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45 Abstract

46 Capturing elaborated flow structures and phenomena is required for

47 well-solved numerical flows. The finite difference methods allow simple

48 discretization of mesh and model equations. However, they need simpler

49 meshes, e.g., rectangular. The inverse Lax—Wendroff (ILW) procedure

50 can handle complex geometries for rectangular meshes. High-resolution

51 and high-order methods can capture elaborated flow structures and phe-

52 nomena. They also have strong mathematical and physical backgrounds,

53 such as positivity-preserving, jump conditions, and wave propagation

54 concepts. We perceive an effort toward direct numerical simulation,

55 for instance, regarding weighted essentially non-oscillatory (WENO)

56 schemes. Thus, we propose to solve a challenging engineering applica-

57 tion without turbulence models. We aim to verify and validate recent

58 high-resolution and high-order methods. To check the solver accuracy,

59 we solved vortex and Couette flows. Then, we solved inviscid and vis-

60 cous nozzle flows for a conical profile. We employed the finite difference

61 method, positivity-preserving Lax—Friedrichs splitting, high-resolution

62

63

64 1

65
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10
11
12 2 Verification and validation of high-resolution inviscid and viscous conical nozzle flows
13
14 viscous terms discretization, fifth-order multi-resolution WENO, ILW,
15 and third-order strong stability preserving Runge-Kutta. We showed the
16 solver is high-order and captured elaborated flow structures and phe-
17 nomena. One can see oblique shocks in both nozzle flows. In the viscous
18 flow, we also captured a free-shock separation, recirculation, entrainment
19 region, Mach disk, and the diamond-shaped pattern of nozzle flows.
;S Keywords: high-resolution, compressible,Navier—Stokes, free-shock

separation, nozzle flow
22
23
24
25
26 1 Introduction
225 The nozzle flow is a challenging engineering, experimental, and numerical
29 application. One can study the nozzle flow in various ways, and rocket science
30 is one of the most popular. Due to the nature of the flow and phenomena,
31 one needs to solve a system of nonlinear partial differential equations. One
32 could simplify the model and obtain exact quasi-one-dimensional solutions [1].
33 However, this would limit the number of captured phenomena.
34 Capturing elaborated flow phenomena requires particle image velocimetry
35 or other advanced experimental techniques. Still, not every flow can be cap-
36 tured. The experiment requires robust sensors and well-fabricated nozzles, and
37 the most common approach is to measure the wall pressure distribution [2-6].
38 Detailed descriptions of the nozzle contour and experimental data are not eas-
zg ily found. A classical paper by Back et al. [7] presents the nozzle contour for
a1 a conical profile and experimental data for hot gas flows.
40 High-resolution and high-order methods had a fast growth in the past
43 decades, mostly because of their capability of capturing elaborated phenomena
44 [8, 9]. Those schemes can have physical and mathematical concepts in their for-
45 mulations [8, 10]. Recent weighted essentially non-oscillatory schemes (WENO)
46 can maintain symmetry and reach machine error for residual in steady-state
47 computation [8, 11].
48 The finite difference scheme is well known for its simple discretization
49 techniques. One does not need strategies for maintaining the order of the
50 numerical approximations. As a result, structured meshes are needed [12]. The
51 recent developments in the inverse Lax—Wendroff (ILW) boundary treatment
52 allow the computation of complex geometries for computational fluid dynamics
53 problems [9, 13-15].
o4 It is still possible to find a lack of agreement between numerical and exper-
E imental data for elaborated flows, e.g., in turbine blade cascade flows [16, 17].
56 For instance, to adequately capture side loads, one needs to solve the tran-
o7 sient 3D Navier—Stokes equations [18]. Recently, we can see efforts toward
gg direct numerical simulations [19]. However, the hardware requirements are still
60 restraining.
61
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Verification and validation of high-resolution inviscid and viscous conical nozzle flows 3

