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a b s t r a c t 

Propagating uncertainties in kinetic models through combustion simulations can provide important met- 

rics on the reliability and accuracy of a model, but remains a challenging and numerically expensive 

problem especially for large kinetic models and expensive turbulent combustion simulations. Various sur- 

rogate model and dimension reduction techniques have previously been applied in order to reduce the 

cost of forward uncertainty propagation in combustion simulations, but these are often limited to low- 

dimensional, simple combustion cases with scalar solution targets. In the current work, we developed 

a neural network-accelerated framework for identifying a low-dimensional active kinetic subspace that 

applies to the entire temperature solution space of a flamelet table and can capture the mixture fraction 

and strain rate dependent effects of the kinetic uncertainty. We then demonstrated the computational 

savings enabled by this framework through a proof-of-concept, flamelet-based application in a Reynolds- 

averaged Sandia Flame D simulation using a chemical model for methane combustion with 217 reactions. 

By leveraging the large dimensional compression and low-cost scaling of the active subspace method, 

offloading the initial dimension reduction gradient sampling onto the laminar flamelet simulations, and 

accelerating the gradient sampling process with a specifically designed neural network, we were able to 

estimate the temperature uncertainty profiles across the solution space of the turbulent flame with strong 

accuracy of 70 − 85% using just seven perturbed solutions. Additionally, as it occurs entirely within the 

flamelet table, the cost of identifying the reduced subspace does not scale with the cost of the turbulent 

combustion model, which is a promising feature of this framework for future application to larger-scale 

and more complex turbulent combustion applications. 

© 2023 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

The chemical model is an integral part of turbulent combus- 

ion simulations. Whether utilizing detailed or reduced chemistry, 

ny uncertainties present will propagate forward through the com- 

ustion models and can result in substantial uncertainties in the 

imulation results [1–3] . These output uncertainties and their sen- 

itivities to model parameters are a key component in evaluating 

odel results [4–6] and are often found to be large enough to ac- 

ount for nearly the entire discrepancy between the simulations 

nd the experimental data [1,7] . While quantifying the effects of 

inetic uncertainties on the accuracy and precision of combustion 

imulations are important, such effort is often expensive to carry 

ut on a meaningful scale. 
∗ Corresponding author. 
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The key challenge for uncertainty quantification in practi- 

al turbulent combustion simulations is the high computational 

ost associated with the simulations, which makes the forward 

roblem expensive. Two main categories of methodology have 

een commonly applied in combustion research to alleviate the 

igh computational expense. The first involves building low-cost 

urrogate models to replace the physical simulation. Polynomial 

haos expansions (PCE) and high-dimensional model representa- 

ions (HDMR), for example, are often used to leverage a relatively 

mall number of expensive simulations in the construction of sur- 

ogate models, which can be efficiently sampled in the forward un- 

ertainty problem [7,8] . However, these methodologies suffer from 

he “curse of dimensionality”, making their construction inefficient 

n problems with a large kinetic model [9–11] . Local sensitivity 

nalyses and screening methods [12–15] as well as newer artificial 

eural network-based surrogate methods [11,16] are often used ei- 

her to reduce the input space for the response surface algorithms 

r accelerate their computation. Due to the substantial amount 
. 
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f training data required from the physical solver, however, such 

esponse surface-based methodologies are typically used only in 

heaper, low-dimensional combustion cases such as ignition delay 

7,8] , laminar flame speed [17,18] , or flow reactor [17] simulations, 

ather than complex flow fields. 

The second category involves methods that solve the forward 

roblem directly in the physical solver, but leverage various tech- 

iques to reduce the total number of simulations needed. These 

re especially useful in expensive turbulent simulations where re- 

ponse surfaces cannot be feasibly constructed. The simplest ap- 

roach might leverage the previously discussed local sensitivity 

nalysis to deduce a reduced set of highly sensitive uncertain pa- 

ameters for forward propagation with fewer samples than the full 

et. The cost associated with this can still become large, however, 

ince the identification of the reduced set can again suffer from 

he high-dimensional kinetic parameter space and the reduced set 

tself may still contain on the order of ten or more sensitive reac- 

ions that must be sampled. Mueller et al. [1] proposed a physics- 

nformed dimension reduction based on the flamelet approach for 

urbulent combustion modelling that can further reduce the cost of 

he forward kinetic uncertainty quantification. The uncertainty was 

rst propagated from the kinetic model to the low-dimensional 

amelet table, and then further simplified down to a single un- 

ertain flamelet solution variable. In doing so, the computational 

xpense of discovering a reduced kinetic space was offloaded to 

he cheap one-dimensional laminar flamelets. The turbulent com- 

ustion large eddy simulation uncertainty was then characterized 

emarkably efficiently by sampling this one-dimensional uncertain 

nput instead of directly sampling a series of ten or more sensi- 

ive kinetic parameters, delivering further savings in the forward 

ropagation step. The assumptions made to facilitate such a reduc- 

ion were grounded in theory yet not rigorously examined, likely 

ue to the large computational cost of each turbulent simulation. 

