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ABSTRACT

Propagating uncertainties in kinetic models through combustion simulations can provide important met-
rics on the reliability and accuracy of a model, but remains a challenging and numerically expensive
problem especially for large kinetic models and expensive turbulent combustion simulations. Various sur-
rogate model and dimension reduction techniques have previously been applied in order to reduce the
cost of forward uncertainty propagation in combustion simulations, but these are often limited to low-
dimensional, simple combustion cases with scalar solution targets. In the current work, we developed
a neural network-accelerated framework for identifying a low-dimensional active kinetic subspace that
applies to the entire temperature solution space of a flamelet table and can capture the mixture fraction
and strain rate dependent effects of the kinetic uncertainty. We then demonstrated the computational
savings enabled by this framework through a proof-of-concept, flamelet-based application in a Reynolds-
averaged Sandia Flame D simulation using a chemical model for methane combustion with 217 reactions.
By leveraging the large dimensional compression and low-cost scaling of the active subspace method,
offloading the initial dimension reduction gradient sampling onto the laminar flamelet simulations, and
accelerating the gradient sampling process with a specifically designed neural network, we were able to
estimate the temperature uncertainty profiles across the solution space of the turbulent flame with strong
accuracy of 70 — 85% using just seven perturbed solutions. Additionally, as it occurs entirely within the
flamelet table, the cost of identifying the reduced subspace does not scale with the cost of the turbulent
combustion model, which is a promising feature of this framework for future application to larger-scale
and more complex turbulent combustion applications.

© 2023 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

The key challenge for uncertainty quantification in practi-
cal turbulent combustion simulations is the high computational

The chemical model is an integral part of turbulent combus-
tion simulations. Whether utilizing detailed or reduced chemistry,
any uncertainties present will propagate forward through the com-
bustion models and can result in substantial uncertainties in the
simulation results [1-3]. These output uncertainties and their sen-
sitivities to model parameters are a key component in evaluating
model results [4-6] and are often found to be large enough to ac-
count for nearly the entire discrepancy between the simulations
and the experimental data [1,7]. While quantifying the effects of
kinetic uncertainties on the accuracy and precision of combustion
simulations are important, such effort is often expensive to carry
out on a meaningful scale.
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cost associated with the simulations, which makes the forward
problem expensive. Two main categories of methodology have
been commonly applied in combustion research to alleviate the
high computational expense. The first involves building low-cost
surrogate models to replace the physical simulation. Polynomial
chaos expansions (PCE) and high-dimensional model representa-
tions (HDMR), for example, are often used to leverage a relatively
small number of expensive simulations in the construction of sur-
rogate models, which can be efficiently sampled in the forward un-
certainty problem [7,8]. However, these methodologies suffer from
the “curse of dimensionality”, making their construction inefficient
in problems with a large kinetic model [9-11]. Local sensitivity
analyses and screening methods [12-15] as well as newer artificial
neural network-based surrogate methods [11,16] are often used ei-
ther to reduce the input space for the response surface algorithms
or accelerate their computation. Due to the substantial amount
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of training data required from the physical solver, however, such
response surface-based methodologies are typically used only in
cheaper, low-dimensional combustion cases such as ignition delay
[7,8], laminar flame speed [17,18], or flow reactor [17] simulations,
rather than complex flow fields.

The second category involves methods that solve the forward
problem directly in the physical solver, but leverage various tech-
niques to reduce the total number of simulations needed. These
are especially useful in expensive turbulent simulations where re-
sponse surfaces cannot be feasibly constructed. The simplest ap-
proach might leverage the previously discussed local sensitivity
analysis to deduce a reduced set of highly sensitive uncertain pa-
rameters for forward propagation with fewer samples than the full
set. The cost associated with this can still become large, however,
since the identification of the reduced set can again suffer from
the high-dimensional kinetic parameter space and the reduced set
itself may still contain on the order of ten or more sensitive reac-
tions that must be sampled. Mueller et al. [1] proposed a physics-
informed dimension reduction based on the flamelet approach for
turbulent combustion modelling that can further reduce the cost of
the forward kinetic uncertainty quantification. The uncertainty was
first propagated from the kinetic model to the low-dimensional
flamelet table, and then further simplified down to a single un-
certain flamelet solution variable. In doing so, the computational
expense of discovering a reduced kinetic space was offloaded to
the cheap one-dimensional laminar flamelets. The turbulent com-
bustion large eddy simulation uncertainty was then characterized
remarkably efficiently by sampling this one-dimensional uncertain
input instead of directly sampling a series of ten or more sensi-
tive kinetic parameters, delivering further savings in the forward
propagation step. The assumptions made to facilitate such a reduc-
tion were grounded in theory yet not rigorously examined, likely
due to the large computational cost of each turbulent simulation.
The active subspace method [2,9,19] is another approach for iden-
tifying reduced kinetic spaces for efficient sampling. Unlike tradi-
tional methods that identify an active subset of important reac-
tions, this algorithm identifies active linear combinations of impor-
tant reactions (active subspaces) that most impact the quantity of
interest. This is similar to principal component analysis, though it
identifies directions in the gradient space and thus in the input
kinetic parameters, rather than the output state vectors [20], and
performs such a reduction globally across the entire uncertainty
space, rather than locally at the nominal values [21]. The coupled
information contained in each of these subspace directions allows
for greater reduction than typical sensitivity analyses or response
surface-based methods, often down to even a single subspace di-
rection [2,9,22,23], and thus greater computational savings in the
forward propagation step. The active subspace method is particu-
larly useful in problems with high input dimension, as is often the
case with chemical kinetic uncertainty, since it partially avoids the
curse of dimensionality thanks to its relatively low dependence on
input dimension size [24,25]. This is especially true for problems
with low-dimensional active subspaces, which are investigated in
this work.

