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Abstract

The arbitrary Lagrangian-Eulerian (ALE) method is widely used in the field of compress-
ible multi-material and multi-phase flow problems. In order to implement the indirect ALE
approach for the simulation of compressible flow in the context of high order discontinuous
Galerkin (DG) discretizations, we present a high order positivity-preserving DG remapping
method based on a moving mesh solver in this paper. This remapping method is based on

the ALE-DG method developed by Klingenberg et al. [17, 18] to solve the trivial equation

u
ot

mesh after remapping at ¢ = T. An appropriate selection of the final pseudo-time T' can

= 0 on a moving mesh, which is the old mesh before remapping at ¢ = 0 and is the new

always satisfy the relatively mild smoothness requirement (Lipschitz continuity) on the mesh
movement velocity, which guarantees the high order accuracy of the remapping procedure.
We use a multi-resolution weighted essentially non-oscillatory (WENQO) limiter which can
keep the essentially non-oscillatory property near strong discontinuities while maintaining
high order accuracy in smooth regions. We further employ an effective linear scaling limiter
to preserve the positivity of the relevant physical variables without sacrificing conservation
and the original high order accuracy. Numerical experiments are provided to illustrate the
high order accuracy, essentially non-oscillatory performance and positivity-preserving of our
remapping algorithm. In addition, the performance of the ALE simulation based on the DG
framework with our remapping algorithm is examined in one- and two-dimensional Euler
equations.
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1 Introduction

For the numerical simulation of computational fluid dynamics (CFD), the Eulerian frame-
work and the Lagrangian framework are two classical approaches. In the Eulerian framework,
the fluid flows through a fixed mesh. It has strong robustness and can be used in the flow
field with large deformation, but getting the precise physical interface is challenging. The
Lagrangian framework, in which the mesh moves with the fluid velocity, can naturally and
precisely track the interface between different materials and can capture the contact dis-
continuities sharply. Nevertheless, the computing process in the flow field with significant
deformation may be terminated due to mesh distortion. The arbitrary Lagrangian-Eulerian
(ALE) approach, which allows the grid points to move with an arbitrary velocity, could
combine the best properties of the Lagrangian method and the Eulerian method. The ALE
method has been favored in computing compressible flow with large deformation and is flex-
ible in dealing with multi-material problems and the problems with moving domains. The
simulations of the compressible Euler equations using the ALE technique have attracted a
lot of scientific attention [2,13,14,17,21,38,39,43].

Generally, ALE methods can be implemented in two manners, i.e., the direct ALE method
and the indirect ALE method. The indirect ALE method consists of three individual steps: a
Lagrangian step, a rezoning step and a remapping step. In the Lagrangian step, the solution
and the computational mesh are updated simultaneously. The nodes of the computational
mesh are adjusted to more optimal positions during the rezoning step to improve the quality
of the mesh and to relieve the error caused by mesh deformation. The remapping step is
then performed, where the Lagrangian solutions are conservatively transferred from the old
distorted Lagrangian mesh to the new rezoned mesh. The last two steps are as critical to the
accuracy of the overall simulation as the first step since they must preserve the characteristic
mesh features as well as the essential mathematical and physical properties of the Lagrangian
solution.

In the application of computational fluid dynamics, we can classify the indirect ALE



framework as based on the finite volume (FV) method [10, 21, 38] or the Runge-Kutta dis-
continuous Galerkin (RK-DG) method [13,17,39]. The numerical solution of the DG method
is approximated by polynomials within each element. Hence it is easy to handle problems
including discontinuities. It is also flexible for complex mesh geometries and unstructured
meshes. Due to the excellent compactness and high order accuracy of the DG method, it has
been widely applied to deal with fluid dynamic problems. The type of solution projected in
the remapping phase is determined by the discretization methods applied in the Lagrange
phase. The remapping stage of the indirect ALE-FV technique transfers the cell averages
from the old mesh to the new mesh. There has been much research on this strategy given
in [5,9,15,20-22,30]. Under the indirect ALE framework in conjunction with the DG ap-
proach, it is necessary to transfer the high order polynomials to a different set of high order
polynomials defined on the new rezoned mesh while maintaining good performance. In this
paper, we concentrate on the remapping step in the indirect ALE framework together with
the DG method.

There are two fundamentally different strategies for the remapping method. The intersection-
based remapping method, expressed as an integral statement of conservation, can be used
for the two meshes that are entirely independent of one another. The intersections between
the old and the new mesh are precisely computed in this method to determine the contri-
butions of the old cells to the new cells [3,5,21-23,39]. It is suitable for dealing with large
flow distortions and large deformation problems. Although this strategy is intuitive, it has
a considerable computational cost due to the construction of intersections, especially for
curved meshes or higher dimensional situations.

Another common way of remapping is the transport equation based (or flux-based)
remapping method. The fundamental premise of this approach is that old and new meshes
have the same number of cells and the same mesh connectivity topology, which can be
viewed as a deformation of each other. This strategy expresses the remapping procedure

as a dynamic process controlled by a linear transport equation. If the mesh optimiza-



tion results in little alterations to the original mesh, the node trajectories are restricted to
the nearest neighbor cells, the remapping can be expressed as a flux-form transport algo-
rithm [9, 20, 30, 38]. By solving a linear transport equation over a pseudo-time interval, it
is possible to reduce the limits on the movement of grid nodes, for which there is a lot of
research [1,2,8,24-26,28,29,33,36,40]. Among them, the authors in [8,25,26] design such an
interpolation scheme for the finite element and finite volume schemes on the moving mesh,
respectively. This format works with small mesh deformation and requires only one pseudo-
time step to complete the interpolation. Ortega and Scovazzi [33] propose a conservative
synchronized remap algorithm with nodal finite elements. They point out that the geometric
conservation law (GCL) is the fundamental link between advection and remap algorithms.
Lipnikov and Morgan [28,29] provide a high order conservative remap for DG schemes on
curved polygonal meshes, extending it to three dimensions. The authors in [40] use the DG
method to solve the linear time-dependent equation on deforming meshes and combine it
with the positivity-preserving limiter to develop a high order, conservative, and positivity-
preserving remapping method applied to radiative transfer for moving grid DG simulations.
The above discussed approach avoids accurate calculation of the intersection area between
the old and new grid cells, thus reducing complexity and computational cost.

In this paper, we will discuss the design of the high order DG remapping method which
will be used in the indirect ALE framework to simulate the compressible fluid flow. Besides
the high order accuracy, we also need to take into account other properties such as conserva-
tion, positivity-preserving and essentially non-oscillation. For the simulation of compressible
fluid flow, the solutions usually contain many discontinuities. The DG method is prone to
produce significant non-physical oscillations and even nonlinear instability, resulting in nu-
merical solution explosion. The application of a nonlinear limiter is a common strategy to
control these spurious oscillations. One type of these limiters is based on the slope methods
such as minmod-type limiters [6,7,16]. These limiters are effective in controlling oscilla-

tions. However, the accuracy of DG methods may decrease if they are used incorrectly in



smooth regions. Another type of limiters is based on the weighted essentially non-oscillatory
(WENO) methodology [34], which can achieve both high order accuracy and non-oscillatory
properties. Zhu, Qiu and Shu proposed a new multi-resolution WENO limiter for the discon-
tinuous Galerkin method based on a set of local L? projection polynomials in the troubled
cells [44,45]. Compared with the previous WENO limiters, this new WENO limiter is very
simple to construct and can be easily implemented to arbitrary high order accuracy and in
higher dimensions. The linear weights used in the procedure of the new multi-resolution
WENO limiters can be any positive numbers as long as they sum to one. Since the linear
weights are not needed to be recalculated at each time step, this limiter is particularly ad-
vantageous for the moving mesh methods in which the shape of the mesh cells constantly
changes.

For the ALE-DG method used in computational fluid dynamics, the positivity of cer-
tain physical quantities, such as density or internal energy, must be preserved during the
remapping process to avoid the failure of the numerical solution. Generally speaking, the
remapping algorithm alone may not automatically maintain the positivity of the function
to be remapped, which should be addressed. Classical techniques use some strategies such
as conservative repair procedure [20] and flux corrected method [2,33,38] to preserve local
bounds. A very popular technique for high order method is a simple scaling positivity-
preserving limiter [41], which can preserve high order accuracy without losing local con-
servation. Numerous numerical experiments have shown the superior performance of this
positivity-preserving strategy for the simulation of compressible fluid flow using the high
order ALE-DG method [14,23].

