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ABSTRACT

Marginal treatment effect methods are widely used for causal inference and policy evaluation with instrumental variables. However, they
fundamentally rely on the well-known monotonicity (threshold-crossing) condition on treatment choice behavior. This condition cannot hold
with multiple instruments unless treatment choice is effectively homogeneous. We develop a new marginal treatment effect framework under a
weaker, partial monotonicity condition. The partial monotonicity condition is implied by standard choice theory and allows for rich unobserved
heterogeneity even in the presence of multiple instruments. The new framework can be viewed as having multiple different choice models for
the same observed treatment variable, all of which must be consistent with the data and with each other. Using this framework, we develop
a methodology for partial identification of clearly stated, policy-relevant target parameters while allowing for a wide variety of nonparametric
shape restrictions and parametric functional form assumptions. We show how the methodology can be used to combine multiple instruments
together to yield more informative empirical conclusions than one would obtain by using each instrument separately. The methodology provides
a blueprint for extracting and aggregating information from multiple controlled or natural experiments while still allowing for rich unobserved
heterogeneity in both treatment effects and choice behavior.

1. Introduction

Heckman and Vytlacil (1999) introduced the marginal treatment effect (MTE) as a unifying concept for program and policy
evaluation.? Since then, MTE methods have become a fundamental tool for empirical work, and have been applied in a variety
of different settings including the returns to schooling (Moffitt, 2008; Carneiro et al., 2011, 2016; Nybom, 2017) and its impacts
on wage inequality (Carneiro and Lee, 2009), discrimination (Arnold et al., 2018, 2020), the effects of foster care (Doyle, 2007),
the impacts of welfare (Moffitt, 2019) and disability insurance (Maestas et al., 2013; French and Song, 2014; Autor et al., 2019)
programs on labor supply, the performance of charter schools (Walters, 2018), health care (Kowalski, 2018; Depalo, 2020), the
effects of early childhood programs (Kline and Walters, 2016; Cornelissen et al., 2018; Felfe and Lalive, 2018), the efficacy of
preventative health products (Mogstad et al., 2017), the quantity—quality theory of fertility (Brinch et al., 2017), and the effects
of incarceration (Bhuller et al., 2020), among many others. Mogstad and Torgovitsky (2018) provide a recent review of the MTE
methodology and its connection to other instrumental variable (IV) approaches.

A key assumption underlying the MTE methodology is that shifts in the instrument have a uniform effect on the treatment
choices of all individuals. This is the well-known “monotonicity” condition introduced by Imbens and Angrist (1994), which Vytlacil
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(2002) showed is equivalent to the type of separable threshold-crossing selection equation that had been extensively used in prior
econometric work (e.g. Heckman, 1974, 1976, 1979). Heckman and Vytlacil (2005) and Heckman et al. (2006) observed that the
content of the monotonicity condition makes it more appropriately described as a uniformity condition, since it restricts unobserved
heterogeneity in how treatment choice can respond to the instruments.

Building on their intuition, we showed elsewhere (Mogstad et al., 2021) that the Imbens—Angrist monotonicity (IAM) condition
cannot hold when there are multiple distinct instruments unless there is no unobserved heterogeneity in treatment choice behavior.?
Yet, as we also documented in that paper, empirical researchers frequently combine multiple distinct instruments together using the
two-stage least squares estimator, presumably motivated by the efficiency gains that arise in the classical linear IV model under
homogeneous treatment effects. The two-stage least squares estimator does not necessarily answer a well-posed counterfactual
even when IAM is satisfied. When it is not satisfied, as with multiple instruments, it can even give negative weight to some
complier groups (Mogstad et al., 2021). MTE methods can be used to conduct inference on specific parameters that answer clear
counterfactuals, but again, the MTE methodology is premised on IAM, which generically does not hold with multiple instruments.

In this paper, we provide a solution to this problem by developing the MTE methodology under a strictly weaker version of
the IAM condition called partial monotonicity (PM). The PM condition with multiple instruments is that IAM is satisfied for each
instrument separately, holding all of the other instruments fixed. The condition is satisfied if each instrument by itself makes every
individual weakly more likely to choose treatment. While PM restricts the sign of the effects of each instrument on treatment choices,
it still allows for rich unobserved heterogeneity in the relative magnitudes of these effects, unlike IAM (Mogstad et al., 2021).

We show that PM with multiple instruments gives rise to multiple threshold-crossing selection equations, one for each instrument.
Each selection equation is separable in a single scalar unobservable that is derived from the marginal potential choices induced by
a single instrument. This unobservable is independent of the instrument from which it was derived after conditioning on all of the
other instruments as control variables. This sets up a complex and unique structure that can be viewed as having multiple different
models for the same observed treatment variable, all of which must be consistent with the data and with each other if the model is
correctly specified.

We exploit this structure by expanding the framework of Mogstad et al. (2018). The flexibility of that framework allows us to
incorporate multiple different selection equations by including additional constraints that ensure they are all consistent with one
another. We call these constraints mutual consistency, since they enforce the requirement that the multiple models of treatment
choice do not contradict each other on the collection of unobserved instrument-invariant parameters for which they all generate
values. As we show through analytic and numerical examples, the mutual consistency condition enables information from different
instruments to be aggregated even while allowing for rich unobserved heterogeneity in both choices and treatment effects. This
provides a blueprint for thinking about how to combine exogenous variation from multiple controlled or natural experiments.

Other authors have considered modified MTE frameworks for settings in which the IAM condition is unattractive. Carneiro
et al. (2003), Heckman et al. (2006), Heckman and Vytlacil (2007b) and Cunha et al. (2007) considered multivalued ordered
treatments. Heckman et al. (2006, 2008), Kline and Walters (2016), Heckman and Pinto (2018), Lee and Salanié (2018), Mountjoy
(2022), and Pinto (2019) analyzed settings with a discrete, unordered treatment. Lee and Salanié (2018) also considered a double
hurdle model for a binary treatment, which ends up being somewhat related to the multiple selection equations that arise under
PM. Gautier and Hoderlein (2015) and Gautier (2020) consider threshold-crossing selection equations with a random coefficient
structure.

The organization of the paper is as follows. In Section 2 we introduce the model, discuss the differences between IAM and PM,
and show how PM leads to multiple selection equations. In Section 3, we develop the MTE methodology under PM with a particular
emphasis on the concept of mutual consistency that arises as a consequence of the multiple selection equations. In Section 4, we
provide analytic and numerical examples to provide further intuition as to how mutual consistency works to aggregate information
across different instruments. Section 5 contains some brief concluding remarks.

2. Model
2.1. Potential outcomes and treatments

For each individual we observe an outcome Y, their binary treatment status, D € {0, 1}, an L-vector of instruments, Z, with
support Z C R%, and a vector of covariates, X. Conditioning on X allows for observed heterogeneity, whereas our focus here is on
unobserved heterogeneity. To keep the notation more concise, we will suppress X throughout the paper, but all assumptions and
analysis can be understood to hold conditional-on-X.

For each d € {0,1} and z € Z, let Y(d, z) denote an individual’s latent potential outcome that they would have realized had their
treatment and instrument been externally set to d and z. Similarly, for each z € Z, let D(z) denote their latent potential treatment
choice if the instrument were z. The observed and potential variables are related through

Y = z 2 1[D=d,Z=zlY(d,z) and D= 2 1[Z = z1D(z), @
de{0,1} zeZ zeZ

where 1[-] is the indicator function that is 1 if - is true and 0 otherwise.
We maintain the following standard conditions throughout the paper:

3 This amplifies previous observations, such as by Vytlacil (2002, p. 355) and Heckman et al. (2006, p. 399), who both note that IAM can fail in a random
coefficients specification.
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Assumptions E.