Previous combustion applications of the active subspace algo-
rithm have typically investigated only a single quantity of interest
at a time such as liftoff height [2,22], ignition delay time [2,22,26],
combustor exit pressure [27], or scalar soot metrics [23]. Ji et al.
[9] expanded on this by investigating shared low-dimensional ki-
netic subspaces that were capable of representing the kinetic un-
certainty across multiple target quantities. Various active subspace
works have also leveraged and validated physics-informed simpli-
fications of kinetic uncertainty (similar to [1]) in various configu-
rations, such as ignition delay time as a predictor of liftoff height
[2,22]. Such applications benefit both from the greater dimensional
compression of the active subspace method, as well as the abil-
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ity to sample gradients for the identification of such subspaces in
cheaper, lower-dimensional problems. The combination of multi-
target active subspaces and a physics-informed kinetic uncertainty
simplification was proposed in Koenig et al. [28], where a low-
dimensional subspace was found to accurately represent the ki-
netic uncertainty across the entire temperature profile of a lam-
inar flamelet. While meaningful, this result was limited to a sin-
gle flamelet and did not investigate the full flamelet table required
to apply the subspace to a turbulent simulation, inspiring further
work in this area of multi-target, physics-informed kinetic sub-
space identification.

In this work, we proposed and demonstrated a complete for-
ward kinetic uncertainty propagation framework for turbulent
combustion in the flamelet regime, starting from an uncertain
model and ending with turbulent simulation uncertainty profiles.
We leveraged an artificial neural network surrogate model to accel-
erate the active subspace reduction process, which was performed
here on the full two-dimensional coordinate space of a flamelet
table. The inexpensive gradients sampled from this neural network
were used to reduce the high-dimensional kinetic uncertainty of
the entire flamelet table into a low-dimensional active subspace.
We then quantified the effects of kinetic uncertainty on the simu-
lation of Sandia Flame D and compared output uncertainty profiles
obtained via efficient sampling in the active subspace and via brute
force Monte Carlo sampling in the full kinetic space. This frame-
work operates efficiently on both ends of the problem at hand -
it identifies a remarkably low dimension kinetic uncertainty space
that applies across a much broader input space than what is typi-
cally investigated in combustion uncertainty research. This scale of
reduction, demonstrated through the two-dimensional, Reynolds-
averaged turbulent combustion simulation shown here, has the po-
tential to be scaled up to facilitate forward uncertainty propagation
in more expensive cases, such as large eddy simulations.

2. Methods

In this work, we innovate on the kinetic subspace investigation
method originally applied to the uncertainty quantification of a
single nonpremixed methane flamelet in [28] by applying it across
a complete flamelet table, taking into account strain rate in ad-
dition to kinetic parameter uncertainty and mixture fraction. This
novel expansion enables the direct application of the reduced ki-
netic subspace in the forward uncertainty propagation of the com-
plete temperature profile of a nonpremixed turbulent flame sim-
ulation. The methodologies used for these two steps are detailed
in Sections 2.1 and 2.2, respectively. An overview of this frame-
work, which leverages the kinetic similarity among the flamelets
representing the thermochemical states of the turbulent flame, is
presented in Fig. 1 along with a summary of its key advantages
compared to standard sensitivity-based forward propagation. The
following subsections describe each step in detail.

2.1. Kinetic subspace discovery

We begin with a discussion of the active subspace algorithm,
specific details of which motivate construction of a neural network
surrogate model (described later in this section). The generic al-
gorithm, methodology, proofs, and kinetic discussion for the active
subspace method are presented in [19] and [28]. Here, we summa-
rize the application in this work.

All flamelet data used for subspace discovery was generated
in Cantera [29] using a tailored form of the GRI-Mech 3.0 model
[30] with 217 reactions neglecting NO chemistry. All uncertain ki-
netic parameters are perturbed within the ranges given in the lit-
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Fig. 1. Overview of the methodology used to efficiently propagate kinetic uncertainty in this work. The 217-dimensional kinetic uncertainty is reduced across the entire
flamelet table to a three-dimensional active subspace within which efficient sampling for forward propagation is performed. Accuracy benchmarking is then done against a
much larger sample (2,000 samples) of fully perturbed models. Highlighted here are key advantages of the proposed framework including large dimensional compression

and kinetic reductions that are applicable to the entire turbulent flame profile.

erature [31],
_Inke/keo

= ~ N(O’l)v (1)

3 Inu,
where x, is the ¢th index of the normalized rate constant pertur-
bation vector X, k, is the perturbed value of the ¢th rate constant,
ko is the nominal value of the ¢th rate constant, u, is the uncer-
tainty factor corresponding to k, o as reported in [31], and N(0, 1)
denotes the standard normal distribution with zero mean and unit
variance. We additionally use the following mean strain rate for-
mulation throughout our discussion of the flamelets for consis-
tency,

a= (quel + Qoxidizer)/Zda (2)

where Q is the volumetric flow rate on either the fuel or oxidizer
side, and d is the width of the counterflow domain. Finally, we
define the hydrogen mixture fraction Z identically to [28] as

7 — Ymix — Yox (3)

quel — Yox '
where Z is the mixture fraction at a given location, and Yy, Yox,
and Yy, represent the hydrogen mass fractions of the mixture, ox-
idizer stream, and fuel stream, respectively.