The objective of this work is to test recent high-resolution and high-
order methods in solving convergent-divergent conical nozzle flows. We also
discussed modeling strategies, mesh construction, and boundary conditions.
To reach the objective, we employed the finite difference method [12] with
the positivity-preserving Lax—Friedrichs splitting [10], high-resolution viscous
terms discretization [15], fifth-order multi-resolution WENO [8], ILW [9, 13—
15, 20], and the third-order strong stability preserving Runge-Kutta [12]. The
remaining text is organized as follows, the governing equations and numeri-
cal methods are presented in Sec. 2. We discussed the inviscid fluid model in
Sec. 3, disclosed the viscous fluid model in Sec. 4, and presented concluding
remarks in Sec. 5.

2 Governing Equations and Numerical Methods

We are interested in inviscid and viscous flows described by the Euler
(81 = S92 = Sys = 0) and Navier—Stokes equations

U, +FU), +GU), =81, + S, + S+ Sns, (1)
with
p gu pU
| pu | put+p _ puv
2N FU) = puv , GU) = pv’+p |’ ®
E uw(E +p) v(E +p)
0 0
Trx Tmy
Si1= Tay , S2= Tyy ’
d(a? d(a®
UTzg + VTay + Pr(zfl) (az) UTey + UTyy + PT(:*U 59?/)
49 20 )
p Pra 2 u v
E = — f —_ — 4
LB ) e = (5 350 ()
ou i v 40v  20u (5)
Toy=M| o+ | yw=0{55 -7
v=H\oy "oz ) v T HF 38y T 302
pv 0
1 puv 1 Tay
S - —— 5 S = - dvp v ) 6
L y pv? NSy ~3y T 205, (a2 ¥
v(E + p) UTgy + UTyy + PT(g_l) (8(;)

where p is the density, v and v are the z- and y-direction velocities, p is the
pressure, E is the energy per unit volume, a = \/vp/p is the speed of sound,
1 is the absolute viscosity, and Pr is the Prandtl number. Sg and Syg are
the source terms for axisymmetric cylindrical coordinates flow.
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12 4 Verification and validation of high-resolution inviscid and viscous conical nozzle flows
13
14 We discretize the model equations with a conservative scheme [21]
15
16 dUZ j 1 ( ~ ~ 1 ~ ~
Wi~ L (b~ Fng) -~ o (Guyens — Gy 1)
17 dt Az i+1/2,5 i—1/2,5 Ay 1,7+1/2 i,j—1/2 + (7)
ig (S10)i + (S2y)ij + (SE)ij + (Sns)iy
22 and apply the positivity-preserving Lax—Friedrichs splitting flux and high-
55 resolution viscous terms discretization [10, 15].
23 The numerical fluxes for the splitting are approximated with the multi-

24 resolution WENO [8]. To finish the spatial approximation, we use the ILW
25 procedure to apply the boundary conditions [9, 14, 15]. Then, we integrate in
26 time with the strong stability preserving Runge-Kutta [12].

27

28 3 Inviscid Nozzle Flow

29

30 3.1 Vortex flow accuracy check

31

32 Testing the accuracy of a nozzle flow is a difficult task. For adiabatic and
33 inviscid flows, the total temperature is constant, and we could use it to ver-
34 ify the accuracy [1]. However, one has to design the nozzle profile to avoid
35 shock waves because shocks prevent the observed accuracy from reaching the

36 designed order [22, 23]. One can obtain the optimal nozzle profile through dif-
37 ferent methods [1, 24-26]. For instance, Anderson [1] presents a strategy based

38 on characteristic lines. For illustration purposes, we show the optimal profile
39 for the method of [1] and a cosinoidal function in Fig. 1.

40

41

42 1

43 0.