El Y(d,z)=Y(d,Z)=Y(d) foralld € (0,1} and z,Z' € Z.
E.2 E[Y(d)|Z.{D(2)}.cz] = E[Y(@){D(2)} ;] and E[Y(d)*] < o0 for d € {0,1}.
E.3 (D(2)},cz L Z, where L denotes statistical independence.

Assumption E.1 is the traditional exclusion restriction that the instruments have no direct causal effect on outcomes. Given this
assumption, we can write the first part of (1) more simply as

Y = DY (1) + (1 — D)Y(0). 2

Assumptions E.2 and E.3 are exogeneity conditions on the instruments. These are usually stated together as one stronger condition:
(Y (0),Y(1),{D(2)},c7 L Z), see e.g. Imbens and Angrist (1994, Condition 1) or Vytlacil (2002, L-1(i)). We have weakened full
independence to mean independence because our methodological framework will focus on quantities that can be expressed as a
mean effect of D on Y. This is common in the MTE literature, see e.g. Heckman and Vytlacil (2007b) or Mogstad et al. (2018).*
The moment condition in Assumption E.2 merely serves to ensure the existence of the relevant conditional means.

2.2. The Imbens—Angrist monotonicity condition

Imbens and Angrist (1994) introduced the following assumption about the potential treatment states. They described it as
“monotonicity”.

Assumption IAM (Imbens and Angrist Monotonicity). For all z,z’ € Z either D(z) > D(z’) almost surely, or else D(z) < D(z’) almost
surely.

Assumption IAM requires a shift from one instrument value z to another value z’ to either act as an incentive to take treatment for
all individuals, or as a disincentive for all individuals. It does not allow some individuals to respond positively and others negatively.
There is no presumption in Assumption IAM that Z is a scalar as opposed to a vector, or indeed, some more exotic random object.
The possibility that Z is a vector was explicitly entertained by Imbens and Angrist (1994, pg. 470).

Vytlacil (2002) showed that Assumptions E.2, E.3, and IAM together were equivalent to assuming that D(z) obeys a threshold-
crossing model

D(z) = 1[V < n(z)], (3)

for some unknown function # and some continuously distributed unobservable V' such that E[Y(d)|Z,V] = E[Y(d)|V]and V 1L Z.
Intuitively, the potential choices { D(z)},., can be viewed as discretizations of some underlying latent proneness to take treatment,
V. Individuals with smaller values of V are more likely to take treatment, while those with larger values of V are less likely.
As Vytlacil (2002) discusses, this one-dimensional ordering by V is a different — but equivalent — way of viewing Assumption IAM.
The primary benefit is in providing a tidy, unidimensional measure of unobserved heterogeneity.

It is important to emphasize, however, that the interpretation of V' is inextricable from the definition of the instrument, Z.
Indeed, Vytlacil’s (2002) equivalence argument constructs V' directly from the potential choices, {D(z)},cz. Different instruments
thus yield different unobservables, V. An individual who responds to one instrument may not respond to another. If so, their V'
for one instrument would be different than their V for another instrument. This distinction becomes especially salient when Z is a
vector comprised of multiple different economic variables.

Selection equations like (3) have long been used in econometrics, typically with additional parametric assumptions on n and/or
the distribution of V (e.g. Heckman, 1974, 1976; Heckman et al., 2001). Vytlacil’s (2002) result shows that these traditional
econometric models can be viewed as parameterized special cases of the potential outcomes model with Assumptions E and IAM.
This observation forms the cornerstone of the MTE literature. It implies that the potential outcomes model under Assumptions E and
IAM—the standard model of many authors since Imbens and Angrist (1994)—can be simply viewed as a nonparametric descendent of
a lineage of fully parametric selection models. Choosing to analyze or implement these models nonparametrically or parametrically
is a research decision that comes with an attendant trade-off between the strength of the assumptions and the strength of the
conclusions. These two poles and a broad range of research decisions in between can be unified using the MTE (Mogstad and
Torgovitsky, 2018).

2.3. Implications of IAM with multiple instruments
In Mogstad et al. (2021), we showed that Assumption IAM/(3) is an extremely strong condition if Z is a vector comprising
multiple distinct economic variables. It effectively rules out any meaningful unobserved heterogeneity in treatment choice behavior.

Our results amplify the observation by Heckman and Vytlacil (2005, pp. 715-716) that Assumption IAM requires uniformity across
individuals, not monotonicity in the instrument. The assumption that all individuals respond in a uniform direction can be reasonable

4 Marx (2020) considers the additional information in the stronger, full independence assumption.
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if the instrument is something like a price. However, it is a strong assumption if the instrument consists of multiple types of incentives
or disincentives.

For example, suppose that D(z) € {0,1} is the decision to attend college, and that z = (z,, z,), where z; € {0,1} is a tuition
subsidy and z, € {0, 1} is proximity to college. These two instruments have been widely used in the empirical literature (e.g. Kane
and Rouse, 1993; Card, 1995). If Assumption IAM is satisfied, then it is not possible that some individuals respond to tuition subsidies
but not to distance, while other individuals respond to distance but not to tuition subsidies. If this were the case, then we would
have

P[1=D(1,0)> D0,1)=0]1>0 and P[1=D(0,1)> D(1,0)=0]>0, “4)

respond to tuition, not distance respond to distance, not tuition

which contradicts Assumption IAM, since it implies both
P[D(0,1) > D(1,0)] <1 and P[D(1,0) > D(0,1)] < 1.
Alternatively, suppose that we start with a threshold-crossing model such as
D(z) = 1[By + B, z; + 2, > 0], 5)

where B, and B, are both unobservable random variables with (B, B;) L Z. If we view the index in (5) as the net indirect utility
from attending college, then B, can be interpreted as the marginal rate of substitution between tuition and proximity. This model
cannot generally be re-written in the form of (3) with a single unobservable V' unless Var(B,) = 0. That is, unless the marginal rate
of substitution is homogeneous across individuals.

Proceeding anyway with the assumption that there is no unobserved heterogeneity in selection seems unpalatable. Unobserved
heterogeneity is routinely found to be important in empirical work (Heckman, 2001), and it is an emphasis of the modern literature
on causal inference (Imbens, 2014). Indeed, the very motivation for Assumption IAM was to make sense of linear IV estimators
in the presence of unobserved treatment effect heterogeneity (Imbens and Angrist, 1994). Allowing for unrestricted unobserved
heterogeneity in outcomes but assuming away all unobserved heterogeneity in treatment choice behavior would be an even more
extreme form of what Heckman and Vytlacil (2005, pg. 671) called a “fundamental asymmetry” in IV models that maintain
Assumption IAM.

2.4. Partial monotonicity

To allow for unobserved heterogeneity in treatment choices, we replace Assumption IAM with a weaker assumption called partial
monotonicity (Mogstad et al., 2021).5 To state the condition, we divide vectors z € Z C R’ into their #th component, z,, and all
other (L — 1) components, z_,. We write z = (z,, z_,) to emphasize the separation of the #th component.

Assumption PM (Partial Monotonicity). Take any ¢ = 1,..., L, and let (z,,z_,) and (z’f, z_,) be any two points in Z. Then either
D(z;4,2_z) 2 D(z),,z_,) almost surely, or else D(z,,z_,) < D(z),z_,) almost surely.

