 0), (1, 0) and (0, 1). The following time-

dependent linear mapping can map the time-dependent cells Kj(t) to the time-independent

reference element K

XKj(t) : K → Kj(t), XKj(t)(ξ, t) = AKj(t)ξ + Pl1(t), (2.8)

where the matrix AKj(t) and its corresponding determinant JKj(t) are given by

AKj(t) = (Pl2(t)− Pl1(t), Pl3(t)− Pl1(t)), JKj(t) = det
(
AKj(t)

)
= 2|Kj(t)|,

where Pl1(t), Pl2(t), Pl3(t) are the three vertexes of cell Kj(t) and |Kj(t)| is the area of Kj(t).

Now, the two-dimensional fully discrete scheme is written as follows

(
J
K

(1)
j
u
(1),∗
h , v∗

)
K
=
(
JKn

j
un,∗
h , v∗

)
K
+△tnG (un,∗

h , v∗, tn) ,(
J
K

(2)
j
u
(2),∗
h , v∗

)
K
=

3

4

(
JKn

j
un,∗
h , v∗

)
K
+

1

4

(
J
K

(1)
j
u
(1),∗
h , v∗

)
+
1

4
△tnG

(
u
(1),∗
h , v∗, tn+1

)
,(

JKn+1
j

un+1,∗
h , v∗

)
K
=

1

3

(
JKn

j
un,∗
h , v∗

)
K
+

2

3

(
J
K

(2)
j
u
(2),∗
h , v∗

)
+
2

3
△tnG

(
u
(2),∗
h , v∗, tn+ 1

2

)
.

(2.9)

Here u∗
h = uh◦XKj(t) and v∗h = vh◦XKj(t) are defined on the reference cell. u(1)

h , J
K

(1)
j
, un+1

h , JKn+1
j

are the values at t = tn+1; and u
(2)
h , J

K
(2)
j

are the values at t = tn+ 1
2
. The operator G represents

the terms at the right hand side of (2.7), namely

G (u∗
h, v

∗, t) =
(
JKj(t)A

−1
Kj(t)

f(ω, u∗
h),∇ξv

∗
)
K

−
〈
f̂
(
ω, uint,∗

h , uext,∗
h , JKj(t)A

−T
Kj(t)

nK

)
, vint,∗

〉
∂K.
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To ensure the stability of the scheme, the time step size △tn is determined by the CFL

condition

△tn ⩽ Ccflh

α
, α = max

j, e∈∂Kn
j

|ωe · ne| (2.10)

where Ccfl is a constant typically chosen to be less than 1/(2k+1) and we choose it as 0.15

for k = 2 in our numerical tests. h is the minimum diameter of the inscribed circles for

all the cells on the computational mesh. The stability restriction (2.10) will lead to a very

large time step size △tn if α is very small, which will destroy the temporal accuracy. In such

cases, it is necessary to reduce △tn in order to ensure temporal accuracy. Referring to [27],

in our numerical experiments, we set △tn to 1.5h if the value produced by (2.10) is more

than that.

2.4 Multi-resolution WENO limiter

The DG method can simulate the weak discontinuity well without any modification while

the nonlinear limiters must be applied to control the spurious oscillations near strong discon-

tinuities such as the strong shocks or interfaces. First, we need to use an indicator to identify

the troubled cells, which may contain strong discontinuities. In this paper, we apply the

shock detection technique [12, 19,37] to detect troubled cells and apply the limiter on those

cells. The new type of multi-resolution WENO limiter [44,45] builds a series of hierarchical

L2 projection polynomials from zeroth degree to the highest degree using the information of

the DG solution essentially just within the troubled cell itself. The new polynomial modified

by the multi-resolution WENO limiter is a convex combination of polynomials of different

degrees, and the associated linear weights can be any positive numbers with the only re-

quirement that their summation equals one. Such new limiters can maintain the original

order of accuracy in smooth regions and simultaneously suppress spurious oscillations near

strong discontinuities.

In order to save space, we take the third-order multi-resolution WENO limiter on tri-

angular meshes as an example to discuss the specific procedure. Now we assume ∆0 is a

12



troubled cell and its neighboring triangular cells are marked as ∆1,∆2,∆3. The procedure

to reconstruct a new polynomial on the troubled cell ∆0 includes the following steps.

Step 1. First, we construct a series of polynomials qℓ(x, y), ℓ = 0, 1, 2, which satisfy∫
∆0

qℓ(x, y)v
(0)
r (x, y)dxdy =

∫
∆0

uh(x, y)v
(0)
r (x, y)dxdy, r = 1, · · · , nb.

where v
(0)
r (x, y) is the basis function defined on the triangle ∆0.

Step 2. We take p0,1(x, y) = q0(x, y) and define the equivalent expression of the high

order polynomial as follows

p1,1(x, y) =
1

γ1,1
q1(x, y)−

γ0,1
γ1,1

p0,1(x, y),

p2,2(x, y) =
1

γ2,2
q2(x, y)−

γ1,2
γ2,2

p1,2(x, y),

where

p1,2(x, y) = w1,1p1,1(x, y) + w0,1p0,1(x, y),

with the linear weights γℓ−1,ℓ+γℓ,ℓ = 1, ℓ = 1, 2. w0,1 and w1,1 are the nonlinear weights which

will be explicitly described later. To make a balance between the accuracy in smooth regions

and the sharp and essentially non-oscillatory shock transitions in non-smooth regions, we set

γℓ−1,ℓ = 0.01 and γℓ,ℓ = 0.99.

Step 3. Compute the smoothness indicators βℓ,ℓ2 which measure how smooth the function

pℓ,ℓ2(x, y) are in the cell ∆0.

βℓ,ℓ2 =
ℓ∑

|α|=1

∫
∆0

∆
|α|−1
0

(
∂|α|

∂xα1∂yα2
pℓ,ℓ2(x, y)

)2

dxdy, ℓ = ℓ2 − 1, ℓ2; ℓ2 = 1, 2,

where α = (α1, α2) and |α| = α1 + α2. We take another way to calculate β0,1 because the

value obtained by the above formula is 0. First of all, we use the L2 projection methodology

to define the linear polynomials on the adjacent cells respectively, satisfying the following

conditions ∫
∆1

q0,1(x, y)v
(1)
r (x, y)dxdy =

∫
∆1

uh(x, y)v
(1)
r (x, y)dxdy, r = 1, 2, 3,∫

∆2

q0,2(x, y)v
(2)
r (x, y)dxdy =

∫
∆2

uh(x, y)v
(2)
r (x, y)dxdy, r = 1, 2, 3,∫

∆3

q0,3(x, y)v
(3)
r (x, y)dxdy =

∫
∆3

uh(x, y)v
(3)
r (x, y)dxdy, r = 1, 2, 3.

13



The associated smoothness indicators are

ζ0,1 =

∫
∆0

(
∂

∂x
q0,1(x, y)

)2

+

(
∂

∂y
q0,1(x, y)

)2

dxdy,

ζ0,2 =

∫
∆0

(
∂

∂x
q0,2(x, y)

)2

+

(
∂

∂y
q0,2(x, y)

)2

dxdy,

ζ0,3 =

∫
∆0

(
∂

∂x
q0,3(x, y)

)2

+

(
∂

∂y
q0,3(x, y)

)2

dxdy.