44 0.08

45 —

46 /g 0.06

j; = 004 —

49 0.02 Cosinoidal g

50 0 | Optlma‘l

g; 0 0.05 0.1 0.15 0.2 0.25 0.3

53 z (m)

54

55 Fig. 1 Optimal nozzle profile for a cosinoidal function.

56

57 As stated in [1], the method has drawbacks, e.g., the sonic line is con-
58 sidered straight, and the Mach number, M, is one at the nozzle throat for
59 a preliminary analysis. That does not agree with theoretical or experimental
22 data [7, 27]. The author suggests that the method can be improved with finite
62
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Verification and validation of high-resolution inviscid and viscous conical nozzle flows

difference techniques. In addition, the optimal nozzle profile will be a collec-
tion of points and inclinations connected through straight lines. For applying
the wall boundary treatment, Tan et al. [20] suggest that

pi = —pi’k, (8)

where % is the normal direction, © is the velocity in the tangential direction,
7, and & is the curvature.

We need the second derivative to compute the curvature and a strategy to
compute the former. Also, the straight lines profile can cause problems with the
high-order methods [21]. Fitting a polynomial function for the optimal nozzle
profile can also be a difficult task. For instance, the maximum inclination angle
of the nozzle wall can increase. A new maximum inclination requires a new
optimal profile.

One can tackle the mentioned drawbacks or choose another method to
obtain the optimal nozzle profile. Since our goal is to perform an accuracy test,
we propose to solve a vortex flow [12, 15]. It has similarities to the nozzle flow
and is enough to test the numerical methods.

Consider a flow with p =p =1 and v = u = 0. We add perturbations to it
inwu,v,and T =p/p

(v — 1€

€ 2
(0u, 0v) = 2, €XP 0.5(1 = 7%)] (y, —x), 6T = — o

exp (1 — 7“2), 6s =0,

(9)
where 72 = 22 + 3%, R =1, v = 1.4, the vortex strength is ¢ = 5, and s = p/p”
is the entropy.

We use the perturbed solution as the exact solution. The computational
domain is bounded by z = 0 and y = 0 lines and a circular arc with a radius of
two. The normal velocity is zero in the arc boundary, and we employ the ILW
for solid walls. The left boundary is an inflow computed with total properties.
We determined the lower ghost points with the exact solution.

For the Euler equations and at the wall, we need one boundary condition if
imposing in the normal direction [14]. However, if no rotation is performed, up
to three boundary conditions may be required [15, 21]. Since we only know the
normal velocity, & = 0, and the heat flux, we may lack one boundary condition.
For the Navier—Stokes equations, we also have © = 0, which solves the lack of
boundary conditions at the wall. Therefore we will rotate and apply the wall
boundary conditions in the normal direction for Euler only.

Suppose we want to impose the boundary conditions at the point (zo,yo)
in Fig. 2. We select the nearest a(r + 1)? points to construct two-dimensional
least squares polynomials of r-th degree, shown as crosses for r = 4. If not
stable, we use a > 1 for improving the least squares approximation. Other-
wise, we use a = 1. We remark that the least squares strategy is flexible, if
one maintains the order and the approximation is stable. The WENO-type
extrapolation stencil Sy is denoted by circles. As stated in [9], better results
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13
14 for high-magnitude variables can be achieved by using the characteristic vari-
15 ables, V. We rotate the nearest points and compute the characteristic variables
16 to construct the polynomials. The stencil Sy is set with the nearest point to
17 (z0,Yo)- The stencil Sy is computed with a first-degree least squares polyno-
18 mial. The remaining stencils are computed similarly. For completeness, the
:ZLg rotation matrix is ©) sin(0)

cos sin

21 T= < —sin () cos (6) ) : (10)
22
23
24
25
26
27
28 0.8
29
30

31 0.6
32 —

/

i+ o+ o+ i+ i+ o+ +

k!