The aim of the kinetic subspace discovery process is to identify
an r,-dimensional subspace in the d-dimensional kinetic rate con-
stant space (with r, << d) that describes the bulk of the temper-
ature variation across an arbitrarily strained flamelet, at any given
mixture fraction. That is, at any strain rate a and mixture fraction
Z, the goal of the subspace is to accurately approximate the tem-
perature response T} to any kinetic perturbation,

T (xq) ~ T7 (Xr,),

(4)

where x; is a full-rank vector of rate constant perturbations for
the d reactions in the kinetic model, while x;, is the same vec-
tor expressed with only the r, basis directions present in the sub-
space. Such a reduction allows for forward sampling in just r, di-
mensions, which given r;, << d indicates large savings for forward
uncertainty propagation. In order to identify the subspace that ap-
plies globally in Eq. (4), we begin with a traditional single-target
subspace, where for a fixed strain rate g; and a fixed mixture frac-
tion Z;, the quantity of interest is the scalar flamelet temperature

Tza_". Applying the standard active subspace algorithm we can com-
J
pute the matrix C and its eigendecomposition following

1 _ v
C=4 lz; VT (%) (VT (%)) = WAW'. (5)
K=
Here, M is the total number of rate constant samples k that we

generate from the full uncertainty space in x, with the gradient
VxTZ“_" (x;) evaluated once per iteration k. We compute a separate

local subspace at each strain rate and mixture fraction location
(i, j) in the flamelet table, and as in [28] extract the leading eigen-
vector w’]‘fc(‘l?’lj) as the one-dimensional subspace. We use the local
superscript here to denote a subspace that applies locally to a sin-
gle location in the flamelet phase space. However, by virtue of the
M samples in Eq. (5) across the entire kinetic uncertainty space,
this single-target subspace is itself a global sensitivity measure.
We then define A as the (n;  nj) x d matrix of all 1-D local sub-
spaces w’l"f(?l]) where n; and n; are the total number of strain rate
and mixture fraction locations, respectively, and each row of A is
the corresponding 1 x d local subspace vector computed in Eq. (5).
A therefore has a very large aspect ratio, where each column rep-
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resents a specific chemical reaction and each row is that reaction’s
contribution to a single local subspace. Depending on the results of
Eq. (5) it is also possible to use multi-dimensional local subspaces
in the construction of A. We choose to use one-dimensional local
subspaces here based on the results of [28] as well as later discus-
sion in Section 3.1. As in [28], though this time with n; times more
rows, we take the singular value decomposition (SVD) of A,

A=USV', (6)

where S is an (n; *nj) x d diagonal matrix with d singular values
o that correspond to the relative importance of the principal di-
rections V. The squared singular values o2 relate to the eigenval-
ues of the matrix AAT, and are used to decide r,, the dimension
of the final subspace, based on their relative magnitudes. After se-
lecting ry, we extract from V a reduced space w;; with m ranging
from 1 to r,. More detailed discussion into the selection process
and physical interpretation involved with Eqs. (5) and (6) are pro-
vided in [28]. Here, we emphasize the key generalization of this
work in the (n; *n;) sized A matrix that includes both the mixture
fraction and strain rate input spaces of the flamelets. Thus, the fi-
nal ry-dimensional subspace discovered here describes the kinetic
uncertainty of the entire two-dimensional input space of a flamelet
table, in contrast with the one-dimensional mixture fraction space
investigated in [28] (or the zero-dimensional quantities of interest
typically examined with the generic active subspace method).

The active subspace method partially avoids the curse of di-
mensionality thanks to its low dependence on input dimension
size [9]. The use of one-dimensional local subspaces further de-
creases the subspace generation cost in Eq. (5) [24,25]. How-
ever, due to the two-dimensional flamelet input space investigated,
~ 104 local subspaces are required to construct A in Eq. (6). The
absolute lowest possible number of gradient evaluations per local
subspace is 22 as per the generic dimensional scaling proposed in
[25]. A more reasonable number based on the same scaling laws
with mid-range parameters is 100, while the scaling rules typically
used in combustion applications [2,23] would call for over 1000
based on the large dimensionality of the kinetic problem investi-
gated here. We therefore expect a grand total of gradient evalua-
tions on the order of 106 ~ 107. To reduce the computational cost
associated with gradient computation we use a neural network
surrogate model with a physics-based structure inspired by Non-
linear Independent Dual Systems [32] and Deep Operator Networks
(DeepONet) [33]. Artificial neural networks have been found to be
more efficient than PCE and HDMR response surfaces for a kinetic
uncertainty problem of similarly large dimension as the methane
model investigated here [34], and are also well-suited to efficient
gradient evaluation by virtue of the backpropagation algorithm
[35], as argued and demonstrated in [28]. Deep artificial neural
networks have been proposed recently as an efficient method for
flamelet tabulation [36], and DeepONet-type networks have also
seen use in various recent combustion applications [28,37,38]. The
network structure used here, shown in Fig. 2, is similar to that
used in [28]. Key features include grid independence, where the
inclusion of mixture fraction and strain rate as input nodes allows
for training on data with arbitrarily refined grids and then down-
stream application on a single grid for consistency; and inductive
bias, where the splitting of the two fundamentally different inputs
(kinetics and boundary conditions vs. flame sampling location) en-
codes existing physical knowledge of the problem’s structure into
the network, potentially easing the burden of learning the remain-
ing physics and thus of training the network. The key difference
here is the strain rate parameter input node, which allows the net-
work to learn (and compute gradients for) the entire flamelet table,
rather than just a single flamelet.

The hyperparameters of this network were selected using the
Ray Tune package [39], which performs an optimized grid search
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across user-specified ranges of hyperparameters to improve overall
network performance. In this case, 100 networks were tested for
up to 100 epochs each, with each composed of a random sample of
4 to 256 nodes per layer, 2 to 20 parameter layers, 2 to 20 coordi-
nate layers, a learning rate of 11074 to 1% 10-3, and a batch size
of 32 to 512. The final network, chosen based on performance in
this grid search, comprised 13 parameter layers and 6 coordinate
layers of 128 nodes each. The learning rate and batch size were
1.1%10~* and 256, respectively. Residual skip connections [40] ev-
ery two layers were used in both sub-networks. Flamelet solution
training data was generated using the GRI-Mech 3.0 model [30] in
Cantera [29] in the counterflow configuration using fuel compo-
sition and temperature boundary conditions that match the turbu-
lent case (discussed in Section 2.2). Datasets were computed across
a large range of strain rates from 3 % 1072 1/s to near-extinction at
3102 1/s, defined here using the formulation in Eq. (2). Scaling
rules for rapid convergence across the strain rate coordinate were
taken from [41]. Sigmoid-weighted linear units [42] were used as
activation functions, and the ADAM optimizer [43] with a weight
decay of 1+ 10~4 was used to update the network parameters.