It is immediate that Assumption IAM implies Assumption PM, and that the two assumptions are equivalent when there is only
a single instrument (L = 1). When L > 1, Assumption PM is strictly weaker than Assumption IAM; see Mogstad et al. (2021) for
more detail. A simple sufficient condition for Assumption PM is that D(z) is an increasing function of z with respect to the usual
vector partial order on Z (Mogstad et al., 2021). Such a condition still allows for unobserved heterogeneity in the responses to these
incentives, unlike Assumption TAM.

For example, with the two binary college attendance instruments, Assumption PM is satisfied if all individuals are more likely
to attend college when it is closer and/or subsidized. That is, if

D(1,z,) > D(0, z,) for z, =0,1 and D(z;,1) > D(z;,0) for z; =0, 1.

This does not involve a comparison between D(0,1) and D(1,0), and thus allows for (4), so that some individuals may respond
to distance but not to subsidies, and vice-versa. In terms of the random coefficient threshold-crossing model (5), Assumption PM
allows for Var(B)) > 0, as long as B, is non-negative (or non-positive) with probability 1. Using the net utility interpretation of this
equation, Assumption PM allows for unobserved heterogeneity in the magnitude of the marginal rate of substitution, just not in the
sign.

2.5. Selection equations under partial monotonicity

Assumption PM can be used to derive selection equations similar to (3). Consider first the marginal potential treatments, defined
for each ¢ as

Dizp)= Y WUZ_p=z_4D(zs7_4) = D(zs, Z_p), (6)

z_p€Z_y

5 Mountjoy (2022) used a similar assumption in a setting with multiple unordered treatments.
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where Z, denotes the support of Z, € R, and Z_, denotes the support of Z_, € RL~!. For example, if there are two binary
instruments, so that Z = {0, 1}?, then there are two sets of marginal potential treatments, and (6) can be written for # = 1,2 as

Dy(z)) = Z,D(z;,1) + (1 — Z,)D(z,,0)
and  Dy(z,) = Z;D(1,z,) + (1 — Z,)D(0, z,). @)

That is, D,(z,) is the treatment choice an individual would have made had Z, been set to z; while Z, remained at its observed
realization, whereas D,(z,) is the treatment choice they would have made if Z, were set to z, with Z, unchanged.
Conditional on Z_,, each marginal potential treatment is equal to a single joint potential treatment:

P[D/(z;) = D(zp,z_)|Z_p = z_s] = 1. (€3))

As a consequence, Assumption PM implies that each collection of marginal potential treatments {D,(z,)},,cz, satisfies Assump-
tion IAM conditional on any realization of Z_,, since

PDy(24) 2 Dp(Z) Z_p = 2_41 = PID(24,2_p) 2 D(z,,2_p)| Z_p = 2_4] € {0, 1) 9
for any z,,z), € Z, and any z_, € Z_,. With two binary instruments, this means that either
PLD,(1) > D,(0)|Z, = z,] =1 or P[D,©0)> D,(1)|Z,=2z,] =1

for both z, € {0, 1}, as well as the analogous condition with the roles of the two instruments flipped.

Notice that Assumption E.3 does not imply that {D,(z,)}, ez, LZ. That is, the marginal potential treatments are not independent
of the entire instrument vector. This is because D,(z,) directly depends on Z_,, which is itself a subvector of Z; see (6) and the
special case (7). However, Assumption E.3 does imply the weaker condition

(De(zp)}z ez, L Z41Z_, forevery£=1,... L, 10)

so that each set of marginal potential treatments is independent of the single instrument from which it was derived, conditional on
the other instruments. Using only a subset of the instruments without conditioning on the others will generally violate Assumption
E.3 whether or not IAM is satisfied (see Section 3.6 of Heckman, 2010 or Section 4.5 of Mogstad et al., 2021).

Combining (9) with (10) means that Vytlacil’s (2002) equivalence result can still be applied to construct L different threshold-
crossing equations of the form (3). Specifically, the result implies that for each £ =1, ..., L,

Dy(zp) =1 [Vy < nplzp. Z_p)] an
for some unknown function 7, and some continuously distributed unobservable V, such that V, 1L Z,|Z_, and
E[Y(d)|Z,V,] = E[Y(d)|Z_s,V,] ford=0,1. (12)

This is the same conclusion as in (3), but now there is one selection equation for each component Z, of the L-dimensional vector
of instruments, Z, and each selection equation is conditional on a set of “controls” consisting of all other instruments, Z_,.

As in the usual analysis under Assumption IAM, we will normalize (8) so that the distribution of the unobservable is uniform.
This is possible because the distribution function of ¥, conditional on Z_,—call it F,—is strictly increasing on its support, so that
(11) can be written as

Dy(zp) = L[Fo (Vo1 Z_p) < Fpn(zp. Z_p)| Z_p)| = LU, < p(z4, Z_)], (13)

where U, = F,(V,|Z_,) is uniformly distributed over [0, 1] for each #, conditional on any value of Z_,. The second equality in (13)
follows because

Pz, Z_p) =P[Dp(zp) = 1 Zp =24, Z_,]
=PV, <np(zp, Z_)NZ_p1 = Fi(zp, Z_p) Z_y),

as a consequence of V, being independent of Z,, conditional on Z_,.

As in the standard threshold-crossing model, (3), U, can be interpreted as a latent proneness to take the treatment, with smaller
values corresponding to higher proneness. However, now there is a different U, for each instrument, so that this proneness is
measured against the incentive (or disincentive) created by the #th instrument. This reflects the point raised earlier that the
interpretation of the latent variable V, (or U,) is derived from the instrument, and so cannot be interpreted in isolation from the
instrument. It is therefore possible for individuals to have a high value of U, and a low value of U, or vice versa, since these variables
measure proneness to take treatment along different preference dimensions.

However, these possibilities have limits. This is because each selection model provides a different representation of the same

observed treatment status through (13). As a consequence, the components of (U;,...,U;) must be statistically dependent, even
though their marginal distributions are uniform. That is, the distribution of (U,,...,U;) — which is a copula given the normalizations
— cannot be the product copula. Not only that, but (U,, ..., U;) will also generally be dependent with the entire vector Z, since each

U, is only independent of Z, given Z_,, but is not generally independent of Z_,, as observed in (6) and (7).
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Uy 1 U 1
p(1,1) p(1,1)
D=0
p(1,0) p(1,0)
Unconditional support

p(0,1) p(0,1)
p(0,0) D=1 p(0,0)
0 0

0 p(0,0) p(0,1) p(1,0)  p(1,1) 1 0 p(0,0) p(0,1) p(1,0)  p(1,1) 1

U1 Ul

(a) Support of (Uy,Us) given Z = (0,1). (b) Unconditional support of (Uy,Us).

Fig. 1. The joint support of (U,,U,) when L =2 and Z = {0,1}2. While both U, and U, have uniform marginal distributions over [0,1] by construction, their
joint support will be a proper subset of the unit square conditional on Z. If Z has finite support, as in this example, then the unconditional support of U will
also be a proper subset of the unit square.

To visualize these properties, return to the case with two binary instruments and consider the joint distribution of (U;,U,)
conditional on Z = (z,, z,). In order for (13) to hold for both # =1 and ¢ = 2, one must have that

P [11 [U) < p(z1,22)] =1 [U, < plzy, 2,)] |Z - (zl,zz)] =1,

for any realization of (z;, z,). That is, either U, and U, are both smaller than p(z,, z,), or else U, and U, are both larger than p(z,, z,).
This region of support is depicted in Fig. 1(a). Taking the union of this set across all four values of (z,, z,) gives the unconditional
support of (U, U,), which is depicted in Fig. 1(b). Two subsets of the unit square necessarily have zero mass: It is not possible to
have U, < p(0,0) and U, > p(1,1) together, nor is it possible to have U, > p(1,1) and U, < p(0,0) together. The reason is that under
(13), either pair of realizations would entail always choosing both D =1 and D = 0 for any realization of Z.