T

34 =
35

36

37

38 0.2 -
39

40

41 0

42 0 0.2 0.4
43

44 z (m)

45 Fig. 2 Vortex flow mesh, boundary, stencils, and ghost point.

46

47 v

48 Now, we use the WENO-type extrapolation of [9] to obtain {0,V }=8 at

49 (20,90). For the vortex problem, we have A <0, Ay ~ 0 for m =2,3, and
50

0.4
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5\4 > 0. Since we also know the heat flux or the temperature derivative, we

g; compute the temperature in the stencils shifted to the interior of the domain.
53 That is, the point (xg,yo) is not used. As in [15], we use a similar strategy for
54 the WENO-type extrapolation and a known temperature derivative to obtain

55 the temperature at (xg, yo). Knowing Ug =0, T, and Ty, we solve the following
56 system

T ~ ~

57 R<T7°>U1+U4o,
58 v—1

o . 11
22 53,1U1+l3,3U3+13,4U1Zaéo)V& (11)
61 laa Uy 4 1y 305 + 144Uy = aéo)v47
02
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Verification and validation of high-resolution inviscid and viscous conical nozzle flows

where L is the rotated left eigenvectors matrix, U are the rotated U , and the
first equation comes from the total enthalpy H = (E + p)/p. Then, we update

o0V =1,-U, 0"V =1I,-U. (12)

T

For the first derivative, we know the pressure derivative from (8) and the
temperature derivative. Thus, we compute

o ps DT
((h)s — 712000V, — 500V — 70400,
aél)vlz( 1) 71,203 V2 —T1,30; V3 —T1,403 " V4 (14)

1,1
Now, we use a Taylor expansion to approximate the characteristic variables
at the ghost point (x4,y,),

I
IS

l

“ Al “

Vo, —,a;“V, (15)
l

Il
o

where A is the distance between (zo, yo) and (z4,y,) after the rotation.

Finally, we transform to the conservative variables and rotate back. At the
left boundary, we want to mimic the nozzle inflow. In which we have the total
properties. Unfortunately, the gas dynamics relations are nonlinear equations
to the flow variables [1]

Tp (y—1)
— =1
T + 2

M?, (16)

Po (v=1) . 5
= {1 + M (17)

One could use the interior points and solve a nonlinear system. However,
this can easily increase the computational cost and cause instability. We pro-
pose to compute the Mach number and the flow direction, 6y, at the boundary
using the characteristic variables and WENO-type extrapolation. Then, we
can approximate

:|’Y/(7—1)

P
| Macosby
W= Ma sin 0y (18)
p
With W we can compute U and update
OOV, =1, -U, k=234 (19)
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8 Verification and validation of high-resolution inviscid and viscous conical nozzle flows

For the first derivative, we consider v, and H, as known. Therefore, we
can use the Euler equation and the known information to form the system

puH + pH, = vpj -+ %’”( 2 4 02) + plutty + v0,) + Pa,
Pz = —P(qu + U'Um)7 (20)
/1,1pa: + l/1,2ux + ZI1,3U33 + l/1,4pa: = aa(cl)vlv
where L' = LOU /OW and

1 00 O

ou w p 0 0
=1 v 0 0 (21)

(u ;rv ) pu pu Til

The accuracy results are shown in Tab. 1, were we can see that high order
was reached.

Table 1 Accuracy results for the vortex flow.

LT L2 L=
Az = Ay Norm Order Norm Order Norm Order
2/10 3.91E-04 - 5.09E-04 - 1.53E-03 -
2/20 2.84E-05 3.78 4.01E-05 3.67 1.73E-04 3.15
2/40 1.56E-06 4.19 2.78E-06 3.85 1.76E-05 3.30
2/80 9.37E-08 4.06 1.78E-07 3.96 1.20E-06 3.88

2/160 5.86E-09 4.00 1.14E-08 3.97 7.96E-08 3.91

3.2 Verification and validation

We now have the core solver for the Euler equations and most of the bound-
ary treatment verified. For axisymmetric flows, the lower boundary can be set
as the symmetry line. This type of boundary condition is easy to impose. For
Euler flows, the nozzle exit will be supersonic, and we can extrapolate all char-
acteristic variables. Depending on the mesh size and discretization, one may
not have enough points to construct the WENO-type extrapolation stencils. In
this case, the 2D least squares polynomials can provide the remaining points.