Finally, with gradients evaluated in a trained neural network
surrogate model and the active subspace algorithm as described
in Egs. (5) and (6), we are able to compute the r,-dimensional
subspace that is applied to the forward problem in the turbulent
nonpremixed combustion simulation described in Section 2.2. This
subspace is expressed as a linear combination of kinetic param-
eters, making it directly applicable to forward uncertainty quan-
tification in any turbulent simulation using the same boundary
conditions and chemical model. In this case, however, we in-
vestigate only the most direct and theory-supported application
to a flamelet-based turbulent combustion simulation to demon-
strate the methodology’s accuracy at a reasonable computational
cost.

2.2. Benchmark turbulent flame simulation details

A two-dimensional axisymmetric model of the piloted Sandia
Flame D [44] was used to evaluate the applicability of the flamelet-
derived subspace to a multidimensional turbulent simulation. Such
application of a kinetic subspace directly to the full temperature
profile of a turbulent simulation has not been previously reported
in the literature to our knowledge, and is made possible by the
expanded methodology developed in this work. The flame config-
uration involves a 7.2%10~3 m diameter partially premixed fuel
jet of 25% methane and 75% dry air (by volume) surrounded by
a 18.4 % 10~3m pilot of hot combustion products (taken as Z=0.27
as per [45]), with an outer co-flow of cold air. The velocities of
these three flows are 49.6 m/s, 11.4 m/s, and 0.9 m/s, respectively.
The inlet temperatures are 294 K, 1880 K, and 291 K, respectively.
The final mesh used to investigate the forward problem, as well
as a general description of the computational domain, is shown in
Fig. 3.

We construct a standard, straightforward, and relatively inex-
pensive model for application in forward uncertainty propagation
leveraging various previously examined and verified methods for
the Sandia Flame D [46-48]. A stretched grid of 24,180 cells (Fig. 3)
is used to discretize the 1.2 m x 0.3 m computational domain. The
flame is simulated using the realizable k — € model. The realizable
model differs from the standard k — € model in its formulation of
the dissipation rate and eddy viscosity equations, and was origi-
nally proposed and later applied to the Sandia Flame D [46,49] for
its improved spreading rate performance in axisymmetric jet flame
simulations. Standard values [49] of the constant C; as well as
the turbulent kinetic energy and dissipation rate Prandtl numbers
o, and o, are taken as 1.9, 1.0, and 1.2, respectively. The choice
of a RANS model was made to reduce the cost of the simulation
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and enable accuracy comparisons between subspace samples and
full kinetic space samples. The inexpensive RANS model enables
mostly-converged exploration of the full kinetic uncertainty space
directly in the turbulent flame, which establishes an estimate of
the ground truth of the kinetic uncertainty effect on the temper-
ature profile. An LES model would have resulted in more accurate
model predictions, but based on a computational cost on the order
of 10,000 CPU hours per simulation [1], would not have allowed
for similar ground truth comparisons. That being said, the kinetic
reduction methodology of Section 2.1 is not restricted to any spe-
cific turbulence model, so while a RANS model is used here for
proof-of-concept demonstration and accuracy evaluation purposes
users can alternatively propagate the reduced kinetic models for-
ward through an LES simulation if better-resolved turbulence ef-
fects are desired.

Following the flamelet-based uncertainty method (and similarly
to [47]), the steady laminar diffusion flamelet model with unity
Lewis numbers is used for the turbulence-chemistry interaction
along with the GRI-Mech 3.0 model [30]. A presumed PDF with
a beta distribution is used to model the unresolved mixture frac-
tion fluctuations in this implementation, while a delta function is
used for the scalar dissipation rate. This model’s parameterization
of flamelets using the mixture fraction and scalar dissipation rate
at the stoichiometric mixture fraction, the latter being linearly re-
lated to the characteristic strain rate formulation we use (Eq. (2)),
allows for uncertain solutions that are theoretically directly cou-
pled to information contained in the subspaces discovered from
the (a,Z) flamelet table used in Section 2.1. Additional discussion
of the model formulations are available in [50], while validation of
the simulation results is provided in Section 3.2.

3. Results and discussion

We begin in the following subsections by presenting results of
the neural network surrogate model and active subspace genera-
tion process, along with discussion of the accompanying kinetic in-
sights and comparisons against related work. We then present val-
idation of the turbulent simulation used for forward uncertainty
propagation, both in mesh refinement consistency and in consis-
tency with experimental and computational results from the lit-
erature. Next, we examine and discuss how the simulation un-
certainty’s dependence on the various subspace directions varies
substantially when evaluated at different locations in the turbu-
lent combustion simulation domain, highlighting the versatility of
the multi-target subspace generation process. Finally, we present
the results of the subspace-enabled efficient forward uncertainty
propagation in the turbulent simulation and compare its accuracy
against the estimated ground truth.

3.1. Kinetic subspace results

Recalling that we use a neural network surrogate model trained
on perturbed flamelet solutions in Cantera to accelerate the Kki-
netic reduction, we first present in Fig. 4a comparison between
the network-generated solutions and Cantera solutions for out-of-
sample testing cases at various strain rates spanning three orders
of magnitude. The agreement is very strong overall, with the high-
est observable error occurring near the fuel inlet for the low strain
case, and near the peak temperature region for the highly strained
case.
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spaces with variable dimension r,, computed through the percentage of all squares
of singular values of A in the sum up to a given index. Here, we select r, = 3 for
88% accuracy to the local subspaces.