Instead of deriving (13) from Assumption PM, one can also derive it directly from a nonseparable threshold-crossing equation
with multiple unobservables. For example, suppose that L = 2 with potential outcomes determined by the random coefficients
specification of indirect utility in (5). From (5), the two pre-normalized selection Eqs. (11) can be derived as

=V
—_——— =02 =N =m(2)

—(0;—"’)5 ) ] and Dz(z2>=1[—(30+3121)5 z, ]
1

Notice in particular that even though (B, B,) is independent of (Z,, Z,), this will not be the case for (V}, ;). Instead, V; is dependent
with Z,, and in general only independent with Z, after conditioning on Z,. Similarly, ¥, is dependent with Z; with independence
between V, and Z, only guaranteed after conditioning on Z,. In addition, ¥, and V, are clearly dependent, since they are both
functions of B, and B,.

If Var(B,) = 0, so that B, = b, is constant, then we can write

Dl(zl)=]l[

Di(z)) =1[-By< bz +Z,| and Dy(z)) =1[-By<b Z +1z],

so that both equations could be rationalized by a single threshold-crossing equation with a single unobservable,
=y =n(z1,22)
—~ = —
D(zy,z)) =1| =By <byz; +zz].
That is, (5) could be written in form (3), and Assumption IAM would be satisfied. Without the assumption that Var(B,) = 0 — that
is, homogeneity in the marginal rate of substitution — such a reformulation is not generally possible.

3. Methodology

In this section we develop the MTE methodology under Assumption PM. We begin in Section 3.1 by defining different instrument-
specific MTEs as the fundamental unit of analysis in the model. In Section 3.2, we describe the class of target parameters that we
focus on. In Section 3.3, we review the identification analysis developed by Mogstad et al. (2018, “MST” hereafter), which showed
how to flexibly move between point and partial identification under Assumption IAM. In Section 3.4, we then adapt this methodology
to Assumption PM by using the concept of mutual consistency, which links together the various instrument-specific MTEs into a
greater whole. In Section 3.5 we discuss some implications for testing whether Assumptions IAM and PM hold.
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(a) Both my and msy imply the same value of (b) The value of E[Y(1)] implied by mq is
E[Y(1)]. These MTR pairs are mutually con- different (smaller) from that implied by ma.
sistent. These MTR pairs are mutually inconsistent.

Fig. 2. MTRs along different margins of selection (different U,) are not directly comparable. Nevertheless, they are not completely unrelated, since both MTRs
provide a description of the entire population.

3.1. Marginal treatment response functions

For each instrument, Z,, and its unobservable, U,, we define the marginal treatment response (MTR) function
me(dlug,z_) =B [Y WU, =up, Z_y=z_4] ford=0,1. a4

The MTR function describes variation in potential outcomes as a function of the propensity to take treatment along the #th margin,
U,, again conditioning on all other instruments, Z_, = z_,. Each MTR function, m,, generates a marginal treatment effect (MTE)
function (Heckman and Vytlacil, 1999, 2001b, 2005, 2007a,b) formed as m,(1|u,, z_;) — m,(Oluz, z_,). We let m = (m,, ... ,m;), and
assume that m belongs to a known parameter space M C M, X --- X M, that encodes prior information (assumptions) that the
researcher wants to impose about the MTR pairs.°

Each MTR and its corresponding MTE is defined in terms of a different margin of selection, U,, which is itself defined by the
¢th instrument component. Since the MTRs are instrument-specific, they are not directly comparable. However, a key point for
our discussion ahead is that each MTR still describes the entire population, just organized along a different dimension of choice
behavior. Thus, while the MTRs for different # will typically be different, they cannot be arbitrarily different.

For example, consider again the case with two binary instruments. Fig. 2(a) plots m, (1|, z,) assuming (for simplicity) that this
function does not vary with z,, and so can be represented by the single solid line. It also plots m,(1]-, z;) for both z; =0 and z; = 1.
While m, is not directly comparable to m,, both functions are a conditional mean for the same random variable, Y(1). To be mutually
consistent then, one requirement is that

E [m (11U, Zy)] =ElY()] = E [my(1|U,, Z))] (15)

so that both m; and m, generate the same mean for Y(1). In Fig. 2(a) this is the case, since the integrals of both dotted curves are
the same as the integral of the solid line.

In contrast, m, in Fig. 2(b) is not mutually consistent with m,. The areas under m,(1|-,0) and m,(1|-, 1) are clearly greater than
the area under m;(1]-,0) = m(1]-,1). It cannot be the case that both m; and m, describe the conditional mean of Y (1), since these
two MTRs would imply different values of E[Y(1)] through (15). In the following, we will develop a method that requires mutual
consistency, so that pairs like those in Fig. 2(b) are excluded from consideration. As we show later, excluding such pairs allows
information gained about one instrument’s MTR be used to restrict the MTR of another instrument.

6 We assume throughout that each M, is contained in a vector space.
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3.2. The target parameter

We assume that the researcher has a well-posed empirical or policy question that can be informed by a specific target parameter.
This could be a traditional target parameter, such as an average treatment effect for the population, or for the treated or untreated
subpopulations. It could also be a policy-relevant treatment effect (Heckman and Vytlacil, 1999; Carneiro et al., 2010) that captures
the effect of changing choice sets. The focus on constructing an estimator for a specific target parameter answering a specific
counterfactual distinguishes the MTE literature from work that attempts to reverse engineer interpretations for commonly-used
estimators, such as two-stage least squares (e.g. Angrist and Pischke, 2009; Mogstad et al., 2021).

We require the target parameter, #*, to be a linear function of the L MTR pairs, having the form

L L 1
prmy= Y prmH=y Y E [/ mp(d\ug, Z_p)k(d\ug, Zp, Z_p) dug | | (16)
¢=1 ¢=1de(0,1}) 0
where w} are weighting functions specified by the researcher. The weighting functions are assumed to be known given knowledge

of the joint distribution of (Y, D, Z). Heckman and Vytlacil (2005, 2007b), MST, and Mogstad and Torgovitsky (2018) provided
catalogs of weighting functions for common target parameters. When L = 1, (16) reduces to the form used for the target parameter
by MST.

When L > 1, there might be several ways to express the same target parameter. For example, if * is the population average
treatment effect (ATE), E[Y (1) — Y (0)], then one could take a);(lluf, z) =1 and a);(Oluf, z) = —1 for any ¢, while setting all other
weight functions to 0. This is another manifestation of the mutual consistency issue illustrated in Fig. 2. When using multiple
instruments, we will impose mutual consistency, so that the implied value of the ATE is the same for any #. Thus, as a practical
matter, any choice of # will yield the same inference on an instrument-invariant parameter such as the ATE, the average effect of
the treatment on the treated (ATT), or the average effect of the treatment on the untreated (ATU).

Other interesting target parameters might be instrument-specific. For example, the class of policy-relevant treatment effects
(PRTESs) introduced by Heckman and Vytlacil (2001c, 2005) includes parameters that measure the impact of changing the incentive
associated with a given instrument. A special case of a PRTE is an extrapolated local average treatment effect (LATE), such as

LATE, (+6%) = E [Y(l) —YO|p0.2) <, < (1+ %) x p(l, 22)] , 17)
which is the LATE that would result if the Z, instrument were changed sufficiently to cause a 6% increase in participation under
Z, = 1. This target parameter can be used to gauge the sensitivity of point identified IV estimates to the definition of the complier
group. See Heckman and Vytlacil (2005), Carneiro et al. (2010), and MST for further discussion and additional examples of PRTEs.

