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Abstract

Radiation hydrodynamics equations (RHE) refer to the study of how interactions be-
tween radiation and matter influence thermodynamic states and dynamic flow, which has
been widely applied to high temperature hydrodynamics, such as inertial confinement fusion
(ICF) and astrophysical gaseous stars. Solving RHE accurately and robustly even under the
equilibrium diffusion approximation is a challenging task. To address this, we develop two
types of high order conservative Lagrangian schemes for RHE in the equilibrium-diffusion
limit for the two dimensional case on the Lagrangian moving mesh. Based on the multi-
resolution WENO reconstruction for the spatial discretization and strong stability preserving
Runge-Kutta (SSP-RK) time discretization, we first develop an explicit Lagrangian scheme
with the HLLC numerical flux to achieve high order accuracy in space and time. We also
discuss the positivity-preserving property of the high order explicit Lagrangian scheme. To
overcome the severe time step restriction arising from the nonlinear radiation diffusion term
in the explicit scheme, we further present a high order explicit-implicit-null (EIN) Lagrangian
scheme. By adding a sufficiently large linear diffusion term on both sides of the scheme, we
treat the complicated nonlinear parts explicitly and efficiently, and treat the added linear
diffusion term on the right-hand side implicitly with a relaxed time step restriction. Ac-
cording to our numerical experiments, these two types of Lagrangian schemes are high order
accurate, conservative and can capture the interfaces automatically. Additionally, the ex-
plicit scheme is found to be non-oscillatory and can preserve positivity while maintaining

the original high order accuracy.
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1 Introduction

Radiation hydrodynamics (RH) [23, 21, 5] is a research field focusing on the interactions
between radiation and matter, which can significantly affect the thermodynamic states and
dynamic flow characteristics of the matter-radiation system. The radiation hydrodynamics
equations (RHE) are a set of partial differential equations that describe the transfer of energy
and momentum between radiation and matter, and they are critical for understanding a
range of phenomena, such as astrophysical gaseous stars, reentry vehicles, fusion physics,
and inertial confinement fusion (ICF), since radiation plays an important role in energy
transfer.

However, the full RH equations are computationally expensive to solve, thus various
model approximations have been developed, such as the equilibrium diffusion approximation
(EDA) [21, 11]. This approximation has four basic assumptions: the system is much larger
than the photon mean-free-path, the radiation is in thermal equilibrium with the material,
the radiation flux is diffusive, and the radiation pressure is isotropic. In the equilibrium-
diffusion limit, the radiation variables are explicit functions of the hydrodynamic variables,
and RHE can be described as a hyperbolic system with a nonlinear radiative heat transfer
term. This approximation provides a useful way to solve the radiation hydrodynamics equa-
tions and obtain insights into the complex interactions between radiation and matter in a
variety of settings, including fusion-dominated energy sources, diverse astrophysical settings,
and high-energy-density physics.

Although the equilibrium-diffusion limit provides a simplified framework for solving ra-
diation hydrodynamics equations, challenges still exist. Firstly, due to the strong coupling
between radiation and hydrodynamics, the difference between their characteristic time scales
can cause a stability issue, as their time scales differ by several orders of magnitude. Secondly,
as with the usual hydrodynamics problems, numerical schemes would require high resolu-
tion near discontinuities and would need to avoid spurious numerical oscillations. Thirdly,

it is more challenging to maintain certain physical properties, such as conservation and



positivity-preserving for physical variables like density, internal energy, and temperature in
RHE. Fourthly, while many high-order numerical methods have been developed for solving
either the Euler equations or radiation diffusion equations, there are few publications that
extend these methods to the coupled system of RHE. Lastly, RHE is commonly used to de-
pict interactions between radiation and multi-material matter in ICF, thus making it crucial
to capture material interfaces accurately. These complexities pose a challenge to accurately
solve RHE and predict the behavior of RHE.

There are some works on solving RHE accurately. In [2], the authors compared three
explicit-implicit schemes for solving RHE in the equilibrium diffusion limit. Restricted to
the “low-energy-density” regime, fluid pressure and energy density significantly outweigh
effects of radiation pressure and energy density which can be ignored. So, a fully second
order self-consistent implicit/explicit time integration method was developed for solving
radiation hydrodynamics and hydrodynamics plus heat conduction problems in [15, 14].
They split the RHE operators such that the hydrodynamics part was solved explicitly and
the radiation diffusion part was solved implicitly. By using precise information of local
speeds of propagation, Qamar and Ashraf’s method [25] could reduce numerical diffusion
and it achieved second order accuracy in space and time by using the MUSCL-type recon-
struction and Runge-Kutta time discretization. In [3], the authors proposed a second-order
implicit-explicit (IMEX) method for the one-dimensional RHE in the equilibrium diffusion
and streaming limit. MUSCL-Hancock and linear discontinuous Galerkin methods were used
for the spatial discretization and the TR/BDF2 method was used for the time integration.
The authors in [30, 35] solved the radiation and fluid parts separately, by using the gas-kinetic
scheme (GKS) for the hydrodynamics term and the unified gas-kinetic scheme (UGKS) for
the non-equilibrium radiative transfer term on the fixed mesh.

All of the above works for RHE are performed on the fixed mesh, and there is little
discussion on the moving mesh, which could have higher resolution especially for the contact

discontinuities and can capture the interfaces for the multi-material problems automatically.



The authors in [16] introduced a novel second-order solver on the unstructured moving
Voronoi meshes for the RHE with the slope-limited linear spatial extrapolation and the first-
order time discretization. For the high order schemes on the moving mesh, the authors in [9]
proposed explicit-type and IMEX-type finite volume schemes for one-dimensional RHE in the
equilibrium-diffusion limit on the Lagrangian moving mesh. Positivity-preserving property
for the high order explicit scheme was also discussed. Overall, there is little discussion
on high order and positivity-preserving numerical methods for solving RHE on the moving
meshes in higher dimensions.

When solving partial differential equations (PDEs), the Lagrangian method [3, 9, 19, 22]
focuses on the behavior of individual particles or elements which is different from the Eulerian
method focusing on fixed control volume. Lagrangian methods can be employed for a wide
range of problems, from simple inviscid flows to complex viscous flows with heat transfer,
and it can also be easily extended to problems with multiple fluids. Besides that, Lagrangian
methods are well-suited for resolving discontinuities, especially contact discontinuities, in the
solution, as it automatically captures the motion of fluid or material interfaces across these
regions, so it is very suitable for multi-material problems.

In this paper, we will develop high order and conservative methods on the Lagrangian
moving meshes for the 2D RHE in the equilibrium-diffusion limit, building on the work
in [9]. The spatial discretization uses a multi-resolution weighted essentially non-oscillatory
(WENO) reconstruction [39, 10] based on the information of cell averages, which is conserva-
tive, high order accurate in smooth regions and essentially non-oscillatory near discontinuities
or sharp gradients. This multi-resolution WENO reconstruction is more convenient than the
previous works due to its allowance of arbitrary positive linear weights and simpler nested
central stencil combinations. For the time discretization, the scheme adopts a high order
SSP-RK method [13], which is a convex combination of Euler forward methods.

Positivity preservation is crucial for solving RHE since some physical variables, including

density and total internal energy, are positive. Negative density or internal energy not only



violates physics, but also makes the numerical scheme unstable. It is much more difficult
for the high order schemes to preserve positivity than the low order schemes. In this study,
we first define an admissible set for conserved physical variables, where density and internal
energy are positive if the conserved variables are in this set. We confirm that the initial cell
averages are in the admissible set. Then, we prove that our first order explicit Lagrangian
scheme with the HLLC numerical flux can preserve positivity under a suitable time step
condition. Next, we move forward to the high order scheme. We demonstrate that if the
time step meets certain conditions and the input physical values remain in the admissible
set, then the cell averages obtained from the explicit Lagrangian scheme also remain in the
admissible set, thereby preserving the positivity of density and internal energy. To ensure the
input physical values of the high-order reconstruction polynomials are also in the admissible
set, we implement the conservative positivity-preserving limiter of Zhang and Shu [36].

The above explicit scheme is straightforward and easy to implement, but the small time
step due to the radiation diffusion term makes it computationally expensive. In [3, 9, 35], the
authors implemented the implicit-explicit (IMEX) procedure where they treated the advec-
tion term explicitly and treated the nonlinear radiation diffusion term implicitly. The Newton
iteration or the nonlinear generalized minimal residual (GMRES) methods for calculating the
nonlinear implicit part in these high order IMEX Lagrangian schemes are computationally
expensive and will consume a lot of computer memory, especially in the higher dimensional
cases.

The explicit-implicit-null (EIN) method [10, 34, 31] is a time-marching method which
has been proven useful for solving problems with large time steps, where explicit methods
may suffer from severe time step restrictions for stability imposed by the higher derivative
terms. In [10], the authors first named this method as EIN. Up to now, this idea has
been used in solving many partial differential equations with stiff terms, such as Boltzmann
kinetic equations with very small Knudsen number [12], nonlinear Cahn-Hilliard equation

[27], nonlinear diffusion problems [34], and high order dissipative and dispersive equations



[31, 32]. The EIN method combines the advantages of both explicit and implicit methods by
adding a sufficiently large linear artificial high derivative term to both sides of the scheme
and treating the linear artificial high derivative term on the right-hand side of the scheme
implicitly, while the complex nonlinear terms are treated explicitly. When the coefficient of
the added linear artificial high derivative term is chosen adequately, stability can be ensured
with larger time steps. By this treatment, we do not need a complicated nonlinear iterative
solver. Therefore, we design an EIN Lagrangian scheme in this paper to increase efficiency
of our Lagrangian finite volume scheme for solving RHE.

In summary, we develop two types of high order, conservative schemes on the Lagrangian
moving mesh. First, we will present the high order explicit Lagrangian scheme which pre-
serves positivity well and is suitable for the advection-dominated RHE. Second, the EIN
Lagrangian scheme is designed which can promote efficiency arising from the radiation diffu-
sion term in the implementation. To the best of our knowledge, this is the first Lagrangian
scheme capable of achieving high order accuracy while maintaining positivity for the two-
dimensional RHE. Supported by the high order multi-resolution WENO reconstruction for
the spatial discretization, our Lagrangian schemes could achieve high order accuracy in
smooth regions and capture shocks sharply without introducing oscillations. Furthermore,
these Lagrangian schemes can automatically capture material interfaces, making them highly
suitable for the multi-material problems where clear interfaces are essential.

The remainder of this paper is structured as follows. In Section 2, we analyze some prop-
erties of the two dimensional radiation hydrodynamics equations (RHE) in the equilibrium-
diffusion limit. In Section 3, we introduce a high order explicit Lagrangian finite volume
scheme for RHE and give the algorithm flowchart. In Section 4, we adopt a positivity-
preserving limiter to preserve positivity for the above high order explicit Lagrangian scheme,
without sacrificing the original high order accuracy. Next, in Section 5, we propose a high
order EIN Lagrangian scheme. Then, several numerical tests are given to verify the perfor-

mance of the two types of Lagrangian schemes in Section 6. Last, concluding remarks are



given in Section 7.

2 Two-dimensional radiation hydrodynamics equations
in the equilibrium-diffusion limit

We consider the following two-dimensional radiation hydrodynamics equations (RHE) in the

equilibrium-diffusion limit [11],

p pu pu 0 0
2 *
9 | pu +2 pu® +p —1—2 guv ) _ 9 0 +3 0 (2.1)
ot | pv ox puv oy | pv+p Ox 0 Jy 0
E* u(E* + p*) v(E* 4 p*) kO, T* kO, T*

where u, v are velocities in the x,y directions, £E* = E + E,, p* = p+ p, are the total energy
and pressure of the system, respectively. E, = PT?* p, = %PT4 are the radiation energy
and radiation pressure, where P is the radiation constant representing the radiation effects
on the material dynamics. T is the temperature in the equilibrium-diffusion limit, where the
matter and the radiation have the same temperature 7. Kk = ?%‘; is the diffusion coefficient,
with the speed of light ¢ and the total cross section ;.

The total pressure for the v-law gas follows
* 1 4
p = (’7 - 1)pCUT+ gPT )
where ¢, is the heat capacity at constant volume, and the total energy follows

1
E*=E+E, = pc, T + 5p(u2 +v?) + PT*.

So we have

P

T4+01T—|—02:O, cy: R

Cy = —% (E — %p(uQ + 02)) : (2.2)

and if P < 1075, we solve T from an asymptotic analysis,
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otherwise we will use the physically acceptable root of the quartic equation
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We rewrite the radiation hydrodynamics equations (2.1) as

p
U + 0, F\(U) + 0,F(U) = 0,G1(U) + 8,Go(U), U = gz (2.3)
E*
where
pu pv 0 0
2 *
| put+p B puv _ 0 _ 0
Fl(U) - puv ) F2(U) - pv2 +p* ) Gl(U) - 0 ) GQ(U) - 0
u(E* + p*) v(E* 4 p*) kO, T* kO, T*

. : * * w2402 * * *
Define the specific internal energy e* = % — %, then the total pressure p* = p*(p, e*)

which is a function of the density p and the internal energy e*. The partial derivatives related

to p* are as follows

op*  Op* N w?+0* B\ Op*
dp  Op o P p? ) Oe* )
op* u op* op* v op* op* 1 Op*
opu p Oe*|,"  Odpv ~ p Oe , OFE* ~ p Oe* )
5 (2.4)
oup* op* N u® + v E*\ Op* u o,
= u u - =] - =
dp 9p |, p p*) Oer|, P
up*  u? Op* p* Jup*  ww Op* Oup* _ u Jp*
opu p Oer|, p’ opv  p der |’ aE*_p(?e*p
with
1 op* p*+ E* op* u? +0v* E*\ Opf
q = - P ) H = ) Q = + 9 |
p Oer|, p 9P | o p p* ) Oe*|,
0 * p* gp:
the acoustic speed a* := (/> + —5—, and one can refer to [20] for more details.