Using the inexpensive gradient evaluations provided by this
trained network, we implement the kinetic subspace discovery al-
gorithm outlined in Section 2.1. We evaluate Eq. (5) once at each
mixture fraction and strain rate pair using 500 Kkinetically per-
turbed samples, then use the SVD in Eq. (6) to reduce globally
across the entire flamelet table. The percentage of local subspace
information captured by various sizes of global subspace, com-
puted using the square of the singular values, is reported in Fig. 5.
A percentage of 100 at r, would indicate that subspace variation
across A could be represented entirely by the set of directions up
to ry. Here, we choose r, =3 for the remainder of this work to
compromise between more directions for high accuracy and fewer
directions for efficient forward propagation. At this point, we have
identified the multi-target, low-dimensional subspace to be used
in the forward propagation of kinetic uncertainty in the turbulent

combustion simulation of Section 3.4. The remainder of the current
subsection involves a detailed report of the kinetic composition of
the identified three-dimensional global subspace, as well as a dis-
cussion of the mixture fraction and strain rate dependences of the
eigendecomposition and SVD used to arrive at this final subspace.
These analyses respectively support the proposed cost reduction
attached to the active subspace method, as well as the require-
ment for multi-target reduction methods when handling multidi-
mensional flow fields.

In Fig. 6, we plot the kinetic components of the final three sub-
space directions, as well as the activity scores computed from the
SVD of Eq. (6) as per the following equation adapted from [51],

d
0= ZG,%W%,M, (7)
m=1

where the activity score « for each reaction ¢ is essentially a sum
of the square of the subspace components wy, ,, weighted by the
corresponding squared singular value 2. Fairly rigorous mathe-
matical and simulation-based verification in [51] supports the use
of activity scores as a global sensitivity metric, which we lever-
age here to discuss a major advantage of the active subspace ap-
proach when compared to traditional sensitivity analysis-based re-
action perturbations.

According to these activity scores, R37 is the most important for
the forward propagation of uncertainty. However, it fails to capture
even half of the global temperature variance as defined by the ac-
tivity score. The next four reactions each account for between four
and six percent of the total variance, with a further seven captur-
ing between one and three percent each. In fact, it takes the set
of the thirteen most sensitive reactions to even capture 75% of the
total variance present across the flamelet table. In contrast, the ac-
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Fig. 6. Kinetic analysis based on the first three global subspace directions and activity scores. (a) wy, (b) w,, (c¢) ws, and (d) activity scores. The top six reactions in each
direction are labeled in subspace direction plots, and the top ten overall sensitive reactions are labeled in the activity score plot. (e): Reactions corresponding to each index
labeled in (a-d), in order of activity score. Dominant subspaces are reported according to the labeled reactions in (a-c). Only four reactions appear in these rankings for more
than one subspace and none appear in all three, indicating the relatively large set of sensitive reactions spread over these three subspace directions.

tive subspace method’s exploration of sensitivity directions instead
of sensitivity indices allows for greater compression of information.
We observe that the first active subspace direction wy is largely
dominated by the key R37, but that the second and third direc-
tions w, and ws contain perturbations of many of the remaining
key reactions compressed into fewer sensitivity directions. While
perturbing these sensitive reactions themselves would require the
exploration of a kinetic space of dimension greater than ten in or-
der to achieve fair accuracy, with just three active subspace direc-
tions we are able to very efficiently explore the same uncertainty
space with fewer required turbulent simulations.

We additionally report on the strain dependence of the local
kinetic subspaces. It was found in [28] that the local kinetic sub-
spaces varied strongly across the mixture fraction space of a sin-
gle flamelet, which originally motivated the SVD from Eq. (6) for
the construction of a global subspace. The authors of that work
cited the result of [52], which showed that kinetic sensitivity di-
rections did not change with strain rate, and proposed that their
subspace constructed from a flamelet at a highly strained condi-
tion might apply across the entire flamelet table. We report vari-
ous strain rate-dependent local subspace quantities in Fig. 7 to test
this hypothesis. In Fig. 7a, we see that as the strain rate moves
away from the extinction value, it becomes more and more dif-
ficult to capture a significant portion of the local sensitivity in-
formation in a single subspace direction. The choice of uniformly
one-dimensional subspaces was justified fairly rigorously in the

high-strain case of [28], though as we move to include all strained
cases in this work this rigorous justification no longer holds. In-
stead, we show in the supplemental Fig. S3 that the bulk of the
uncertainty in the flamelets occurs in the regions of the (a,Z) do-
main where a one-dimensional local subspace dominates the un-
certainty response, according to the result of Fig. 7a, and that the
regions of Fig. 7a that demonstrate a need for greater than one
subspace direction contain relatively little of the temperature un-
certainty. The lower temperature uncertainty magnitude seen in
the generally lower-strain regions can be physically interpreted as
a shift away from kinetics and toward equilibrium chemistry, mak-
ing accurate kinetic uncertainty quantification in these areas less
essential for overall performance. Thus, by adding additional local
subspace directions to the areas of Fig. 7a that cannot be captured
well with a single direction, the resulting global subspace would
skew more toward the regions of the flamelet table with relatively
less kinetic sensitivity importance, and may result in lower per-
formance than if a single local subspace direction was used at all
points in the flamelet table. The validity of this theory is demon-
strated in the turbulent simulation later in Section 3.4. We proceed
currently with the kinetic reduction process using one-dimensional
local subspaces across the full (a,Z) domain.