When the definition of the target parameter depends on the instrument, as in (17), the weights will also need to depend on
the instrument, and the mutual consistency issue will not immediately arise. Nevertheless, there will still be benefits to requiring
instrument-invariant parameters to be mutually consistent across different MTRs. As we demonstrate ahead, this requirement will
allow information to flow between different instruments, so that their exogenous variation can be aggregated. The surprising
implication is that even if the target parameter is instrument-specific, inference on that target parameter can still benefit from
combining multiple instruments.

3.3. Using each instrument separately

In this section we briefly review the MST methodology for inference on g* under Assumption IAM. In the multiple instrument
setting this can be equivalently viewed as using one instrument at a time, conditioning on the rest as covariates. In the next section
we then augment the methodology to combine multiple instruments together using the concept of mutual consistency.

Suppose that (Y(0),Y (1), D) were generated by (13) for any £, with MTR function m,. Then Proposition 1 of MST shows that for
any (measurable) known or identified function s,

1
E[s(D, Z2)Y] = z E [/ my(d|uy, Z_p)o'*(d|uy, Z) du, (18)
def0,1} 0

where ®’(0lu, Z) = 50, Z)1[u> p(Z)] and &’(l|u, Z) = s(1, Z)1[u < p(Z)].

MST refer to a choice of s as an IV-like specification, and show that by choosing s appropriately, one can reproduce any linear IV
estimand on the left-hand side of (18). Given a collection S of IV-like specifications, we say that an MTR m, is consistent with the
observed data under S if it satisfies (18) for every s € S. We denote the set of such pairs by

M = {m, : m, satisfies (18) for each s € S}.
The identified set for the #th MTR pair is defined as
M= M, 0 MO,

That is, Mlif is the collection of MTR pairs for the Zth instrument that satisfy the researcher’s prior assumptions (m, € M,) and are
consistent with the observed data for the choice of IV-like estimands in S (m, € M;bs). The identified set for the #th component
of the target parameter in (16) is the projection of ./\/lib,fj under §7, or

B = {px(my) 1 mp € MY}
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If M, is a convex set, then Biffi is an interval, [ﬂ;,ﬁ;], with endpoints given by

E; = inf u B (my) and By = sup prmy),
my €M myemid

see Proposition 2 in MST.
To compute the endpoints of this interval, MST assume that M, has a linear-in-parameters form, so that each m, € M, can be
written as
K¢
me(lug.z_p)= Y Opbp(dluy.z_p)  for some 6, = (6,.....0,,) € O, CRX?, (19)
k=1
where b, are known basis functions. If ©, can be specified as a set of linear equalities and inequalities, then this assumption makes
ﬁ; (and ﬁ;) the optimal value of a finite-dimensional linear program with 6, as the variables of optimization:

K, K,
g7 = min Y 0,Ts st Y 0,05 =Els(D,Z)Y] forallses, (20)
k=1 k=1

where

1
rr= Y E [/ b,;k(d|u,;,Z_f)m;(dmf,zf,z_f)duf],
de{0,1} 0

1
and I}, = ) E [/ be(dlug, Z_p)ar(dug, Zy, Z_f)duf] ,
de{0,1} 0
are both identified quantities that can be directly estimated from the observed data. MST, Mogstad and Torgovitsky (2018), and Shea
and Torgovitsky (2019) discuss different ways of specifying ©, to incorporate nonparametric or parametric specifications, with or
without additional shape constraints.

The identified set Bi;1 could be either a non-degenerate interval, or a point, depending on how restrictively the MTRs are specified
and on the richness of the set of IV-like estimands, S. MST propose an estimator that can be used in either case. Shea and Torgovitsky
(2019) observe that a linear GMM estimator can be used in point identified cases with no shape constraints.

3.4. Combining instruments through mutual consistency

Condition (18) can be applied for each ¢ to restrict each of the L MTR functions in isolation. We connect them by requiring
mutual consistency in the unobservable quantities they imply. For example, in Fig. 2 we noted that every m, implies a value for
E[Y(1)] given by

1
E[Y()] =E [/ mf(1|uf,zf)du] . (21)
0

We will restrict attention to choices of m for which the right-hand side of (21) is invariant to # = 1, ..., L. This restricts our attention
to MTRs like those in Fig. 2(a), while ruling out inconsistent pairs like those in Fig. 2(b). The result will be tighter inference on
each ﬂ;, as well as on the overall target parameter, f*.

We formalize the property of mutual consistency in a similar fashion to the data consistency condition, (18).” A straightforward
modification of Proposition 1 in MST shows that if (Y (0), Y (1), D) were generated by (13) with MTR function m,, then

1
Els(D, Z)Y(d)] = E [ / my(dlug, Z_,)@" (uy, Z)du/]
0

where @&°(u, Z2) = 0*(Olu, Z) + @*(1|u, Z). (22)

This equation is like (18) with the important difference that it is in terms of the latent potential outcomes, Y(d). In contrast to
(18), where the left-hand side quantity was a direct function of the observed data, in (22) the left-hand side is in general not point
identified. Nevertheless, the left-hand side of (22) does not vary with ¢, so the right-hand side should not either. Thus, we say that
a collection of MTRs m = (m,, ..., m;) is mutually consistent under S if

Els(D, Z)Y(d)] implied by m, E[s(D, Z)Y(d)] implied by m,/

E [/ my(dluy, Z_p)d* (uy, Z) duf] =E [/ mpr(d|ugr, Z_p)* (ugr, Z) dugr

ford=0,1,allseS,and all 7,7' € {1,...,L}. (23)

7 In a previous draft, we referred to “mutual consistency” as “logical consistency”. Torgovitsky (2019, Section S6.2) proposed using the mutual/logical
consistency idea to combine overlapping dynamic potential outcomes models of state dependence.
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Fig. 3. The data consistency condition (18) constrains each m, to be consistent with the observed data in isolation. Mutual consistency (23) ties the m, together
across £ = 2,..., L. This allows the information contained in different instruments to flow in the direction of the arrows, and therefore be combined across
models that use different instruments.

Given a set of IV-like specifications, S, the set of mutually consistent MTRs is
M = {m=(m,...,mp) : m satisfies (23)} .
To combine multiple instruments together, we focus on the identified set
M4 = M MO A T,
where M°bs = M‘l’bs X e X M%bs. The identified set for the target parameter is then the projection of M4 under g*, or
B = {p*m) : me M9},

We conjecture that this identified set is sharp if S is a sufficiently rich class of functions (in the sense of Proposition 3 in MST),
however we have been unable to prove it.

Fig. 3 illustrates how the mutual consistency condition allows information to flow between different MTR functions. Intuitively,
(18) places restrictions on m, for each # by requiring it to match the observed data, whereas the mutual consistency condition
propagates these restrictions from m, to m,,. The result is a sort of equilibrium in which none of the MTR functions contradict each
other on their implications for the instrument-invariant quantities E[s(D, Z)Y (d)] equated in (23). Limiting attention to the smaller
set of MTRs that are consistent with this equilibrium mechanically shrinks the identified set for the target parameter as well.