Readers can refer to Appendix A.1 for the details about %, %, and their eigenvalues and

eigenvectors.



3 The explicit Lagrangian finite volume scheme for 2D
RHE

In this section, we will introduce our cell-centered explicit Lagrangian finite volume scheme

for the 2D radiation hydrodynamics equations in the equilibrium-diffusion limit (2.1).

3.1 High order spatial discretization

NLL‘JVZU

Consider the connected computational domain 2 consisting of quadrilateral cells {; ;}; i2,",

where N, and N, are the number of cells in the x and y directions, respectively. Each cell

I, ; has four nodes P. 1. 1 is
i\ i-1-4

P, P, P11 and the coordinate of P,
27 2

1,1 1,1
—5,J+t5? T itg5.0—5) Tt

N|=

1 .
27
(%—%,j—%vyi—%,j—%)’ forall1 <:< N, 1<j5<N,.

The 2D radiation hydrodynamics equations (2.3) in the reference frame of a moving

control volume can be expressed in the integral form as

d
a4 / Uda + / Far — / Gdr (3.5)
dt Jo r() r ()

where () is the moving control volume with boundary I'(¢), and we take velocities of the

control volume as fluid velocities, so we have

0 0
nLp* 0
F(U,n) = nyg* , G(U,n)= 0 (3.6)
p*(un, + vny) k(n.0,T* + n,0,T*)

and n = (n,, n,)’ is the outward unit normal vector of the boundary. Define the cell averages

as
1 _ 1
ps = | pdedy, 52— [ pudady,
gl Jr,, T gl

_ 1 _ 1
M, = / pvdxdy, E; = / E*dzxdy,
T gl T gl

then we have the following cell-centered semi-Lagrangian finite volume scheme

p:i,j|[i,j|
d v\ . A
ANMGIESH [ pay [ Ga
dt Mi,j|[i,j| al; ol (3.7)
B |1 .
=— [ FU"U*nd+ [ GU.nd
6[1‘,]' 8[i,j



where the numerical fluxes are consistent with the physical fluxes (3.6), i.e
ﬁ(U, U,n)=FU,n) = (0,n,p*,n,p*, p* (nyu + n,v))",
and
G(U,n) = GU,n) = (0,0,0, x(n.0,T*, n,0,T*))"

Suppose that the cell ; ; has M edges (for our case M = 4) and the quadrature points
on each edge are denoted as (z,y™) form =1,--- M, a =1,--- , K, where we omit the

subscript 7, 7. Then we can write the line integral for the numerical flux as

[, Fas |zm| Zwa (U™ (). U i) ).
(3.8)
/ Gdl ~ Z 1" Zwaé U™z yrt),n™),
9l ; m=1 a=1
where w,, o = 1,--- , K are the weights in the quadrature rule, |I"™| represents the length
of the edge I for m = 1,--- , M and n™ = (n", n’;)T is the outward unit normal vector of

™. U™z, y™) and U™ (2, y™) are the values of the conserved variables on the cell I
and its neighboring cell along the edge I respectively. In fact, we use the Gauss-Lobatto
quadrature rule, where (27", y7") and (2%, y#) are the two endpoints of the edge I™, and in
this work we take K = 3. U™ (22, y) in the diffusion term are the values of the conserved
variables on the common edge ™.

We utilize the multi-resolution WENO reconstruction [39, 10] method to reconstruct
high-order polynomials for the conserved variables. Particularly, for each cell I; ;, we will
reconstruct polynomials of different degrees on central nested stencils, then measure the
smoothness of them and assign the corresponding nonlinear weights. Finally, we combine

these polynomials with the nonlinear weights to get the high order polynomial

Uij(x,y) = (p(x,y), M*(z,y), M"(z,y), E*(2,9));,

In the smooth region, the combination of the polynomials can achieve high order accuracy,

and near shocks or contact discontinuities, the combination will assign more weights on
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the low order polynomial to avoid numerical oscillation. Since we do not focus on the
reconstruction here, we will leave the detailed description of the procedure to Appendix A.2.
From the reconstruction polynomial Uj ;(x,y), we can obtain values of U™ (2™, y™) at each
quadrature point for the numerical flux F. Similarly, we can obtain U®*(z,y7") by the
reconstruction polynomials in the neighboring cell.

We still follow the WENO idea to reconstruct high order polynomials U (x, y) on each
edge "™ of the cell I, ; for the diffusion numerical flux é, but the reconstruction strategy
is different from that in the advection numerical flux F. First, the values of the conserved
variables and their derivatives are needed, so we should measure the smoothness of recon-
struction polynomials starting from second order derivatives. Second, the reconstruction
will be used to obtain the information on the edge I"*. For stability, the stencils for the
reconstruction should include the cells at the both sides of " and should be conservative on
them. We put the details of the reconstruction in Appendix A.3.

Then, we use the values of the conserved variables and their derivatives UJ: (27, yo'),
QU (x, yir), 0,U (7, yi) to approximate d,T*(U™), 9,T*(U™) on the cell boundary

[™ for the diffusion numerical flux,

GU™ n™) = (0,0,0, k029, THU™) + k00, THTU™))T.

Please see Appendix A.3 for the details.
The HLLC (Harten-Lax-van Leer contact wave) numerical flux [33, 8] is adopted for the

advection numerical flux,
F(U™ U™ n) = (0,n,p", nyp" p"S™)7",

where pf, S denote the pressure and velocity of the middle contact wave in the HLLC flux,

respectively, o | |
p? = pt(u™ — S_)(u — SH) + poi,
git . PUR Sy —ug) — pMug (S — uy) + ptt — pt (3.9)

P8 — u) — (S — )

n
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with
in __ _ in in ex __ _ex ex
Uy = U Ng +V Ny, Uy =U Ng+ VU Ny,
and the left and right acoustic wavespeeds are

*,eX
. . 7 . p )
S_ = min{u,! — u™ —a*™}, S, = max{u®™ +

pm”Qe* lIl pex, /26*,ex7

In the Lagrangian finite volume scheme, we take the contact wave speed S as the velocity

ust +a™*}. (3.10)

of the moving meshes.

Following [0, &], for each edge connected to the vertex P, 1 +1g4l, we obtain the tangential
velocities as an average on both sides, and obtain the normal velocities as S¥ in the HLLC
numerical flux. Finally, the velocity (u; Ll Vil gyl 1) at the vertex P, 1 IEPTES L determined
by computing the arithmetic average of the velocities along each edge. Indeed it is difficult

for such cell based Lagrangian schemes to satisfy the geometric conservation laws (GCL),

which will be studied in our future work.

3.2 High order time discretization

The first-order explicit Euler forward time discretization for the Lagrangian finite volume

scheme follows as

lj'i?’lj«#l |In+1 ]"LJ ’
=r |- / Frdl + / G"dl
8[.". 8[.".
=—TZ\lm|Zwa (U™ g ), U (g yi) m'™)
+TZIZ’”IZwa (U™ (@ yi), ™)

where U; ; = (p; j, M7;, MY, E7 )T We rewrite it as

0,57 g0

(3.11)

U Y - U172, | = TRES(UY), RHS(UY,) == — /8 | Fds /@ LG (31
0,3

where RHS(UY,) is the spatial discretization operator.

12



Actually, we implement the third order strong stability-preserving Runge-Kutta (SSP-

RK) [13] time discretization for the explicit Lagrangian scheme in the following way

e Step 1.
E-IF)Q g+ T Tipd et TTWL L 0
yl(i)wﬁ _yz+2,y+1 +TU2+2’]+1, (3.13)
Um’ |Ii’j | = Uznj|llnj| + TRHS(UZZ)
e Step 2.
) = %“ﬁ;ﬁ; J& (x(i); j+ +T“f+);,j+§> )
yfr)é,ﬁ% - Zyn+ g+ T i (yz(il,ﬁ; - Tvz(Jr)Q,j% ) (3.14)
O] = 2031 + ¢ (00110 + -RES@))
e Step 3.
x?rél,ﬁ% - ; :L+2,J+§ ™ g ( 51)2, 41 +Tu£+)%,j+%> ’
y?:;ﬂ% - %yzrl,j# T g (yﬁ)Q, TE TU(+)2, i1 > (3.15)

O = UL+ 5 (OS18)] + rRESO)

Therefore, our explicit Lagrangian finite volume scheme is high order accurate in space and

time and we will verify this in the later experiments.

3.3 Time step constraints

Denote 7" as the time step at time ¢ = t", which is determined by the limitation of the time
step conditions arising from the advection term 77, the diffusion term 7j;,, and the mesh

. n .
constraint 7., respectively,

n __ : n n n
7" = min {Tad, Taiffs Tmesh}.

First, the time step should satisfy the CFL condition,

n

he
7" < 77 = Amin —2 (3.16)

=%
7.] a/
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where hj'; is the circumscribed circle diameter of the cell I; ;. Then, due to the existence
of the diffusion term, the time step should satisfy the following limitation derived from the

Fourier stability analysis

Cvﬁ:‘fj + 473(7_—‘[}])3

" < Tapy = pmin(h;)? (3.17)
M k(T 1 (a2 + ()2 (SR )
KL 5 U 5 Ui 2 Coli;
After a Taylor expansion, we estimate the area of I; ;(t"*!) at t = t"*! as
n+1 n d n
L) = [ag ()] + 7 [ 1 (E7)]-
Last, refer to [20], we require the changes of area should not be too large
L (8] = 11 (E")]
’ ’ <¢, €€ (0,1],
2,5 (t")]
and the time constraint of the mesh movement is defined as below
I (1"
Trnesh < &N —d’ 5(")] : (3.18)
v g g (7))

The details of the proof are listed in Appendix A.5.

A, i1, € are constants in (0, 1], specifically, we take A = 0.5, u = 0.25,£ = 0.1. The time
scale of the fluid advection 7%, = O(h) is usually larger than that of the radiation diffusion
Thiff = O(%Q), so the time step condition 7 is usually dominated by 7., especially when

the parameter x is not very small.

3.4 Flow chart of the explicit Lagrangian finite volume scheme

Now, we give the flow chart of the explicit Lagrangian finite volume scheme with the Euler
forward time discretization as an example. Suppose we have known the cell averages ﬁ{fj
for all the cells at time level t = t", then we want to get the new cell averages Uf;“l at the

next time level t = t"*1.

1. For the determination of the advection term ﬁ‘, reconstruct high order polynomials

with the cell averages U

17]’

UZ(.y) = (p(e,9), M7 (e, ), MY (2, ), B ()

14



over each cell J; ; employing multi-resolution WENO reconstruction. The details of the

WENO reconstruction are listed in Appendix A.2.

2. Calculate the values at the quadrature points on the cell boundaries U3 (27, y7"),

~

Ui (7, yn') at time level ¢ = ¢ for falm_ F{U™ U™, n)dl.

3. For the determination of the diffusion term é’, reconstruct high order polynomials with

the cell averages l_][fj,

U™ (w,y) = (p(a,y), M*(z,y), MY (,y), E*(z,y))5"™"

over each edge [ of the cell I; ; by the multi-resolution WENO reconstruction again.

One can refer to Appendix A.3 for the details.

4. Calculate the values and derivatives of the conserved variables
U (xg,yn),  0:.U5 " (20, un),  0,U " (o), yy')

at the quadrature points on the cell boundaries. Then, calculate 9, 7*(U™™), 9,T*(U™™)

~

at the time level ¢ = ¢" in the diffusion numerical flux |, or. . GU™, n™)dl.

5. Update the new mesh by

n+1 n

n
. . =T
H—%,]—O—%

n n+1
1 +7—U4 1 —’_T/Ui—‘r%,j-i-%’

— n
i+l ithi+d Yirlgal T Yir g4l

where 0 <7 < N,, 0 <j <N, and u” , v

‘ re the nodal velocities.
i+l L . are the nodal velocities

n
it15+4
6. Calculate the new cell averages at the next time level ¢t = ¢"™! with the Euler forward

time discretization (3.12),

| _

n+1 __ ‘ 2,] n T n

Ui,j - |In+1 Ui,j + |]n+1 RHS<UZ7])
2¥) ]

Although the above flowchart is designed for the first-order Euler forward time discretiza-
tion, it is easy to extend to high-order SSP-RK time discretization which is the convex

combination of the Euler forward method, by repeating the above procedure several times.
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4 The positivity-preserving explicit Lagrangian scheme

As we know, some physical variables in RHE such as density, internal energy and temperature
should be positive, so we hope our numerical schemes could preserve positivity well for
them. Specifically, in the finite volume method, we hope the cell averages p"*!, "+t Tn+!
calculated by the explicit scheme are positive, if the inputs g, %", T" are positive.

Before discussing the positivity-preserving property of the schemes, we first extend the

two lemmas given in [9] to the two-dimensional RHE. The proof is similar, so we skip it here.

Lemma 4.1. If p>0thenT >0 < " >0
p

Lemma 4.2. The set of admissible states G := ¢ U = p , p>0, e >0 ) is convex.

pU
E*
Later, we will prove that if the input U™ € G, the new cell averages are also in the

admissible set U™ € G, which means the new cell averages p"*1, &1 T"+1 are positive.

4.1 The first order positivity-preserving explicit Lagrangian scheme

Let us start from the first order explicit scheme, then we will extend these results to the
high order case. For the first order scheme, the reconstruction polynomials are constants for
the advection terms U ;(z,y) = Ui,j and the polynomials for the diffusion terms are linear,

denoted as U%(r,y) = U/

T 1in(2,y), since the first order derivatives are involved. Use the

middle-point integration formula for the line integrals [, Fdl, Jos Gdl, so the first order
scheme (3.11) becomes

M
Un+1|ln+1| _%Unlln| —r Z ’lm‘ﬁv (f]n7 f]n,ex(lm)7 nm)

m=1

M
]'_n n mi nm¢_m ,m m (419)
ST+ 3 G U ), )

lin
m=1

1 1
=—W; 4+ -W-
2 T 2?
where we omit the cell index i, j in this subsection to be more concise, U™**"™) represents

the cell averages on the other side of the edge I, (z*,y) is the middle point of I, and
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W1, Wy are defined as

pr|I"HY N
M:E|I7’L+1’ S i -
W, = J@%\I’”W = U"|I |—2TZ:1|Z |F (O, O™ pm)
B "
i }
N B o
Wy = ]\:42y|]n+1| = U |I ’+2T21’l ’G Ulm ( A T )’ )
B "

Next, we will prove that if we know cell averages U™ € G, then we have Wy, Wy € G under

the suitable time step conditions, furthermore U"*! = o 1n+1| + st 3] [n+1| € (@, since G is convex.