he active subspace method [2,9,19] is another approach for iden- 

ifying reduced kinetic spaces for efficient sampling. Unlike tradi- 

ional methods that identify an active subset of important reac- 

ions, this algorithm identifies active linear combinations of impor- 

ant reactions (active subspaces) that most impact the quantity of 

nterest. This is similar to principal component analysis, though it 

dentifies directions in the gradient space and thus in the input 

inetic parameters, rather than the output state vectors [20] , and 

erforms such a reduction globally across the entire uncertainty 

pace, rather than locally at the nominal values [21] . The coupled 

nformation contained in each of these subspace directions allows 

or greater reduction than typical sensitivity analyses or response 

urface-based methods, often down to even a single subspace di- 

ection [2,9,22,23] , and thus greater computational savings in the 

orward propagation step. The active subspace method is particu- 

arly useful in problems with high input dimension, as is often the 

ase with chemical kinetic uncertainty, since it partially avoids the 

urse of dimensionality thanks to its relatively low dependence on 

nput dimension size [24,25] . This is especially true for problems 

ith low-dimensional active subspaces, which are investigated in 

his work. 

Previous combustion applications of the active subspace algo- 

ithm have typically investigated only a single quantity of interest 

t a time such as liftoff height [2,22] , ignition delay time [2,22,26] , 

ombustor exit pressure [27] , or scalar soot metrics [23] . Ji et al.

9] expanded on this by investigating shared low-dimensional ki- 

etic subspaces that were capable of representing the kinetic un- 

ertainty across multiple target quantities. Various active subspace 

orks have also leveraged and validated physics-informed simpli- 

cations of kinetic uncertainty (similar to [1] ) in various configu- 

ations, such as ignition delay time as a predictor of liftoff height 

2,22] . Such applications benefit both from the greater dimensional 

ompression of the active subspace method, as well as the abil- 
2

ty to sample gradients for the identification of such subspaces in 

heaper, lower-dimensional problems. The combination of multi- 

arget active subspaces and a physics-informed kinetic uncertainty 

implification was proposed in Koenig et al. [28] , where a low- 

imensional subspace was found to accurately represent the ki- 

etic uncertainty across the entire temperature profile of a lam- 

nar flamelet. While meaningful, this result was limited to a sin- 

le flamelet and did not investigate the full flamelet table required 

o apply the subspace to a turbulent simulation, inspiring further 

ork in this area of multi-target, physics-informed kinetic sub- 

pace identification. 

In this work, we proposed and demonstrated a complete for- 

ard kinetic uncertainty propagation framework for turbulent 

ombustion in the flamelet regime, starting from an uncertain 

odel and ending with turbulent simulation uncertainty profiles. 

e leveraged an artificial neural network surrogate model to accel- 

rate the active subspace reduction process, which was performed 

ere on the full two-dimensional coordinate space of a flamelet 

able. The inexpensive gradients sampled from this neural network 

ere used to reduce the high-dimensional kinetic uncertainty of 

he entire flamelet table into a low-dimensional active subspace. 

e then quantified the effects of kinetic uncertainty on the simu- 

ation of Sandia Flame D and compared output uncertainty profiles 

btained via efficient sampling in the active subspace and via brute 

orce Monte Carlo sampling in the full kinetic space. This frame- 

ork operates efficiently on both ends of the problem at hand - 

t identifies a remarkably low dimension kinetic uncertainty space 

hat applies across a much broader input space than what is typi- 

ally investigated in combustion uncertainty research. This scale of 

eduction, demonstrated through the two-dimensional, Reynolds- 

veraged turbulent combustion simulation shown here, has the po- 

ential to be scaled up to facilitate forward uncertainty propagation 

n more expensive cases, such as large eddy simulations. 