Then we define β0,1 as

β0,1 = min (ζ0,1, ζ0,2, ζ0,3) .

Step 4. Based on the linear weights and the smoothness indicators, we compute the

nonlinear weights using the WENO-Z recipe [4]. The nonlinear weights are given as

wℓ1,ℓ2 =
w̄ℓ1,ℓ2∑ℓ2

ℓ=ℓ2−1 w̄ℓ,ℓ2

, w̄ℓ1,ℓ2 = γℓ1,ℓ2

(
1 +

τℓ2
ε+ βℓ1,ℓ2

)
, ℓ1 = ℓ2 − 1, ℓ2; ℓ2 = 1, 2

where

τℓ2 = (βℓ2,ℓ2 − βℓ2−1,ℓ2)
2 , ℓ2 = 1, 2,

and ε is taken as 10−10 in our code.

Step 5. The new polynomial on the trouble cell △0 is given by

unew
h (x, y) = w1,2p1,2(x, y) + w2,2p2,2(x, y).

Therefore, we obtain the modified polynomial unew
h (x, y) which is virtually non-oscillatory

and as accurate as the original polynomial uh(x, y).

2.5 The positivity-preserving property

To prevent the failure of numerical solutions, the remapping algorithm, especially those

applied in the indirect ALE method to compute fluid flow problems, must maintain the pos-

itive property of certain physical parameters, such as density and internal energy. However,

even with the WENO limiter, our above remapping algorithm does not automatically keep

the remapping variables positive. Following the widely used positivity-preserving frame-

work [41, 42], we first prove our proposed first order remapping algorithm is positive under
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an appropriate time step and then prove the cell average of numerical solution from the high

order remapping algorithm can ensure the positivity of density and internal energy under

the suitable time step.

We define the set of admissible states by

G =
{
U = (ρ, m, E)T , ρ > 0, e > 0

}
,

where ρ is the density, m is the momentum which in the one-dimensional case is a scalar and

in the two-dimensional case is a vector, E is the total energy and e = E− 1
2
|m|2
ρ

is the internal

energy. G can be proven to be a convex set. A scheme is called positivity-preserving if the

new state updated by the scheme also belongs to G when starting from a set of physically

admissible states.

2.5.1 The first order positivity-preserving remapping algorithm

In this part, we will demonstrate that the first order remapping algorithm is positivity-

preserving under the appropriate time step when the upwind flux and Euler forward method

are used in one- and two-dimensional space, respectively. Taking the Euler forward time

discretization for the one-dimensional semi-discrete scheme (2.5) based on P 0 approximation

and taking the test function v = 1, the scheme can be written in the finite volume form as

Ūn+1
h,j =

△n
j

△n+1
j

Ūn
h,j −

△t

△n+1
j

[
f̂(ωj+ 1

2
,Un

h,j,U
n
h,j+1)− f̂(ωj− 1

2
,Un

h,j−1,U
n
h,j)
]
. (2.11)

Here, Ūn
h,j =

1
△n

j

∫
Kn

j
Un

h,jdx denotes the cell average value of the polynomial Un
h,j on the cell

Kn
j . For P 0 approximation, the solution Un

h,j equals to the value of the cell average Ūn
h,j.

△n
j is the cell length of Kn

j . To prove the positivity-preserving property for the fully discrete

scheme (2.11), we will show that Ūn+1
h,j is in the set of G when Ūn

h,j−1, Ū
n
h,j and Ūn

h,j+1 are

all in the set of G. There is another expression of the upwind flux (2.6)

f̂(ωj+ 1
2
,Un

h,j,U
n
h,j+1) =

1

2

(
−ωj+ 1

2
(Un

h,j +Un
h,j+1)− |ωj+ 1

2
|(Un

h,j+1 −Un
h,j)
)
. (2.12)
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Substitute the (2.12) to the equation (2.11) and we have

Ūn+1
h,j =

[
△n

j

△n+1
j

+
△t

△n+1
j

(
ωj+ 1

2
− ωj− 1

2

2
−

|ωj+ 1
2
|+ |ωj− 1

2
|

2

)]
Ūn

h,j

+
△t

△n+1
j

(
ωj+ 1

2

2
+

|ωj+ 1
2
|

2

)
Ūn

h,j+1 +
△t

△n+1
j

(
|ωj− 1

2
|

2
−

ωj− 1
2

2

)
Ūn

h,j−1.

Under the time step restriction

△tn ⩽ 1

2

min
j

△n
j

max
j

|ωj+ 1
2
|
, (2.13)

we notice that Ūn+1
h,j is a convex combination of Ūn

h,j−1, Ū
n
h,j and Ūn

h,j+1.

Theorem 2.1. Assume
{
Ūn

h,j ∈ G, ∀j = 1, · · · , N
}

, the scheme (2.11) is positivity-preserving,

namely,
{
Ūn+1

h,j ∈ G, ∀j = 1, · · · , N
}

under the time step restriction (2.13).

Next, we take into account the first order remapping algorithm in two space dimensions.

Based on P 0 approximation and Euler forward time discretization, we take the test function

v = 1 and get the following form

Ūn+1
h =

|Kn|
|Kn+1|

Ūn
h − △t

|Kn+1|

3∑
i=1

f̂(ωi,U
n
h ,U

n
h,i,ni)li. (2.14)

Here we ignore the index j of the triangular element for simplicity; i.e., we will write Kn
j as

Kn. Ūn
h stands for the cell average value of Un

h in the cell Kn and we use the cell average

instead of the numerical solution in this part. Un
h,i, i = 1, 2, 3 are the solutions denoted

on Kn
i which are the neighbor cells of the triangular cell Kn along the i-th edge ei. li is

the length of the edge ei with the outward normal vector ni. ωi is the value of the mesh

movement velocity at the middle point of the edge. We also rewrite the upwind flux similar

to the form of the Lax-Friedrichs flux and substitute it into the equation (2.14),

Ūn+1
h =

|Kn|
|Kn+1|

(
1− △t

|Kn|

3∑
i=1

|ωi · ni|li

)
Ūn

h

+
△t

|Kn+1|

3∑
i=1

1

2
(|ωi · ni|+ (ωi · ni)) (Ū

n
h + Ūn

h,i)li.

We constrain the time step to permit the cell average value Ūn+1
h to be stated as a convex

combination of elements in G. As a result, we can derive the following theorem.
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Theorem 2.2. Assume Ūn
h ∈ G for all elements Kn, the scheme (2.14) is positivity-

preserving under the time step restriction

△tn max
Kn


3∑

i=1

|ωi · ni|li

|Kn|

 ⩽ 1.

2.5.2 The high order positivity-preserving remapping algorithm

Similar to the derivation of the positivity-preserving property of the high order remapping

algorithm on the quadrilateral meshes [15], we first prove that under the condition of ap-

propriate time step, the cell average values obtained by the high order scheme will be in the

set G. Afterwards, the numerical solutions are modified in conjunction with the positivity-

preserving limiter developed by Zhang and Shu [41] so that the values of the numerical

solutions on the quadrature points preserve nonnegativity. We limit our discussion to the

Euler forward time discretization to conserve space. As a convex combination of the Euler

forward scheme, the following results will still hold for the third-order Runge-Kutta method.