For any closed cell I", we have 2%21 n™|l"™| = 0, and F(U",U",nm) = F(U",n™)
due to the consistency of the numerical flux. Then, we have

M
F(OU", 0" n™)|I™ —ZF ™)
m=1
Y (4.20)
_ p*,n an\} 1 nm‘lm|
o D et Ty 1]
P (U Yy W] 4 0 D )

and add this item in Wh,

W= O"|I"| - 2TZ|P”[ (@O ")~ F@", 0", ")

(4.21)
- - P o T
= S [ s [0 = 2r (F (07, T, ) —F(U”,U”,nm))] .
m=1 Zm:l |lm|
This is similar to the one-dimensional case, namely the same type as (5.8) in [9]. The

current two-dimensional case can be viewed as an one-dimensional case in the normal di-
rection. Thus, if the acoustic wavespeeds in the HLLC flux satisfy (3.10), then under the

following CFL condition, we have W; € G,

A 2
r < min / ar (4.22)
2 1] Iy 26*’n

Z]

with A € (0,1).
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For the second part W5, the density py = p" must be positive if p” > 0. The internal

(M’“) +(M3)?

energy e in Wy is defined as e} = E; — s

. Let us consider the cell average of the
internal energy

1 (M3)* + (M3)*

ey= E;—=
2 275 72
1] ™ nam 17| (Mm)? + (Mo
— *Tl AT U m ,m m .
|]n+l| + Z |]n+1| (GUg," (", y"), m™)) |77+ 20"
n M m
. |[ | —*,1 2 |l | ~ Un,m m m m
- |]n+1|€ + TZW(Q( lin (xc,yc )7" ))
m=1
M
- Z |]n+1| 1|lm|€, +2Tg(Ulzn ( Les Ye )ﬂn )

lin lin

where g(Up" (2, y"), n™) := kn O, TH U (2, y)) + wny 0, TH U™ (2, yi)),

and T(U;" (z", y)) represents the temperature calculated by the conserved variables

U™ (7, y™). Then, we have the conclusion that 5 > 0 and W, € G, if

lin

T S min M m ) 4 n,m xmoqm 4 n,m P LRTUL
26 i Zm:l ’li,j e+ \/ﬁmn%XHawT (UZlen( ¢ Ye ))|7 |8?JT (UZJZzn( ¢ Ye ))|}

(4.23)
where A € (0,1) and € = 107!3 is a small positive constant to avoid zero in denominator. By

using the fact the admissible set G is convex, we have the following theorem.

Theorem 4.1. Consider the first-order explicit Lagrangian finite volume method (3.11) solv-
ing (2.1) with the HLLC numerical fluz. If the cell averages l_fi’}j € G for all of the cells 1 ;
at the time level t = 1", then the new cell averages [7{?]*1 € G preserve positivity under the

time step constraints (4.22) and (4.23).

4.2 The high order positivity-preserving explicit Lagrangian scheme

Now, let us move forward to the high order scheme. In the FVM framework with the first-
order Euler forward method, the new cell averages I_Jl";r ! at the time level ¢t = ¢"*! are
calculated via (3.11) with the high order reconstruction polynomial U, (x,y). Now, we will

prove that, if the values U};(Zq,,Ya,s) Obtained from U}, (7,y) at the quadrature points
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satisfy U} (Za,3,Ya,s) € G, then we have U € G with suitable time step conditions. In
the meantime, the high-order SSP-RK scheme is the convex combination of the first Euler
forward scheme, so this conclusion can be extended to the high order scheme in time.

Just like before, we omit the cell index 7, 7 to make the proof more concise. In this sub-

section, we use the Gauss-Lobatto quadrature rule for the integral and convert the physical

11
272

cell I;; to the reference cell Iy = [—1,3] x [—3, 3], in the &7 coordinates, see Figure 4.1
for the details. Let us consider the case that the degree of our reconstruction polynomials
are at most third order, we can use the 3 x 3 points tensor product Simpson quadrature
rule with w; = %7(,()2 = %, w3 = %. If the polynomial degree is higher, we may need to use a
higher order tensor product Gauss-Lobatto rule. For the nine quadrature points (&,,73) in
Iy, we have the bilinear mapping B, ;(£,n) to the quadrature points (248, Ya,g) = Bij(€as 118)
on the physical cell [; ; with 1 < «, 8 < 3. We note that points (24,1, ¥a,1) are on the edge
I', points (2 s, YK ) are on the edge [?, points (Za 1, Yax) are on the edge [* and points
(z1,3,71,8) are on the edge I*. It is worth mentioning that, since we use the Gauss-Lobatto
quadrature rule for the line integral, and the two-dimensional quadrature rule is the ten-
sor product of the &, n directions, the quadrature points on each edge {"™ in (3.11) are also
the quadrature points in (4.24). Specifically, we have (T41,%a1) < (z),9.) on the edge I,
(7,6 Yr,p) © (Tiar Yria) & (23,9) on the edge 12, (T, Yo i) € (23, 95) on the edge I°

and (z14,Y1.8) € (T1.0,Y1.0) < (22,92) on the edge I

Therefore, the integral over I; ; can be written as

mor = //U(w,y)dl'dy
I

- /I U(B(¢, 1)) %] déd

K K
S D T P o
"o
a=1 p=1 1)\ (ams)
K K
- a0l
a=1 =1
where ‘%‘ is the Jacobian matrix of the coordinate transformation, and we denote U*# :=
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Figure 4.1: Transformation between the physical cell [; ; and the reference cell 1.

U(B(a,m5)) = U(Ta g, Yas), Dap = Wawg and |J|*F = ‘ o8 . Separate the integral

a(Em)

(ﬁaﬂw)
(4.24) as
n|yrn 1 nirrn 1 nITTrn
1 [ K K K K-1
= 5 [ Do BT 4 Y D D0k U T 4 Y 0D @0 s UL
La=1 a=1 a=1 =2
[ K K K-1 K
5 [ 2L Gl I Y GreaU T Zwvaﬁuia’ﬂ] (4.25)
La=1 a=1 a=2 B—1 .
T K K1 K-1 K
— 5 Z <Ijoéﬂ[]'a,ﬂ|J|0¢,B_i_ Z@a UQB|J‘O‘B
La=1 =2 a=2 B=1
1 K
+§CU1 We (UOé,l‘J’a,l + Ul,a’J|1,a + Ua,K‘J’a,K + UK,alij,a) )
a=1

Consider the first order Euler forward discretization (3.11) with high order reconstruction

polynomials

l—j—n+1un+l|

1. M K N '
=3O =7 Y Y wa (U (i), U (o yt), ™)
m=1 a=1

1 M K (4.26)
+ U+ 1) 17 ) waG (U™ () y), m™)
m=1 a=1
1 1
—§W1 -+ §W2
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where we omit the time level n in numerical fluxes, and Wi, W5 are defined as

) .

W= %{§+f = O =27 ) D waF (U™, ), U@, i), ™)
B e
pal| o

We = Aszfff = U +2r Y (1" waG (U™ (2 yi),m™)
B |1+ mr e

As before, we will prove that if we have U™ (246, Ya.5), U(Tap: Yo ), U™ (T g, Yo 5) €

G, V1 < a,f8 < 3, then Wi, W5 € G under suitable time step conditions, which means
Ul e G.

The time step condition for the first term W, is similar with the situation in [3]. Here,

we denote U™ := U™ (g™, y™), U™ := U (2", y") form=1,--- 4danda=1,--- | K,
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and the first part W can be rewritten with (4.25) as

1 K K-1 K-1 K
_ - § ' ~ a,B| 7|8 E § ~ a,B| 7.8
W1 = B [aZI < waﬁU |J’ + Ly i waﬁU |J|

K
1
+§W1 Zwa (Ua,1’J|a,1 + Ul,a|J‘1,a + UQ’K’J|Q’K + UK,a|J|K,a)
a=1

M K
—27 Z 1™ Z wo F (Uin(x’gf, ym), U (2 yit), n™)
= a=1

m=

1
K-1 K-1

K - K
[Z BagUPLI P 43 7N " g U7

a £=2 a=2 pf=1

DN | —

=1
K
4= lewa Ua1|J|o<1 U1a|J|1a UaK|J|aK UKa|J|Ka)

Y (U 02 ) S o (U U3 )
—2T|l3lZwa F (U3 U3 ) 41201 S5, w0, F (UL, U2, )

_2T’l4|zwa U41n U4ex )+ 2T’l4|z _1waF (Ulln U41n ):

=271y wo F (U™, U™, n')
a=1
K e
_QTZWO‘E [N |F(U11n U21n )+|l3|F(U1m U31n )+|l4|F(U1m U41n )}
a=1 L e e e e
1 K K-1 K-1 K
- lz 20U + Zwaﬂvaﬂﬂaﬂ]
a=1 =2 a=2 [f=1

(4.27)
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where
: 4 ~ .
Fo= WU - U UL 0
w1

4 AN . . AN . . AN . .
_ _T ‘ZQ‘F(Ual’m, U3m7 n2) 4 ‘lglF(U()lz’1H7 U[;”m, n3) 4 |l4’F(U;’m, Ué’m, n4)] ’
w1

FQQ — |J|K,aUa2,1n o 7_| | [F(Ug’m, Ug,ex’ n2) . F(Uolt’m, Ui’m, n2)] 7
w1

‘Fi — |J|a,KU2,m o T’ ’ |:1_71(l]2,1n7 Ui,ex’ n3) _ F(U;’m, U271n7 ’I’L3):| ’
w1

. 47|14|

f4 — ‘J’l,aU;L,in .

w1

Thus, we have W; € G under the following restriction

T < )\ﬂ min ‘J’” / {
4 ijop m 1| ’

715

[ﬁ(Ué,in7 Ué,ex’ n4) _ ﬁ(U;,in’ Ué,in7 n4)} .

a,B
— 4.28
p\/26* }i,j } ( )
7|55}, and A € (0,1). Actually, F2, 73, F2 € G

where |J|;; = m1n{\J|”, i S b i

are similar with the first order scheme (4.21) by changing the cell averages
<F\ (Ij—n7 D—n,ex(lm)’ nm) _ ﬁ(f]n, Un7 ’I’Lm)> :

into the values at the quadrature points [ﬁ(U&"’in, Umes pm) — F(UL U™ nm)| with
m = 2,3,4. It is also the same as the situation for the one-dimensional first order scheme,

and one can refer to [9] for the details. For .71"016, we can use the same trick in (4.20) to verify

that F! € G by adding
4
Zﬁ(Ui,in7Ui,in |lm| — Z F Ul in |lm| — O
m=1
Then we have,
. 4 ~ .
‘J|a,1UC1¥,1n o —T|11|F(U01£’m7 ljclt,ex7 nl)
w1
4 AN . . AN . . AN . .
_ w_T |:|12|F(U01[,1n7 Ui,m’ nQ) + |l3|1;1(v"01£,1n7 ljoii,m7 n?)) + |l4|F(UC1!,1n’ U;l,ln’ n4>
1
+ 4_7_ i |lm|ﬁ(U1,in Ul,in nm)
Wi m=1 Coe
— Z_l’J‘cz,ll]oél,ln - ’l ’ [ (Ulln Ul ex ) . F(Ui,m,Uolt,m,nl)]

4
2 {zJJ U - !l’"\ [FUy, Uz n) — F(U;’m,Uivm,nmﬂ}
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and we can use the conclusion in the first order scheme again, by changing the cell averages
(13 (O, O o) — F(O", 0", nm)) ,
into the values at the quadrature points
[ﬁ(Ui’m, ULe pl) - I/;\w(Uoll,in7 ULin nl)] 7 [I/ﬁ(UCIM,in’ Umin pmy — F\(Ul in grLin m)] 7

with m = 2,3,4. After that, we get the time step restriction (4.28).

As for the diffusion term, the first three terms in the numerical flux G (U',n) are zeros
which means the cell averages of density in the second part are positive, ps = p™ > 0 and
g L0+ (2
2 P2

K - —_
_ M pn | s orrm oy L (MEM)? (M)
- |[n+1’ +or Z|In+1|zwa9(Ua’" >_|In+1‘§ =

pn
1 &y or Z Z )
- |]n+1| |In+1| ag

where g(U",n™) = rnJ'0,T"(UY) + snj'd,T*(U7"). The numerical approximations to
0, T*U™) and 9,T*(U!™) are shown in Appendix A.3.

N ¥
|

Just like before, we separate the cell average and give a suitable time step condition for
the positivity of the total internal energy €3,

K-1

=

-1

K
*,a,6|J|a,B + Za)a’ﬁe*,a,ﬁ

=2 a p=1

J|es

é2|1n+1| = [

[|
N

+ wl Zwa ,a,l’J|a,1 + e*,l,a‘J’La + e*,a,K|J’a,K + e*,K,a‘J’K,a)

+27 Z ™| Zwag n™)
K K-1 K-1 K

[Z > Dage TN £ YN D et J|°‘ﬂ]
a=2 [f=1

15

DN | —

+
NIRS
MN Il

Q<G;+G§+é§+éi)

Q
Il
_
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where G = | J|@temel 4 2|Mg(UL,n'), and G2,G3 G4 are defined in the similar way. As
we have discussed in (4.23), we can deduce that €} is positive and Wy € G, if

*,a,0

e,
b , (4.29)
i 5+\/_max{|6 TY(U Z]aﬁ)\ |0, T4(U, U .5 |}

w1 .
7 < A— min
4K i,5,0.8

T

Bl P P _13 - .
in { T T T T }, e = 107'° is a small positive constant and
otk

A€ (0,1).