The mutual consistency condition is a collection of linear equality constraints, so adding it does not fundamentally alter the
theory or computational procedure in MST. In particular, if M is a convex set, then a minor change to Proposition 2 of MST shows
that B9 is an interval, [*, §*], with endpoints given by

p*= inf p*m) and  f*= sup p*(m),

memid memid
If the linear-in-parameters representation (19) is maintained for all # =1, ..., L with 0 = (6,,....60;) € O, then p* can be found by
modifying (20) to incorporate all MTRs as well as the mutual consistency constraint:
L K,
* __ s *
B =min 3, X 0nT 7,
£=1k=1
Ky
st. ) 0,03, =Els(D,Z)Y] foralls€S, ¢ =1,....L, (24)
k=1
K, K
Y 04T 5 ()= 0, T (d) forallseS,¢=2,..,L,andd =01,
k=1 k=1

where for shorthand we have defined
1
[ (d)=E [/ be(dlug, Z_p)@ (uyp, Z)dug
0

If O consists only of linear equalities and inequalities, then (24) remains a finite-dimensional linear program in terms of quantities
that are all point identified.

3.5. Testable implications
Under Assumption IAM, the nonparametric IV model in Section 2 has testable implications (Balke and Pearl, 1997; Imbens
and Rubin, 1997), and several authors have developed formal statistical tests of these implications in different forms (Huber and

Mellace, 2014; Kitagawa, 2015; Mourifié and Wan, 2016). MST observe that these testable implications manifest themselves in the

10
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MTE methodology through the possibility that the identified set is empty. When using each instrument separately, as in Section 3.3,
this would mean that Mifd is empty, and would imply that either the Zth instrument does not satisfy Assumption IAM, conditional
on Z_,, or that some aspect of Assumptions E are false. If the researcher specified M, to include additional assumptions, then
finding M;}i to be empty could also call these into question.

This logic also holds when combining instruments, as in Section 3.4. Suppose that Assumptions E and the researcher’s
specification of M are beyond question. Then finding M4 empty implies that Assumption PM is violated. Suppose it is not empty
and add the following assumption as part of the specification of M:

mp(d|u,z_s) = my(dlu, z;) = my(d|u)
foralld =0,1,ue[0,1],al/,and z_, € Z_,. (25)

This assumption says that all of the L MTR functions are in fact the same, which among other things implies that they cannot
depend on any component of z. When (25) is imposed, the mutual consistency condition (23) is immediately satisfied, and Mi¢
reduces to the identified set obtained by using all instruments together under Assumption IAM. Thus, finding an empty identified
set when (25) is imposed, but not when it is not, is evidence that Assumption IAM can be rejected, but that the strictly weaker
Assumption PM cannot be rejected.

4. Aggregating multiple instruments

In this section, we demonstrate how the mutual consistency condition allows multiple instruments to be aggregated for more
informative inference. In Section 4.1, we provide an algebraic example that shows how a model that would normally be just-
identified becomes over-identified when mutual consistency is imposed. In Section 4.2, we show that the same principles are at work
even without point identification. In Section 4.3, we conduct a numerical simulation that shows how mutual consistency interacts
with the choice of target parameter and the auxiliary identifying assumptions maintained by the researcher. In Section 4.4, we
discuss the implications of using IAM instead of PM when IAM does not hold, and provide an illustration of the bias this can cause
when estimating a PRTE.

4.1. An illustrative example with point identification

The following example demonstrates how the mutual consistency condition yields additional over-identifying information that
can be used to relax assumptions or to power a specification test.

Consider a setting with two binary instruments, so that Z = {0, 1}2. As discussed, these two instruments give rise to two selection
equations like (13) with two unobservables U, and U,, and therefore two marginal treatment response functions, m; and m,. To
simplify the example, we will focus solely on the MTR function evaluated at the treated state, d = 1, so that our objects of concern
are m;(1|uy, z,) and m,(1|u,, z;), viewed as functions of (u;, z,) € [0,1] x {0,1} and (u,,z;) € [0, 1] x {0, 1}, respectively.

Consider the assumption that m,(1|u;, z,) is a linear function of u, for each value of z,, so that

my(L|uy, zy) = 0y + 09u; + 01325 + 014251, (26)

for some unknown parameters 6, = (6;,,60,,,0,3,6,4). Brinch et al. (2012, 2017) showed that 6, is point identified as long as
p(1,0) # p(0,0), and p(1, 1) # p(0, 1). Their argument uses the implications of (26) for the observed mean of the treated group:

EYID=1,Z, =z2,.Z, = 2,]
=E[Y|U, £ p(z1,2,), Zy = z,]

1 p(z1.22)
= —p(zl 12)/0 my(Luy, z,) du;
1 1
=6, + 51’(21,22)912 + 2, [913 + 51’(11722)914] . (27)

Thus, if p(1,0) # p(0,0), then 6,, and 6, are point identified by a linear regression of ¥ on a constant and % p(Z,,Z,) in the
Z, = 0 subpopulation, while p(1,1) # p(0, 1) ensures that 6,5 and 6, can be point identified off of the same linear regression in the
subpopulation with Z, = 1.

The mutual consistency condition exploits the observation that (26) also has implications for the conditional mean of the treated
outcome for the untreated group. This quantity is not observed, but it can be expressed in terms of §, using an argument similar to
27):

E[Y(DID =0,Z, = zy,Z; = 2,]
I I
= O 53 (1+p(z1.2) 002 + 25 [ 013 + 5 (14 p(z1.20) 014] (28)

Since 6, is point identified, these counterfactual mean outcomes are also point identified. They could be used to evaluate treatment
parameters that can be expressed in terms of the first selection model with unobservable U,. The more surprising finding is that
they could also be used as additional identifying information for the second selection model with unobservable U,.

11
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One way to see this is to consider a specification for m,(1|u,, z;) that would typically not be point identified in the current setting.
For example, suppose that

my(Lluy, 21) = Oy + Opgiy + 0332 + Op42 15 + 05143, (29)

so that m,(1|u,, z;) is more flexible than m, (1|u,, z,) in having an additional quadratic term. While this function now has five unknown
parameters, 0, = (05, 605,,0,3,0,4,60,5), there are still only four observed conditional means: E[Y|D = 1,Z, = z,,Z, = z,] for
(21, 2) € {0, 1}2. If the selection model for U, were viewed in isolation, then 8, would not be point identified. However, the mutual
consistency condition effectively provides four more moments via (28). Since ¢, is point identified, these moments can be treated
as known.

With eight moments total, it is possible to point identify (indeed, overidentify) the five parameters in 6,. In analogy to (27) and
(28), the system of equations is given by:

1 00 0 p0.0% ]

2 3
T ) Lt [ ElY|D=1,Z =(0,0)] ]
20D pO.D PO E[Y|D=1,Z =(1,0)]

2 2 3 21 = =
;b D p0.D% 16, ElY|D =12 =Dl

2 2 E | E[Y|D=1,Z=(1,1)] 30)
PO g 00 I T Ry ()iD =0, 2 = 0,01]
R ORI 0 1p0° | 2 EY (DD =0,Z = (1,0)]

2 3(1-p(1,0)) 25 — —
1 oD d+pOD) l—pfo,lﬁ EY(HID =0,Z =, 1]

2 2 3(1-p(0,1) |E[Y(D|D=0,Z =(1,1)]]
1 1+p(1,1) 1 (14+p(1,1)) l—p(l,l)3
L 2 2 3(1-p(1.D) ]

The entire right-hand side of (30) is known: The first four quantities are observed in the data, and the second set of four are identified
using the selection model for the first instrument via (28), since 6, is point identified. The coefficient matrix on the left-hand side of
(30) can be full rank, depending on the values of the propensity score.® When this is the case, the linear system of equations either
has no solution, or a unique solution. If there is no solution, then the model is misspecified, while if there is a unique solution, then
0, is point identified.’ Thus, the quadratic MTR specification (29) can be point identified even though the only source of exogenous
variation in the second selection model is the binary instrument, Z,. The reason is that the second selection model also harnesses
some of the information from the first model - that is, some of the exogenous variation in Z, — through the mutual consistency
condition.