We first consider the general scheme provided by the Euler forward time discretization

of the one-dimensional semi-discrete formulation (2.5) with the test function v = 1

Ūn+1
h,j =

△n
j

△n+1
j

Ūn
h,j −

△t

△n+1
j

[
f̂(ωj+ 1

2
,Un,−

h,j+ 1
2

,Un,+

h,j+ 1
2

)− f̂(ωj− 1
2
,Un,−

h,j− 1
2

,Un,+

h,j− 1
2

)
]
. (2.15)

We apply the Gauss-Lobatto quadrature rule with qN points on the interval Kj to decompose

the cell average, where qN is the smallest integer satisfying 2qN − 3 ⩾ k. The integration

points are denoted by Sj =
{
xj− 1

2
= x̂1

j < x̂2
j · · · < x̂qN

j = xj+ 1
2

}
and the associated quadra-

ture weights are denoted by {ĉq}qNq=1 which satisfy 1
2

qN∑
q=1

ĉq = 1. The qN−point Gauss-Lobatto

rule is exact for the polynomial Uh,j(x), which implies

Ūn
h,j =

qN∑
q=1

ĉq
2
Un

h,j(x̂
q
j) =

qN−1∑
q=2

ĉq
2
Un,q

h,j +
ĉ1
2
Un,+

h,j− 1
2

+
ĉqN
2

Un,−
h,j+ 1

2

(2.16)

17



Combining the equations (2.12),(2.16), we can derive that

Ūn+1
h,j =

△n
j

△n+1
j

qN−1∑
q=2

ĉq
2
Un,q

h,j +
△t

△n+1
j

[
1

2

(
ωj+ 1

2
+ |ωj+ 1

2
|
)
Un,+

h,j+ 1
2

+
1

2

(
|ωj− 1

2
| − ωj− 1

2

)
Un,−

h,j− 1
2

]
+

△t

△n+1
j

[
1

2

(
ωj+ 1

2
+ |ωj+ 1

2
|
)
Un,−

h,j+ 1
2

+
1

2

(
|ωj− 1

2
| − ωj− 1

2

)
Un,+

h,j− 1
2

]
+

△n
j

△n+1
j

ĉqN
2

(
1− △t

△n
j

|ωj+ 1
2
|

ĉqN/2

)
Un,−

h,j+ 1
2

+
△n

j

△n+1
j

ĉ1
2

(
1− △t

△n
j

|ωj− 1
2
|

ĉ1/2

)
Un,+

h,j− 1
2

.

If we use the positivity-preserving limiter introduced later to implement Un,q
h,j ∈ G for all

q = 1, · · · , qN and j = 1, · · · , N and restrict the time step to satisfy a suitable condition,

it is easy to conclude that Ūn+1
h,j ∈ G. Note that ĉ1 = ĉqN and we can obtain the following

theorem.

Theorem 2.3. Assume Un,q
h,j ∈ G for all q = 1, · · · , qN and j = 1, · · · , N , the scheme (2.15)

is positivity-preserving under the time step restriction

△t ⩽ ĉ1
2

min
j

△n
j

max
j

|ωj+ 1
2
|
.

Next, we consider the sufficient condition to enable our high order remapping algorithm

in two space dimensions to have the positivity-preserving property. We begin with a special

quadrature rule which includes the Gauss quadrature points for the edges. The cell average

Ūn
h can be represented by

Ūn
h =

3∑
i=1

k+1∑
β=1

2

3
cβ ĉ1U

int
i,β +

L∑
γ=1

c̃γU
ĩnt
γ , (2.17)

where U ĩnt
γ and U int

i,β indicate the values of the numerical solution Uh at the quadrature points

inside and on the boundary of cell K, respectively. We define the set of all the quadrature

points on the cell K as SK . For relevant weights cβ, ĉ1, c̃γ and more detailed quadrature rules,

we refer to [42]. The scheme satisfied by the cell averages of the two-dimensional remapping

method using the first order Euler forward time discretization can be written as

Ūn+1
h =

|Kn|
|Kn+1|

Ūn
h − △t

|Kn+1|

3∑
i=1

∫
ei

f̂(ω,U int
h ,U ext

h ,ni)dl. (2.18)
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The edge integrals can be approximated by a k + 1−point Gauss quadrature formula and

we have

Ūn+1
h =

|Kn|
|Kn+1|

Ūn
h − △t

|Kn+1|

3∑
i=1

k+1∑
β=1

f̂(ωi,β,U
int
i,β ,U

ext
i,β ,ni)cβli,

where U int
i,β and U ext

i,β are the values of the DG solutions Un
h evaluated in the β−th Gauss

quadrature point on the edge ei. Similarly, ωi,β are the values of the mesh movement

velocity ω calculated in the β−th Gauss quadrature point on the edge ei. The corresponding

quadrature weights are denoted as cβ.

By some algebraic manipulations, Ūn+1
h can be rewritten as

Ūn+1
h =

|Kn|
|Kn+1|

L∑
γ=1

c̃γU
int
γ +

k+1∑
β=1

2

3
cβ ĉ1 (H1,β +H2,β +H3,β)

where

H1,β =
|Kn|
|Kn+1|

U int
1,β − 3△t

2ĉ1|Kn+1|

[
f̂(ω1,β,U

int
1,β ,U

ext
1,β ,n1)l1 − f̂(ω1,β,U

int
2,β ,U

int
1,β ,n1)l1

]
,

H2,β =
|Kn|
|Kn+1|

U int
2,β − 3△t

2ĉ1|Kn+1|

[
f̂(ω1,β,U

int
2,β ,U

int
1,β ,n1)l1 + f̂(ω2,β,U

int
2,β ,U

ext
2,β ,n2)l2

+f̂(ω3,β,U
int
2,β ,U

int
3,β ,n3)l3

]
,

H3,β =
|Kn|
|Kn+1|

U int
3,β − 3△t

2ĉ1|Kn+1|

[
f̂(ω3,β,U

int
3,β ,U

ext
3,β ,n3)l3 − f̂(ω3,β,U

int
2,β ,U

int
3,β ,n3)l3

]
.

H2,β is a formal two-dimensional first order positivity-preserving scheme, namely, the same

type as (2.14). H1,β and H3,β are formal one-dimensional first order positivity-preserving

schemes, such as the scheme (2.11). Note that Ūn+1
h is a convex combination of U int

γ and

Hi,β. We have therefore the following theorem.

Theorem 2.4. Assume that the values of the solution Uh at all points in the set SK belong

to the set G for all cell K, the scheme (2.18) is positivity-preserving under the time step

restriction

△tn max
Kn


3∑

i=1

max
β

{|ωi,β · ni|} li

|Kn|

 ⩽ 2

3
ĉ1,

where ĉ1 is the quadrature weight of Gauss-Lobatto rule for the first quadrature point.
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Remark. Theorem 2.3 and Theorem 2.4 theoretically prove that one- and two-dimensional

high order remapping algorithms are positivity-preserving under the suitable time step con-

straints, respectively. We adopt another more efficient approach in our numerical experi-

ments by relaxing the time step △tn. We implement the standard CFL condition (2.10) and

check whether all new cell averages belong to set G at each time step first. If yes, we continue

the computation. Otherwise, we need to return to the previous time step and march time

with △tn/2. This procedure is repeated if needed. Theorem 2.3 and Theorem 2.4 ensure

that we return only a finite number of times to have the cell averages belonging to the set

G.