The objective of this paper is to develop a high order positivity-preserving DG remapping
method, based on the numerical solution of the trivial equation % = 0 on a moving mesh,
which is the old mesh before remapping at ¢ = 0 and is the new mesh after remapping
at ¢t = T. The simplex meshes in one- and two-dimensions are used as examples. To

d

obtain a high order accurate remapping algorithm, we solve this equation & = 0 with



the moving mesh DG technique [17,18] for the spatial discretization and the high order
strong stability preserving (SSP) Runge-Kutta method for the time discretization. The
novelty of this moving mesh DG technique is that high order accuracy and stability can
be proved under very mild conditions on mesh movements. In our remapping method,
no smoothness beyond Lipschitz continuity is required for the mesh movement velocity to
ensure high order accuracy, which is always achieved by selecting the ending pseudo-time T'
appropriately. T can be very tiny when the new mesh is only a slight modification of the old
mesh, which will reduce the number of pseudo time steps and computing costs. As a result,
our remapping approach is beneficial for problems with small mesh modifications, such as
ALE algorithm with frequent use of the remapping procedure. We will utilize the Zhang-Shu
positivity-preserving framework for preserving the positivity of variables, including density
and internal energy, by using a positivity-preserving limiter that is valid under a suitable
time step constraint. Furthermore, we will introduce the multi-resolution WENO limiter
into our remapping procedure to make the scheme more robust and have better resolutions
without oscillation.

An outline of the rest of this paper is as follows. Section 2 describes the high order DG
remapping method in 1D and 2D with the multi-resolution WENO limiter and the positivity-
preserving limiter in detail. Numerical results are presented in Section 3 to demonstrate the
excellent properties of our remapping algorithm, such as high order accuracy, essentially
non-oscillatory performance, and positivity-preserving. Afterward, we apply our remapping
algorithm in an indirect ALE method and show its performance on certain benchmark flow

problems in Section 4. Finally, concluding remarks are given in Section 5.

2 Remapping algorithm

Suppose 2 C R? (d = 1 and 2) is a connected bounded computational domain. We assume
that the old distorted mesh and the new rezoned mesh are given. Note that these two

meshes have the same number of cells and vertices and the same connectivity. The old mesh



is considered as the initial mesh configuration at ¢ = 0, denoted as 7. The new mesh is
regarded as the final mesh configuration at the final time ¢ = T', denoted as 7,1 , where T is
the pseudo time we have introduced. For the sake of consistency, we use the superscript 0 or
T to be cells, nodes, and node coordinates of the old or new mesh, respectively. The moving
mesh is obtained by connecting the corresponding nodes of the old and new meshes with
straight lines in [0,7]. We assume that u is the function of the variable to be remapped,
such as density, momentum or total energy. In order to obtain the high order polynomials

on the new mesh, we can solve this trivial equation

ou
i 0, (2.1)

on the moving mesh, since the function « is a time independent quantity in the remapping

procedure. We use the scalar function u as an example to illustrate the remapping techniques.

2.1 Mesh movement velocity

We first need to consider the motion of the mesh node before describing the DG scheme
for solving the equation (2.1) on the moving mesh. We introduce a variable w to describe
the mesh movement velocity in one dimension and a variable w = (w,,w,) to describe the
moving speed in two dimensions.

In one dimension, assume that the old and new mesh generating points are given, denoted

N N
as {.T?il} and {x]T ;} . We give the definition of the mesh movement velocity
2) j=1 2) j=1

_1 1
=32__ "3 (2.2)

We can get the spatial coordinates of the points Tj 1

(t) from the straight lines
_%t, t e [O,T].

Then the mesh configuration 7,(¢) at any moment can be obtained. Besides, the mesh

movement velocity is a piecewise linear mesh velocity function on the computational domain



[17,18]. For the time-dependent cell K;(t) = [:cjfé(t), ijr%(t)], it is given by

x—x. 1(t) ri () —x
w(z,t) = wﬁ%# +wj_§JiT’ N(t) = $j+%(t) - azj_%(t).

Similarly, in two dimensions, the old and new grids are composed of non-overlapping
N

triangular cells {K]Q}j.vzl and {KJ'T}j:p

where N is the number of the cells. The three
vertices of the triangle are represented by P, (I = 1,2,3). We have the definition of the mesh

velocity w; and the node Py(t) = (x;(t), ui(t)),

T .0
Wy, = i T o , my(t) = a) +wyt, t€[0,T],
T 0
Yy —y
g = P () = ot € €[0T,

(2.3)

and these vertices form the time-dependent triangular cell K;(t) = AP (t)Pa(t)Ps(t). The
mesh movement velocity at any point on the edge connecting nodes P, (t) and P, (t) can

also be obtained by linear interpolation

we (T, Y,t) = Way, 0(2, Y, 1) + Wy (1 —0(,y,1)),
Wy(l’, Y, t) = wyl29(‘r7 Y, t) + Wyzl (1 - Q(ZL’, Y, t))?

where

V@ =2, (0)* + (v — 9 (1))
V(@ (t) = 2, (0)° + () — 9, (1))’

The authors pointed out in [17,18] that the mesh movement velocity should satisfy the

O(z,y,t) =

following boundedness and Lipschitz continuity requirements to guarantee the accuracy of
the scheme on a moving mesh. For instance, in one-dimensional space, we restrict the mesh

movement velocity to that which satisfies

t)| < Cy, Oyw(z, t)] < Cyy.
(;v,t)renfzaf[o,ﬂ jw(w,?)] 0 (ac,t)rens?ﬁo,ﬂl w(,?)l 0.1

Similarly, the mesh movement velocity in two-dimensional space needs to satisfy

Ow,,

oy

Ow,

dx

Owy

Or

Oow
lwz| < Co, |wy| < Co, < Coas < Coas < Coas 8_yy < Coas




for all points (z,y,t) in © x [0,7]. Here Cy and Cj; are constants independent of the mesh
size. We apply Cy = Cp1 = 10 to impose these constraints in the following one- and two-
dimensional numerical examples. Furthermore, these constraints can be transformed into

the constraint of the final pseudo-time T'. Specifically, in one dimensional space, T is taken

as
T 0 T 0 T 0 T 0 T 0
T = max | -5 CLJ*%‘ |<1J+l B lJ’Jr%) B (xjfé B lJ*§>| Klﬁl B lj+§) B (CLJ*% B ané)’
= : 5 ?

We can also get T in the similar way in two dimensions. After selecting a suitable final

pseudo-time 7', we can obtain the mesh movement velocity according to (2.2) and (2.3).

2.2 High order spatial discretization

We define the approximation space as
Via(t) = {v € L*(Q) : v e P*K;(t), VK;(t) € Th(t)},

where the index d € {1, 2} denotes the spatial dimension, P*(K;(t)) is the space of polyno-
mials of degree at most k on Kj;(t). The space V}, 4(t) contains discontinuous functions. For

(t) are defined as

v € Vp1(t), the values at the cell boundaries of z; 1
— _ . _ + _ . )
Vi1 = EE%LU xr%(t) €), Vs elir(% v(xj,%(t) + €).

In two dimensions, we define the values of the function v € Vj, »(t) at any point on the cell

boundary e € 0K(t) with the outer normal vector n. as

mt = lim v(x —en,), v, = lim v(x + en,).

e—0F e—0t

In the discontinuous Galerkin method, the numerical solution wy(t) € Vj4(t) is a piece-

wise polynomial which can be denoted as

up(x, )| k(1) = ZUK O()e (@, 1), @ € K;(t), VE;(1) € Tu(t),



where n, = (dek‘?! is the number of basis functions and {qbfj(t)(az,t), e ,¢,Iflf(t)(m,t)} is a
basis of the space P*(K;(t)). The coefficients upi (t),r =1,--- ,ny are the unknowns of
the method.

Nest, we give the following lemma [18], which will lead to the semi-discrete scheme.

Lemma 2.1. Let d € 1,2 and u : Q x [0,T] — R be a sufficiently smooth function in any

cell K;(t) € Tp(t). Then for all v € V, 4(t) holds the transport equation

d
! <U7U)Kj(t) = (atu7v)Kj(t) + (V- (wu) 7U>Kj(t)' (2.4)

We multiply the equation (2.1) by a test function v € V, 4(t) and apply the transport
equation (2.4) as well as the integration by parts. The one-dimensional semi-discrete scheme

can be written as follows: Find a function w, € V,;(t) such that for all v € V), ;(¢) and

.j = 17 T N
4 (up,v) = (f(w,un), 80) o =S wpr,u  oudt A+ flw i u et ot
dt UK ® T ) TrTKG (1) itz Thg+d Thgd /Ui =37 Thj=4 T34
(2.5)
where f(w,u) = —wu and f is the numerical flux. Here we use the upwind flux (Roe flux)
numerical flux to reduce the numerical dissipation,
R B n B f(wj+%7u;;j+%)u ijr% < O,

f(wj+%7u;j+%)a Wiy

N

The two-dimensional semi-discrete scheme can be written as follows: Find a function

up € th(t) such that

d £ int , ex in
% (uha U)Kj(t) = (f(wa uh)a vv)Kj(t) - <f (wa Up ta Up t7 n) U t>8K]-(t)’ (27)
for all v € V3, 5(t) and cells, where f(w, u) = —(wyu,wyu)’, ng, ) is the unit outward normal

to the cell boundary 0K;(t). The upwind flux is defined as

) flw, ™) n, w-n<O0,

flw,u ug™ n) =

flw,uf™)  n, w-n>0.