Since the admissible set G is convex, then we have the following theorem.

Theorem 4.2. Consider the high-order explicit Lagrangian finite volume method (3.11)
solving (2.1) with the HLLC numerical flux. If the values of the high-order reconstruction
polynomials U(z,y), U™ (z,y) satisfy Ul(Tap,Ya,s) € G and U™ (Tap,Ya,s) € G for

all of the quadrature points (o, Yas) at the time level t = t", then the new cell averages

ﬁi’:‘fl € G preserve positivity under the time step constraints (4.28) and (4.29).

Based on the above theorem, we can use the positivity-preserving limiter proposed by
Zhang and Shu [37, 35] to ensure U (a8, Ya,5) € G and U;;™ (%a,p, Ya,8) € G. Suppose the

cell-averages U, = (pij, M7';, M}, Ef;)" are in the admissible set U}; € G, we will modify

137 Z]’

the multi-resolution WENO reconstruction polynomials

Ui(x,y) = (p(x,y), M* (2, y), MY (z,y), E*(x,9))}]

into f]fj(x,y) such that U ' (Ta,8,Yap) € G, Y(Tap; Ya,s) € Lij. The modification has the
following two steps
1. Preserve positivity for density. For each cell I; ;, define

-n
Pij

—¢
— — ’} (4.30)
Pij — pi,j(x7 y)

where p}'; > €, Vi, j and we will take e = 10713, S; ; is the set of the quadrature points

5 — 6! +(1—0;,)p;, 6;;= min <1
Pij (.Z', y) ]plj(x y> ( >p237 bl (:r:,ryr)lé%” ’

(Ta,85 Ya,8) 00 I 5.
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2. Preserve positivity for internal energy. After the first step, define

ﬁfj(x7y> = (pA(x7y)7 Mz(%?J)aMy(xay)>E*($7?J))Z}Ta

then the final modified polynomial is obtained as

rrn
Ui?j

(z,y) = 02,U7(x,y) + (1 - 6,)U},,
Q?j = min 1,
’ (x,y)€S;,;

o ‘ } | (4.31)
Then, we could use the same recipe to preserve positivity for U;";" (z,y), such that szn (o You8) €

e — e (U7 (x,y))

1,J

G. It is obvious that this positivity-preserving limiter can keep conservation, and it can pre-
serve positivity for density and internal energy with admissible cell averages l_fi’fj €G. In
[36], the authors proved that this limiter will not destroy the original high order accuracy,

and we will verify these good properties via some numerical experiments in Section 6.

5 The explicit-implicit-null Lagrangian finite volume
scheme

In Section 3, we have introduced the explicit Lagrangian scheme but the time step is limited
by the diffusion term 747 = (9(’2—2) in (3.17), which is rather severe, especially when & is
not very small. The authors of [9] employed the implicit-explicit (IMEX) method to relieve
the constraints imposed by the radiation diffusion. Specifically, they treated the advection
term explicitly and the diffusion term implicitly, to address this issue. However, the Newton
iteration method for the implicit nonlinear diffusion term results in a high computational
cost and significant memory consumption, especially for higher dimensional problems.

The explicit-implicit-null (EIN) [34, 31] time-marching method is designed to cope with
this shortcoming, where one adds a sufficiently large linear artificial diffusion term on both
sides of the scheme, and then solves the nonlinear diffusion term and the advection term
explicitly, and solve the artificial linear term on the right-hand side implicitly which is easy

to handle with the IMEX method. In this section, we will introduce the EIN Lagrangian
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finite volume scheme for the two-dimensional RHE (2.1). Since the first three variables in
the diffusion term are zero, we use H;(U) = (0,0,0,0,FE*)T and Hy(U) = (0,0,0,9,E*)"
to denote the artificial diffusion terms.

By adding a0, H + by0, H to both sides of (2.3), we have

U, + 0,F + 0,F, = 0,Gy + 9,Go

= Ut—f-@mFl +8yF2 —6$G1 8 Gg—f- a[)@ H, —|—b0@ HQ‘— aoa H, +b08 HQ‘

and it can be expressed in integral form just like (3.5) as

= UdQ+ / Fdl — / Gdl + / Hdl = / Hdr (5.32)

where H(U) = (0,0,0, agn,0.E* + bon,d,E*)*. In [31], by the aid of the Fourier method,
the authors analyzed stability for the EIN schemes, so we follow their idea and take the

parameter ag, by as
OkT*
OF*

ag = bo = GgrN IMax AQEpIN — 1.

Then, just like the explicit Lagrangian scheme (3.11) with the Euler forward time dis-
cretization, we treat the nonlinear terms F', G and the left-hand side linear term H explicitly,
and the right-hand side linear term H implicitly,

rrn+1) n+1 rrn
Ui,j |Ii,j | - Uz‘,j|]i,j|

_r / (—13" LG — ﬁ”) dl+ 7 H 4l
BI"

oy
:_Tz\mzwa (U™ (g, U™ (e y), ™)
+Tz|zm|zwa U, ), mm) >3
—TZN’”IZ% (U™ (@, yo), U™ (2 ya ), m™)

+TZ ) Zwa H (U0 ), U™ (i), m”)
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Here, we use the central numerical flux for the artificial diffusion terms
HU™™ (a7 y!) . U™ (2! ) m™)
=S [ H (U @ yi)) + 0, H (U™ @ )] (5.34)
g (B, H(U (0, ) + 0, H U™ ()]
similarly for H (U1 (zm, ym), Umlex(zm ym) nm). Notice that, in order not to introduce
extra error in space, we should use the same spatial discretization for H" and H""'. The

details of the reconstruction for the polynomials in the artificial diffusion terms H" and

H™* are put in the Appendix A 4.

5.1 The EIN Lagrangian finite volume scheme
Denote the explicit nonlinear part as
Ny (T = / (—F" + G — BVl
6[1 j
and the implicit linear part as
£i’j<f]n+1) — / ﬁn+1dl’
ol ;

the first-order EIN scheme (5.33) can be written as

n+1

= TU 1
i+dgrt = Tirdged T Tl 00
n+1 o
yz+w+f y’+27]+1 t TUH— AR (5'35>

Refer to [31], the third-order EIN Lagrangian scheme follows as
e Step 1.

20 — 1) _

it = il Vi1 T Viklgen
1 n n

U =08 |1 + art ,(OW).

e Step 2.
ey — (2) _n
irdgrd T Tardgrl Yl el T Yl gl

l_fi(j)\ff?! = U} +ar [—L;(UW) + £;,;(UP)].
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e Step 3.

3) _.n 2)
i+ig+i T A + Tuz+2,j+%’
3) _ (2
yl+2’1+2 yH‘QJ"'l T i+3.+3
U115 = UL+ 7 [N (OP) + (1= )L, (OP) + ali; (U]
e Step 4.
(4) _ Z ( (2 ®3) )
xi+%’j+2 xl+2’3+2 4 uz"‘z’]"'é u ’+273+2
(4) _ T ( (2 (3)
y7‘+213+1 yl+2’j+2 + 4 ( Z+2’]+l + Z+%7j+%> ’
4) rrn | yn 1 ] 1 =
OIS = U1+ 7 | TN (O) + AL,O)
FBLi;(ON) + L (UD) + 0Ly (UD) + Ly (D))
e Step 5.
n+1 _ ©) 3) (4)
Tl =T T 6 ( Uit T U A +§,j+%> )
n+1 _ (2) (3) )
y7‘+21]+1 yl+2’]+% + 6 < z+273+l _}_1)7’4_27 +l +4 7‘+2’J+ )

U I = o || + [M,j(U @)+ Ny (OD) + 4N, (W)
+£waﬂ2)+L:(U@U+4£”aJ N].

where o = 0.241694261, =%, (=128, n=12 —a— - ¢.

This EIN scheme avoids solving the radiation diffusion explicitly with a small time step.
Compared with other implicit methods, such as the IMEX method, it also avoids solving the
nonlinear diffusion term implicitly, which would need a computationally expensive Newton
iteration in the IMEX method. One drawback of this EIN scheme is the possible oscillation
for strong discontinuities, as we are not using WENO to the implicit part of the scheme.
Nevertheless, the EIN scheme turns out to be a stable and highly efficient high order scheme
for most test cases, and we will show the cost of the EIN scheme and the explicit scheme in
the later numerical tests.

So far, we have presented two high-order Lagrangian finite volume schemes. In the next
section, we will verify the good properties of the two types of Lagrangian schemes in different

situations.
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Remark 5.1. In the EIN scheme (5.33), we have applied the WENO reconstructions for the
explicit parts —F" 4 CAT’”, but we do not apply WENO for the artificial diffusion terms H"
and H™'. This is because it would introduce nonlinearity and hence defeats the purpose of
EIN if we apply the WENO reconstruction on the implicit term f—I\”“, and it is advisable
to treat H" and H"' by the same spatial reconstruction procedure in order to reduce any
additional errors due to these two identical added artificial diffusion terms on different time
levels. Also, since these two terms are linear diffusion terms, linear discretizations without
WENO do not introduce severe numerical oscillations near discontinuities, according to the

numerical results of the EIN scheme presented in the next section.

Remark 5.2. We will lose the positivity property for the EIN scheme not only because of
the slight oscillations for strong discontinuities, but also we could not apply the positivity-
preserving limiter since we could not prove the cell averages remain positive after the implicit

time stepping.

6 Numerical tests

In this section, we perform a series of numerical tests on our explicit Lagrangian finite
volume scheme and the EIN Lagrangian finite volume scheme, to verify their second-order
accuracy and some other good properties. Notice that, even though we are using third order
reconstructions and third order time discretization, because we use cells with straight-line
edges, our Lagrangian scheme is restricted to second order accuracy so far [7] . Curved cells
would be needed to obtain third or higher order of accuracy, but we will not discuss it in
this paper. For brevity, we will denote these two schemes as the “explicit scheme” and the

“EIN scheme”, respectively.

6.1 Accuracy test

Consider the radiation hydrodynamics equations in the equilibrium-diffusion limit (2.3) with

T

the source term s = (si(x,y, 1), s2(x,y,1t), s3(x, y,t), s4(z,y,t))" on the computational do-
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main = [0, 27] X

0, 27,

with the exact solution

= 14 0.5sin(zx +y — 2t),
0.5+ cos(z +y — 2t),
v = 0.5+ cos(z +y — 2t),
T(x,y,t) = by(1l+bysin(x+y— 2t)),

I
TN TN TN
8
@@E@@
~ 4
S— N
|

where by, by are constants.

Be aware that, for the y-law gas

so we have
S1
59
53
and
S4

1 1 1
= (y = DeypT + §PT4, E* = c,pT + §pu2 + §p112 +PT,

2sin(2t — z — y) — 0.5co0s(2t — x — y) + cos(4t — 2(x + y))

cos(2t —x — y) [—i — 0.5b1¢, — bibac, + %blcvy + bibycyy + %b%bgp
+cos?(2t — x —y) + (4 + bibye, (1 — ) — 4b1b3P) sin(2t — x — y)

+ (=2 + 4b{b3P) sin® (2t — x — y) — 3b{b3P sin®(2t — z — y)]

cos(2t —z—y)[-1- bl% — bibacy + 2bicyy + bibac,y + 5010 P
+cos?(2t — x —y) + (4 + biboc, (1 — ) — 4bi3P) sin(2t — x — y)

+ (=2 + 4b{b3P) sin® (2t — x — y) — SbIV3P sin®(2t — z — y)]

cos?(2t —x — y) + cos* (2t — v - Y)

—24cos?(2t —x — y) [96 + bi(—55 — 2)cyy + biba(bers — 27)
+sin(2t —z —y) (-1 + Hblem + bib2 (—2bok + 47’))

+sin®(2t — z — y) (& + b163(bars — —)) + 26163 Psin® (2t — z — y)]
+cos(2t —x — y) [—— + bicy(—1 — 2by + 3 + boy) — Sbi0P

+ (2 + bibacy (2 — 7y) + 8103 P) sin(2t — z — y)

+ (—1 — 8b1b3P) sin2(2t —z —y) + $bibyPsin® (2t — z — )]
+isin(2t —x —y) [ + 20T 4 (P — 3byk)

+ (32 + b1 (—3 — @)cvv + b] b2(9b2/£ — 4P)) sin(2t — z — y)
+hiby (222 + b362(673 9b2/<:)) sin?(2t — o — y)
+ b1b3(3bar — 4P) sin® (2t — x — y) + bib3Psin* (2t — z — y)] .

Periodic boundary conditions are concerned. The initial computational mesh is uniformly

divided into N, x N, rectangular cells. Calculating to time ¢ = 0.1 with the explicit scheme

and the EIN scheme, respectively, we show the error and order in Table 6.1 with different
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x = 0.01,0.1. Under these parameters by = 1, by = 0.25, ¢, = 1, P = 1075, ~ = %, the
positivity-preserving limiter is not active.

Numerical results show that both of these two schemes achieve second-order accuracy.
When £ is not too small, the time step constraint of the diffusion term 7j;,, in (3.17) is more
severe than that of the advection term 77, in (3.16). The last two columns in Table 6.1 are
the first time step and CPU time cost of these two schemes, and one can see that under
k = 0.1, the CPU time of the EIN scheme is only about %0 of that of the explicit scheme.

Next, we take by = 2, by = 0.99999, ¢, = 1, P =107 v =3 k=122 1 =01 to

verify our explicit scheme can maintain second-order accuracy with the positivity-preserving
limiter. The last column in Table 6.2 represents the percentage of cells modified by the

positivity-preserving limiter.

OxT?