4.2. An illustrative example with partial identification

The next example shows that the implications of the previous example are not specific to cases with point identification.

Suppose again that there are two instruments, Z, and Z,. As before, assume that Z, € {0,1} is binary, but now suppose that
Z, is continuous. Actually, assume that Z, is not only continuous, but that it has full support, in the sense that the support of
(21, Zy)|Z, = z; is [0, 1] for both z; =0, 1. It is well-known that in this case the average treatment effect (ATE) is point identified,
since for each z; there exists (at least in the limit) an instrument value Z, such that p(z;, Z,) = 1. This implies that

E[Y(D)|Z, =z]1=EY(D|Z, =z2,.Z, = 2] =E[Y|D=1,Z, = z,, Z, = Z,],

with a similar argument applying to the case with d = 0. See, for example, Heckman (1990), Manski (1990), and Heckman and
Vytlacil (2001a).

However, suppose that our interest is not in the ATE, but in an instrument-specific target parameter involving the first instrument.
For example, suppose that we are interested in the average treatment effect among the 99% of the population who are most likely
to take treatment when measured according to Z,. This parameter can be written as

LATE, (0,.99) = E[Y(1) — Y(0)|U; < .99]. (31)

This object is nearly the same as the ATE; it differs only by the 1% of the population excluded from the conditioning event. If we
only had the first instrument at our disposal, we would be trying to identify an object that is very nearly the ATE with only a binary
instrument. The bounds could be expected to be quite wide if p(0, Z,) and p(1, Z,) are far from 0 and 1 for “many” realizations of
Z,.

On the other hand, this line of reasoning ignores the information that we have from the second instrument. That information is
sufficient to point identify the ATE, which is nearly the same as the generalized LATE in (31). The relationship between the two
objects can be written as

=LATE, (.99,1)

LATE, (0, .99) = % (ATE — O1E[Y(1)= YO)IU, > .99}).

8 For example, take p(0,0) = .3, p(1,0) = .45, p(0,1) = .55, and p(1,1) = .7.

9 1t is common to call 6, point identified regardless of which case holds, since the identified set consists of no more than a single element for both cases.
The ambiguity comes from whether one is tacitly assuming that the model is correctly specified, which in our notation means M is not empty. We maintain a
distinction between the two cases here just for clarity.

12
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Table 1
The joint distribution of (D, Z) for the numerical simulation in
Section 4.3.
2= (21, %) PlZ =z] p(2)
(0,0) 4 3
0, 1) 3 5
(1,0 1 .6
(LD 2 7

Since the ATE is point identified from variation in the second instrument, this expression implies that the identified set for
LATE,(0,.99) can actually be quite narrow. Indeed, if y and j are the logical bounds on Y, then the identified set for LATE, (0, .99)
is contained in the interval
1 1

L (ATE- 015 - ),—(ATE 01G - )]

[.99( 0NG=9). 55 +0l=p)
which has width of only %(y —.
4.3. Numerical simulation

In this section, we illustrate how mutual consistency interacts with additional assumptions on the MTR functions using a
numerical simulation.'’

The simulation is like the example in Section 4.1 with two binary instruments. The joint distribution of (Z,, Z,) and the propensity
score p(z) are shown in Table 1. The propensity score is increasing in each component of Z, so that both instruments can be viewed
as incentives that make choosing D = | more attractive, as in the college attendance example. We assume that Y € {0, 1} is binary,
so that conditional expectations of Y are bounded between 0 and 1, and we generate the data using model # = 1 with an MTR that
is linear in 4, and does not depend on z,:

myOluy,zo) =.5—1u; and m(1|u},z,) = .8 — 4u,.

In all results that follow, we use a saturated specification of S, so that S consists of indicator functions s(d, z) = 1[(D, Z) = (d, z)]
for all possible combinations of d and z.

Fig. 4 reports bounds on the average treatment on the treated (ATT). These bounds are derived under specifications of
my(d|uy, z_,) that are J,th degree polynomials in u,, and fully interacted in z_,, with different parameters for d =0 and d = 1. We
implement these polynomials using the Bernstein basis so that it is easy to impose shape constraints (see e.g. Section S.2 of MST).
There are three sets of bounds shown for increasing values of J;, = J,, as well as nonparametric bounds indicated with horizontal
lines.

The two wider sets of bounds are derived using the # = 1 and ¢ = 2 instruments in isolation. The bounds are different because
with ¢ = 1, the instrument is Z,, with Z, serving as a control variable, while with # = 2 the instrument is Z,, with Z, as a control.
The third set of bounds is computed while also imposing mutual consistency between the two models. This substantially tightens
both the nonparametric bounds and the polynomial bounds at all polynomial degrees.

Notice in particular that the mutual consistency bounds are tighter than the intersections of the # = 1 and # = 2 bounds. This
shows that mutual consistency is not just a matter of taking intersection bounds across differ instruments used separately. Instead,
it involves harmonizing the intricate common predictions about instrument-invariant quantities that one would obtain using each
instrument separately, as formalized through the set of equalities (23). These equalities effectively combine the information from
the two instruments into a whole that is greater than the sum of their parts. As Fig. 4 shows, this can substantially tighten inference.
For example, the nonparametric bounds under mutual consistency are as tight as the bounds using each instrument separately with
a 5th degree polynomial.

In Fig. 5, we report bounds on LATE(+6%), as defined in (17) for 6 = 20. This quantity can only be expressed in terms of the
unobservable U, for the first instrument. Nevertheless, comparing the four sets of bounds in Fig. 5 shows that the second instrument
provides information on LATE,(+20%) through the mutual consistency condition. Thus, the mutual consistency condition allows
information from the second instrument to inform the MTR functions for the first instrument. This extra information results in tighter
bounds than would be possible using the first instrument in isolation. In this data generating process, the additional information is
small (but still present) when m, is left nonparametric. Adding the nonparametric shape constraints that m,(0|-, z;), my(1]-, z;) and
my(1]-, z;) — my(0|-, z,) are decreasing functions for every z; provides substantially more information.

A vivid case occurs when m, is specified as linear (J, = 1). Under this assumption, all instrument-invariant quantities are point
identified using only variation in Z,. A parameter that is specific to the first instrument, like LATE,(+20%), generally remains
partially identified. Suppose, however, that we impose the assumption that m, is quadratic (J; = 2). If we were using only variation
in Z,, then we would still expect LATE,(+20%) to be partially identified. Indeed we can see that this is the case in Fig. 5, where
the bounds without imposing mutual consistency are approximately [.075,.175] when J, = 2. Imposing mutual consistency with m,
linear collapses these bounds into a single point, consistent with the example discussed in Section 4.1.

10" Code for reproducing these simulations is available at https://github.com/a-torgovitsky/Marginal TreatmentEffectsWithMultipleInstruments.jl.
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Upper and lower bounds

Fig. 4. Imposing mutual consistency tightens bounds on the average treatment on the treated (ATT) for both parametric and nonparametric specifications of

the MTR functions.