10



2.3 Fully discrete scheme

In this paper, we will adopt the high order strong stability preserving Runge-Kutta (SSP-RK)
method for the time discretization, which is also known as total variation diminishing Runge-
Kutta (TVD-RK) method. We use the two-dimensional case as an illustration. The one-
dimensional case is similar to the two-dimensional case. Note that the motion of the vertices
causes the basis function to depend on t. We first introduce the connection between test
functions at different time levels and their counterparts on the reference element. The vertices
of the two-dimensional triangle reference cell are (0,0), (1,0) and (0, 1). The following time-
dependent linear mapping can map the time-dependent cells K;(t) to the time-independent

reference element IC
X+ K = Ki(t),  Xi)(€:1) = Ar;i€ + Py (1), (2.8)
where the matrix Ak, ) and its corresponding determinant Jy, () are given by
Ascy = (Pu(t) = PL(0). By(0) = Py (1)), Ty = det (A ) = 20, (0)],

where P, (t), P, (t), P, (t) are the three vertexes of cell K;(t) and |Kj(t)] is the area of K/(t).

Now, the two-dimensional fully discrete scheme is written as follows

(
(g™ 07) = (g™ ), + 50G 070 10

J

(2)% |« 3 Nk ok 1 (1)«
(JK@)uh ) >/c = 1 (Januh ) >’C + 1 (JK(l)uh ) >

J J

+_Atng (ug),*av*7tn+1) ) (29)

(JK;L+1uh+1’ , U >IC = 3 (Januh’ , U >IC + 3 <JK(_2)U§LQ)’ , U )

J

2 e (@
\ +§At g (uh , U ,tn%) .
Here uj, = upo&Xk; ) and v}, = vp,0X, (1) are defined on the reference cell. ug), JK(” , UZH, JK;m
J

are the valuesat ¢t = ¢,,1; and uf), J () are the valuesat ¢t = ¢, 1. The operator G represents
J

the terms at the right hand side of (2.7), namely
g (Uﬁa v, t) = <JKj(t)AI_(;(t)f(w’ u;kz)a VSU*>K
£ intx  ext,* -T int,x
- <f <w7uh y Up, ’JKj(t)AKj(t)n’C> o >a;c

11



To ensure the stability of the scheme, the time step size At" is determined by the CFL
condition
Ccflh

At < ——, a= max |w.-n (2.10)
« j,eG@KJTL

where C, is a constant typically chosen to be less than 1/(2k + 1) and we choose it as 0.15
for £ = 2 in our numerical tests. h is the minimum diameter of the inscribed circles for
all the cells on the computational mesh. The stability restriction (2.10) will lead to a very
large time step size At™ if « is very small, which will destroy the temporal accuracy. In such
cases, it is necessary to reduce At" in order to ensure temporal accuracy. Referring to [27],
in our numerical experiments, we set At" to 1.5k if the value produced by (2.10) is more

than that.

2.4 Multi-resolution WENO limiter

The DG method can simulate the weak discontinuity well without any modification while
the nonlinear limiters must be applied to control the spurious oscillations near strong discon-
tinuities such as the strong shocks or interfaces. First, we need to use an indicator to identify
the troubled cells, which may contain strong discontinuities. In this paper, we apply the
shock detection technique [12,19,37] to detect troubled cells and apply the limiter on those
cells. The new type of multi-resolution WENO limiter [44,45] builds a series of hierarchical
L? projection polynomials from zeroth degree to the highest degree using the information of
the DG solution essentially just within the troubled cell itself. The new polynomial modified
by the multi-resolution WENO limiter is a convex combination of polynomials of different
degrees, and the associated linear weights can be any positive numbers with the only re-
quirement that their summation equals one. Such new limiters can maintain the original
order of accuracy in smooth regions and simultaneously suppress spurious oscillations near
strong discontinuities.

In order to save space, we take the third-order multi-resolution WENO limiter on tri-

angular meshes as an example to discuss the specific procedure. Now we assume A is a

12



troubled cell and its neighboring triangular cells are marked as Ay, Ag, A3z. The procedure
to reconstruct a new polynomial on the troubled cell Ag includes the following steps.

Step 1. First, we construct a series of polynomials g,(x,y),¢ = 0, 1,2, which satisfy

/ qe(w,y)vﬁo)(%y)df’fdy:/ up (2, y)o (2, y)dady, r =1, ,m
Ao A0

where v” (x,y) is the basis function defined on the triangle A,.

Step 2. We take po1(z,y) = qo(z,y) and define the equivalent expression of the high

order polynomial as follows

1 70,1

pri(z,y) = —aq(2,y) — ——po(z,y),
V1,1 V1,1
1 1,2

p22(7,y) = —q(z,y) — —=pi2(7,y),
2,2 V2,2

where
pr2(®,y) = wiip1i(z,y) + woipo (2, y),
with the linear weights v,_1 ¢+ = 1, = 1,2. w1 and w; ; are the nonlinear weights which
will be explicitly described later. To make a balance between the accuracy in smooth regions
and the sharp and essentially non-oscillatory shock transitions in non-smooth regions, we set
Ye—1, = 0.01 and ~y,, = 0.99.
Step 3. Compute the smoothness indicators /3, which measure how smooth the function

Des,(x,y) are in the cell Ay.

l 2
ol ool
Bees =) /AO At (Wfﬂe,zg(%y)) drdy, £=10—10; (=12,

lal=1
where o = (o, a2) and |o| = a3 + 2. We take another way to calculate fy; because the
value obtained by the above formula is 0. First of all, we use the L? projection methodology

to define the linear polynomials on the adjacent cells respectively, satisfying the following

conditions

/ q@,l(x,y)vﬁl)(x,y)dwdyz/ up(z, y)ol (2, y)dady, r=1,2,3,
Al A1

/ qO,z(w,y)v§2)(x,y)dwdy=/ up(z, y)v? (v, y)dady, r=1,2,3,
AQ AQ

/ q@,g(w,y)vﬁ?’)(x,y)dwdy:/ up(z, y)ol (v, y)dady, r=1,2,3.
Ag AB

13



The associated smoothness indicators are

a 2 a 2

Co,1 = /AO (8—:6%,1(37,30) + <a—yqo,1(x,y)) dzdy,
) 2 ) 2
) 2 ) 2

Co3 = /Ao <a—qu,3($ay)) + <3—yQO,3($,y)) dzdy.

Then we define 5y as
Bo,1 = min (o1, Co,2, C0,3) -

Step 4. Based on the linear weights and the smoothness indicators, we compute the

nonlinear weights using the WENO-Z recipe [4]. The nonlinear weights are given as

wﬂl,fz — T£2
wh,fz - 2 — ) w[1,fz - 7@1,32 ]- + c + /B ) El - Z2 - 1762; 62 - ]-7 2
2[:@271 Wy, e, 01,02

where
Tty = (ﬁe27f2 - 6@2—1,[2)27 ‘62 = 1,2,

and ¢ is taken as 107'° in our code.

Step 5. The new polynomial on the trouble cell A\ is given by

new

up(z,y) = w1 2p12(2,y) + woopas(x,y).

Therefore, we obtain the modified polynomial u}°"(z,y) which is virtually non-oscillatory

and as accurate as the original polynomial u(x,y).

2.5 The positivity-preserving property

To prevent the failure of numerical solutions, the remapping algorithm, especially those
applied in the indirect ALE method to compute fluid flow problems, must maintain the pos-
itive property of certain physical parameters, such as density and internal energy. However,
even with the WENO limiter, our above remapping algorithm does not automatically keep
the remapping variables positive. Following the widely used positivity-preserving frame-

work [41,42], we first prove our proposed first order remapping algorithm is positive under

14



an appropriate time step and then prove the cell average of numerical solution from the high
order remapping algorithm can ensure the positivity of density and internal energy under
the suitable time step.

We define the set of admissible states by
G={U=(p,m, E)", p>0, e>0},

where p is the density, m is the momentum which in the one-dimensional case is a scalar and

in the two-dimensional case is a vector, E is the total energy and e = E'— %@ is the internal
energy. (G can be proven to be a convex set. A scheme is called positivity-preserving if the
new state updated by the scheme also belongs to G when starting from a set of physically

admissible states.