5o | 10 the EIN

Finally, we briefly discuss the selection of parameters ag = by = agrn

scheme. We take x = 0.1 and large time step 7 = 0.57,4 in this test. The authors in
[31, 32] propose a guidance for the choice of agsy, where the EIN finite difference schemes
are unconditionally stable if ag;ny > 0.54 for the diffusion equation, the dispersive equation
and the biharmonic-type equation. When the parameter ag;y is too small, the EIN scheme
approaches the explicit scheme, and it may become unstable when using large time steps.
As shown in Table 6.3, when ag;y = 0.1, the EIN scheme becomes unstable on the refined
mesh with 160 x 160 cells. When the parameter ag;y > 0.54, we can observe the desired
second-order accuracy. For convenience, we generally take ag;y = 1 in subsequent tests.
Notice that one should not take ag;y too large beyond that required by stability, since a
larger ag;y would lead to larger additional errors since it is multiplied to the time level

difference between the two added artificial linear diffusion terms.
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Table 6.1: Error and order for the explicit and EIN Lagrangian schemes with b; = 1, by =
025, c, =1, P=107%, v = %

Ny, N, | L'error order | L*error order | L*® error order | 7% | CPU time
k = 0.01, explicit scheme, 7 = min(0.57,4, 0.2574; )
20 6.9010E-03 8.4434E-03 1.9472E-02 2.28E-01 | 3.28E-01
40 3.5759E-03 0.95 | 4.5040E-03 0.91 | 9.3469E-03 1.06 | 5.69E-02 | 1.73E+00
80 9.8376E-04 1.86 | 1.2566E-03 1.84 | 2.5619E-03 1.87 | 1.42E-02 | 2.27E401
120 4.3671E-04 2.00 | 5.5971E-04 1.99 | 1.1368E-03 2.00 | 6.30E-03 | 9.94E+01
160 2.4515E-04 2.01 | 3.1484E-04 2.00 | 6.3879E-04 2.00 | 3.54E-03 | 3.14E+402
200 1.5708E-04 1.99 | 2.0205E-04 1.99 | 4.0950E-04 1.99 | 2.27E-03 | 7.52E+02
k = 0.1, explicit scheme, 7 = min(0.57,4, 0.2574f¢)
20 5.9834E-03 7.1400E-03 1.2448E-02 2.28E-02 | 8.59E-01
40 1.3913E-03 2.10 | 1.6010E-03 2.16 | 2.9045E-03 2.10 | 5.69E-03 | 1.15E+01
80 3.4063E-04 2.03 | 3.8476E-04 2.06 | 7.1093E-04 2.03 | 1.42E-03 | 1.76E+02
120 1.5065E-04 2.01 | 1.6945E-04 2.02 | 3.1656E-04 2.00 | 6.30E-04 | 8.92E+02
160 8.457T9E-05 2.01 | 9.4960E-05 2.01 | 1.7765E-04 2.01 | 3.54E-04 | 2.80E+03
200 5.4055E-05 2.01 | 6.0655E-05 2.01 | 1.1299E-04 2.03 | 2.27E-04 | 6.77E+03
k = 0.01, EIN scheme ay = by =1, 7 = 0.5744
20 5.0349E-03 6.0419E-03 1.3362E-02 1.33E-01 | 2.03E-01
40 1.4000E-03 1.85 | 1.8870E-03 1.68 | 4.9822E-03 1.42 | 6.65E-02 | 7.66E-01
80 4.2238E-04 1.73 | 5.8008E-04 1.70 | 1.4895E-03 1.74 | 3.33E-02 | 1.06E+01
120 1.6655E-04 2.30 | 2.2870E-04 2.30 | 5.8331E-04 2.31 | 2.22E-02 | 9.31E+01
160 9.9704E-05 1.78 | 1.3642E-04 1.80 | 3.4174E-04 1.86 | 1.67E-02 | 1.96E+402
200 5.9618E-05 2.30 | 8.1251E-05 2.32 | 2.0210E-04 2.35 | 1.33E-02 | 5.64E+02
k = 0.1, EIN scheme ag = by =1, 7 = 0.57,4
20 4.9369E-03 5.8315E-03 1.2799E-02 1.33E-01 | 2.03E-01
40 1.2735E-03 1.95 | 1.6848E-03 1.79 | 4.2901E-03 1.58 | 6.65E-02 | 7.66E-01
80 3.6706E-04 1.79 | 4.8068E-04 1.81 | 1.1655E-03 1.88 | 3.33E-02 | 1.06E+401
120 1.4037E-04 2.37 | 1.7847TE-04 2.44 | 4.0690E-04 2.60 | 2.22E-02 | 9.31E+01
160 8.4065E-05 1.78 | 1.0381E-04 1.88 | 2.2636E-04 2.04 | 1.67E-02 | 1.96E+02
200 5.0676E-05 2.27 | 6.2410E-05 2.28 | 1.4269E-04 2.07 | 1.33E-02 | 5.64E402

33



Table 6.2: Error and order for the explicit Lagrangian scheme with b, = 2, by, =
— — 10— _5 _ 1075
0.99999, ¢, =1, P=10"", v =2, Kk = —.
Ny, N, | L'error order | L?error order | L* error order | Pos(%)

20 6.2927E-03 7.4460E-03 1.2074E-02 60.00
40 1.3904E-03  2.18 | 1.5975E-03 2.22 | 2.9008E-03 2.06 | 20.35
30 3.4000E-04 2.03 | 3.8211E-04 2.06 | 6.9334E-04 2.06 2.71
120 1.5040E-04 2.01 | 1.6799E-04 2.03 | 3.0145E-04 2.05 1.28
160 | 8.4460E-05 2.01 | 9.4037E-05 2.02 | 1.6714E-04 2.05 0.16
200 | 5.4019E-05 2.00 | 6.0013E-05 2.01 | 1.0578E-04 2.05 0.00

6.2 The non-oscillation tests

6.2.1 The shock tube problem

Here, we compare the EIN scheme and the explicit scheme on the test with the following

discontinuous initial condition

T=1, 0<r<04
p=0001, u=v=0{ T=10, 04<r<08 (6.36)
T=05 08<r<1.2

and we calculate to time t = 5 x 107 with v = 14, ¢, =1, P =10"%, x = 1072 on a
quarter of the circular domain 0 < r < 1.2, and symmetric boundary conditions are applied.

In Figure 6.2, we show the computational meshes at t = 0,¢t = 2.5x10 % and t = 5x 10~*
with 500 cells, respectively. We can observe that the vertices in the middle area move with
the shocks in the Lagrangian scheme. From Figure 6.3, we can observe that these two
Lagrangian schemes capture the shocks well. The converged solution is calculated by a
WENO finite volume method on the uniformly fixed refined mesh with 20,000 cells, and we
can see that these two schemes converge well.

In the meantime, we compare the efficiency of these two schemes. While the explicit
scheme costs 297.42 seconds with 2,254 time steps, the EIN scheme costs 7.84 seconds with
only 53 time steps which is much more efficient.

In Table 6.4, we show the conservation errors of cell mass in the above two Lagrangian
schemes, where

Errorf; = |pi|Iy] — pisIL|

34



Table 6.3: Error and order for the EIN Lagrangian schemes with b; = 1, by = 0.25, ¢,

I, P=10% k=01, v= g

Ny, N, | L'error order | L?error order | L™ error  order
EIN scheme ag = by = 0.1
40 1.4026E-03 1.8899E-03 4.9905E-03
80 4.2390E-04 1.73 | 5.8214E-04 1.70 | 1.5007E-03 1.73
120 1.6777TE-04 2.29 | 2.3060E-04 2.28 | 5.9323E-04 2.29
160 NaN NaN NaN NaN NaN NaN
EIN scheme ag = by = 0.54
40 3.3642E-03 4.8068E-03 1.3072E-02
80 7.3693E-04 2.19 | 1.0387E-03 2.21 | 2.7405E-03 2.25
120 3.0624E-04 2.17 | 4.2456E-04 2.21 | 1.0896E-03 2.27
160 1.6571E-04 2.13 | 2.2481E-04 2.21 | 5.6274E-04 2.30
200 1.0356E-04 2.11 | 1.3730E-04 2.21 | 3.3376E-04 2.34
EIN scheme ag = by = 0.8
40 1.3253E-03 1.7483E-03 4.5269E-03
80 3.7485E-04 1.82 | 4.9717E-04 1.81 | 1.2243E-03 1.89
120 1.4300E-04 2.38 | 1.8091E-04 2.49 | 4.1098E-04 2.69
160 8.4996E-05 1.81 | 1.0534E-04 1.88 | 2.1695E-04 2.22
200 5.1421E-05 2.25 | 6.3610E-05 2.26 | 1.4336E-04 1.86
EIN scheme ag = by =1
40 1.2735E-03 1.6848E-03 4.2901E-03
80 3.6706E-04 1.79 | 4.8068E-04 1.81 | 1.1655E-03 1.88
120 1.4037E-04 2.37 | 1.7847E-04 2.44 | 4.0690E-04 2.60
160 8.4065E-05 1.78 | 1.0381E-04 1.88 | 2.2636E-04 2.04
200 5.0676E-05 2.27 | 6.2410E-05 2.28 | 1.4269E-04 2.07
EIN scheme ag = by = 2
40 1.2541E-03 1.6401E-03 4.1553E-03
80 3.4473E-04 1.86 | 4.3039E-04 1.93 | 9.2412E-04 2.17
120 1.4019E-04 2.22 | 1.8512E-04 2.08 | 4.7225E-04 1.66
160 1.0132E-04 1.13 | 1.3419E-04 1.12 | 3.4804E-04 1.06
200 8.6836E-05 0.69 | 1.1155E-04 0.83 | 2.7744E-04 1.02
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Figure 6.2: Computational meshes of the non-oscillation test at different time.

and we take three cells with indices Ig 5, [245, 1405 from each of the three regions to calculate

the conservation error of the cell mass. One can observe that, the conservation errors reach

machine zero, indicating that our two Lagrangian schemes are cell-mass conservative.

Table 6.4: Conservation errors in the explicit Lagrangian scheme and the EIN Lagrangian

scheme for the non-oscillation test.

‘ explicit ‘ EIN

‘ Errorg’f) Errar§4’5 Errorjo’f) ‘ E7’7“07’§’5 Err0r§475 ET?“OTZ(L5
t=25x10"* | 5.2940E-22 0.0 0.0 3.1764E-22 4.2352E-22 0.0
t=5x10"* | 1.0588E-22 8.4703E-22 0.0 6.3527E-22 0.0 0.0

6.2.2 The Sedov blast wave problem

__ 0.244816

1

Y(y=1)"

36

We now consider the Sedov blast wave problem on a Cartesian grid 2 = [0,1.2] x [0, 1.2]
with initial uniform 1,600 cells. The initial density is set as 1 and the initial velocity is set

as 0. The initial internal energy is as 107! for almost everywhere, except for the only one
cell I near the origin which is set as e] ; = Tl Since the initial internal energy 10712
is very close to 0, the simulation would fail if the positivity-preserving limiter is not used.
We compute to time t = 1 with v = 1.4, ¢, =

In Figure 6.4, we show the contours of the density, and we can observe that the shock

fronts are very sharp and clear in these Lagrangian schemes. Due to the larger radiation
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Figure 6.3: Numerical solutions of density (first column), internal energy (second column)
and radial velocity (last column) for the non-oscillation test. ¢; and ¢, represent time ¢t =
2.5 x 107 and ¢t = 5 x 1074, respectively.
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diffusion term, the inner mesh deformation is much less severe with a larger x = 1072 in the
right bottom subfigure of Figure 6.4. In Figure 6.5 and Figure 6.6, we demonstrate the cut
lines at x = y for density and total pressure with different parameters P, k. From Figure
6.5, we can see that our high order scheme captures the shock precisely compared with the
exact solution with P = k = 0, and the total pressure with a larger radiative parameter P
is a little higher than that of P = x = 0. We only used the explicit scheme in this test and
the EIN scheme failed since it can not preserve positivity for the stringent initial condition

e* = 10712,

density density

density density

() P=10"2,k=10"4 (d) P=10"2%k =102

Figure 6.4: Contours of density for the Sedov problem.
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Figure 6.5: Radial cuts of the numerical solutions for the Sedov problem with P = 0,0.01
and k = 0. Here, the exact solutions are under P = x = 0 for the Euler equations.

6.3 Positivity-preserving test

Now, we consider the performance of our explicit Lagrangian scheme on the positivity-
preserving property. The test problem has the following discontinuous initial condition on a

quarter of the circular mesh with the radius 0 < r < 12,

{ p=1L u=v=0,p 0.1, r <3, (6.37)

p=0001, u=v=0, p"=10"7, r>3.

We show the radial cuts of the numerical results at time ¢ = 6 with different mesh sizes

in Figure 6.7. We take v = g, Cy = 7(71_1), P = 107* k = 10~* in this test. The
initial pressure is 10~7 which is very close to 0, so the numerical simulation will fail due
to the negative pressure if the positivity-preserving limiter is not used. In Figure 6.7, we
can observe that our explicit Lagrangian scheme preserves positivity well and there are no
numerical oscillations near the discontinuities. Comparing to the converged solutions on the
fixed refined mesh with 20,000 cells, the positions of the shock and the contact discontinuity

can converge to those of the converged solutions. In Figure 6.8, we show the two-dimensional

contours of the physical variables with 4,000 cells.
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Figure 6.6: Radial cuts of the numerical solutions for the Sedov problem with P = 0.01 and
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Figure 6.7: Numerical solutions of the explicit Lagrangian scheme for the positivity-
preserving test 6.3 at time ¢ = 6 with 1,000, 2,000 and 4,000 cells. N, means the number of
cells on the x direction.
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6.4 Multi-material problems

6.4.1 The multi-material radiative shock tube problem

Consider solving (2.1) for the y-law gas with different initial conditions and + on different

sides of the interface

p=lLu=v=0T=14 v=14, 0<r<6 (6.38)
p=0125, u=v=0,T=35v=2 6<r<I12 '
where ¢, = —=—, P = x = 1072. On different sides of the interface, we have different

y(y=1)’

specific heat capacities of the fluid, which is difficult for the fixed mesh methods to keep
a clear interface. We calculate to the time ¢ = 1.5, on a quarter of the circular domain
with 2,000 cells, and symmetric boundary conditions are applied. In Figure 6.9, we show
the radial cuts of the numerical results of density, pressure, temperature and velocity for
the explicit Lagrangian scheme with x = 0,0.01, respectively. The converged solutions are
obtained under the same explicit Lagrangian scheme with 4,000 cells.