2.5.3 The positivity-preserving limiter

For this part, we mainly refer to the content in [41]. The DG technique does not guarantee

that the numerical solution values at the quadrature points belong to the set G. The linear

scaling positivity-preserving limiter can enforce it. The purpose of this limiter is to compress

the polynomial Uj(x) toward its non-negative cell average Ūj, as shown in Figure 1. Using

the one-dimensional situation as an illustration, the specific implementation can be described

as follows.

The first step is to enforce the positivity of density. We modify the polynomial ρj(x) by

ρ̂j(x) = θ1(ρj(x)− ρ̄j) + ρ̄j,

θ1 = min{1, | ρ̄j − ε2
ρ̄j − b

|}, b = min
x∈Sj

ρj(x),

where Sj is a set of Gauss-Lobatto quadrature points in the cell Kj, ε2 is a very small positive

constant which satisfies ρ̄j ⩾ ε2 for all j. For example, we take ε2 = 10−14 in our code.

The second step is to enforce the positivity of the internal energy e. Define Ûj(x) =

(ρ̂j(x),mj(x), Ej(x))
T after the first step. For each point in Sj, if e(Ûj(x)) ⩾ 0 set θ2 = 1;

otherwise, set

θ2 = min
(x)∈Sj

e(Ūj)

e(Ūj)− e(Ûj(x))
.
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Figure 1: The schematic diagram of the positivity-preserving limiter.

Then we get the limited polynomial

Ũj(x) = θ2(Ûj(x)− Ūj) + Ūj.

Such a new polynomial can satisfy Ũj(x) ∈ G for all x ∈ Sj and keep the cell average Ūj at

the same time. This limiter can be used after the multi-resolution WENO limiter because it

does not lose the essentially non-oscillatory property by compressing the polynomial toward

the cell average. Furthermore, this limiter will not destroy conservation and accuracy, as

shown in detail in [41].

To conclude this part, we emphasize that the major procedures of the high order positivity-

preserving DG remapping method are completed. In the following section, we will test some

numerical examples to validate the accuracy, non-oscillatory, and positivity-preserving prop-

erties of our remapping algorithm. Finally, we will implement our remapping technique in

an indirect ALE approach and demonstrate its performance on the simulation of the Euler

system in one and two dimensions.

3 Numerical results for the remapping algorithm

In this section, we test the performance of our remapping algorithm in the two-dimensional

case for properties such as high order accuracy, positivity-preserving and essentially non-
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oscillation. We will not describe the one-dimensional case here since the results are similar.

We mimic the distorted mesh by smoothly moving meshes and randomly moving meshes,

which are generated by perturbing the internal vertices. For simplicity, we set the computa-

tional area as a rectangle [xl, xr]× [yl, yr]. Suppose (xm
p , y

m
p ) is the coordinate of an interior

node and the superscript m represents the times of remapping. (x0
p, y

0
p) is the coordinate of

the corresponding node of the initial mesh. The two different ways of mesh movements are

as follows.

• The smoothly moving mesh [31]

(xm
p , y

m
p ) = (x0

p, y
0
p) + Cs

m

Mr

sin

(
2πx0

p

xr − xl

)
sin

(
2πy0p
yr − yl

)
,

where Cs = 0.1. Mr is the total number of remapping.

• The randomly moving mesh

(xm
p , y

m
p ) = (x0

p, y
0
p) + Crh(r

m
x , r

m
y ),

where Cr = 0.6 and h is the smallest element diameter. rmx , rmy ∈ [−0.5, 0.5] are random

numbers.

Our remapping algorithm is validated using a suite of the cyclic remapping process [30],

which starts from the initial mesh and returns to it after remapping on the moving mesh ten

times.

3.1 Accuracy test

We tested four types of the remapping algorithms to verify the convergence: one without

any limiter, one with the multi-resolution WENO limiter, one with the positive-preserving

limiter, and one with the multi-resolution WENO limiter plus the positivity-preserving lim-

iter. The numerical results of the four remapping algorithms are respectively denoted as

uh, u
W
h , uP

h , and uW,P
h . The following smooth function with periodic boundary condition is
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selected for the accuracy test,

u(x, y) = cos8(2πx) cos8(2πy) + 10−15, 0 ⩽ x, y ⩽ 1.

The numerical calculation is performed on a set of uniform refined triangular meshes obtained

by discretizing the computational domain into 10×10, 20×20, 40×40, 80×80 and 160×160

uniform quadrilateral meshes, respectively, and then splitting each quadrilateral into two

equal triangles. We compute the error measured in the L1, L2, and L∞ norms for numerical

solution uh, i.e.,

∥ϵ∥L1 =
1∑

K∈Th
SK

∑
K∈Th

(
1

Np

Np∑
s=1

|u(xs
K , y

s
K)− uh(x

s
K , y

s
K)|SK

)
,

∥ϵ∥L2 =

√√√√√ 1∑
K∈Th

SK

∑
K∈Th

(
1

Np

Np∑
s=1

(u(xs
K , y

s
K)− uh(xs

K , y
s
K))

2 SK

)
,

∥ϵ∥L∞ = max
K∈Th

max
s

|u(xs
K , y

s
K)− uh(x

s
K , y

s
K)|.

where Np is the number of quadrature points and the quadrature points {(xs
K , y

s
K)} on the tri-

angle K are obtained by the affine transformation (2.8) from the reference triangle K to K. In

practice, we take Np = 21 and the corresponding points on K are
{(

i
5
, j
5

)
, j = 0, · · · , 5, i = 0, · · · , 5− j

}
.

In Table 3.1, we summarize the remapping errors on the smoothly moving mesh and nu-

merical rates of convergence. We also compute the initial L2 projection uE
h (x, y) of u(x, y)

on the initial mesh and calculate the error ||uE
h −u||. In addition, we show the proportion of

the cells being modified by the positivity-preserving limiter, denoted as ‘Npp’. The last col-

umn ‘M ’ indicates the total number of remapping steps. Table 3.2 shows the corresponding

results on the randomly moving mesh. From Table 3.1 and Table 3.2, we can clearly see that

our high order DG remapping method achieves the designed order of accuracy in the L1, L2

and L∞ norms respectively, no matter whether the limiters are applied or not. Moreover,

when using the WENO limiter in the remapping algorithm for accuracy testing, we artifi-

cially mark each triangular cell as a troubled cell instead of using the detection technique,

in order to fully observe accuracy after the limiter is applied everywhere. Obviously, the
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new multi-resolution WENO limiter maintains the designed order of accuracy. Furthermore,

compared to the high order remapping algorithm without the positivity-preserving limiter,

the number of remapping steps in the high order positivity-preserving remapping algorithm

is mostly the same or only increases slightly.

Additionally, we provide the flipping mesh setup shown below to confirm that our remap-

ping method is not constrained by mesh movement, i.e., it can remap between the old and

new meshes when the mesh nodes move beyond the size of their neighboring cells. We give

the initial mesh configuration by discretizing the computational region into non-uniform

rectangular cells and then splitting each quadrilateral into two equal triangles. The mesh

size of the rectangular cells are

h1
x < h2

x < · · · < hNx
x , hNx

x = 2h1
x,

where the mesh size hi
x = xi+ 1

2
− xi− 1

2
and the y direction is divided equally. We design the

flipping mesh in the same way and its rectangular mesh satisfies

h̃1
x = hNx

x , · · · , h̃Nx
x = h1

x.