2.5.1 The first order positivity-preserving remapping algorithm

In this part, we will demonstrate that the first order remapping algorithm is positivity-
preserving under the appropriate time step when the upwind flux and Euler forward method
are used in one- and two-dimensional space, respectively. Taking the Euler forward time
discretization for the one-dimensional semi-discrete scheme (2.5) based on P® approximation

and taking the test function v = 1, the scheme can be written in the finite volume form as

gt — 2 Un._ﬂ[ﬂw. LU U L) — flw s, U U"-)]. (2.11)
h,j A;H_l h,j A?—H Jt5) T hgr Zhjt+l J—37 “hj—1 “hyj

Here, U,’; ;= AL? / K U ;dx denotes the cell average value of the polynomial Uy'; on the cell

K3 For P° approximation, the solution U} ; equals to the value of the cell average U, Iy

A% is the cell length of K7'. To prove the positivity-preserving property for the fully discrete

scheme (2.11), we will show that U,Z;rl is in the set of G when U[ijfl, ur

TN
', and Uy, are

all in the set of G. There is another expression of the upwind flux (2.6)

1

F@ie1, Uiy Uijaa) = 5 (‘Wj%(Uﬁj + Uy ji1) = lwja|[(Uy 0 — U&-)) - (2.12)
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Substitute the (2.12) to the equation (2.11) and we have

AP A e e = wig |+ lw;_i] £
ANl NG h,j
J J

At [ Wil ’Wj+l| — At ‘ijl‘ wi—L\ _
N ( o Ty Ukt e Ty Ty Uk
J

Under the time step restriction

rrn+1
Uh,j o

| Win AN,
A< 5 : : (2.13)
max \wﬁ%\

: rrn+1 : : TN TN §i
we notice that Uy} is a convex combination of Uy, ;, Uy ; and Uy, ;.

Theorem 2.1. Assume {Uﬁj eGVj=1,---, N}, the scheme (2.11) is positivity-preserving,
namely, {U,Z;“l eGvVj=1,--- ,N} under the time step restriction (2.13).
Next, we take into account the first order remapping algorithm in two space dimensions.

Based on P° approximation and Euler forward time discretization, we take the test function

v =1 and get the following form

3
|K | 7 n n n
‘Kn+1’ |Kn+1 Z (wi, Uy, U;W n;)l;. (2.14)

n+1
Uh

Here we ignore the index j of the triangular element for simplicity; i.e., we will write K7' as
K™. U} stands for the cell average value of U} in the cell K™ and we use the cell average
instead of the numerical solution in this part. Uj';,i = 1,2,3 are the solutions denoted
on K[ which are the neighbor cells of the triangular cell K™ along the i-th edge e;. [; is
the length of the edge e; with the outward normal vector n;. w; is the value of the mesh
movement velocity at the middle point of the edge. We also rewrite the upwind flux similar

to the form of the Lax-Friedrichs flux and substitute it into the equation (2.14),
n+1 |Kn|
U, |+ ( |K7| Z‘w’ nJl)Uh

We constrain the time step to permit the cell average value l_];L“Ll to be stated as a convex

combination of elements in GG. As a result, we can derive the following theorem.
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Theorem 2.2. Assume U € G for all elements K", the scheme (2.14) is positivity-
preserving under the time step restriction

3
> |wi - mll;

At = V<1
B SR (

2.5.2 The high order positivity-preserving remapping algorithm

Similar to the derivation of the positivity-preserving property of the high order remapping
algorithm on the quadrilateral meshes [15], we first prove that under the condition of ap-
propriate time step, the cell average values obtained by the high order scheme will be in the
set G. Afterwards, the numerical solutions are modified in conjunction with the positivity-
preserving limiter developed by Zhang and Shu [41] so that the values of the numerical
solutions on the quadrature points preserve nonnegativity. We limit our discussion to the
Euler forward time discretization to conserve space. As a convex combination of the Euler
forward scheme, the following results will still hold for the third-order Runge-Kutta method.

We first consider the general scheme provided by the Euler forward time discretization

of the one-dimensional semi-discrete formulation (2.5) with the test function v =1

AV - A

Al n £ n+

)= flop U U )] (215)

’.7 2

We apply the Gauss-Lobatto quadrature rule with ¢n points on the interval K; to decompose

the cell average, where gy is the smallest integer satisfying 2qy — 3 > k. The integration

points are denoted by S; = {xj—é = i’jl < 92’? e < .ifc’;-N = .Clﬁj+%} and the associated quadra-
gN

ture weights are denoted by {¢,};, which satisfy 5 > ¢, = 1. The gy—point Gauss-Lobatto
q=1

rule is exact for the polynomial U}, j(x), which implies

qN A agn—1 .

rrn Cq n o (49\ __ Cq n,q n,+ Cq n,—

Uy, = E :§Uh,j($j) = E : EUh,j +5 Uh 1t QNU hj+d (2.16)
q:l q:2
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Combining the equations (2.12),(2.16), we can derive that

n 4av—1 .
- 17/ N .y (PO W) /e § (PP Y/
J A;H' p— 9 T hij A;H' 9 \its Jts hj+s = 9 i=3 J732 hj—3

At 1 1 -
# o |5 (e s U7y 5 (sl = w2) U2
J

A? éqN 1 At|wy+2| U”f A?é 1_&'%’—%’
zx”+1 2 AP eq /2 ) ity T AT

If we use the positivity-preserving limiter introduced later to implement U, 7]{1 € G for all
q=1,---,qvand 53 =1,--- N and restrict the time step to satisfy a suitable condition,
it is easy to conclude that U}f;’l € G. Note that ¢, = ¢;, and we can obtain the following

theorem.

Theorem 2.3. Assume U,/ € G forallq=1,--- ,qy andj =1,--- | N, the scheme (2.15)
is positivity-preserving under the time step restriction

»  minA?

1 J

ANt ——————
2 max |w3+1|
J

Next, we consider the sufficient condition to enable our high order remapping algorithm
in two space dimensions to have the positivity-preserving property. We begin with a special
quadrature rule which includes the Gauss quadrature points for the edges. The cell average

U} can be represented by

3 k—l—l

Ur = ZZ Zestr UM + ZCVU,ZY%, (2.17)

i=1 B= 7 3
where U} int and Um indicate the values of the numerical solution U, at the quadrature points
inside and on the boundary of cell K, respectively. We define the set of all the quadrature
points on the cell K as Sk. For relevant weights cg, ¢1, ¢, and more detailed quadrature rules,
we refer to [42]. The scheme satisfied by the cell averages of the two-dimensional remapping

method using the first order Euler forward time discretization can be written as

n+l __ ‘K ’ znt eact
U; |Kn+1|Uh |Kn+1|2/f n;)dl. (2.18)
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The edge integrals can be approximated by a k 4+ 1—point Gauss quadrature formula and

we have
3 k+1
Un+1 |K | Z Z f znt Uest ) I
|Kn+1| Kn+1| wz,,@’ 5 , Ny CB 79
i=1 f=1

where U}"Y and U4 are the values of the DG solutions U’ evaluated in the f—th Gauss
quadrature point on the edge e;. Similarly, w; s are the values of the mesh movement
velocity w calculated in the f—th Gauss quadrature point on the edge e;. The corresponding
quadrature weights are denoted as cg.

By some algebraic manipulations, U }’ZH can be rewritten as

|K L k+1 2
Uit = K] 2 Z UL+ ) Seats (Fig + Ho + Hyp)
5—1
where
|Kn| in 3At n ex mn in
H, 3 =T 15— P[] [ (wie, U, U )y — flwis, Uy, U, m)ly ] :
i 3L

int

Hos=———— -
20T R T2 98 [ K|
+f(w3/5, Umt Uznt 3)13:| ,

ST R T8 96 [ K|

|:f("‘)lﬁ7 mt Umt7,n1>l1 +f((.d25,Umt Ue:ct7n2>l

|: (wgwfj, Uznt Uext,’ng)lg _ f<w3,87 Uznt Umt,ng)lg] )

H, 3 is a formal two-dimensional first order positivity-preserving scheme, namely, the same
type as (2.14). H,; 3 and Hj g are formal one-dimensional first order positivity-preserving
schemes, such as the scheme (2.11). Note that U™ is a convex combination of Uvi”t and

H; 5. We have therefore the following theorem.

Theorem 2.4. Assume that the values of the solution Uy, at all points in the set Sk belong
to the set G for all cell K, the scheme (2.18) is positivity-preserving under the time step

restriction

3
i,
> mﬁax{\w g mil};

i=1
JANAE n}(%x K7 <

where ¢, is the quadrature weight of Gauss-Lobatto rule for the first quadrature point.
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Remark. Theorem 2.3 and Theorem 2.4 theoretically prove that one- and two-dimensional
high order remapping algorithms are positivity-preserving under the suitable time step con-
straints, respectively. We adopt another more efficient approach in our numerical experi-
ments by relaxing the time step At". We implement the standard CFL condition (2.10) and
check whether all new cell averages belong to set GG at each time step first. If yes, we continue
the computation. Otherwise, we need to return to the previous time step and march time
with At"/2. This procedure is repeated if needed. Theorem 2.3 and Theorem 2.4 ensure

that we return only a finite number of times to have the cell averages belonging to the set

G.