. Methods 

In this work, we innovate on the kinetic subspace investigation 

ethod originally applied to the uncertainty quantification of a 

ingle nonpremixed methane flamelet in [28] by applying it across 

 complete flamelet table, taking into account strain rate in ad- 

ition to kinetic parameter uncertainty and mixture fraction. This 

ovel expansion enables the direct application of the reduced ki- 

etic subspace in the forward uncertainty propagation of the com- 

lete temperature profile of a nonpremixed turbulent flame sim- 

lation. The methodologies used for these two steps are detailed 

n Sections 2.1 and 2.2 , respectively. An overview of this frame- 

ork, which leverages the kinetic similarity among the flamelets 

epresenting the thermochemical states of the turbulent flame, is 

resented in Fig. 1 along with a summary of its key advantages 

ompared to standard sensitivity-based forward propagation. The 

ollowing subsections describe each step in detail. 

.1. Kinetic subspace discovery 

We begin with a discussion of the active subspace algorithm, 

pecific details of which motivate construction of a neural network 

urrogate model (described later in this section). The generic al- 

orithm, methodology, proofs, and kinetic discussion for the active 

ubspace method are presented in [19] and [28] . Here, we summa- 

ize the application in this work. 

All flamelet data used for subspace discovery was generated 

n Cantera [29] using a tailored form of the GRI-Mech 3.0 model 

30] with 217 reactions neglecting NO chemistry. All uncertain ki- 

etic parameters are perturbed within the ranges given in the lit- 
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Fig. 1. Overview of the methodology used to efficiently propagate kinetic uncertainty in this work. The 217-dimensional kinetic uncertainty is reduced across the entire 

flamelet table to a three-dimensional active subspace within which efficient sampling for forward propagation is performed. Accuracy benchmarking is then done against a 

much larger sample (2,0 0 0 samples) of fully perturbed models. Highlighted here are key advantages of the proposed framework including large dimensional compression 

and kinetic reductions that are applicable to the entire turbulent flame profile. 
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rature [31] , 

 � = 

ln k � /k �, 0 
1 
3 
ln u � 

∼ N(0 , 1) , (1) 

here x � is the � th index of the normalized rate constant pertur- 

ation vector x , k � is the perturbed value of the � th rate constant,

 �, 0 is the nominal value of the � th rate constant, u � is the uncer-

ainty factor corresponding to k �, 0 as reported in [31] , and N(0 , 1)

enotes the standard normal distribution with zero mean and unit 

ariance. We additionally use the following mean strain rate for- 

ulation throughout our discussion of the flamelets for consis- 

ency, 

 = (Q f uel + Q oxidizer ) / 2 d, (2) 

here Q is the volumetric flow rate on either the fuel or oxidizer 

ide, and d is the width of the counterflow domain. Finally, we 

efine the hydrogen mixture fraction Z identically to [28] as 

 = 

Y mix − Y ox 

Y fuel − Y ox 
, (3) 

here Z is the mixture fraction at a given location, and Y mix , Y ox ,

nd Y fuel represent the hydrogen mass fractions of the mixture, ox- 

dizer stream, and fuel stream, respectively. 

The aim of the kinetic subspace discovery process is to identify 

n r u -dimensional subspace in the d-dimensional kinetic rate con- 

tant space (with r u << d) that describes the bulk of the temper- 

ture variation across an arbitrarily strained flamelet, at any given 

ixture fraction. That is, at any strain rate a and mixture fraction 

, the goal of the subspace is to accurately approximate the tem- 

erature response T a 
Z 

to any kinetic perturbation, 

 
a 
Z (x d ) ≈ T a Z (x r u ) , (4) 
3

here x d is a full-rank vector of rate constant perturbations for 

he d reactions in the kinetic model, while x r u is the same vec- 

or expressed with only the r u basis directions present in the sub- 

pace. Such a reduction allows for forward sampling in just r u di- 

ensions, which given r u << d indicates large savings for forward 

ncertainty propagation. In order to identify the subspace that ap- 

lies globally in Eq. (4) , we begin with a traditional single-target 

ubspace, where for a fixed strain rate a i and a fixed mixture frac- 

ion Z j , the quantity of interest is the scalar flamelet temperature 

 

a i 
Z j 
. Applying the standard active subspace algorithm we can com- 

ute the matrix C and its eigendecomposition following 

 = 

1 

M 

M ∑ 

k =1 

∇ x T 
a i 
Z j 

(x k )(∇ x T 
a i 
Z j 

(x k )) 
T = W �W 

T . (5)

ere, M is the total number of rate constant samples k that we 

enerate from the full uncertainty space in x , with the gradient 

 x T 
a i 
Z j 

(x k ) evaluated once per iteration k . We compute a separate

ocal subspace at each strain rate and mixture fraction location 

i, j) in the flamelet table, and as in [28] extract the leading eigen-

ector w 
local 
1 , (i, j) 

as the one-dimensional subspace. We use the local 

uperscript here to denote a subspace that applies locally to a sin- 

le location in the flamelet phase space. However, by virtue of the 

samples in Eq. (5) across the entire kinetic uncertainty space, 

his single-target subspace is itself a global sensitivity measure. 