We remap from the initial mesh to the flipping mesh and return to the initial mesh for

10 times. Table 3.3 shows the results of these three types of remapping algorithms on the

flipping mesh. All of them have the expected third-order accuracy, which indicates that our

remapping method can also have good accuracy when dealing with large mesh movements.

3.2 Non-oscillatory and positivity-preserving tests

In this subsection, we test the following discontinuous function on the randomly moving

meshes to verify the performance of our remapping algorithm, in particular, the essentially

non-oscillatory and positivity-preserving properties. We choose a cubical pyramid function
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Table 3.1: Errors and orders of accuracy of the remapping algorithms on the smoothly

moving meshes. The mesh is composed of 2×Nx ×Ny triangular cells.

||uEh − u||
Mesh size L1 order L2 order L∞ order Npp M

2× 10× 10 5.688E-03 1.602E-02 1.706E-01 - -
2× 20× 20 7.208E-04 2.98 2.030E-03 2.98 2.425E-02 2.81 - -
2× 40× 40 9.253E-05 2.96 2.651E-04 2.94 3.434E-03 2.82 - -
2× 80× 80 1.165E-05 2.99 3.351E-05 2.98 4.407E-04 2.96 - -
2× 160× 160 1.459E-06 3.00 4.200E-06 3.00 5.538E-05 2.99 - -

||uh − u||
Mesh size L1 order L2 order L∞ order Npp M

2× 10× 10 6.308E-03 1.710E-02 1.994E-01 - 37
2× 20× 20 8.823E-04 2.84 2.201E-03 2.96 2.929E-02 2.77 - 70
2× 40× 40 1.197E-04 2.88 3.013E-04 2.87 4.142E-03 2.82 - 130
2× 80× 80 1.517E-05 2.98 4.062E-05 2.89 5.172E-04 3.00 - 256
2× 160× 160 1.856E-06 3.03 5.159E-06 2.98 8.654E-05 2.58 - 505

||uWh − u||
Mesh size L1 order L2 order L∞ order Npp M

2× 10× 10 6.650E-03 1.735E-02 1.843E-01 - 37
2× 20× 20 9.173E-04 2.86 2.315E-03 2.91 3.288E-02 2.49 - 70
2× 40× 40 1.214E-04 2.92 3.060E-04 2.92 4.151E-03 2.99 - 130
2× 80× 80 1.519E-05 3.00 4.064E-05 2.91 5.172E-04 3.00 - 256
2× 160× 160 1.856E-06 3.03 5.159E-06 2.98 8.654E-05 2.58 - 505

||uPh − u||
Mesh size L1 order L2 order L∞ order Npp M

2× 10× 10 8.556E-03 1.899E-02 1.199E-01 0.556 37
2× 20× 20 9.028E-04 3.24 2.213E-03 3.10 2.929E-02 2.03 0.323 70
2× 40× 40 1.198E-04 2.91 3.013E-04 2.88 4.142E-03 2.82 0.157 130
2× 80× 80 1.517E-05 2.98 4.062E-05 2.89 5.172E-04 3.00 0.064 260
2× 160× 160 1.856E-06 3.03 5.159E-06 2.98 8.654E-05 2.58 0.017 576

||uW,P
h − u||

Mesh size L1 order L2 order L∞ order Npp M

2× 10× 10 9.715E-03 2.116E-02 1.352E-01 0.501 37
2× 20× 20 9.373E-04 3.37 2.326E-03 3.19 3.288E-02 2.04 0.323 70
2× 40× 40 1.215E-04 2.95 3.060E-04 2.93 4.151E-03 2.99 0.157 130
2× 80× 80 1.519E-05 3.00 4.064E-05 2.91 5.172E-04 3.00 0.064 260
2× 160× 160 1.856E-06 3.03 5.159E-06 2.98 8.654E-05 2.58 0.017 576
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Table 3.2: Errors and orders of accuracy of the remapping algorithms on the randomly

moving meshes. The mesh is composed of 2×Nx ×Ny triangular cells.

||uEh − u||
Mesh size L1 order L2 order L∞ order Npp M

2× 10× 10 5.688E-03 1.602E-02 1.706E-01 - -
2× 20× 20 7.208E-04 2.98 2.030E-03 2.98 2.425E-02 2.81 - -
2× 40× 40 9.253E-05 2.96 2.651E-04 2.94 3.434E-03 2.82 - -
2× 80× 80 1.165E-05 2.99 3.351E-05 2.98 4.407E-04 2.96 - -
2× 160× 160 1.459E-06 3.00 4.200E-06 3.00 5.538E-05 2.99 - -

||uh − u||
Mesh size L1 order L2 order L∞ order Npp M

2× 10× 10 6.620E-03 1.623E-02 1.918E-01 - 35
2× 20× 20 8.485E-04 2.96 2.043E-03 2.99 3.184E-02 2.59 - 41
2× 40× 40 1.066E-04 2.99 2.561E-04 3.00 4.398E-03 2.86 - 44
2× 80× 80 1.286E-05 3.05 3.140E-05 3.03 5.573E-04 2.98 - 85
2× 160× 160 1.559E-06 3.04 3.840E-06 3.03 7.334E-05 2.93 - 176

||uWh − u||
Mesh size L1 order L2 order L∞ order Npp M

2× 10× 10 6.897E-03 1.642E-02 1.830E-01 - 35
2× 20× 20 8.623E-04 3.00 2.110E-03 2.96 3.376E-02 2.44 - 41
2× 40× 40 1.071E-04 3.01 2.579E-04 3.03 4.404E-03 2.94 - 44
2× 80× 80 1.287E-05 3.06 3.142E-05 3.04 5.573E-04 2.98 - 85
2× 160× 160 1.559E-06 3.04 3.840E-06 3.03 7.334E-05 2.93 - 176

||uPh − u||
Mesh size L1 order L2 order L∞ order Npp M

2× 10× 10 8.206E-03 1.751E-02 1.176E-01 0.556 35
2× 20× 20 8.683E-04 3.24 2.066E-03 3.08 3.184E-02 1.89 0.463 41
2× 40× 40 1.062E-04 3.03 2.561E-04 3.01 4.398E-03 2.86 0.300 44
2× 80× 80 1.286E-05 3.05 3.140E-05 3.03 5.573E-04 2.98 0.142 85
2× 160× 160 1.559E-06 3.04 3.840E-06 3.03 7.334E-05 2.93 0.046 176

||uW,P
h − u||

Mesh size L1 order L2 order L∞ order Npp M

2× 10× 10 8.457E-03 1.834E-02 1.626E-01 0.524 35
2× 20× 20 8.834E-04 3.26 2.132E-03 3.10 3.375E-02 2.27 0.463 41
2× 40× 40 1.067E-04 3.05 2.579E-04 3.05 4.404E-03 2.94 0.300 44
2× 80× 80 1.287E-05 3.05 3.142E-05 3.04 5.573E-04 2.98 0.142 85
2× 160× 160 1.559E-06 3.04 3.840E-06 3.03 7.334E-05 2.93 0.046 176
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Table 3.3: Errors and orders of accuracy of the remapping algorithms on the flipping moving

meshes. The mesh is composed of 2×Nx ×Ny triangular cells.