2.5.3 The positivity-preserving limiter

For this part, we mainly refer to the content in [41]. The DG technique does not guarantee
that the numerical solution values at the quadrature points belong to the set G. The linear
scaling positivity-preserving limiter can enforce it. The purpose of this limiter is to compress
the polynomial U,(z) toward its non-negative cell average U;, as shown in Figure 1. Using
the one-dimensional situation as an illustration, the specific implementation can be described
as follows.

The first step is to enforce the positivity of density. We modify the polynomial p;(x) by

pi(x) = 01(p;(x) — pj) + Py

pj — €2

01 = min{1, |=
' { ‘Pj—b

[}, b= min p;(z),

where S; is a set of Gauss-Lobatto quadrature points in the cell K, €5 is a very small positive
constant which satisfies p; > e, for all j. For example, we take e = 107'* in our code.

The second step is to enforce the positivity of the internal energy e. Define Uj(x) =
(p;(x), m;(x), E;(x))T after the first step. For each point in S, if e(U;(x)) > 0 set 6y = 1;
otherwise, set
e(U;)

f, = min -

@eS; e(U;) — e(Uj(x))
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Figure 1: The schematic diagram of the positivity-preserving limiter.

Then we get the limited polynomial

~ A —

UJ(ZL’) = GQ(U](ZE) — UJ) + Uj.

Such a new polynomial can satisfy f]j(:v) € G for all z € S; and keep the cell average U; at
the same time. This limiter can be used after the multi-resolution WENO limiter because it
does not lose the essentially non-oscillatory property by compressing the polynomial toward
the cell average. Furthermore, this limiter will not destroy conservation and accuracy, as
shown in detail in [41].

To conclude this part, we emphasize that the major procedures of the high order positivity-
preserving DG remapping method are completed. In the following section, we will test some
numerical examples to validate the accuracy, non-oscillatory, and positivity-preserving prop-
erties of our remapping algorithm. Finally, we will implement our remapping technique in
an indirect ALE approach and demonstrate its performance on the simulation of the Euler

system in one and two dimensions.

3 Numerical results for the remapping algorithm

In this section, we test the performance of our remapping algorithm in the two-dimensional

case for properties such as high order accuracy, positivity-preserving and essentially non-
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oscillation. We will not describe the one-dimensional case here since the results are similar.
We mimic the distorted mesh by smoothly moving meshes and randomly moving meshes,
which are generated by perturbing the internal vertices. For simplicity, we set the computa-
tional area as a rectangle [z, z,.] X [y;,4,]. Suppose (x}',4,") is the coordinate of an interior
node and the superscript m represents the times of remapping. (xg, yg) is the coordinate of
the corresponding node of the initial mesh. The two different ways of mesh movements are

as follows.

e The smoothly moving mesh [31]

m 2mxd 21y,
2™ y™) = (2°,4°) + O, Sin( P )sin( =,
(p p) (p p) M, T, — X Yr — Ui

where C's = 0.1. M, is the total number of remapping.

e The randomly moving mesh

(' yy) = (9, yp) + Coh(rl, 1),

where C,. = 0.6 and h is the smallest element diameter. 7", r;* € [—0.5,0.5] are random

numbers.

Our remapping algorithm is validated using a suite of the cyclic remapping process [30],
which starts from the initial mesh and returns to it after remapping on the moving mesh ten

times.

3.1 Accuracy test

We tested four types of the remapping algorithms to verify the convergence: one without
any limiter, one with the multi-resolution WENO limiter, one with the positive-preserving
limiter, and one with the multi-resolution WENO limiter plus the positivity-preserving lim-
iter. The numerical results of the four remapping algorithms are respectively denoted as

up, u)), ul, and th’P. The following smooth function with periodic boundary condition is
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selected for the accuracy test,
u(z,y) = cos®(2rx) cos®(2my) + 107, 0< 2,y < 1.

The numerical calculation is performed on a set of uniform refined triangular meshes obtained
by discretizing the computational domain into 10 x 10, 20 x 20, 40 x 40, 80 x 80 and 160 x 160
uniform quadrilateral meshes, respectively, and then splitting each quadrilateral into two
equal triangles. We compute the error measured in the L', L?, and L* norms for numerical
solution wuy, i.e.,

1 s
HEHLl - Z SK Z ( Z‘u xKﬂJK Uh(x;(,y‘K)‘S[()?

KeTy, KETn

N,
1 1 ) .
el = | 55, 2 (Nchx;,y;auh<x;@yf{>>2&<)7

P
KeT, KeTy, s=1

lellz = masmax fu(wl, yie) = un(wk yic)l

where N, is the number of quadrature points and the quadrature points { (2%, y5 )} on the tri-

angle K are obtained by the affine transformation (2.8) from the reference triangle K to K. In

practice, we take N,, = 21 and the corresponding points on K are {(r, r3) 7=0,---,51=0,---

In Table 3.1, we summarize the remapping errors on the smoothly moving mesh and nu-
merical rates of convergence. We also compute the initial L? projection u (x,y) of u(x,y)
on the initial mesh and calculate the error |[uf —u||. In addition, we show the proportion of
the cells being modified by the positivity-preserving limiter, denoted as ‘N,,. The last col-
umn ‘M7 indicates the total number of remapping steps. Table 3.2 shows the corresponding
results on the randomly moving mesh. From Table 3.1 and Table 3.2, we can clearly see that
our high order DG remapping method achieves the designed order of accuracy in the L', L?
and L norms respectively, no matter whether the limiters are applied or not. Moreover,
when using the WENO limiter in the remapping algorithm for accuracy testing, we artifi-

cially mark each triangular cell as a troubled cell instead of using the detection technique,

in order to fully observe accuracy after the limiter is applied everywhere. Obviously, the
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new multi-resolution WENO limiter maintains the designed order of accuracy. Furthermore,
compared to the high order remapping algorithm without the positivity-preserving limiter,
the number of remapping steps in the high order positivity-preserving remapping algorithm
is mostly the same or only increases slightly.

Additionally, we provide the flipping mesh setup shown below to confirm that our remap-
ping method is not constrained by mesh movement, i.e., it can remap between the old and
new meshes when the mesh nodes move beyond the size of their neighboring cells. We give
the initial mesh configuration by discretizing the computational region into non-uniform
rectangular cells and then splitting each quadrilateral into two equal triangles. The mesh

size of the rectangular cells are
hL < h?: <. <hd B =2nl

where the mesh size b, =z, 1= and the y direction is divided equally. We design the

flipping mesh in the same way and its rectangular mesh satisfies
L BN RN =

We remap from the initial mesh to the flipping mesh and return to the initial mesh for
10 times. Table 3.3 shows the results of these three types of remapping algorithms on the
flipping mesh. All of them have the expected third-order accuracy, which indicates that our

remapping method can also have good accuracy when dealing with large mesh movements.

3.2 Non-oscillatory and positivity-preserving tests

In this subsection, we test the following discontinuous function on the randomly moving
meshes to verify the performance of our remapping algorithm, in particular, the essentially

non-oscillatory and positivity-preserving properties. We choose a cubical pyramid function
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Table 3.1: Errors and orders of accuracy of the remapping algorithms on the smoothly

moving meshes. The mesh is composed of 2 x N, x N, triangular cells.

[uf ]

Mesh size Lt order L? order L>® order | Np, M
2x 10 x 10 | 5.688E-03 1.602E-02 1.706E-01 - -
2x20x20 | 7.208E-04 2.98 | 2.030E-03 2.98 | 2.425E-02 2.81 - -
2 x40 x40 | 9.253E-05 2.96 | 2.651E-04 2.94 | 3.434E-03 2.82 - -
2 x 80 x 80 1.165E-05 2.99 | 3.351E-05 2.98 | 4.407E-04 2.96 - -

2 x 160 x 160 | 1.459E-06 3.00 | 4.200E-06 3.00 | 5.538E-05 2.99 - -
[|up — ul]

Mesh size Lt order L? order L*>® order | Np, M
2x 10 x 10 | 6.308E-03 1.710E-02 1.994E-01 - 37
2x20x20 | 8823E-04 2.84 | 2.201E-03 2.96 | 2.929E-02 2.77 - 70
2 x40 x 40 1.197E-04 2.88 | 3.013E-04 2.87 | 4.142E-03 2.82 - 130
2 x 80 x 80 1.517E-05 2.98 | 4.062E-05 2.89 | 5.172E-04 3.00 - 256

2 x 160 x 160 | 1.856E-06 3.03 | 5.159E-06 2.98 | 8.654E-05 2.58 - 505
[ ]