Upper and lower bounds

Fig. 5. The ¢ =2 model provides identifying content for parameters, such as LATE, (+%20), that can only be defined using the # = 1 model.
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4.4. Using Assumption IAM when it does not hold

As discussed in Section 3.5, Assumption [AM has testable implications given Assumptions E. Heckman and Vytlacil (2001a)
showed that when these testable implications are not violated, the sharp nonparametric bounds on the ATE, ATT, and ATU are the
same as Manski’s (1990, 1994) IV bounds, which do not maintain any assumptions on the selection process. Since Assumption PM
is weaker than Assumption IAM, the same conclusions also hold for Assumption PM. Thus, sharp nonparametric bounds on the ATE,
ATT, and ATU are the same function of the joint support of p(Z,, Z,) whether or not one maintains Assumptions IAM or PM. For
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Table 2
Groups definitions under Assumption PM with Z,,Z, € {0,1}. The probabilities and average treatment effects
are used in the numerical example in Section 4.4.

Group name (G = g) D(0,0) D(0, 1) D(1,0) D(1,1) P[G = ¢g] E[Y(DIG = g]

Always-taker
Eager complier
Reluctant complier
Never-taker

Z, complier

Z, complier

= = oo

cocoococow~
-0 0O MM
o oo R~
= = =t
[ N NI

example, if p(z,,z,) = %(zl + z,), with Z; uniform over [0, 1] and Z, binary, then the ATE, ATT, and ATU are nonparametrically
point identified with or without Assumptions IAM or PM, because the joint support of p(Z,, Z,) is [0, 1], even though the support
induced when conditioning on either Z, or Z, is a proper subset of [0, 1].

Assumptions IAM and PM start to be empirically useful when imposing additional assumptions (parametric structure or
nonparametric shape restrictions; recall Fig. 4), or when the target parameter is a quantity that depends on the choice model,
such as a LATE or a PRTE. In either case, relying on Assumption IAM when it is violated can lead to incorrect inference.

We illustrate this point with a nonparametric analysis of a PRTE. As in the previous section, suppose that there are two binary
instruments, Z; and Z,. In the observed baseline, the support of (Z,, Z,) only has three points, (0, 0), (1,0), and (1, 1), with respective
probabilities i, %, and i. In the new policy, the support of (Z,, Z,) is expanded to also include (0, 1) by taking half of the mass
placed on (1,0) and applying it to (0, 1), so that each of the four instrument values are equally likely. Letting D* be the treatment
decision in the new policy, and Y* = D*Y (1) + (1 — D*)Y(0) the associated outcome, the (aggregate) PRTE is defined as

PRTE = E[Y* - Y],

see e.g. Heckman and Vytlacil (2007b) or Carneiro et al. (2010).
Suppose that the propensity score has the following order:

0 < p(0,0) < p(0, 1) < p(1,0) < p(1,1) < 1. (32)

Then under Assumption [AM, one would conclude that strictly fewer individuals will participate under the new policy, since half
of those who previously received Z = (1,0) now receive Z = (0,1), and p(0, 1) < p(1,0). In terms of the single threshold-crossing
selection model (3) with a single (normalized) unobservable U, one would conclude that

1 PO

PRTE = -2 / m(1|u) — m(Olu) du, (33)
p(0.1)

where m(d|u) = E[Y(d)|U = u]. If, for example, one believed the effect of the treatment to be positive for everyone, then one would

unambiguously conclude that the PRTE is negative.

However, that conclusion could be wrong if Assumption PM holds but Assumption IAM does not. To see why, consider the
taxonomy of choice types under Assumption PM introduced by Mogstad et al. (2021), which is reproduced in Table 2. Under
Assumption PM there are four types of compliers. For the Z, compliers, getting shifted from Z = (1,0) to Z = (0, 1) means leaving
treatment. But for the Z, compliers, that same shift means entering treatment. Whether the PRTE is positive or negative depends on
the relative proportions of Z, and Z, compliers, and on their respective average treatment effects. Formally, the PRTE computed
under the first selection model with the first instrument can be written as

1 p(0.1)
PRTE, = 1 / my(Luy, 1) —mOluy, 1) du,
0

1 p(1,0)
i / my(1|uy,0) —m;(Olu;,0)du; |, B4
0

or under the second model as

1 p©0,1)
PRTE, = 1 / my(1|u,, 0) — my(0lu,, 0) du,
0

1 p(1,0)
-1 / my(1]uy, 1) — my(Oluy, 1) duy ). (35)
0

Thus, under Assumption PM the PRTE can be either positive or negative, even if the treatment effect is positive for everyone.

Fig. 6 illustrates this point with a numerical example. The data is drawn according to the type probabilities and conditional
means shown in Table 2. For simplicity, Y (0) is set to 0, and Y(1) € {0, 1} is binary, so that the treatment effect is positive for
everyone. Fig. 6 shows that the nonparametric upper bound on the PRTE implied under Assumption IAM (Eq. (33)) is indeed
0, even though the true PRTE is positive. Nonparametric bounds on PRTE; or PRTE, that use each instrument separately under
Assumption IAM contain 0 and the true PRTE, but are quite wide. Maintaining Assumption PM with both instruments and imposing
mutual consistency narrows the nonparametric bounds considerably, while still containing both 0 and the true, positive value of the
PRTE.
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Selection
assumptions 4

Both instruments i
with TAM -
Instrument 1 I :
with TAM/PAI ]
Instrument 2 | |
with TAM/PM |

Both instruments

with PM and mu- _

Bounds on a PRTE

— True value

tual consistency

—0.15 —0.1 —0.05 0 0.02 0.05 0.1 0.15 0.2 PRTE

Fig. 6. Bounds on the PRTE of shifting 5 mass from Z = (1,0) to Z = (0,1).

5. Conclusion

A central conclusion of the modern IV literature is that the parameter estimated by a traditional linear IV estimator depends
on the instrument itself. This conclusion creates a problem: certain instruments may lead to less relevant parameters and there
might be no available instrument that answers the researcher’s specific scientific or policy question. MTE methods address this
problem by returning focus to the definition of the target parameter, leaving the specifics of how it can be identified (parametrically,
nonparametrically, partially, etc.) as a separate and conceptually distinct issue. However, MTE methods crucially depend on the
monotonicity condition (threshold-crossing equation) introduced by Imbens and Angrist (1994). This condition is extremely strong
when there are multiple instruments, since it assumes away all meaningful unobserved choice heterogeneity (Mogstad et al., 2021).

In this paper, we have extended the MTE methodology under a weaker, partial monotonicity condition. Partial monotonicity
allows for rich patterns of unobserved heterogeneity in choices, while still remaining rooted in an interpretable choice-theoretic
model that is fundamentally nonparametric. We showed how to modify the general partial identification framework of Mogstad
et al. (2018) to allow for partial monotonicity instead of the stronger, traditional monotonicity condition. The framework provides a
general, flexible way for researchers to explore the assumptions—conclusion frontier through different parametric and nonparametric
shape restrictions on the underlying marginal treatment response functions. It can be implemented at scale using linear programming.

An unusual feature of the framework is that it can be viewed as having multiple different selection models for the same treatment.
In order to rationalize these models simultaneously, we imposed a condition called mutual consistency. The mutual consistency
condition effectively allows information from one instrument about one marginal treatment response function to be transferred to
another marginal treatment response function defined by a different instrument. This allows for the accumulation of identifying
content from multiple instruments. The method provides a path for extracting and aggregating information about treatment effects
from multiple different sources of exogenous variation while still maintaining a plausible model of choice behavior and allowing
for rich unobserved heterogeneity.
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