Since the vertices in the Lagrangian scheme move with the fluid, it can track the interface
automatically, and we can see that the interface is very sharp in Figure 6.9 without oscilla-
tions, which verifies the advantages of the Lagrangian scheme and the WENO reconstruction.
Actually, when k # 0, the temperature 7" in the diffusion term is nonlinearly related to all
of the conserved variables. Near the interface, even though the velocity and pressure are
continuous, the density does change, also the functional dependency of temperature on the
conserved variables is different on both sides of the two material interface, these lead to
discontinuity of the temperature at the interface. This causes “bumps” from the diffusion
term (T}, + T,,) at the interface, which leads to small jumps in pressure that is observed

in Figure 6.9. Correspondingly, when x = 0, no such small jumps are generated.
6.4.2 The air-water-air problem

Consider the two-fluid flow problem with the initial condition as [25],

p=0001, u=v=0T=10% vy=14, p.=0, 0<r <02
p=1u=v=0 T=331 ~=7 p =300 02<r<1 (6.39)
p=0001, u=v=0T=1 v=14, p.=0, 1<r<1.2
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and take ¢, = 1. We consider a quarter of the circular domain with the radius 0 < r <
1.2, and separate it into three parts. The inner and outer fluids are air-like materials and
the medium fluid is water-like material, so we have two interfaces at r = 0.2 and r = 1,
respectively. At the beginning, the inner interface r = 0.2 instantly breaks, generating an
outward-going shock wave in the water-like material, an inward-going rarefaction wave in the
air-like material and a contact discontinuity separating them. As time goes by, the inward-
going wave will reflect from the origin, generating a new outward-going wave and leading to
subsequent interactions between the waves. Through this multi-material test, we can verify
that our explicit Lagrangian scheme has good stability near the interfaces without numerical
oscillations, and can capture the interfaces accurately. Additionally, we aim to investigate
the effects of the radiation coefficient «, P on the computational results by choosing different
parameters.
The equation of state for water follows as

P+ Pe
P

p=(y—Lpe—pe, a=/v
So the conserved variable total energy E* can be represented by

P+ P

+ PT.
v—1

1
E*:E+Er:§p(u2—|—1;2)+

On the other hand, we have e = ¢, T + %, so E* can also be represented by the temperature

and other physical variables as
1
E* = §p(u2 +v?) + pe, T + p. + PT*.

First, we use the explicit Lagrangian scheme to calculate to the typical time 0.0025,
0.005, 0.0075, respectively, with P = k = 0. In Figure 6.10, we show the contours with
1,000 cells. The radial cuts of the radial velocity are given in the left subfigure of Figure 6.11
at the different time, where the converged solutions are obtained under the same explicit

Lagrangian scheme with 2,000 cells.
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Our explicit Lagrangian scheme preserves positivity well and keeps high resolution near
the discontinuities. In the meantime, the interfaces and the shock are well located in our
Lagrangian scheme which shows the advantage of the Lagrangian method.

Next, in order to demonstrate the impact of different parameters P, x more clearly, we
design two different initial conditions (6.40) and (6.41). Taking x = 0 and different radiative
parameter P, we show the radial cuts of the radial velocities in the right subfigure of Figure
6.11, and one can observe that, with the radiation constant P increasing, the radial velocity
near the interface will decrease.

p=0001, u=v=0 T=10,vy=14, p.=0, 0<r<02

pzl,u:v:(J,T:%,y:?,pc:BOOO, 02<r<1 (6.40)
p=0001, u=v=0 T=01 ~vy=14, p.=0, 1<r<12

Last, we set the same initial total energy for the air and water in (6.41) to compare the
numerical results with P = 107% and different x. In Figure 6.12, one can observe that, with
the diffusion term parameter  increasing, the radiation diffusion will play a more important
role in RHE and the solution will dissipates near the discontinuities.

p=0001, u=v=0, B*=3 =14 p.=0, 0<r <02

pzl,u:vzo,E*:%,vzﬁpczi’)OOO, 02<r<1.0 (6.41)

p=0001, u=v=0 E*=23% =14 p. =0, 1<r<12

6.4.3 The ablation test

Referring to [1], we design an ablation test which consists of an outer shell and an inner shell
made from deuterium-tritium (DT) ice, with a low-density DT gas. There are four layers of
materials in this problem, and ideal gas equation of state is considered. The computational
domain is a quarter of the circular domain 0 < r < 0.2 with 2,000 cells. The initial conditions
are listed in Table 6.5 and all of the materials’ initial velocities are 0.

We use the explicit Lagrangian scheme to calculate to the time ¢ = 0.06 with P = 0.1,k =
10~* and show the numerical results at different time in Figures 6.13 and 6.14. Reflective

boundary conditions are considered for the left and bottom boundaries, free boundary con-
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Figure 6.10: Contours of density (first column), internal energy (second column) and radial
velocity (last column) for the air-water-air problem under the initial condition (6.39) with
P = k = 0 at different time, respectively.
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0.008
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velocity
velocity
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Figure 6.11: Radial cuts of the radial velocities for the air-water-air problem. Left: P =
k=0 at time ¢t = 0.0025,0.005,0.0075 under the initial condition (6.39); Right: x = 0 with
different P = 0,107°,5 x 107°,107*,1.5 x 10~* under the initial condition (6.40) at time
t = 0.0025.

Table 6.5: Initial conditions for the ablation test.
Material range P E* v Co

i r € [0,0.0833] 0.03 0.592 1.45 1.0000
i r € (0.0833,0.0958] 0.25 1.218 1.45 1.0000
iii r € (0.0958,0.1125] 1.08 1.231 1.30 0.1150
v r € (0.1125,0.2] 0.01 15.66 1.67 0.3375

ditions are considered for the boundaries with » = 0.2. From Figure 6.13, we can observe
clear material interfaces on the Lagrangian moving meshes.

In the initial stages, the radiation within the helium gas induces heating in the third
layer, leading to the formation of an inward-propagating shockwave (refer to the first two
rows in Figure 6.13 at time t = 0 and ¢ = 0.01). Subsequently, this shockwave traverses
through the DT gas, converging towards the central point of the setup, even as the DT ice
continues its inward trajectory. When the pressure within the inner region surpasses that of
the surrounding material (as observed in the third row of Figure 6.13 at time ¢ = 0.04), the
DT gas exerts pressure in the opposing direction against the DT ice (as evident in the final
row of Figure 6.13 at time ¢ = 0.06), eventually approaching equilibrium.

In Figure 6.14, we show the radial cuts of density, total pressure and radial velocity at
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Figure 6.12: Radial cuts of the numerical solutions for the air-water-air problem under the
initial condition (6.41) at time ¢ = 0.002 with P = 107¢ and different x = 0,1 x 1077,2 x

1077,4 x 10~7,8 x 1077.

different time with 2,000 cells. The converged solutions are obtained under the same scheme
with 4,000 cells. In Figure 6.15, we show the total volume of the computational domain and
the positions of the four different boundaries at different time. At the time t = 3.93 x 1072,
the total volume reaches its minimum 1.596 x 1072 and is basically consistent with the
converged solution. It costs 3,642.39 seconds with 2,000 cells and 29,271.48 seconds with
4,000 cells in the explicit Lagrangian scheme. Our numerical solutions converge well to the

converged solutions and we can observe the position of each boundary layer changes during

& Kappa = 8.0E-]

temperature

Kappa
increasing

L L L L L L L s L s
w50z oz 0z Oz 0m 0z om0 0z

Kappa
increasing

0955 0535 05 085 055 0955 035 D8 0T 037 0 04 08 G

Kappa
increasing

L L L L L L s
@ 0215 0216 0217 _ 0218 0219 02 0221
R

Kappa
increasing

the whole process from heating, compressing until reflecting.
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Figure 6.13: Numerical solutions of density (first column), total pressure (second column)
and radial velocity (last column) for the ablation problem.

49



Initial
1=0.02, Converged
t=0.04, Converged
t=0.06, Converged
— —=— - t=0.02, Nx = 200
- t=0.04, Nx = 200
— —+— - 1=0.06, Nx = 200

Initial
2, Converged 50~
Converged
onverged
2, Nx = 200
.04, Nx = 200 a0l
0.06, Nx = 200
30f
e
5
2
o
o 20f
5
10
1 o
L L L
0.05 0.1 0.05

velocity

Initial
1=0.02, Converged
1=0.04, Converged
t=0.06, Converged
— —a— - t=0.02, Nx =200
~ —4— - t=0.04, Nx = 200
~ —s— - =006, Nx =200

L
0.05 0.4
R

Figure 6.14: Radial cuts of the numerical solutions for the ablation problem. Left: density;
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6.5 Pure diffusion tests

In this subsection, we consider the following pure diffusion problem by taking p = 1, u =
v = 0, then the radiation hydrodynamics equations in the equilibrium-diffusion limit (2.1)

become
oF* 0 0
= —(k0,TY) + — (K0, T* 42

and we will solve it with the explicit finite volume scheme and the EIN finite volume scheme

respectively.
6.5.1 Accuracy test

First, we consider the accuracy test on the random meshes with the source term s(z,y,t) on
Q =10,27] x [0, 27,

oL

0 4 0 4
ot~ gp O T) + 5, (ROTT) & sy, 1).

Take the exact solution as T'(x,y,t) = by (14 by sin(x +y — 2t)), then the source term follows
as
s(x,y,t) =  — 2c,biby cos(x + y — 2t) — 8Pbiby cos(x + y — 2t) (1 + bysin(z 4+ y — 2t))°
— K [24b1b5 cos®(z 4+ y — 2t) (1 + by sin(z + y — 275))2]
+ 5 [8bibysin(z +y — 2t) (1 + bosin(z +y — 21))°] .
Periodic boundary conditions are concerned and the random meshes are derived from the

uniform meshes by displacing each interior nodes randomly [4],

s n hy
T, 1. 1 =T, 1, 1 —7T,_ 1. 1

=93 =507 3 4 720732

) Ly

1. 1 =Y. 1. 1 —S. 1, 1
yl*gd*g yl*gd*g 4 "T2JT2

for2<i< N, 2<j <N, wherer, 1, 1, 8 1, 1€ [—1, 1] are random variables and
27072 2072

h, = JQV—’;, hy = ]2\,—’; In Figure 6.16, we show the random meshes with 20 x 20 and 40 x 40 cells.
We calculate to the time ¢t = 0.2 with the explicit Lagrangian scheme and the EIN Lagrangian

scheme under the parameters by = 1, by = 0.25, ¢, =1, P =107°, v = g respectively and
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Figure 6.16: Quadrangular random meshes. Left: 20 x 20 cells; Right: 40 x 40 cells.

the positivity-preserving limiter is not active. Table 6.6 shows the third-order accuracy for

these two schemes.
6.5.2 Marshak wave

We consider the Marshak wave problem [24, 29, 30] on the distorted Kershaw mesh [17] and
take p = 1, u = v = 0. In this test, the computational domain is [0,1] x [0,1] and we
show the distorted Kershaw mesh with 100 x 24 cells in Figure 6.17. For the left boundary
condition, we take the constant radiation temperature as 7" = 1, and for the other three
boundary conditions, we take reflective boundary conditions. The initial temperature is set
to T = 0.1 and we adopt P =10"3%, Kk =1, ¢, = 1, v = 1.4 in this Marshak wave test.

We use the explicit finite volume scheme and the EIN finite volume scheme with ag =
bp = 0.5 to solve this problem. The converged solution is obtained by solving the problem
explicitly on the uniform mesh with 500 x 24 cells. In the Kershaw mesh, the vertical coor-
dinates of the mesh nodes are uniformly distributed, and the mesh is distorted by adjusting
the horizontal coordinates. The mesh is divided into six regions along the y-axis, and we

11125

showed the cuts of the temperature at different vertical coordinates y = ¢, 3, 3, 5, § in Figure

6.18. Figure 6.19 shows the contours of temperature at the time ¢t = 0.05 and ¢ = 0.1 with
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Table 6.6: Error and order for the explicit and the EIN Lagrangian schemes on the random
meshes with b; =1, by = 0.25, ¢, =1, P=107°, v = g

Ny, N, | L'error order | L?error order | L* error order | CPU time

k = 0.01, explicit scheme, 7 = 0.2574;¢

20 1.3067E-03 1.4874E-03 3.9001E-03 6.25E-01
40 1.6992E-04 2.94 | 1.9490E-04 2.93 | 4.8593E-04 3.00 | 1.14E+00
80 2.2604E-05 2.91 | 2.6255E-05 2.89 | 9.2352E-05 2.40 | 1.81E401
120 7.1593E-06 2.84 | 8.3617E-06 2.82 | 2.8564E-05 2.89 | 1.06E+02
160 | 3.2470E-06 2.75 | 3.8201E-06 2.72 | 1.1991E-05 3.02 | 3.84E+02

k = 0.01, EIN scheme, 7 = 2.574;¢f, ag = by = 1

20 1.3067E-03 1.4882E-03 3.9220E-03 6.25E-02
40 1.7527E-04  2.90 | 2.0335E-04 2.87 | 5.2956E-04 2.89 | 3.91E-01
80 2.3611E-05 2.89 | 2.7996E-05 2.86 | 1.0328E-04 2.36 | 5.30E+00
120 | 6.6528E-06 3.12 | 7.9114E-06 3.12 | 2.8116E-05 3.21 | 4.20E401
160 | 2.9053E-06 2.88 | 3.4269E-06 2.91 | 1.1938E-05 2.98 | 2.42E+02
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1
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Figure 6.17: Kershaw mesh with 100 x 24 cells.

the two schemes. From these figures, it can be seen that there is no significant difference
between the numerical results of the two schemes. Even when the mesh is distorted in the x
direction, our two schemes can still maintain good stability, and the results under different

vertical coordinates are basically consistent with the converged solution.