In Fig. 7b, the kinetic similarity is seen to be preserved fairly
well in the highly strained range leading up to extinction, corrobo-
rating the conclusion of [52] that for near-extinction flamelets the
kinetic sensitivity does not depend on the strain rate. Below this
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while as the strain is further reduced the kinetic similarities decrease substantially.
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Fig. 8. Accuracy of the three-dimensional global subspace at each local (a, Z) in the
flamelet space, measured by agreement in uncertainty quantiles when compared to
full-dimensional uncertainty ranges.

point, however, as we move into the lower strain rates that were
not considered in [52], we observe that the similarity in kinetic
sensitivity breaks down significantly at all three sampled mixture
fractions - stoichiometric, fuel side, and oxidizer side. Further de-
tails regarding these shifts in kinetic sensitivity and the large num-
ber of sensitive reactions present when investigating the entire
flamelet table are available in Table S2 and Figure S2 of the sup-
plementary material. It is this breakdown of similarity that calls
for the two-dimensional reduction step detailed in Section 2.1.
Next, we investigate the accuracy of this three-dimensional sub-
space in predicting the temperature uncertainty in the flamelets.
We use the same methodology as is used in [28] to compare per-
turbed flamelet solution profiles in the subspace against those in
the full kinetic parameter spaces, using the percent error between
the magnitude of the temperature uncertainty ranges derived from
the subspace-perturbed solutions against the fully perturbed solu-
tions to gauge the accuracy of the subspace. We plot these accu-
racies locally at each mixture fraction and strain rate in Fig. 8 and
observe a similar trend to that of Fig. 7a, where at lower strains

the three-dimensional subspace is not able to predict the tem-
perature uncertainty as well as at higher strains. The difference
in the exact shape of these two plots is likely due to shared in-
formation or a lack thereof across subsets of the (a,Z) domain -
that is, the existence of local one-dimensional subspaces across a
swath of the domain does not imply similarity across such one-
dimensional subspaces, and conversely a swath of the domain with
poor one-dimensional behavior does not necessarily imply the dis-
similarity of these multidimensional subspaces. Such discrepancies
are evident in Fig. 7b when comparing the fuel-rich slice against
the stoichiometric and lean slices at mid-range strain rates. Re-
gardless of the minutiae of such a comparison, we note the overall
accuracy here defined by mean absolute error is 85%, which cor-
responds fairly well to the 88% accuracy to the local subspaces
that we predicted in Fig. 5. We conclude that even with the strain-
based discrepancies seen in Fig. 7a, three subspace directions are
still sufficient to largely capture the temperature uncertainty in the
flamelet table. In the following sections, we shift to discuss the
three-dimensional subspace’s predictive capabilities in the scaled-
up turbulent combustion simulation.

3.2. Turbulent simulation validation

Here we briefly present validation of the turbulent combustion
simulation used in the following sections. The mesh size is eval-
uated through the refinement test in Fig. 9a-b, motivating use of
24,180 cells in later applications. The converged results were then
verified against the model results of [47] and the experimental
data of [53], in Figs. 9c through 9h.

3.3. Spatial dependence of kinetic sensitivity

With a finalized three-dimensional kinetic subspace and a veri-
fied turbulent model, we move next to analysis of the spatial vari-
ation of kinetic sensitivity directions in the turbulent flame. To be-
gin, we establish a baseline result by sampling the full-scale uncer-
tain kinetics and generating solution profiles for 2000 kinetic per-
turbations. The statistics have not yet fully converged with 2000
samples, though to save on computational effort we refer to the
result found in [1], where 2000 flamelet samples was reported as
a lower bound for good performance in the same physical prob-
lem with a similar flamelet model and an identical chemical reac-
tion model. We additionally emphasize that these samples are not
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required for the proposed subspace-powered forward uncertainty
quantification in the turbulent simulation. They instead serve to
help us visualize how the uncertainty in the full kinetic space re-
acts to each subspace, and propose accuracy values for the effi-
cient subspace-driven forward uncertainty solutions shown later in
Section 3.4. This type of detailed spatial analysis and accuracy pre-
diction was not possible in [1]| due to the more accurate and more
expensive large eddy simulations used, as well as the previously
discussed difference in approach to kinetic reduction.

The summary plots in Fig. 10 show how the maximum temper-
ature at the centerline and maximum temperature at the x/D = 30
slice in the turbulent simulation change with motion along the
three subspace directions. Such motion is characterized by the dot
product between the given subspace direction and the randomly
perturbed kinetic parameter vectors (which in this section are
sampled from the full, 217-dimensional kinetic uncertainty space).
A perfect one-to-one functional mapping of temperatures to mo-
tion along a single subspace direction would indicate that such a
one-dimensional subspace is able to fully explain all of the tar-
get temperature variation, regardless of motion along the other
216 kinetic directions contained in each sample. Alternatively, an
uncorrelated, cloud-like shape in such a mapping indicates that
those other 216 kinetic directions substantially affect the temper-
ature response, and thus the investigated subspace is not able to
unilaterally predict the temperature response well. We see from
the two-dimensional summary plots, moving from the top toward
the bottom, that the centerline maximum temperature is not cor-
related with movement in direction wy, which is fairly surprising
given the relative dominance of w; from Fig. 5. On the other hand,
the response of the maximum temperature of the near-nozzle slice
responds extremely well to w;. Both temperatures respond fairly
well to w,, though the centerline temperature has a tighter spread
and can thus be said to more closely align with motion in the
w, direction. The centerline temperature responds fairly strongly
to ws, while the near-nozzle slice has a much weaker and in-
terestingly inverse relationship with ws. Finally, when we choose
the strongest pair of subspaces for the bottom set of Fig. 10 plots
showing temperature responses to coupled inputs, we see con-
vincing two-dimensional behavior in both cases. We note, how-
ever, that the meaningful two-dimensional behavior is observed

in w, and ws for the centerline maximum temperature and con-
versely w; and w, for the axial maximum temperature, following
from the above discussion. We also note stronger overall correla-
tion to the three subspace directions of the near-nozzle temper-
ature values compared against that of the centerline temperature
values, seen most clearly when comparing Fig. 10a against 10f, or
10d against 10h. This trend is unsurprising in light of the results
shown in Fig. 8, where stronger performance in the flamelets was
observed at higher strain rates (corresponding to upstream, near-
nozzle sampling in the turbulent simulation), and lower perfor-
mance in the flamelets was observed at lower strain rates (corre-
spoinding to downstream regions). However, it does emphasize the
direct coupling of the flamelet table and the turbulent simulation,
suggesting that prior error estimates based on flamelet results are
possible not only globally, but also locally across the axial coordi-
nate of the turbulent domain.