Mesh size Lt order L? order L*>® order | Np, M
2x 10 x 10 | 6.650E-03 1.735E-02 1.843E-01 - 37
2x20x20 | 9.173E-04 2.86 | 2.315E-03 2.91 | 3.288E-02 2.49 - 70
2 x40 x 40 1.214E-04 2.92 | 3.060E-04 2.92 | 4.151E-03 2.99 - 130
2 x 80 x 80 1.519E-05 3.00 | 4.064E-05 2.91 | 5.172E-04 3.00 - 256

2 x 160 x 160 | 1.856E-06 3.03 | 5.159E-06 2.98 | 8.654E-05 2.58 - 505
[uf ]

Mesh size Lt order L? order L*>® order | Ny, M
2x 10 x 10 | 8.556E-03 1.899E-02 1.199E-01 0.556 | 37
2x20x20 | 9.028E-04 3.24 | 2.213E-03 3.10 | 2.929E-02 2.03 | 0.323 | 70
2 x40 x 40 1.198E-04 2.91 | 3.013E-04 2.88 | 4.142E-03 2.82 | 0.157 | 130
2 x 80 x 80 1.517E-05 2.98 | 4.062E-05 2.89 | 5.172E-04 3.00 | 0.064 | 260

2 x 160 x 160 | 1.856E-06 3.03 | 5.159E-06 2.98 | 8.654E-05 2.58 | 0.017 | 576
[luy " — ul]

Mesh size Lt order L? order L*>® order | Np, M
2x10x 10 | 9.715E-03 2.116E-02 1.352E-01 0.501 | 37
2x20x20 | 9373E-04 3.37 | 2.326E-03 3.19 | 3.288E-02 2.04 | 0.323 | 70
2 x40 x 40 1.215E-04 2.95 | 3.060E-04 2.93 | 4.151E-03 2.99 | 0.157 | 130
2 x 80 x 80 1.519E-05 3.00 | 4.064E-05 2.91 | 5.172E-04 3.00 | 0.064 | 260

2 x 160 x 160 | 1.856E-06 3.03 | 5.159E-06 2.98 | 8.654E-05 2.58 | 0.017 | 576
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Table 3.2: Errors and orders of accuracy of the remapping algorithms on the randomly

moving meshes. The mesh is composed of 2 x N, x N, triangular cells.

[uf ]

Mesh size Lt order L? order L>® order | Np, M
2x 10 x 10 | 5.688E-03 1.602E-02 1.706E-01 - -
2x20x20 | 7.208E-04 2.98 | 2.030E-03 2.98 | 2.425E-02 2.81 - -
2 x40 x40 | 9.253E-05 2.96 | 2.651E-04 2.94 | 3.434E-03 2.82 - -
2 x 80 x 80 1.165E-05 2.99 | 3.351E-05 2.98 | 4.407E-04 2.96 - -

2 x 160 x 160 | 1.459E-06 3.00 | 4.200E-06 3.00 | 5.538E-05 2.99 - -
[|up — ul]

Mesh size Lt order L? order L*>® order | Np, M
2x 10 x 10 | 6.620E-03 1.623E-02 1.918E-01 - 35
2x20x20 | 8485E-04 2.96 | 2.043E-03 2.99 | 3.184E-02 2.59 - 41
2 x40 x 40 1.066E-04 2.99 | 2.561E-04 3.00 | 4.398E-03 2.86 - 44
2 x 80 x 80 1.286E-05 3.05 | 3.140E-05 3.03 | 5.573E-04 2.98 - 85

2 x 160 x 160 | 1.559E-06 3.04 | 3.840E-06 3.03 | 7.334E-05 2.93 - 176
[ ]

Mesh size Lt order L? order L*>® order | Np, M
2x10x 10 | 6.897E-03 1.642E-02 1.830E-01 - 35
2x20x20 | 8.623E-04 3.00 | 2.110E-03 2.96 | 3.376E-02 2.44 - 41
2 x40 x 40 1.071E-04 3.01 | 2.579E-04 3.03 | 4.404E-03 2.94 - 44
2 x 80 x 80 1.287E-05 3.06 | 3.142E-05 3.04 | 5.573E-04 2.98 - 85

2 x 160 x 160 | 1.559E-06 3.04 | 3.840E-06 3.03 | 7.334E-05 2.93 - 176
[uf ]

Mesh size Lt order L? order L*>® order | Ny, M
2x10 x 10 | 8.206E-03 1.751E-02 1.176E-01 0.556 | 35
2x20x 20 | 8683E-04 3.24 | 2.066E-03 3.08 | 3.184E-02 1.89 | 0.463 | 41
2 x40 x 40 1.062E-04 3.03 | 2.561E-04 3.01 | 4.398E-03 2.86 | 0.300 | 44
2 x 80 x 80 1.286E-05 3.05 | 3.140E-05 3.03 | 5.573E-04 2.98 | 0.142 | 85

2 x 160 x 160 | 1.559E-06 3.04 | 3.840E-06 3.03 | 7.334E-05 2.93 | 0.046 | 176
[luy " — ul]

Mesh size Lt order L? order L*>® order | Np, M
2x10x 10 | 8.457E-03 1.834E-02 1.626E-01 0.524 | 35
2x20x20 | 8834E-04 3.26 | 2.132E-03 3.10 | 3.375E-02 2.27 | 0.463 | 41
2 x40 x 40 1.067E-04 3.05 | 2.579E-04 3.05 | 4.404E-03 2.94 | 0.300 | 44
2 x 80 x 80 1.287E-05 3.05 | 3.142E-05 3.04 | 5.573E-04 2.98 | 0.142 | 85

2 x 160 x 160 | 1.559E-06 3.04 | 3.840E-06 3.03 | 7.334E-05 2.93 | 0.046 | 176
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Table 3.3: Errors and orders of accuracy of the remapping algorithms on the flipping moving

meshes. The mesh is composed of 2 x N, x N, triangular cells.

[uf ]

Mesh size Lt order L? order L*>® order | Np, M
2x10x 10 | 6.093E-03 1.794E-02 2.554E-01 - -
2x20x20 | 7.998E-04 2.93 | 2.408E-03 2.90 | 4.811E-02 2.41 - -
2 x40 x 40 1.027E-04 2.96 | 3.108E-04 2.95 | 6.535E-03 2.88 - -

2 x 80 x 80 1.291E-05 2.99 | 3.923E-05 2.99 | 8.472E-04 2.95 - -
2 x 160 x 160 | 1.615E-06 3.00 | 4.911E-06 3.00 | 1.052E-04 3.01 - -
[|up — ul]

Mesh size Lt order L? order L*>® order | Np, M
2 x 10 x 10 1.300E-02 2.726E-02 2.315E-01 - 220
2x20x20 | 2375E-03 2.45 | 5.424E-03 2.33 | 6.092E-02 1.93 - 410
2x40 x40 | 3.735E-04 2.67 | 9.227TE-04 2.56 | 1.062E-02 2.52 - 790
2x80x80 | 5.626E-05 2.73 | 1.505E-04 2.62 | 1.821E-03 2.54 - 1550

2 x 160 x 160 | 8.011E-06 2.81 | 2.250E-05 2.74 | 2.735E-04 2.73 - 3070
[ ]

Mesh size Lt order L? order L*>® order | Np, M
2 x 10 x 10 1.676E-02 3.407E-02 2.172E-01 - 220
2x20x20 | 2.431E-03 2.78 | 5.769E-03 2.56 | 6.713E-02 1.69 - 410
2x40 x40 | 3.790E-04 2.68 | 9.414E-04 2.62 | 1.108E-02 2.60 - 790
2 x80x80 | 5.636E-05 2.75 | 1.508E-04 2.64 | 1.831E-03 2.60 - 1550

2 x 160 x 160 | 8.012E-06 2.81 | 2.251E-05 2.74 | 2.740E-04 2.74 - 3070
[uf ]

Mesh size Lt order L? order L*>® order | Np, M
2 x 10 x 10 1.748E-02 3.776E-02 2.554E-01 0.202 | 220
2x20x20 | 2.266E-03 2.95 | 5.352E-03 2.82 | 6.112E-02 2.06 | 0.174 | 410
2x40 x40 | 3.572E-04 2.67 | 9.166E-04 2.55 | 1.062E-02 2.52 | 0.145 | 790
2x 80 x80 | 5.542E-05 2.69 | 1.503E-04 2.61 | 1.821E-03 2.54 | 0.089 | 1550

2 x 160 x 160 | 7.984E-06 2.80 | 2.250E-05 2.74 | 2.736E-04 2.73 | 0.045 | 3106
[y, " = ul]

Mesh size Lt order L? order L*>® order | Np, M
2x10x 10 | 2.070E-02 4.353E-02 2.615E-01 0.191 | 220
2x20x20 | 2.357E-03 3.13 | 5.735E-03 2.92 | 6.732E-02 1.96 | 0.174 | 410
2x40 x40 | 3.627E-04 2.70 | 9.355E-04 2.62 | 1.108E-02 2.60 | 0.145 | 790
2 x 80 x 80 | 5.552E-05 2.71 | 1.506E-04 2.64 | 1.831E-03 2.60 | 0.089 | 1550

2 x 160 x 160 | 7.985E-06 2.80 | 2.251E-05 2.74 | 2.740E-04 2.74 | 0.045 | 3106
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120] as the test function

1 R < 0.08
0.66 0.08<R<0.2
033 02<R<0.38’7
107 R >0.38

u(z,y) = R=|x—05/+]y—05,0<z,y<1.