The nozzle flow can be considered as adiabatic [7] and irrotational, i.e.,
H = constant and v, = u,. The y-derivative is approximated with characteris-
tic variables, least squares, and WENO-type extrapolation, see e.g. [9, 14, 15].
Then, we use this information in the vortex flow left boundary strategy. At the
wall, @ = 0 and T; = 0. Therefore, we use the same strategy as for the vortex
flow arc boundary.

We solve a nozzle flow for the 45° —15° conical profile of [7] with
po =~ 1.725 M Pa, Ty = 833.3 K, and 7y, = 20.32 mm. The other flow proper-
ties are computed with the CoolProp library [28] and total properties. The
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Verification and validation of high-resolution inviscid and viscous conical nozzle flows

resulting flow has an oblique shock, which prevents an accuracy analysis [21—-
23]. We use the total temperature of the chamber as a reference and compute
the absolute difference with the point-wise total temperature. One can see in
Fig. 3 that the total temperature is constant in certain regions of the flow for
the A, = r4,/80 mesh. The shock region gives rise to numerical errors and
increases the difference between total temperatures. We remark that inflow,
wall, and symmetry line boundaries do not change the total temperature.

0.06

0.05
—~ 0.04
£ 0.03
BN

0.02

0.01

0
0 002 004 006 008 01 012 014 0.16 0.18
x (m)

Fig. 3 Absolute difference of the total temperature for the inviscid flow and the
Ag = r¢p, /80 mesh.

The Euler equations are well established as a model to study nozzle flows
[29]. However, numerical approximations such as flux splitting, schemes, and
boundary treatment may also have physical approximations. Therefore, it
is interesting to present a validation. We show the wall pressure for the
Ax = 14, /80 mesh, quasi-one-dimensional exact solution, and experimental
data of [7] in Fig. 4. One can see that the numerical solution is close to
the experimental data. Since the data were digitized, we present a simple
comparison and proceed no further.

We remark that after x = 0.12 m, the pressure is lower than the atmo-
spheric. This happens because we imposed a supersonic outflow boundary
treatment. That is, the flow will continue to expand. We also show the Mach
number color map in Fig. 5 for the Ax = r4j, /80 mesh, where one should notice
the shock position and flow behavior near the exit and wall.

4 Viscous Nozzle Flow

4.1 Couette flow accuracy check

Obtaining smooth analytical or exact solutions for 2D Euler nozzle flows is
not a simple task, and it does not get any better for Navier—Stokes equations.
Therefore, we propose to verify the solver and wall boundary treatment accu-
racies with a Couette flow. We could proceed as in [15], but the pressure high
magnitude can cause problems. Therefore, we propose to use the characteristic

9
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10 Verification and validation of high-resolution inviscid and viscous conical nozzle flow

1 YO} T

Back et al. (1965)  +
A, = r4,/80 mesh o
: Q1D

0.8

0.6 |

P/Po
B

0.4

0.2 W%%Q%Q
patm/pO EQQQ@QD“S@@@@%G
0 s @
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
 (m)

Fig. 4 Nozzle wall pressures for the inviscid flow and A, = 745, /80 mesh.

4
0.06 35
0.05 3
—~ 0.04 2.5
£ 003 2 =
=
0.02 -
0.01 0.5
0 I I I ‘L I 1 0
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

x (m)

Fig. 5 Mach number color map for the inviscid flow and Az = 74, /80 mesh.

variable approach as in [9]. We set the domain as [0, 20] x [0, 10] and compute
the analytical solution as in [15]. We use the analytical solution in the lower,
left, and right ghost points. The upper boundary is a moving wall where we
apply the ILW as presented next.

We chose the upper wall boundary to explain the strategy, which is analo-
gous to the left and right nozzle wall boundaries. Suppose we want to compute
the boundary conditions at the wall, (z¢,y0). We know uwan, vwan, and Ts.
We compute the temperature in normal stencils to the boundary and approxi-
mate it at (xg,yo) with a WENO-type extrapolation for a known temperature
derivative. The characteristic variables are computed in y-direction stencils.