7 Conclusion

This paper presents an extension of the Lagrangian finite volume scheme for RHE in the

equilibrium-diffusion limit [9] to the two-dimensional case. High-order Lagrangian schemes
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Figure 6.19: Contours of the temperature for the Marshak wave problem on the 100 x 24
Kershaw mesh.

are developed using the multi-resolution WENO reconstruction, HLLC numerical flux, and
SSP-RK time discretization. To preserve positivity, a positivity-preserving limiter has been
added for density and internal energy in the explicit scheme. Numerical experiments ver-
ify that the explicit Lagrangian scheme is conservative, high-order accurate, positivity-
preserving and non-oscillatory.

To overcome the time step restriction caused by the radiation diffusion term in the explicit
scheme, we have developed a high-order explicit-implicit-null (EIN) Lagrangian scheme,
which adds a sufficiently large artificial linear diffusion term to both sides of the scheme and
then discretize this term on the right-hand side implicitly. This EIN scheme is much more
efficient than the explicit scheme, particularly when x in the diffusion term is not very small,
and we verify its accuracy and stability in the simulations.

Due to the use of cells with straight-line edges, our Lagrangian scheme is restricted to
second order accuracy, even though the third order reconstructions and time discretization
are used [7]. To achieve third or higher order accuracy, curved cells are necessary, which is
our future work. The Lagrangian finite volume scheme may become unstable or fail due to
the tangled computational mesh when solving the distorted fluid flow in high-dimensional

cases. Therefore, implementing this Lagrangian scheme in the arbitrary Lagrangian-FEulerian
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(ALE) framework using the remapping technique in [18] is also our future work.

A Appendix

. . OF, OF,
A.1 Eigenvalues and eigenvectors of 57 and 3.

Therefore, the Jacobian matrix follows as

0 1 0
OF, Q—-u?> ul2-q) -—vgq q
ou —uw v u 0 (A-43)
w@—H) H—qu* —quv u(q+1)
and the eigenvalues of % are
)\%1) =u—a’, )\gl) = Aﬁ?j = u, )\%) =u+a",
with the corresponding right eigenvectors
1 1 0 1
m_ | u—a @) _ u @ _ |0 (4) u+a
RFl N v ’ RFl B v ’ RFI 111 RF1 - v
H — ua* H — (a;)Q v H + ua*
and its inverse matrix is
Q4 “T“* —u — % -v 1
2H — 2(u? + v?) 2u 20 =2
-1 4q
= . . ) A.44
RF1 2(a*)? _QU(Z )2 0 2(6;)2 0 ( )
Q _ wa* _ @
; . u+ 7 v 1
On the other side, the Jacobian matrix of F»(U) is
0 0 1 0
0F, —uv v u 0
o2 A.45
ouU Q-v" —ug v(2—-q) ¢ (4.45)
v(@Q—H) —quv H—q* v(g+1)
and the eigenvalues are
)\%) =v—a", )\%) = )\%32) =, )\(F42) =v+a,
with the corresponding right eigenvectors
1 0 1 1
(n) _ u @ _ ! ®) _ u @) _ u
Rp, = v—a* |’ g, = 0f’ R, = v o e = v+ a
H — va* u o @) H + va*

q
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and its inverse matrix is

% + ”‘ql* —u  —v-— % 1
R . q _ 2u(a*)? 2(a*)? 0 0 A6
= — q q .
B2a)? | 2H — 21 +0%)  2u 20 —2 (A.46)
9 _ va —u v+ 1
q q q

A.2 WENO reconstruction for the conserved variables

In the finite volume method, we reconstruct high-order polynomials U; ;(z,y) on each cell I; ;
with the information of the cell averages U, ; via the multi-resolution WENO reconstruction
(39, 40]. Let us take the cell I; ; and one of the conserved variable p € U = (p, pu, pv, E*)*

as an example to explain the reconstruction procedure.

1. Reconstruct three different degrees of conserved polynomials ¢;(x,y), g2(z,v), q3(z,y)

satisfying
2

mmz /ql z,y)dzdy — p;|I|

fes, (A.A4T)
S-t-/ q(x,y)dedy = p; ;|1 5],
I

2%

for [ = 1,2, 3 on three nested central stencils Sy = {I; ; },
So = {1ij, Liv14s Lim1js Lijr, Lij—1},
and
Ss ={L;, Liv1j, Lic1j, Lij1, Lij-1,
Livij+1, Livij-1, Lic1j1, Licij-1},

respectively. It is obvious that ¢i(x,y) = p;j, and ¢a(z,y), ¢s(z,y) should be deter-
mined by the least square method, and we show these stencils in the left subfigure of

Figure A.20.

2. Combine q;(z,y), ¢2(z,y), q3(x,y) with the linear weights
pi(z,y) = a2,y

pa(r,y) = @cn( y) = s, y) (A.48)
ps(@,y) = 55a(@y) — pi(n,y) — 22pa(r,y)
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_ 1 _ 10 _ 1 _ 10 _ 100 :
where 751 = i Y22 = 17 and 31 = e 132 = 1 133 T T which makes

Zf’zl v3.upi(z,y) = gs(z,y). The choice of the linear weights follows the suggestion in

[39, 40].

. Calculate the smoothness indicator

2 2
as
= L | =——ni(, dzxdy, =58>0, 8 >0
B ;/jivj\,gl (3x518y52pl(xy)) zdy, s1+s3=38, 5 >0, s3>

for | = 2,3. The smoothness indicator /3 for the zero degree polynomial p;(x,y) is
defined in another way [39],
(= _ 2 _ (= _ 2 = _ 2 (= _ 2
m = (Pij — Pi-15)"s M2 = (Pij — Pij+1)"s M3 = (Pij — Piv1)"s M = (Pij — Pij—1)"
and [ follows

B1 = min{n1 + 72, M2 + 73, M3 + N4, Na + 1M1}

. Compute the nonlinear weights w;, wy, w3 with

2
- (|ﬁ3—51\—;‘53—52|) . (1+

T wy
= —t 1=1,2,3
ﬁl+€) : Zi:la}s

here ¢ is chosen as 1075 to avoid zero in denominator. The final reconstruction poly-

nomial for u is defined as

pii(,y) = wipi(x,y) + wops(,y) + waps(x,y).

We could follow this way to reconstruct polynomials for the other conserved variables and

obtain the final high order reconstruction polynomial U, ;(x,y).

A.3 WENO reconstruction for the derivative variables

When it comes to the derivatives 9,7% and 9,7, in the diffusion term, we should perform

another WENO reconstruction procedure for the derivative variables 0,U, 9,U. Here, we

reconstruct polynomials on each edge of the cell and all of the stencils should contain two

adjacent cells of the edge. For example, if we need to perform reconstruction on the right
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edge of the cell [; ; marked in red in Figure A.20 and Figure A.21, then the stencils should
contain /; ; and I;4q ;.

Therefore, define two small stencils Sgﬁr and Sggr to reconstruct second-order polynomials

@35 (z,y) and 9% (z,y),

der
S3% = AL Livng Ligors L1, i1}

der __
5272 - {Ii,j7 Ii+1,j7 [i+17j+17 [i+1,j—17 Ii+2,j}

which are shown with black and gray quadrilaterals in Figure A.21. The third-order poly-
nomial q3(x,7) is reconstructed on the big stencil S in the right subfigure of Figure

A.20,
Sger = iy, Livag, Licvgs Livey, Lije1, Divigrn, Dij—1, Livrj-1}-
Now, we will introduce the WENO reconstruction procedure for the derivative variables
Oxp, Oyp at the common edge I"™ of I, ; and I;;, j, where p € U is the conserved variable.
der der

1. Reconstruct linear polynomials g5 (z,y) and ¢35 (z,y) for the conserved variable on

the stencils S5 and S§%, respectively,

2
min ) [qg‘if(x,y)dxdy—pflfl , 1=1.2
fesgy ! (A.49)
st [ altdedy = psltl. [ ¥ g)dody = L]
1; j Iit1,5

Reconstruct the quadratic polynomial ¢$° (z,y) on the big stencil S§r,

2

[qs‘fer(:r, y)dzdy — p;|1|
fesger 1 (A.50)

S-t~/ a5 (x, y)dady = pi ;|1 51, / ¢S (x, y)dady = it j|liv1]-
I; Ligq1,;

»J

2. Combine ¢35 (x,y), ¢5% (x,y), ¢5 (x,y) with the linear weights

5 (z,y) = 65 (@), piS(z,y) =55 (z,y)
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or L er V3,1 der V3,2 der
3 (ry) = —as(z,y) — —==p5 (z,y) — —=p55 (2,y)
73,3 73,3 73,3
where v31 = Y32 = 15, V3,3 = 19, which makes 31055 (2, y)+73,205% (2, y)+73,3057 (2, y) =
a5 (2, y).

3. Calculate the smoothness indicators from the second order derivatives

02 ?
B3 := / |1 51 (nger(%y)) dxdy, sy + s =2, 51,55 > 0.
I’L,j

It should be noted that, if we follow this way to define smoothness indicators for

pgff (z,y), pgfg (x,y), then they will be 0, since they are linear polynomials. Here, to

determine 1, 35, we will reconstruct two quadratic polynomials p§e(x,y), p3%(x,y)
on bigger stencils ggff, S’S}%r consisting of 9 cells and covering the stencils S§7, S99,

respectively. In Figure A.21, we have marked the stencils S’Sﬁr, SSET in the blue dash

dot lines. Then, define the smoothness indicators i, [ as

0 ’
B ::/ |1 51 (Wﬁgf}r(%y)) drdy, s1+53=2, 51,520
I;

with [ = 1,2.

4. Compute the nonlinear weights wy, we, ws with

TZ(\ﬁz—ﬂlH\ﬁa—ﬁzl)Q wl:%l(H;) =
2 ’ ’ Bite) S e ©s

Here, ¢ is chosen as 1075 to avoid zero in denominator. Final reconstruction polynomial

is defined as
Pl (@, y) = wiphs (2, y) + waps (2, y) + wsps™ (z,y),

which is also the reconstruction polynomial for the left edge of the cell I ;.

We could follow this way to reconstruct polynomials for the other conserved variables and
obtain the final high order reconstruction polynomial U[’;(x,y) Then, we can use these

polynomials U]} (z,y) to calculate values of the conserved variables and their derivatives
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U/ (x,y), 0,U"(x,y), 0,U(x,y) for 9, T*U%), 9,T*(U%) in the diffusion numerical flux.
Precisely, we calculate the partial derivatives of T" by the formula (2.2),

O (T*+c1T+ec) = 0
4T3T1, + Cle + T(()xcl + 87602 = 0
<4T3 + Cl) Tx = —axCQ — T@xcl

AT+ )T, = 3 <E; —u(pu), —v(pv), + (“72 + %)px - pxch)

I, = pc1,+117>T3 (E; —u(pu), — v(pv)s + Pz(ug_z + %) - P:chT>
(A.51)

In the same way, we have

1 . u? 2
Ty — m (Ey - U(ﬁ“)y - U(pv)y + py(? + E) - pych) .

Remark A.1. When ¢, depends on the temperature T', then the formula (2.2) becomes

1 1
T+ ¢ (T)T + ¢ =0, ¢ := 7%, =5 (E — 5p(u? + UQ)) , (A.52)

which 1s a nonlinear, non-polynomial equation and needs a Newton algorithm to solve. When
P <1079, we have
E* — 3p(u® +v?)

c,(TT = ,
(1) .

from an asymptotic analysis which should also be solved by the Newton algorithm. In the

meantime, the partial derivatives of T by the formula (A.51) will be different,

&E <T4 + 5lcv(T)T + Cg) =0
AT3T, + & (c,(T) T, + 2207, —o(T)T 0,81 — Oyes
Geull) * u? v?
(4T3 + peo(T) + pTaaéT)> T, = % (Ex —u(pu), —v(pv), + px(7 + 3) — pxcv(T)T)
2 2
(Br—ulpu)e—v(pv)os+pa(y +%5 ) —poco(T)T)
4T3+pcv(T)+pTacgiq(ﬂT)

T, =

and
(E; —u(pu)y — v(pv), + py(u?2 + %) - Pycv<T)T>
AT3 + pe,(T) + pTacg—;T) '

Overall, if ¢,(T) depends on the temperature T', the subsequent properties are still satisfied,

T, =

but the process and schemes become more complicated.

61



Figure A.20: Left: stencils for the WENO reconstruction for the advection term. The central
black quadrilateral is the cell 1; ;, gray quadrilaterals cells consist of the small stencil S5, all
of nine quadrilaterals cells consist of the big stencil Ss. Right: stencil S for the polynomial
45" (x,y). Red line is the common edge and black quadrilaterals are the cells I; ;, ;1.