We conduct the test on unstructured triangular meshes with 14120 cells. Four remapping
procedures are performed depending on whether or not the limiters are employed: without
any limiter, with the multi-resolution WENO limiter, with the positivity-preserving limiter,
and with two limiters. The remapping results of these algorithms are shown in Figure 2 and
the values at 64 points at the cut line y = 0.5 and z = y are shown in Figure 3 and Figure
4.

Compared with the remapping results without any limiter, the remapping results with the
multi-resolution WENO limiter can maintain the essentially non-oscillatory property near the
discontinuous regions. Besides, by applying the WENO limiter to the remapping algorithm,
it is impossible to eliminate the number of cells that generate negative cell averages (marked
in white in Figure 2). Thus a positive-preserving limiter is necessary to compute numerical
examples with discontinuous solutions. As one can see the remapping results produced by
the remapping algorithm with the positive-preserving limiter can ensure that the solutions
remain positive. During the remapping process of the remapping algorithm with two limiters,
there are about 24.3% of the cells which have been modified by the multi-resolution WENO
limiter and about 9.4% of the cells which have been modified by the positivity-preserving
limiter. Overall, our remapping results with these two limiters can handle the overshoots

near the discontinuities and preserve positivity well.

4 Numerical tests for the ALE simulation

This section aims to verify the good performance of our remapping algorithm applied in the
indirect ALE method for the compressible Euler equations in one and two space dimensions.

We refer to the indirect ALE method in [23], which is constructed based on the ALE-DG
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Figure 2: The non-oscillatory and positivity-preserving tests for the discontinuous profiles

by remapping method. The white symbols in the subgraphs (b) and (c) represent the cells

with negative cell averages. 29
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Figure 3: The remapping results at the cut line y = 0.5. Top right: the zoomed-in subfigure
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method developed in [17,18]. We will use this Lagrangian type DG scheme to solve the Euler
equations with periodic rezone and remapping steps to avoid the failure of the simulation led
by computational mesh undergoing distortion or large deformation. For each numerical test
problem we will use different rezone strategies. In order to obtain better numerical results,
both the multi-resolution WENO limiter and the positive-preserving limiter will be used in
the remapping algorithm. The remapping of vector functions can be performed component
by component, except for the positivity-preserving procedure of density and internal energy,
which would require us to consider the vector of conserved variables as one entity. To
achieve this, we first utilize the positivity-preserving limiter for the density p, then we limit
the momentum, total energy and the modified density to ensure positivity of the internal

energy e.

4.1 Numerical tests for the one-dimensional Euler equation

In this subsection, we consider the compressible Euler equation of gas dynamics in one

dimension:
o ° 0 pu
ol B R pu*+p | =0
E u(E + p)

where p is the density, u is the fluid velocity, E is the total energy, p = (y — 1)(E — 3pu?) is
the pressure and v is a constant that depends on the particular gas under consideration.
Example 4.1. We first consider the accuracy test in one dimension [12]. The initial

condition is given as

pla0) = 2 u0,0) = A0 ple,0) = plo 0

The computational domain is set to be [0, 27| with periodic boundary conditions. We follow
the setting in the reference [17] that when periodic boundary conditions are applied in the

ALE framework, the first point ! and last point z 11 move at the same speed. The values

at the boundary points are obtained from the periodicity of the solution, i.e., Uyt = Uy oy
12 ’ 2
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and u" L
h, 5

nNtL T Y

. Similar strategy is adopted in two dimensions. We take v = 3 , which

allows us to verify that 2v/3p(xz,t) is the exact solution of the Burgers equation:

2
e + (%) =0, p(x,0)=1+02sin(z),

and the exact solutions u and p satisfy:

u(z, ) = e, t),  ple,t) = ple,t)7.

We present the numerical results for density at t = 0.3 obtained by the indirect ALE approach
with our remapping algorithm. After every 10 Lagrangian steps, we rezone the old mesh to
the new uniform mesh and apply our remapping procedure. Table 4.1 shows the error on
the different sizes of the mesh 32, 64, 128, 256, 512 and it can be shown that the ALE scheme

have achieved the designed third-order accuracy.

Table 4.1: Numerical convergence results of the indirect ALE-DG scheme for one-dimensional

Euler equation at ¢t = 0.3.

Mesh Lt order L? order L™ order
32 2.612E-06 4.009E-06 1.593E-05
64 | 3.248E-07 3.01 | 4.910E-07 3.03 | 1.892E-06 3.07
128 | 4.046E-08 3.00 | 6.052E-08 3.02 | 2.155E-07 3.13
256 | 5.251E-09 2.95 | 7.776E-09 2.96 | 2.409E-08 3.16
512 | 7.656E-10 2.78 | 1.121E-09 2.79 | 3.649E-09 2.72

Example 4.2. Next we consider the Lax problem of the Euler system with the initial

condition
(0.445,0.698,3.528), = <0

(p,u,p) = v =14
(0.5,0,0.571), x>0
The computational domain is [—5, 5] and the number of cells is N = 100. We use the indirect
ALE-DG method to compute the solution until ¢t = 1.3 and perform the remapping and the
rezoning step every 20 time steps when ¢t > 1.0. To demonstrate the applicability of the

multi-resolution WENO limiter in the simulation of compressible fluid, we calculate the Lax

problem using the indirect ALE methods with and without this limiter in remapping step.

32



In Figure 5 we see that the ALE-DG method equipped with the multi-resolution WENO
limiter not only maintains the advantages of the Lagrangian type scheme, that is, there very

few transition points along the contact discontinuity, but also handles the overshoots very

well.
14 14
12 12F !
1k 1k
2 [ 2 [
2osl 208}
[ = [ =
a [ a [
06| 06|

T N— i g —

ool L

Xor

Xol-

(a) ALE-DG (b) ALE-DG method with WENO limiter

Figure 5: Comparison of solutions for the Lax problem calculating by the ALE-DG method
with (right) and without (left) the multi-resolution WENO limiter. The black solid line is

the reference solution. The red points represent the ALE-DG solution.

Example 4.3. We now consider the interaction of two blast waves, with the initial

condition
(1,0,1000), x €0,0.1)

(p,u,p) = ¢ (1,0,0.01), z€[0.1,0.9) ~=14.
(1,0,100), x € [0.9,1]
We apply our remapping procedure and the rezoning method every 50 time steps after
t > 0.03. The numerical results of the density for two ALE-DG schemes at time ¢ = 0.038
with N = 200 cells are displayed in Figure 6. Compared to the reference solution and
the ALE-DG solution without limiter, the indirect ALE method with the multi-resolution

WENO limiter handles the overshoots effectively.
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Density

Density

(b) The ALE-DG method with WENO limiter

(a) The ALE-DG method

Figure 6: Comparison of solutions for the blast wave problem calculating by the ALE-DG
method with (right) and without (left) the multi-resolution WENO limiter. The black solid

line is the reference solution. The red points represent the ALE-DG solution.
4.2 Numerical tests for the two-dimensional Euler equations

Consider the two-dimensional Euler system

p pu pv
9| pu N O pu’+p n o p2uv 0
ot | pv ox puv dy puve+p

E uw(E + p) v(E + p)

where p, u and v denote the density, z-direction velocity and y-direction velocity, respectively.
E is the total energy, p = (v — 1)(E — $p(u? + v?)) is the pressure and 7 is a constant that

depends on the particular gas under consideration.

Example 4.4. First we conduct an accuracy test for the 2D Euler equations [12| on

[0,47] x [0,4x]. The initial condition is:
1+ 0.2sin(*5Y) ,
p(x,y,0) = Wi ;o u(r,y,0) = v(z,y,0) = \p(z,y), plx,y,0) = p(z,y,0)".

We set v = 3, and it could be easily verified that v/6p(z,,t) is the exact solution of the
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2D Burgers equation:
2 2
H H
D e = O

v
u(z,y,t) =v(z,y,t) = \/;p(af, y,t), plz,y,t)=p(z,y,t)".

u(,y,0) = 1+ 0.2sin( 1Y),

and

To assess the convergence order of the indirect ALE-DG scheme, the numerical calculation is
performed on a set of initially uniform refined triangular meshes. The initial computational
domain is discretized into 10 x 10, 20 x 20, 40 x 40, 60 x 60 and 80 x 80 uniform quadrilateral
meshes, respectively. And then each quadrilateral is split into two triangles. The final
computational time is 0.3. We perform the accuracy test in an Fulerian regime, including
setting the new mesh as the initial mesh after each Lagrangian step and then applying the
remapping algorithm. We record the CPU time measured in seconds on a ThinkCentre with

8GB RAM. We show the numerical results of density in Table 4.2. It can be seen that the

convergence order have achieved the designed third-order accuracy.