||uEh − u||
Mesh size L1 order L2 order L∞ order Npp M

2× 10× 10 6.093E-03 1.794E-02 2.554E-01 - -
2× 20× 20 7.998E-04 2.93 2.408E-03 2.90 4.811E-02 2.41 - -
2× 40× 40 1.027E-04 2.96 3.108E-04 2.95 6.535E-03 2.88 - -
2× 80× 80 1.291E-05 2.99 3.923E-05 2.99 8.472E-04 2.95 - -
2× 160× 160 1.615E-06 3.00 4.911E-06 3.00 1.052E-04 3.01 - -

||uh − u||
Mesh size L1 order L2 order L∞ order Npp M

2× 10× 10 1.300E-02 2.726E-02 2.315E-01 - 220
2× 20× 20 2.375E-03 2.45 5.424E-03 2.33 6.092E-02 1.93 - 410
2× 40× 40 3.735E-04 2.67 9.227E-04 2.56 1.062E-02 2.52 - 790
2× 80× 80 5.626E-05 2.73 1.505E-04 2.62 1.821E-03 2.54 - 1550
2× 160× 160 8.011E-06 2.81 2.250E-05 2.74 2.735E-04 2.73 - 3070

||uWh − u||
Mesh size L1 order L2 order L∞ order Npp M

2× 10× 10 1.676E-02 3.407E-02 2.172E-01 - 220
2× 20× 20 2.431E-03 2.78 5.769E-03 2.56 6.713E-02 1.69 - 410
2× 40× 40 3.790E-04 2.68 9.414E-04 2.62 1.108E-02 2.60 - 790
2× 80× 80 5.636E-05 2.75 1.508E-04 2.64 1.831E-03 2.60 - 1550
2× 160× 160 8.012E-06 2.81 2.251E-05 2.74 2.740E-04 2.74 - 3070

||uPh − u||
Mesh size L1 order L2 order L∞ order Npp M

2× 10× 10 1.748E-02 3.776E-02 2.554E-01 0.202 220
2× 20× 20 2.266E-03 2.95 5.352E-03 2.82 6.112E-02 2.06 0.174 410
2× 40× 40 3.572E-04 2.67 9.166E-04 2.55 1.062E-02 2.52 0.145 790
2× 80× 80 5.542E-05 2.69 1.503E-04 2.61 1.821E-03 2.54 0.089 1550
2× 160× 160 7.984E-06 2.80 2.250E-05 2.74 2.736E-04 2.73 0.045 3106

||uW,P
h − u||

Mesh size L1 order L2 order L∞ order Npp M

2× 10× 10 2.070E-02 4.353E-02 2.615E-01 0.191 220
2× 20× 20 2.357E-03 3.13 5.735E-03 2.92 6.732E-02 1.96 0.174 410
2× 40× 40 3.627E-04 2.70 9.355E-04 2.62 1.108E-02 2.60 0.145 790
2× 80× 80 5.552E-05 2.71 1.506E-04 2.64 1.831E-03 2.60 0.089 1550
2× 160× 160 7.985E-06 2.80 2.251E-05 2.74 2.740E-04 2.74 0.045 3106
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[20] as the test function

u(x, y) =


1 R ⩽ 0.08

0.66 0.08 < R ⩽ 0.2

0.33 0.2 < R ⩽ 0.38

10−15 R > 0.38

, R = |x− 0.5|+ |y − 0.5|, 0 ⩽ x, y ⩽ 1 .

We conduct the test on unstructured triangular meshes with 14120 cells. Four remapping

procedures are performed depending on whether or not the limiters are employed: without

any limiter, with the multi-resolution WENO limiter, with the positivity-preserving limiter,

and with two limiters. The remapping results of these algorithms are shown in Figure 2 and

the values at 64 points at the cut line y = 0.5 and x = y are shown in Figure 3 and Figure

4.

Compared with the remapping results without any limiter, the remapping results with the

multi-resolution WENO limiter can maintain the essentially non-oscillatory property near the

discontinuous regions. Besides, by applying the WENO limiter to the remapping algorithm,

it is impossible to eliminate the number of cells that generate negative cell averages (marked

in white in Figure 2). Thus a positive-preserving limiter is necessary to compute numerical

examples with discontinuous solutions. As one can see the remapping results produced by

the remapping algorithm with the positive-preserving limiter can ensure that the solutions

remain positive. During the remapping process of the remapping algorithm with two limiters,

there are about 24.3% of the cells which have been modified by the multi-resolution WENO

limiter and about 9.4% of the cells which have been modified by the positivity-preserving

limiter. Overall, our remapping results with these two limiters can handle the overshoots

near the discontinuities and preserve positivity well.

4 Numerical tests for the ALE simulation

This section aims to verify the good performance of our remapping algorithm applied in the

indirect ALE method for the compressible Euler equations in one and two space dimensions.

We refer to the indirect ALE method in [23], which is constructed based on the ALE-DG
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Figure 2: The non-oscillatory and positivity-preserving tests for the discontinuous profiles

by remapping method. The white symbols in the subgraphs (b) and (c) represent the cells

with negative cell averages. 29
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Figure 3: The remapping results at the cut line y = 0.5. Top right: the zoomed-in subfigure

at x ∈ [0.41, 0.46]. Bottom right: the zoomed-in subfigure at x ∈ [0.85, 0.89].
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Figure 4: The remapping results at the cut line x = y. Top right: the zoomed-in subfigure

at x ∈ [0.38, 0.42]. Bottom right: the zoomed-in subfigure at x ∈ [0.68, 0.73].
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method developed in [17,18]. We will use this Lagrangian type DG scheme to solve the Euler

equations with periodic rezone and remapping steps to avoid the failure of the simulation led

by computational mesh undergoing distortion or large deformation. For each numerical test

problem we will use different rezone strategies. In order to obtain better numerical results,

both the multi-resolution WENO limiter and the positive-preserving limiter will be used in

the remapping algorithm. The remapping of vector functions can be performed component

by component, except for the positivity-preserving procedure of density and internal energy,

which would require us to consider the vector of conserved variables as one entity. To

achieve this, we first utilize the positivity-preserving limiter for the density ρ, then we limit

the momentum, total energy and the modified density to ensure positivity of the internal

energy e.

4.1 Numerical tests for the one-dimensional Euler equation

In this subsection, we consider the compressible Euler equation of gas dynamics in one

dimension:
∂

∂t

 ρ

ρu

E

+
∂

∂x

 ρu

ρu2 + p

u(E + p)

 = 0

where ρ is the density, u is the fluid velocity, E is the total energy, p = (γ − 1)(E − 1
2
ρu2) is

the pressure and γ is a constant that depends on the particular gas under consideration.

Example 4.1. We first consider the accuracy test in one dimension [12]. The initial

condition is given as

ρ(x, 0) =
1 + 0.2 sin(x)

2
√
3

, u(x, 0) =
√
γρ(x, 0), p(x, 0) = ρ(x, 0)γ.