Figure A.21: Stencils for the linear polynomials qgir(x, Y), qgg(a:, y). Red line is the common

edge, black quadrilaterals are the cells ; ;, I;11 ;, gray quadrilaterals are the cells in the small
der

stencils Sgﬁr, ng;. The nine cells enclosed with blue dash lines are the stencils ng{ and 5’272 .
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A.4 Reconstruction for the artificial diffusion term

In the first order EIN scheme (5.33), for the values U™!(z™, y™) in H™! at the time
. . . 1

level "1 we take the conservative quadratic polynomial Wﬁf (z,y) for total energy E*

over I; ; as an example to show the specific reconstruction procedure. The stencil of the

reconstruction procedure will be set as I; ; and its 8 neighbor cells. Define
Wit (e, y) = ay+ay (w—af ) +ag” (y—y5 ) +ay? (v —af ) as” (v—af) (y—vi ) ag’ (y—u5 )%,

which satisfies )

min

[ W ey — B
In 1

3ttesytt

(A.53)
s.t./ W (2, y)dedy = B n+1]l"+1
In#_»l
where (£, y¢,;) is the centroid of I/, and S{t! is the set of 8 neighboring cells of I, so
I e Sitt for s =1,--- 8. Use the same notation in (4.24), the integral becomes

/H Wi, y)dedy = § Do gl TISPWET @7 y?), I € ST
In
s 7ﬁ 1

where &g s, |J|%? are unrelated to U™ and
Wi (2P yef) = W (Bs(€asngs))
= a0 — 2l ) + a2 — o)
+af (@07 =) + 0y (@ = g ) (0T = yEy) + ag (27 - i)

Therefore, the integral over cell I7"! could be represented as

W (2, y)dedy = csai;,

In+1
here, a;; = (a)’, a3, a5, a3’ az’, ag’)" are the coefficients in W/ (z,y) and 1 x 6 vector

c; only relates with the mesh information and the quadrature weights. We also have the

integral over cell I]'}! as
+1
/ Wn ($ y)dl’dy C;;a; ;,
it
where ¢; j is a 1 x 6 vector.
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Nz,Ny

Once we input the mesh information Q = {171},

the above constrained least square

problem is equivalent to the following linear system

- ()

where B is a 8 x 6 matrix consisting of 8 vectors ¢, A is a 1 x 6 vector ¢;;, b = E’,L* ’j"H and
the right-hand side f is a 8 x 1 vector of cell averages E"*! for s = 1,---,8. To be more
concise, we omit the cell index 4, j here. In the EIN scheme, A and B are known and only
depend on the mesh information, but the values of the righthand side f,b are unknown.

In practice, we will take unit vectors

fs=(0, 0 -~ 1, 0 --- O)T
0 , §=1---8
S

to solve the linear system, and a is the combination of the solutions. In detail, suppose the

T
inverse of A := (B B

AT
A 0 ) exists, and we have

a . -1 BT_f
then we obtain

<C)\Ls> =A! (?) 7 (3\”:) = A! <B:(F)fs> . f.=1(0,0---1,0---0)7

where s = 1,--- ,8. Notice that f = Zle Erntlf, and the parameters a follow as
8
a _ ay _ a
— ol Fremtl
(5= () e ()
8
BTE* n+1 ;

= A ( *n+1)+ZA 1( f)

0 BT Z _ E*’”“f
_ —1 —1 s=1 S S
4 (E) bt (P2 BT

L (B'f
()

8
_ xntl 2 : % n+1
CLZ'J = Ez',j ag + ES ag

(A.55)

which means

64



is the solution of (A.54) and ag, as only depends on the mesh information.

After that, we can use this reconstruction polynomial W/i’fj*l(:v, y) to calculate the deriva-
tives 9, H(U™), 9, H(U™'). So, the line integral fah,j H"+dl in the numerical flux (5.34)
could be represented as a combination of unknown cell averages E*"+'. Accordingly, the

first order EIN scheme (5.33) follows as a linear system problem

Ut — 7/ H"™dl = U"|I"| + 7/ (—F"+G"— HY)dl, Vi, j. (A.56)
oI oI

For each conserved variables, the left side is a N, N, x NN, matrix and the right side is a

NyN, x 1 vector.

A.5 Time step constraint for the mesh movement

In our Lagrangian scheme, the coordinates of the point P" ' (2™ y"“ , ) is defined
+ +2 2+2 Jts Jits +2
as +1
n
x =z Atu
i+3.+3 i+lg+1 T i+5.0+5
n+1 _ zﬁt n
vl
Vil et = Yipsgey TAWLL

then we can define the coordinates at any time ¢ € [t", t"*1],

xi+%,j+%(t) = z+ Lj+1 +(t—1")u 7+%,j+%

Yird s () =Yy HE "0 0
and the corresponding points P 1 J+1( ) and cells 1; ;(t). Define [I"™(t)|, m = 1,2,3,4 as the
lengths of the edge I"™(t), and define ["*(t), m = 5,6 as the two diagonals. The area of the

cell 1; ;(t) can be represented by the Bretschneide formula as

- LA @PIE@P = (FOP = PP + POP — FOPP,
and
S = gy [ REE e W
N = D i 0
U = U P = ) [ o A ]
(A.57)
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Suppose the two vertices of the edge [ are Pif%,jf% and PH%J;%, then we can verify that
d|* ()]
1
(") a (%—%,j—% - xz’—i—%,j—%)(ui—%,j—% - uz’—‘r%,j—%) (A.58)
+ (yi—%,j—% - yi+%,j—%)(”i—é,j—% - vi+%,j—%)7
in the same way, we can calculate |lm(t")|% for m = 2,---,6, and obtain %|I; ;(¢")].

Therefore, we can get the time step constraint (3.18) with (A.57) and (A.58).

References

[1] B. R. Bassett, J. M. Owen, T. A. Brunner, Efficient smoothed particle radiation hydro-
dynamics II: Radiation hydrodynamics, Journal of Computational Physics, 492 (2021),
109994.

[2] J. W. Bates, D. A. Knoll, W. J. Rider, R. B. Lowrie, V. A. Mousseauy, On consistent
time-integration methods for radiation hydrodynamics in the equilibrium diffusion limit:

Low-energy-density regime, Journal of Computational Physics, 167 (2001), 99-130.

[3] S. Bolding, J. Hansel, J. D. Edwards, J. E. Morel, R. B. Lowrie, Second-order discretiza-
tion in space and time for radiation-hydrodynamics, Journal of Computational Physics,

338 (2017), 511-526.

[4] J. Breil, P.-H. Maire, A cell-centered diffusion scheme on two-dimensional unstructured

meshes, Journal of Computational Physics, 224 (2007), 785-823.
[5] J.I. Castor, Radiation Hydrodynamics, Cambridge University Press, 2004.

[6] J. Cheng, C.-W. Shu, A high order ENO conservative Lagrangian type scheme for the

compressible Euler equations, Journal of Computational Physics, 227 (2007), 1567-1596.

[7] J. Cheng, C.-W. Shu, A third order conservative Lagrangian type scheme on curvilin-
ear meshes for the compressible Euler equations, Communications in Computational

Physics, 4 (2008), 1008-1024.

66



8]

[12]

[15]

[16]

J. Cheng, C.-W. Shu, Positivity-preserving Lagrangian scheme for multi-material com-

pressible flow, Journal of Computational Physics, 257 (2014), 143-168.

J. Cheng, C.-W. Shu, P. Song, High order conservative Lagrangian schemes for one-
dimensional radiation hydrodynamics equations in the equilibrium-diffusion limit, Jour-

nal of Computational Physics, 421 (2020), 109724.

L. Duchemin, J. Eggers, The explicit-implicit-null method: Remouving the numerical

instability of PDEs, Journal of Computational Physics, 263 (2014), 37-52.

J. M. Ferguson, J. E. Morel, R. Lowrie, The equilibrium-diffusion limit for radiation
hydrodynamics, Journal of Quantitative Spectroscopy & Radiative Transfer, 202 (2017),
176-186.

F. Filbet, S. Jin, A class of asymptotic-preserving schemes for kinetic equations and
related problems with stiff sources, Journal of Computational Physics, 229 (2010), 7625-

7648.

S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time dis-
cretization methods, STAM review, 43 (2001), 89-112.

S. Y. Kadioglu, D. A. Knoll, A fully second order implicit/explicit time integration
technique for hydrodynamics plus nonlinear heat conduction problems, Journal of Com-

putational Physics, 229 (2010), 3237-3249.

S. Y. Kadioglu, D. A. Knoll, R. B. Lowrie, R. M. Rauenzahn, A second order
self-consistent IMEX method for radiation hydrodynamics, Journal of Computational

Physics, 229 (2010), 8313-8332.

R. Kannan, M. Vogelsberger, F. Marinacci, R. McKinnon, R. Pakmor, V. Springel,
AREPO-RT: radiation hydrodynamics on a moving mesh, Monthly Notices of the Royal
Astronomical Society, 485 (2019), 117-149.

67



[17]

[18]

[20]

[24]

[25]

[26]

D. S. Kershaw, Differencing of the diffusion equation in Lagrangian hydrodynamic codes,

Journal of Computational Physics, 39 (1981), 375-395.

N. Lei, J. Cheng, C.-W. Shu, A high order positivity-preserving conservative WENQO
remapping method on 2D quadrilateral meshes, Computer Methods in Applied Mechan-
ics and Engineering, 373 (2021), 113497.

P.-H. Maire, A high-order cell-centered Lagrangian scheme for two-dimensional com-
pressible fluid flows on unstructured meshes, Journal of Computational Physics, 228

(2009), 2391-2425.

P.-H. Maire, R. Abgrall, J. Breil, J. Ovadia, A cell-centered Lagrangian scheme for
two-dimensional compressible flow problems, STAM Journal on Scientific Computing, 29

(2007), 1781-1824.

D. Mihalas, B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics, Oxford Uni-

versity Press, 1984.

C. D. Munz, On Godunov-type schemes for Lagrangian gas dynamics, STAM Journal on
Numerical Analysis, 31 (1994), 17-42.

G.C. Pomraning, The equations of radiation hydrodynamics, Pergamon Press, Oxford,

1973, 241-282.

G.C. Pomraning, The non-equilibrium Marshak wave problem, Journal of Quantitative

Spectroscopy and Radiative Transfer, 21 (1979), 249-261.

S. Qamar, W. Ashraf, Application of central schemes for solving radiation hydrodynam-

ical models, Computer Physics Communications, 184 (2013), 1349-1363.

M. D. Sekora, J. M. Stone, A hybrid Godunov method for radiation hydrodynamics,
Journal of Computational Physics, 229 (2010), 6819-6852.

68



[27]

[33]

[34]

H. Shi, Y. Li, Local discontinuous Galerkin methods with implicit-explicit multistep time-

marching for solving the nonlinear Cahn-Hilliard equation, Journal of Computational

Physics, 394 (2019), 719-731.

K.-M. Shyue, A fluid-mixture type algorithm for barotropic two-fluid flow problems,
Journal of Computational Physics, 200 (2004), 718-748.

B. Su, G. L. Olson, Benchmark results for the non-equilibrium Marshak diffusion prob-

lem, Journal of Quantitative Spectroscopy and Radiative Transfer, 56 (1996), 337-351.

W. Sun, S. Jiang, K. Xu, G. Cao, Multiscale Simulation for the System of Radiation

Hydrodynamics, Journal of Scientific Computing, 85 (2020), 25.

M. Tan, J. Cheng, C.-W. Shu, Stability of high order finite difference and local discon-
tinuous Galerkin schemes with explicit-implicit-null time-marching for high order dissi-

pative and dispersive equations, Journal of Computational Physics, 464 (2022), 111314.

M. Tan, J. Cheng C.-W. Shu, Stability of spectral collocation schemes with explicit-
implicit-null time-marching for convection-diffusion and convection-dispersion equa-

tions, East Asian Journal on Applied Mathematics, 13 (2023), 464-498.

E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical

introduction, Springer Science & Business Media, (2013).

H. Wang, Q. Zhang, S. Wang, C.-W. Shu, Local discontinuous Galerkin methods with
explicit-implicit-null time discretizations for solving nonlinear diffusion problems, Sci-

ence China Mathematics, 63 (2020), 183-204.

Y. Yang, L. Pan, W. Sun, High-order gas-kinetic scheme for radiation hydrodynamics

in equilibrium-diffusion limit, arXiv preprint arXiv:2110.06557, (2021).

69



[36]

[37]

[39]

[40]

X. Zhang, C.-W. Shu, On positivity preserving high order discontinuous Galerkin
schemes for compressible Euler equations on rectangular meshes, Journal of Compu-

tational Physics, 229 (2010), 8918-8934.

X. Zhang, C.-W. Shu, Positivity preserving high order discontinuous Galerkin schemes
for compressible Euler equations with source terms, Journal of Computational Physics,

230 (2011), 1238-1248.

X. Zhang, C.-W. Shu, A minimum entropy principle of high order schemes for gas

dynamics equations, Numerische Mathematik, 121 (2012), 545-563

J. Zhu, C.-W. Shu, A new type of multi-resolution WENQO schemes with increasingly

higher order of accuracy, Journal of Computational Physics, 375 (2018), 659-683.

J. Zhu, C.-W. Shu, A new type of multi-resolution WENQO schemes with increasingly

higher order of accuracy on triangular meshes, Journal of Computational Physics, 392

(2019), 19-33.

70



	Introduction
	Two-dimensional radiation hydrodynamics equations in the equilibrium-diffusion limit
	The explicit Lagrangian finite volume scheme for 2D RHE
	High order spatial discretization
	High order time discretization
	Time step constraints
	Flow chart of the explicit Lagrangian finite volume scheme

	The positivity-preserving explicit Lagrangian scheme
	The first order positivity-preserving explicit Lagrangian scheme
	The high order positivity-preserving explicit Lagrangian scheme

	The explicit-implicit-null Lagrangian finite volume scheme
	The EIN Lagrangian finite volume scheme

	Numerical tests
	Accuracy test
	The non-oscillation tests
	The shock tube problem
	The Sedov blast wave problem

	Positivity-preserving test
	Multi-material problems
	The multi-material radiative shock tube problem
	The air-water-air problem
	The ablation test

	Pure diffusion tests
	Accuracy test
	Marshak wave


	Conclusion
	Appendix
	Eigenvalues and eigenvectors of F1U and F2U.
	WENO reconstruction for the conserved variables
	WENO reconstruction for the derivative variables
	Reconstruction for the artificial diffusion term
	Time step constraint for the mesh movement