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Springer Nature 2021 BTEX template

Verification and validation of high-resolution inviscid and viscous conical nozzle flows

Then, we have [9, 15]

8(0)\/4

ly 1+ uwanla, 2 +vwanla,3+la,a (712 sall +7wall+ wall >
W = Uwall : (22)

Vwall

Wl RTwall

With W, we compute U and update 83(,0)(Vccc)m =1,,U for m=2,3,4,
where the subscript ccc represents the convective part for the convex combi-
nation. For the first derivative, we compute [9, 14, 15]

0D (Vo)1 = (SE)1 + (Sns)1 = (Fi)a — r1ovwandy( ccc)2+
Y 71,1 (Vwanl — @)

o (23)
-, 3’Uwaulla ( ccc)S — T 4(Uwall + a)a (‘/chc)él
7‘1,1(Uwa11 ) .
For the diffusive part, [9, 13-15]
3(0)(Vd)4
(la)a,1+uwan(la)a,2+vwanla,3+(a)a,a (M+M)
W = Uwall (24)
Vwall
WIRTwall

With W, we compute U and update 82(,0)(Vd)m = (lg)mU for m = 2,3,4.
For the second derivative, we have [9, 13-15]

133Uy = 0 (Va)a,

(
‘Illm(Um)yy ( )t + Fm ( ) (U)y_ (25)
\IllmU:cm - \IIBmUzy - Nmam = 27 33 4.

Then, we update 81(,2)(Vd)m = (Ig)mUyy for m = 2,3,4. We compute

{aél)vccd}?:o = LRd{ag(;l)Vd}?:o» (26)

and perform the convex combination [9]
{8351)‘/}?:0 = a{ag(;l)vccc}?:o +(1- a){aggl)vccd}?:m (27)

where « is obtained by decomposing and rearranging (1).
Now, we use a Taylor expansion to compute the characteristic variables
and their derivatives at the ghost point and then U, W, W,, W, G(U), and
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12 Verification and validation of high-resolution inviscid and viscous conical nozzle flow

S5. For simplicity and to avoid a cumbersome description, we refer to [9, 13—
15] for formulae and further details. The accuracy results are shown in Tab.
2, where we can see that it is high order.

Table 2 Accuracy results for the Couette flow.

LT L? L°°
Az = Ay Norm Order Norm Order Norm Order
10/10 4.37E-07 - 5.12E-07 - 1.36E-06 -
10/20 1.25E-08 5.13 1.54E-08 5.05 4.32E-08 4.98
10/40 3.91E-10 5.00 5.00E-10 4.95 1.60E-09 4.76
10/80 1.22E-11 5.01 1.62E-11 4.95 6.62E-11 4.59

10/160 7.81E-14 7.28 2.58E-13 5.97 2.73E-12 4.60

4.2 Domain design

For simplicity, we use the same inflow strategy as the inviscid nozzle flow,
i.e., an isentropic and irrotational inflow. This is a hard-to-obtain idealized
experimental setup for nozzle inflows, even for hot gas flows. In real rocket
nozzle applications, the flow will have various chemical components and will
not be irrotational because of the viscosity. However, the inviscid inflow is an
easy-to-impose boundary treatment and a suitable approximation for hot gas
flows. In addition to the strategy for the inviscid flow, we compute the diffusive
terms and perform a convex combination.

For the viscous flow, the no-slip approximation will cause the flow to be
subsonic near the nozzle wall. Without the appropriate boundary conditions,
we cannot impose the outflow for the same domain as the inviscid nozzle flow.
As stated in [9], we must respect the speed regime and phenomena to impose
the ILW outflow accurately. This could be solved by, e.g., experimental data
or extending the domain.