The computational domain is set to be [0, 2π] with periodic boundary conditions. We follow

the setting in the reference [17] that when periodic boundary conditions are applied in the

ALE framework, the first point x 1
2

and last point xN+ 1
2

move at the same speed. The values

at the boundary points are obtained from the periodicity of the solution, i.e., u−
h, 1

2

= u−
h,N+ 1

2
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and u+
h,N+ 1

2

= u+
h, 1

2

. Similar strategy is adopted in two dimensions. We take γ = 3 , which

allows us to verify that 2
√
3ρ(x, t) is the exact solution of the Burgers equation:

µt +

(
µ2

2

)
x

= 0, µ(x, 0) = 1 + 0.2 sin(x),

and the exact solutions u and p satisfy:

u(x, t) =
√
γρ(x, t), p(x, t) = ρ(x, t)γ.

We present the numerical results for density at t = 0.3 obtained by the indirect ALE approach

with our remapping algorithm. After every 10 Lagrangian steps, we rezone the old mesh to

the new uniform mesh and apply our remapping procedure. Table 4.1 shows the error on

the different sizes of the mesh 32, 64, 128, 256, 512 and it can be shown that the ALE scheme

have achieved the designed third-order accuracy.

Table 4.1: Numerical convergence results of the indirect ALE-DG scheme for one-dimensional

Euler equation at t = 0.3.

Mesh L1 order L2 order L∞ order
32 2.612E-06 4.009E-06 1.593E-05
64 3.248E-07 3.01 4.910E-07 3.03 1.892E-06 3.07
128 4.046E-08 3.00 6.052E-08 3.02 2.155E-07 3.13
256 5.251E-09 2.95 7.776E-09 2.96 2.409E-08 3.16
512 7.656E-10 2.78 1.121E-09 2.79 3.649E-09 2.72

Example 4.2. Next we consider the Lax problem of the Euler system with the initial

condition

(ρ, u, p) =


(0.445, 0.698, 3.528) , x < 0

(0.5, 0, 0.571) , x > 0
γ = 1.4.

The computational domain is [−5, 5] and the number of cells is N = 100. We use the indirect

ALE-DG method to compute the solution until t = 1.3 and perform the remapping and the

rezoning step every 20 time steps when t > 1.0. To demonstrate the applicability of the

multi-resolution WENO limiter in the simulation of compressible fluid, we calculate the Lax

problem using the indirect ALE methods with and without this limiter in remapping step.
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In Figure 5 we see that the ALE-DG method equipped with the multi-resolution WENO

limiter not only maintains the advantages of the Lagrangian type scheme, that is, there very

few transition points along the contact discontinuity, but also handles the overshoots very

well.

X

D
en

si
ty

-4 -2 0 2 40.2

0.4

0.6

0.8

1

1.2

1.4

(a) ALE-DG

X

D
en

si
ty

-4 -2 0 2 40.2

0.4

0.6

0.8

1

1.2

1.4

(b) ALE-DG method with WENO limiter

Figure 5: Comparison of solutions for the Lax problem calculating by the ALE-DG method

with (right) and without (left) the multi-resolution WENO limiter. The black solid line is

the reference solution. The red points represent the ALE-DG solution.

Example 4.3. We now consider the interaction of two blast waves, with the initial

condition

(ρ, u, p) =


(1, 0, 1000) , x ∈ [0, 0.1)

(1, 0, 0.01) , x ∈ [0.1, 0.9)

(1, 0, 100) , x ∈ [0.9, 1]

γ = 1.4.

We apply our remapping procedure and the rezoning method every 50 time steps after

t > 0.03. The numerical results of the density for two ALE-DG schemes at time t = 0.038

with N = 200 cells are displayed in Figure 6. Compared to the reference solution and

the ALE-DG solution without limiter, the indirect ALE method with the multi-resolution

WENO limiter handles the overshoots effectively.
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Figure 6: Comparison of solutions for the blast wave problem calculating by the ALE-DG

method with (right) and without (left) the multi-resolution WENO limiter. The black solid

line is the reference solution. The red points represent the ALE-DG solution.

4.2 Numerical tests for the two-dimensional Euler equations

Consider the two-dimensional Euler system

∂

∂t


ρ

ρu

ρv

E

+
∂

∂x


ρu

ρu2 + p

ρuv

u(E + p)

+
∂

∂y


ρv

ρuv

ρv2 + p

v(E + p)

 = 0

where ρ, u and v denote the density, x-direction velocity and y-direction velocity, respectively.

E is the total energy, p = (γ − 1)(E − 1
2
ρ(u2 + v2)) is the pressure and γ is a constant that

depends on the particular gas under consideration.

Example 4.4. First we conduct an accuracy test for the 2D Euler equations [12] on

[0, 4π]× [0, 4π]. The initial condition is:

ρ(x, y, 0) =
1 + 0.2 sin(x+y

2
)

2
√
3

, u(x, y, 0) = v(x, y, 0) =
√
γρ(x, y), p(x, y, 0) = ρ(x, y, 0)γ.

We set γ = 3 , and it could be easily verified that
√
6ρ(x, y, t) is the exact solution of the
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2D Burgers equation:

µt +

(
µ2

2

)
x

+

(
µ2

2

)
y

= 0, µ(x, y, 0) = 1 + 0.2 sin(
x+ y

2
),

and

u(x, y, t) = v(x, y, t) =

√
γ

2
ρ(x, y, t), p(x, y, t) = ρ(x, y, t)γ.

To assess the convergence order of the indirect ALE-DG scheme, the numerical calculation is

performed on a set of initially uniform refined triangular meshes. The initial computational

domain is discretized into 10×10, 20×20, 40×40, 60×60 and 80×80 uniform quadrilateral

meshes, respectively. And then each quadrilateral is split into two triangles. The final

computational time is 0.3. We perform the accuracy test in an Eulerian regime, including

setting the new mesh as the initial mesh after each Lagrangian step and then applying the

remapping algorithm. We record the CPU time measured in seconds on a ThinkCentre with

8GB RAM. We show the numerical results of density in Table 4.2. It can be seen that the

convergence order have achieved the designed third-order accuracy.

Table 4.2: Numerical convergence results of the indirect ALE-DG scheme in the Eulerian

regime for two-dimensional Euler equations at t = 0.3.

Mesh size L1 order L2 order L∞ order CPU(s)
2× 10× 10 4.695E-05 6.060E-05 1.880E-04 1.06
2× 20× 20 8.187E-06 2.52 1.078E-05 2.49 3.575E-05 2.39 8.22
2× 40× 40 1.095E-06 2.90 1.523E-06 2.82 5.485E-06 2.70 65.00
2× 60× 60 3.343E-07 2.93 4.544E-07 2.98 1.617E-06 3.01 221.69
2× 80× 80 1.462E-07 2.87 1.990E-07 2.87 6.842E-07 2.99 537.20

Example 4.5. The Sedov problem [35] describes the evolution of a blast wave generated

by an intense explosion at the origin (0, 0). The computational domain is a [0, 1.1]× [0, 1.1]

rectangle which is discretized into 2048 triangular cells with γ = 1.4. The initial state is

ρ = 1, u = 0, v = 0.

The internal energy of the system is 10−13 almost everywhere except the only cell K contained
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the origin where it has a value of e = 0.244816
|K| . Reflective boundary conditions are applied on

the four boundaries.
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Figure 7: The Sedov problem of the ALE-DG scheme.