Table 4.2: Numerical convergence results of the indirect ALE-DG scheme in the Eulerian

regime for two-dimensional Euler equations at ¢t = 0.3.

Mesh size L order L? order L= order | CPU(s)
2 x 10 x 10 | 4.695E-05 6.060E-05 1.880E-04 1.06
2x20x20 | 8187E-06 2.52 | 1.078E-05 2.49 | 3.575E-05 2.39 8.22
2 x40 x40 | 1.095E-06 2,90 | 1.523E-06 2.82 | 5.485E-06 2.70 65.00
2x 60 x 60 | 3.343E-07 293 | 4.544E-07 298 | 1.617E-06 3.01 | 221.69
2 x 80 x 80 | 1.462E-07  2.87 | 1.990E-07 2.87 | 6.842E-07 2.99 | 537.20

Example 4.5. The Sedov problem [35] describes the evolution of a blast wave generated
by an intense explosion at the origin (0,0). The computational domain is a [0, 1.1] x [0, 1.1]

rectangle which is discretized into 2048 triangular cells with v = 1.4. The initial state is

The internal energy of the system is 10713 almost everywhere except the only cell K contained
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the origin where it has a value of e = . Reflective boundary conditions are applied on
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the four boundaries.
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Figure 7: The Sedov problem of the ALE-DG scheme.

We use the indirect ALE method with our remapping algorithm to run the Sedov problem
to the final time t = 1. The rezone step, which uses a simple smoothing strategy on the
inner points, and the remapping step are implemented every 20 time steps after ¢ = 0.5 in
the ALE computation. The density and pressure profiles of the Sedov problem is shown in
the Figure 7. As one can see, the ALE-DG scheme captures the shock precisely and the
mesh quality is well after adjusting the inner mesh. The density simulation as a function of
the radius is presented in Figure 8 and one can observe that our results are comparable to
the reference results. The radial nature of the solution is well preserved.

Example 4.6. Next, we consider the Noh problem [32] with the initial condition as
p=1 u.=-1, e= 10714,

where u, is the radial velocity and take v = 5/3. The computational domain is [0, 1] x [0, 1].
For the left and bottom boundaries, reflective boundary conditions are considered, whereas

for the right and top boundaries, free boundary conditions are considered. We perform the
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Figure 8: Scatter plot of the density value for each cell as a function of the radial position.

rezoning and the remapping procedures every 20 time steps. The ALE-DG method calculates
the Noh problem in two cases, namely, whether the remapping step includes the multi-
resolution WENO limiter or not. We present the density contour and scatter plot results at
time ¢ = 0.6 with 2048 triangular cells in Figure 9. By comparing with the ALE-DG method
without WENO limiter, we can see that the density peak obtained by the new indirect
ALE-DG scheme with the multi-resolution WENO limiter in the remapping algorithm is in
good agreement with the exact solution. As the initial internal energy is extremely close to
0 and the numerical solutions may be negative, making the scheme unstable, the positivity-
preserving limiter is required for this test. We have recorded the cells modified by the
positivity-preserving limiter during the remapping and these cells have been labeled in white
color in Figure 10. According to statistics, the multi-resolution WENO limiter is utilized on
around 2.17% of the cells and the positivity-preserving limiter is utilized on around 14.7%
of the cells. Numerical experiments indicate the good behavior of the resulting scheme in its
robustness and sharp shock transition.

Example 4.7. The Saltzman test case [11] describes the motion of a piston which is

impinging on a fluid at rest contained in the initial computational domain given by [0, 1] X
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Figure 9: The Noh problem of the ALE-DG scheme. Left: density distribution with mesh
configuration ; Right: scatter plot of numerical scheme compared with the exact solution;
Top row: The result of the ALE-DG method without WENO limiter in remapping step;
Bottom row: The result of the the ALE-DG method with WENO limiter in remapping step.
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Figure 10: The pressure contour of the Noh problem. The white symbols represent the cells
that have been modified by the positivity-preserving limiter during the remapping phase.

[0,0.1]. The initial condition is
p=1u=0,0v=0e=10"",

and the adiabatic gas constant v = 5/3. The left boundary is a moving piston with the fixed
velocity u = 1. Reflective boundary conditions are considered everywhere except for the
piston. The initial mesh with 640 triangular cells is shown in Figure 11. The moving piston
generates a strong shock wave and the cells which lie near the piston are highly compressed

during the simulation. Therefore, the indirect ALE method is the best choice to solve the

Salzmann problem.
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==
=
R

Figure 11: The initial Saltzman mesh.

In the rezone step of this problem, we preserve the y-coordinates unchanged and modify
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Figure 12: The density contour of the Saltzman problem of the ALE-DG scheme at output
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Figure 13: Scatter plot of density values of the Saltzman problem and comparison against

the analytical solution.
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the inner point P(z;, ;) in the z- direction as

m

5 1
Ty = — g Tis
m

s=1

where 7; 5, 1 < s < m represent the z-coordinates of the neighbors of F}. After adjusting the
computational mesh and applying the remapping procedure every 10 time steps, we calculate
the Saltzman problem to the time ¢t = 0.7 and ¢t = 0.9 using the indirect ALE-DG scheme and
display the density contours in Figure 12. The density scatter plots are shown in Figure 13,
along with a comparison against the analytical solution. We can observe that the calculated
results agree favorably with the analytical solution. It demonstrates the robustness of the
ALE method with our remapping algorithm in handling large deformation problems.
Example 4.8. Finally, we consider the problem proposed by Dukowicz and Meltz [11]
which is also a piston driven problem. The computational domain is composed of two regions

with different densities but equal pressure. At the initial time, the states and regions are
Left region : pr = 1,up =0,v, =0,pr =1,
Coordinate of vertexes : (0,0), (1,0), (1 + 1.5v/3,1.5), (0, 1.5),
Right region : pr = 1.5,ug =0,vg = 0,pr =1,
Coordinate of vertexes : (1,0),(3,0), (34 1.5v/3,1.5), (1 4+ 1.5v/3,1.5).

In both regions v = 1.4. The schematic diagram of Dukowicz problem is shown in Figure
14. Figure 15 shows the initial computational mesh with 4000 triangular cells. The upper
and lower boundaries are reflective and the left boundary is a piston, which moves from the
left with velocity 1.48.

We rezone the mesh by maintaining the y- coordinates unchanged and redistributing the
interior points P, in the z- direction such that they are evenly spaced apart. This time, the
mesh rezone method and our remapping procedure are implemented every 30 time steps.
We run this problem to a time of 1.3 just before the shock would leave the right region. The
density contour calculated by the indirect ALE-DG scheme is displayed in Figure 16, which

is in good agreement with the exact solution in [11]. It is obvious that the interface along
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with the incident and the transmitted shocks is sharply kept.

5 Concluding remarks

In this paper, for the simulation of the compressible fluid flow with the indirect ALE method
based on DG framework, we develop a high order, essentially non-oscillatory and positivity-

preserving DG remapping method in one and two dimensions. This remapping approach is

du
ot

based on solving the trivial equation = 0 on a moving mesh, with the old mesh before
remapping as the initial mesh at ¢ = 0 and the new mesh after remapping as the final mesh
at t = T. The relatively mild smoothness requirement (Lipschitz continuity) on the mesh
movement velocity, which ensures the high order accuracy of the scheme, is used to calculate
the final pseudo-time 7. Our remapping algorithm does not need to calculate the intersection
regions and is applicable for meshes with the same topology but otherwise arbitrary mesh
deformation. Different from the other remapping algorithms, the final pseudo-time 7" in our
remapping algorithm depends on the magnitude of the mesh movement. Therefore, our new
algorithm is more efficient in dealing with remapping problems with mild grid movement.
We apply the multi-resolution WENO limiter to suppress spurious oscillations near strong
discontinuities and simultaneously keep the original order of accuracy in smooth regions. To
further guarantee that the remapping results retain the positivity of the remapping variables,
we apply the positivity-preserving limiter valid under the suitable time step constraint.
Numerical examples have been presented to verify the convergence order, non-oscillation and
positivity preservation of the scheme. Finally, the above good properties are also verified
on the indirect ALE method with our remapping algorithm simulating 1D and 2D Euler
equations. In our future work we will extend this remapping algorithm to three dimensions

and design 3D higher-order conservative positivity-preserving ALE methods based on our

remapping algorithm.
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