We first tried to shortly extend the computational domain and use the ILW
outflow boundary treatment with atmospheric conditions. However, neither
U nor the total properties are constant for a y line at the nozzle discharge.
The right boundary for this case can have mixed flow regimes: subsonic and
supersonic outflow and subsonic inflow. We tried to enforce an outflow only.
Despite our efforts, a strong recirculation appeared near the right boundary,
which is not physical because it does not happen in larger domains.

Highly extending the domain is a non-efficient way to simulate atmospheric
conditions. For a high-order and high-resolution solver, this will highly limit
the mesh size, depending on the available hardware. We also tried extending
the domain 5 times the nozzle length in the z-direction and 15 times the nozzle
exit radius in the r-direction. This is not a large domain since it can be larger
than a hundred times the nozzle throat [4, 6].

We started the flow in a coarse mesh with u = v = 0 everywhere and a linear
variation from Wy at the inflow and Wy, at the nozzle throat. A high-speed
flow rapidly develops after a few steps. When the high-speed flow reaches the
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extended domain, waves and disturbances are generated. As long as the waves
and disturbances are sufficiently far, do not interact with the boundaries, and
reflect, the flow near the nozzle will be approximated as undisturbed. In other
words, the nozzle flow will behave as discharging to the atmosphere.

For the Navier-Stokes equations, the initial estimate plays an important
role. It can cause the solution to blow up. For example, a supersonic flow
near the nozzle wall can cause high expanse or compression, generating strong
waves. In turn, these waves can cause problems at the high-order and high-
resolution boundaries. To soften this issue, we use as the initial guess the coarse
mesh solution with the characteristic boundary everywhere [9].

Differently from the Euler equations, we cannot assume that total temper-
ature is constant, as it can rise because of friction and atmospheric condition.
Furthermore, disturbances can propagate in the low-speed region of the domain
and affect the plume. These disturbances are not necessarily physical, as they
could result from numerical errors as the solution is adjusting to the new
mesh or new phenomena are being captured. Therefore, we conclude that
good approximations for the outflow would require fine mesh solutions in large
domains.

Imposing constant subsonic or supersonic speeds with total properties can
cause overexpansion or the flow to change direction, as would happen in the
presence of disturbances. The latter can lead to nonrealistic vortices and the
former to a nonphysical vacuum and cause the solution to blow up [9]. We
remark that this happens in the boundary treatment and ghost points since
the interior scheme has the positivity-preserving property.

To solve the lack of information, one could gather experimental data at
suitable locations. Numerically, we are left with the non-efficient boundary
extension. To lower the hardware requirements, we propose to use the Navier—
Stokes equations in the nozzle and a short domain extension, high-order
Navier—Stokes and Euler equations in two small transitions, and lower-order
Euler equations in the remaining meshes with increasing mesh sizes. The sixth
mesh size is twice big as the fifth, and so on. The mesh configuration is shown
in Fig. 6. To summarize, the model, mesh size, scheme accuracy, and boundary
treatment for each mesh are

2. Navier—Stokes, fine, fifth order, and ILW inflow and wall boundary treat-
ments;

Navier—Stokes, fine, fifth order, and ILW inflow boundary treatment;
Navier—Stokes, fine, fifth order, and characteristic boundary;

Euler, fine, fifth order, and characteristic boundary;

Euler, increasing mesh sizes, first order, and characteristic boundary.

© ot w

4.3 Verification and validation

Particularly for this case, the supersonic flow near the boundary layer can
cause trouble with the wall boundary treatment. We, therefore, changed the
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Fig. 6 Not to scale mesh configuration.

WENO-type weights to add more weight to lower-order stencils

w = exp (—[IB]/e), (28)

with p =1 and e = 1078,

For the verification, we show the absolute difference of the total tempera-
ture in Fig. 7 for the Az = ry, /160 mesh. Despite the total temperature not
being constant, we can see different regions in the flow. This happens because
the total temperature of the atmosphere and chamber are different. At the
symmetry line, we can see a rise in total temperature because of the interac-
tion of shock waves and the Mach disk. Since the flow becomes supersonic after
the nozzle throat, we can draw conclusions over the convergent part. One can
see that the inflow, symmetry, and wall boundary treatments do not present a
significant rise in the total temperature. One should expect a noticeable tem-
perature rise due to friction in hypersonic flows [1]. In addition to the Couette
flow accuracy test, we believe the nozzle flow is verified.