We use the indirect ALE method with our remapping algorithm to run the Sedov problem

to the final time t = 1. The rezone step, which uses a simple smoothing strategy on the

inner points, and the remapping step are implemented every 20 time steps after t = 0.5 in

the ALE computation. The density and pressure profiles of the Sedov problem is shown in

the Figure 7. As one can see, the ALE-DG scheme captures the shock precisely and the

mesh quality is well after adjusting the inner mesh. The density simulation as a function of

the radius is presented in Figure 8 and one can observe that our results are comparable to

the reference results. The radial nature of the solution is well preserved.

Example 4.6. Next, we consider the Noh problem [32] with the initial condition as

ρ = 1, ur = −1, e = 10−14,

where ur is the radial velocity and take γ = 5/3. The computational domain is [0, 1]× [0, 1].

For the left and bottom boundaries, reflective boundary conditions are considered, whereas

for the right and top boundaries, free boundary conditions are considered. We perform the

36



Radius

D
en

si
ty

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6
Exact
ALE-DG

Figure 8: Scatter plot of the density value for each cell as a function of the radial position.

rezoning and the remapping procedures every 20 time steps. The ALE-DG method calculates

the Noh problem in two cases, namely, whether the remapping step includes the multi-

resolution WENO limiter or not. We present the density contour and scatter plot results at

time t = 0.6 with 2048 triangular cells in Figure 9. By comparing with the ALE-DG method

without WENO limiter, we can see that the density peak obtained by the new indirect

ALE-DG scheme with the multi-resolution WENO limiter in the remapping algorithm is in

good agreement with the exact solution. As the initial internal energy is extremely close to

0 and the numerical solutions may be negative, making the scheme unstable, the positivity-

preserving limiter is required for this test. We have recorded the cells modified by the

positivity-preserving limiter during the remapping and these cells have been labeled in white

color in Figure 10. According to statistics, the multi-resolution WENO limiter is utilized on

around 2.17% of the cells and the positivity-preserving limiter is utilized on around 14.7%

of the cells. Numerical experiments indicate the good behavior of the resulting scheme in its

robustness and sharp shock transition.

Example 4.7. The Saltzman test case [11] describes the motion of a piston which is

impinging on a fluid at rest contained in the initial computational domain given by [0, 1]×
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Figure 9: The Noh problem of the ALE-DG scheme. Left: density distribution with mesh

configuration ; Right: scatter plot of numerical scheme compared with the exact solution;

Top row: The result of the ALE-DG method without WENO limiter in remapping step;

Bottom row: The result of the the ALE-DG method with WENO limiter in remapping step.
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Figure 10: The pressure contour of the Noh problem. The white symbols represent the cells

that have been modified by the positivity-preserving limiter during the remapping phase.

[0, 0.1]. The initial condition is

ρ = 1, u = 0, v = 0, e = 10−10,

and the adiabatic gas constant γ = 5/3. The left boundary is a moving piston with the fixed

velocity u = 1. Reflective boundary conditions are considered everywhere except for the

piston. The initial mesh with 640 triangular cells is shown in Figure 11. The moving piston

generates a strong shock wave and the cells which lie near the piston are highly compressed

during the simulation. Therefore, the indirect ALE method is the best choice to solve the

Salzmann problem.
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Figure 11: The initial Saltzman mesh.

In the rezone step of this problem, we preserve the y-coordinates unchanged and modify
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Figure 12: The density contour of the Saltzman problem of the ALE-DG scheme at output

times t = 0.7 (top) and t = 0.9 (bottom).
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Figure 13: Scatter plot of density values of the Saltzman problem and comparison against

the analytical solution.
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the inner point Pl(xl, yl) in the x- direction as

x̃l =
1

m

m∑
s=1

xl,s

where xl,s, 1 ⩽ s ⩽ m represent the x-coordinates of the neighbors of Pl. After adjusting the

computational mesh and applying the remapping procedure every 10 time steps, we calculate

the Saltzman problem to the time t = 0.7 and t = 0.9 using the indirect ALE-DG scheme and

display the density contours in Figure 12. The density scatter plots are shown in Figure 13,

along with a comparison against the analytical solution. We can observe that the calculated

results agree favorably with the analytical solution. It demonstrates the robustness of the

ALE method with our remapping algorithm in handling large deformation problems.

Example 4.8. Finally, we consider the problem proposed by Dukowicz and Meltz [11]

which is also a piston driven problem. The computational domain is composed of two regions

with different densities but equal pressure. At the initial time, the states and regions are

Left region : ρL = 1, uL = 0, vL = 0, pL = 1,

Coordinate of vertexes : (0, 0), (1, 0), (1 + 1.5
√
3, 1.5), (0, 1.5),

Right region : ρR = 1.5, uR = 0, vR = 0, pR = 1,

Coordinate of vertexes : (1, 0), (3, 0), (3 + 1.5
√
3, 1.5), (1 + 1.5

√
3, 1.5).

In both regions γ = 1.4. The schematic diagram of Dukowicz problem is shown in Figure

14. Figure 15 shows the initial computational mesh with 4000 triangular cells. The upper

and lower boundaries are reflective and the left boundary is a piston, which moves from the

left with velocity 1.48.

We rezone the mesh by maintaining the y- coordinates unchanged and redistributing the

interior points Pl in the x- direction such that they are evenly spaced apart. This time, the

mesh rezone method and our remapping procedure are implemented every 30 time steps.

We run this problem to a time of 1.3 just before the shock would leave the right region. The

density contour calculated by the indirect ALE-DG scheme is displayed in Figure 16, which

is in good agreement with the exact solution in [11]. It is obvious that the interface along
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Figure 15: The initial Dukowicz mesh with 4000 triangular cells.
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Figure 16: The Dukowicz problem of the ALE-DG scheme at t = 1.3.
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with the incident and the transmitted shocks is sharply kept.

5 Concluding remarks

In this paper, for the simulation of the compressible fluid flow with the indirect ALE method

based on DG framework, we develop a high order, essentially non-oscillatory and positivity-

preserving DG remapping method in one and two dimensions. This remapping approach is

based on solving the trivial equation ∂u
∂t

= 0 on a moving mesh, with the old mesh before

remapping as the initial mesh at t = 0 and the new mesh after remapping as the final mesh

at t = T . The relatively mild smoothness requirement (Lipschitz continuity) on the mesh

movement velocity, which ensures the high order accuracy of the scheme, is used to calculate

the final pseudo-time T . Our remapping algorithm does not need to calculate the intersection

regions and is applicable for meshes with the same topology but otherwise arbitrary mesh

deformation. Different from the other remapping algorithms, the final pseudo-time T in our

remapping algorithm depends on the magnitude of the mesh movement. Therefore, our new

algorithm is more efficient in dealing with remapping problems with mild grid movement.

We apply the multi-resolution WENO limiter to suppress spurious oscillations near strong

discontinuities and simultaneously keep the original order of accuracy in smooth regions. To

further guarantee that the remapping results retain the positivity of the remapping variables,

we apply the positivity-preserving limiter valid under the suitable time step constraint.

Numerical examples have been presented to verify the convergence order, non-oscillation and

positivity preservation of the scheme. Finally, the above good properties are also verified

on the indirect ALE method with our remapping algorithm simulating 1D and 2D Euler

equations. In our future work we will extend this remapping algorithm to three dimensions

and design 3D higher-order conservative positivity-preserving ALE methods based on our

remapping algorithm.
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