The key takeaway from these summary plots is that the ki-
netic dissimilarity noted in the flamelet mixture fraction space in
[28] as well as in the strain rate space in Fig. 7 appears to sub-
stantially propagate forward to the turbulent combustion simula-
tion. When we sample temperatures near the nozzle, we see re-
sponses that are strongly coupled to wy, which as we recall from
Fig. 6 is dominated by R37. Further downstream, however, this de-
pendence appears to become nearly negligible, and the maximum
temperature response is instead tied strongly to w, and ws, which
are made up of linear combinations of a much more diverse set
of reactions. This spatially dependent result further highlights a
drawback of the traditional, single-target combustion applications
of the active subspace algorithm when the uncertainty target is a
continuous profile and not simply a scalar value. We observe addi-
tionally (in Fig. 6) that there is no substantial overlap in key reac-
tions across these three subspace directions. It is thus not simply
a shifting dependence in a small set of key reactions that we ob-
serve, it is instead a shift in the list of key reactions themselves
that is occurring across the turbulent flame. This makes sensitiv-
ity index-based forward propagation more expensive due to the
inflated number of sensitive reactions when considering the en-
tire solution domain, an issue that is not observed here thanks
to the greater dimensional compression offered by the active
subspace.
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Fig. 10. Summary plots showing the response of (a-c) the near-nozzle (x/D = 30) maximum temperature and (e-g) the centerline maximum temperature to motion along
the wy, w,, and w; subspace directions, respectively. (d) and (h) show coupled responses of the respective temperature values to motion along two subspace directions.
Based on the substantial shifts in the dominant subspace directions seen across each pair in the top six subplots, the axes in (d) and (h) are w;, vs. w; and ws vs. Wy,

respectively.

3.4. Efficient uncertainty quantification using kinetic subspace

In this section, we investigate the accuracy of kinetic pertur-
bations within the three-dimensional subspace when applied to
the forward problem in the Sandia Flame D simulation. In the
previous section, we discussed the need for greater than 2000
samples in the full kinetic space in order to converge the statis-
tics of the turbulent simulation. Here, we sample directly within

10

the uncertainty space defined by the three-dimensional subspace
(as opposed to the 217-dimensional full kinetic space), and find
that with computational savings of multiple orders of magni-
tude we are able to reconstruct the full uncertainty profiles with
strong accuracy. In Fig. 11a-b, we compare the three sigma tem-
perature uncertainty ranges of the centerline profile and near-
nozzle profile when using just seven subspace-informed Latin Hy-
percube samples [54] against those with the full 2000 samples,
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and observe 70.4% and 82.3% accuracy, respectively, where accu-
racy here is defined using the percent error between the mag-
nitude of the temperature uncertainty ranges (defined using the
standard deviation) derived from the subspace-perturbed solu-
tions against those from the fully perturbed solutions. We can
trace the discrepancy in accuracy between these locations back to
the results of Figs. 8 and 10 where we generally noted stronger
subspace performance in the high-strain flamelets and in the
axial maximum temperature, and weaker subspace performance
in the lower-strain flamelets and in the centerline maximum
temperature.

We additionally plot the CO mass fraction uncertainty ranges in
Fig. 11c-d based on both the full 2,000-sample run as well as the
subspace-reduced 7-sample run. The accuracies here were found
to be 68.7% and 69.7%, respectively, for the centerline profile and
near-nozzle profile. CO was not tracked in the surrogate modelling
and subspace reduction process, thus all agreement here is due to
the strong coupling between the temperature profile and species
evolution profiles. If higher-accuracy species uncertainty profiles
are desired, users can either (1) replace the temperature predic-
tion network with a species prediction network and otherwise re-
tain an identical methodology for a subspace that is tailored to a
single species profile, or (2) increase the size of the network out-
put layer to facilitate the learning of temperature and/or multiple
species profiles, and simply add the additional species-based local
kinetic subspaces into the A matrix as was done in this work for
the strain-dependent temperature profiles. For brevity, we do not

1

consider such generalizations in this work and instead present the
extrapolation capabilities of the temperature subspace to the CO
species profiles to highlight promise for such future applications.
Due to the relatively inexpensive turbulence model used in
this work, we are able to repeat this subspace-informed forward
uncertainty propagation multiple times to confirm the reliabil-
ity of this result. We independently sampled between 7 and 50
subspace-informed perturbations for each trial. In Fig. 12, we plot
the accuracy of the uncertainty ranges of each of these runs when
compared against the full-space 2000 sample case. We observe
greater than 70% and greater than 80% accuracy for the centerline
and near-nozzle temperature uncertainty ranges, respectively, at all
sample numbers. In the samples leading up to 20, there is a noisy
yet overall substantial trend of increasing accuracy. Past 20, the
accuracy values tend to fairly stable quantities in the 80 — 90%+
range for temperatures and the 85 — 95%+ range for CO mass frac-
tions. There is one noticeable outlier in the axial near-nozzle tem-
perature agreement in the 40 sample case, which we note to still
achieve 82.6% and 83.9% accuracy in the near-nozzle and center-
line profiles, respectively. Barring this outlier, all sample numbers
saw roughly 10% better performance in reconstructing the near-
nozzle temperature profile when compared against the centerline
profile. This result is again not surprising given the trend of higher
accuracy in higher strain regions seen in the flamelet results of
Fig. 8, and later on in the turbulent simulation summary plots of
Fig. 10. However, the continuation of this trend across the various
metrics of Figs. 8, 10, and 12 suggest the capability of the inex-
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pensive flamelet table statistics to effectively predict local accuracy
variations in the turbulent flame via their own accuracy distribu-
tions in the (a,Z) domain.

Accuracy averages across additional experiments to verify the
previously made assumption of one-dimensional local subspaces
are available in the Supplemental Table S3. Results there support
the hypothesis of Section 3.1 that including a second local sub-
space direction would dilute the high-strain, high-information ar-
eas shown in Fig. S3 that are already well-captured by uniquely
one-dimensional local subspaces.