The rise in total temperature difference near the nozzle exit is due to recir-
culation, as shown in Fig. 8 for the Az = 7y, /160 mesh. Although valid, the
wall pressure does not agrees with the experimental data of [7]. We remark that
our results agree with other numerical and experimental data [2-6, 30, 31]. The
subsonic entrainment region near the nozzle exit is the result of a free-shock
separation. This is a known phenomenon that occurs in low nozzle pres-
sure ratios (NPR) and is studied for, e.g., thrust-optimized parabolic nozzle
contours [3].

We show the Mach number color map in Fig. 9 for the Az = ry, /160 mesh.
One can see the subsonic entrainment region near the nozzle exit, the oblique
shock, triple point, Mach disk, and the diamond-shaped pattern of nozzle
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Fig. 7 Absolute difference of the total temperature for the viscous flow and Az = r4;,/160
mesh.
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Fig. 8 Nozzle wall pressures for the viscous flow and Az = 745, /160 mesh.

plumes. The flow will not reach a steady state because of the presence of vor-
tices in different regions of the flow, and we are solving the Navier—Stokes
equations without any type of averaging. In other words, the Mach disk will
slowly move, and the plume contour will also change. We also show details of
the subsonic entrainment in Fig. 10. We mark the velocity vectors with arrow-
heads to show the recirculation and flow pattern in the region. As stated in [32],
the separation will occur in overexpanded jets, and a good grid resolution is
required to predict the separation and turbulence structures. Also, the authors
remark that downstream shock-cell formation can be affected. We remark

1
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16 Verification and validation of high-resolution inviscid and viscous conical nozzle flow

that our numerical methods can capture elaborated structures and phenom-
ena. However, the observed separation and related phenomena are regarded
as preliminary results. More experimental data are required to validate the
separation position and turbulence structures.

T T T T T T 4
0.18—
0.16—
0.14—
0.12—
£ 0.1
= 0.08-
0.06
0.04
0.02 1
0 L . . L 0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
x (m)
Fig. 9 Mach number color map for the viscous flow and Az = 745, /160 mesh.
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Fig. 10 Mach number color map and details of the subsonic entrainment region for the
Ay = r¢,/160 mesh.

5 Concluding remarks

As in other challenging engineering applications, the nozzle flow has elaborated
flow structures and phenomena. Even in a 2D numerical analysis, one should
perform a multiphysics analysis to capture the phenomena. It is not rare to find
a lack of agreement between numerical results and experimental data. Either
because of the employed methods or lack of information for the boundary
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treatment. This is a typical situation as the numerical methods are being
improved, for instance, the WENO schemes. We perceived the effort towards
DNS and tested our methodology in a nozzle flow without turbulence models.

We checked the accuracy, verified and validated our methods for inviscid
and viscous flows. The former with a vortex flow and the latter with a Couette
flow. We solved nozzle flows for the 45 © — 15 © conical profile of [7]. For the
inviscid flow, we captured an oblique shock, and the numerical results agree
with the experimental data. For the viscous flow, we captured more flow struc-
tures and elaborated phenomena. The flow is overexpanded, and we can see a
reentrance region with recirculation and entrainment. The entrainment region
is a result of a free-shock separation. We can see the oblique shock and a Mach
disk forming near the nozzle exit. We can also see the diamond-shaped pattern
of nozzle flows. Although the wall pressure does not agrees with the exper-
imental data, we believe the numerical solution is valid. The inviscid flows
show that the pressure is lower than the atmospheric at the reentrance region.
Therefore, we expect the air outside the nozzle would reenter it.
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