In all cases, the uncertainty reductions shown here represent
a large amount of computational savings. When compared against
the greater than 2000 samples needed to fully converge the uncer-
tainty of the full kinetic space, the current subspace enables 300x
fewer runs to achieve strong accuracy using just 7 samples. For
cheaper simulations where the user is able to sample the subspace
30-50 times, the uncertainty ranges appear to converge with up-
wards of 80 — 90% accuracy, depending on the sampling location.
Large computational savings are similarly to be expected when
compared against comparable or even larger chemical models than
methane.

We additionally point to the sensitivity analysis results of Fig. 6,
where we discussed the benefit of the active subspace method in
terms of more compact dimensional representations of the key ki-
netic parameters. The sensitivity analysis revealed more than ten
highly sensitive reactions, individual perturbations of which would
not even be possible with the seven samples used as a low-end
benchmark here. Thus, even in the more realistic case where the
computational savings of the current method are compared against
a reduced model or perturbations of highly sensitive reactions only
(as opposed to the fully detailed model), our proposed frame-
work still offers a cheaper and more substantially reduced space
within which users must sample. We acknowledge that we appear
to require no fewer samples than [1] in order to characterize the
same Sandia Flame D temperature uncertainties, indicating no in-
crease in savings compared to that work. However, we note that
the differing reduction methodology performed here allows for ac-
curacy estimation in the flamelet table, which we see based on
Figs. 8 and 12 is a good indicator of the subspace’s global accuracy
in the larger turbulent simulation. The preceding discussion in this
subsection also shows how the global subspace’s accuracy met-
rics across the flamelet table can predict the spatial dependence of
accuracy in the turbulent simulation, enabling local accuracy pre-
dictions in the turbulent case based on flow regime comparison

12

against the cheap surrogate samples. This methodology finally al-
lows for the direct relation of uncertainty responses to kinetic pa-
rameters, as was shown in Fig. 6. This tradeoff between compu-
tational cost, accuracy predictions, and kinetic interpretability is a
decision that can be made based on the needs of the case at hand,
though we demonstrate in this turbulent case the promise of our
methodology in handling all three.

As a final note, we recall that the turbulent simulations carried
out in Sections 3.2 through 3.4 to evaluate this novel kinetic re-
duction methodology used a flamelet-based turbulent combustion
model to take advantage of the direct link to the flamelet-based
subspace. However, the application of the kinetic subspaces dis-
covered here is not strictly limited to flamelet-based models. The
kinetic reduction process occurs in the kinetic parameters them-
selves, as opposed to directly in the flamelet solution data as was
done in the highly efficient result of [1]. It is therefore possible to
apply the perturbed kinetic models in a broader range of combus-
tion regimes and models than just flamelet methods. Much like the
strong kinetic uncertainty correlations found in [2] and [22] be-
tween the sensitivity of homogeneous ignition delay times and au-
toignited turbulent flame liftoff heights (even without a strict the-
oretical connection between those two scalar quantities), we the-
orize that our methodology will remain accurate and efficient to
a certain extent even in non-flamelet-based turbulent combustion
simulations thanks to the shared chemistry and flow conditions
with the flamelet table. While not investigated here, we note this
broader applicability for its potential in future work.

4. Conclusions

In this work, we demonstrated a complete framework for
flamelet-based kinetic sensitivity reduction in a two-dimensional
turbulent combustion simulation in the flamelet regime. Using a
multi-target, neural network-accelerated active subspace reduction
in the flamelet table, we discovered a three-dimensional kinetic
subspace that was able to reconstruct the full temperature un-
certainty profile of the Sandia Flame D with strong accuracy in a
Reynolds-averaged, flamelet-based simulation. The accuracy of this
reconstruction corresponded fairly well both globally and locally to
the accuracy observed in the much cheaper flamelet simulations,
allowing for meaningful a priori error estimates across the turbu-
lent flame profile even in the realistic case where expensive con-
vergence testing cannot be carried out in the full-scale turbulent
simulation.
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In addition to the strong uncertainty quantification results, the
behavior of the subspaces across both the flamelet table input
parameters and the turbulent simulation spatial domain revealed
notable insights into the shifting kinetic sensitivity dependencies
across these various input domains, which would not be possi-
ble to capture using a standard, scalar quantity of interest sen-
sitivity method. While the kinetic sensitivities were more com-
plex and strain rate-dependent than expected in the literature,
the multi-target methodology proposed here proved to be ro-
bust and maintained high accuracy and significant dimension re-
duction. The temperature-based subspace is also shown to have
good species profile predictive capabilities, with strong potential
for further improvement when the network and subspace portions
of the methodology are adjusted on a case-by-case basis to in-
clude species targets. The flexibility, multi-target applicability, pre-
dictable error ranges, low computational cost, and Kkinetic inter-
pretability of this method make it a promising tool for efficient un-
certainty quantification in small-scale turbulent combustion simu-
lations similar to that which was demonstrated here, as well as in
more expensive large eddy simulations.

Novelty and Significance Statement

This work developed a framework to enable efficient kinetic un-
certainty quantification in turbulent combustion, especially in the
flamelet regime, and demonstrates such feasibility in the bench-
mark Sandia Flame D simulation. It confirms the existence of and
procedure to obtain low-dimensional active kinetic subspaces that
dominate the response of the entire flamelet table to kinetic uncer-
tainty, expanding on previous active subspace efforts that typically
investigate the response of a single scalar output quantity only.
This expanded consideration of the full two-dimensional phase
space of the flamelet table is enabled by a specialized neural net-
work surrogate model. The demonstrated methodology allows sub-
stantially more efficiency in the sampling of kinetic uncertainty
for forward propagation in turbulent combustion simulations than
standard sensitivity-based methods, while retaining high accuracy
and strong kinetic interpretability.
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