We then define A as the (n i ∗ n j ) × d matrix of all 1-D local sub-

paces w 
local 
1 , (i, j) 

, where n i and n j are the total number of strain rate 

nd mixture fraction locations, respectively, and each row of A is 

he corresponding 1 × d local subspace vector computed in Eq. (5) . 

 therefore has a very large aspect ratio, where each column rep- 
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esents a specific chemical reaction and each row is that reaction’s 

ontribution to a single local subspace. Depending on the results of 

q. (5) it is also possible to use multi-dimensional local subspaces 

n the construction of A . We choose to use one-dimensional local 

ubspaces here based on the results of [28] as well as later discus- 

ion in Section 3.1 . As in [28] , though this time with n i times more

ows, we take the singular value decomposition (SVD) of A , 

 = USV 
T 
, (6) 

here S is an (n i ∗ n j ) × d diagonal matrix with d singular values 

that correspond to the relative importance of the principal di- 

ections V . The squared singular values σ 2 relate to the eigenval- 

es of the matrix AA 
T , and are used to decide r u , the dimension

f the final subspace, based on their relative magnitudes. After se- 

ecting r u , we extract from V a reduced space w m with m ranging

rom 1 to r u . More detailed discussion into the selection process 

nd physical interpretation involved with Eqs. (5) and (6) are pro- 

ided in [28] . Here, we emphasize the key generalization of this 

ork in the (n i ∗ n j ) sized A matrix that includes both the mixture

raction and strain rate input spaces of the flamelets. Thus, the fi- 

al r u -dimensional subspace discovered here describes the kinetic 

ncertainty of the entire two-dimensional input space of a flamelet 

able, in contrast with the one-dimensional mixture fraction space 

nvestigated in [28] (or the zero-dimensional quantities of interest 

ypically examined with the generic active subspace method). 

The active subspace method partially avoids the curse of di- 

ensionality thanks to its low dependence on input dimension 

ize [9] . The use of one-dimensional local subspaces further de- 

reases the subspace generation cost in Eq. (5) [24,25] . How- 

ver, due to the two-dimensional flamelet input space investigated, 

10 4 local subspaces are required to construct A in Eq. (6) . The 

bsolute lowest possible number of gradient evaluations per local 

ubspace is 22 as per the generic dimensional scaling proposed in 

25] . A more reasonable number based on the same scaling laws 

ith mid-range parameters is 100, while the scaling rules typically 

sed in combustion applications [2,23] would call for over 10 0 0 

ased on the large dimensionality of the kinetic problem investi- 

ated here. We therefore expect a grand total of gradient evalua- 

ions on the order of 10 6 ∼ 10 7 . To reduce the computational cost 

ssociated with gradient computation we use a neural network 

urrogate model with a physics-based structure inspired by Non- 

inear Independent Dual Systems [32] and Deep Operator Networks 

DeepONet) [33] . Artificial neural networks have been found to be 

ore efficient than PCE and HDMR response surfaces for a kinetic 

ncertainty problem of similarly large dimension as the methane 

odel investigated here [34] , and are also well-suited to efficient 

radient evaluation by virtue of the backpropagation algorithm 

35] , as argued and demonstrated in [28] . Deep artificial neural 

etworks have been proposed recently as an efficient method for 

amelet tabulation [36] , and DeepONet-type networks have also 

een use in various recent combustion applications [28,37,38] . The 

etwork structure used here, shown in Fig. 2 , is similar to that 

sed in [28] . Key features include grid independence, where the 

nclusion of mixture fraction and strain rate as input nodes allows 

or training on data with arbitrarily refined grids and then down- 

tream application on a single grid for consistency; and inductive 

ias, where the splitting of the two fundamentally different inputs 

kinetics and boundary conditions vs. flame sampling location) en- 

odes existing physical knowledge of the problem’s structure into 

he network, potentially easing the burden of learning the remain- 

ng physics and thus of training the network. The key difference 

ere is the strain rate parameter input node, which allows the net- 

ork to learn (and compute gradients for) the entire flamelet table, 

ather than just a single flamelet. 

The hyperparameters of this network were selected using the 

ay Tune package [39] , which performs an optimized grid search 
4 
cross user-specified ranges of hyperparameters to improve overall 

etwork performance. In this case, 100 networks were tested for 

p to 100 epochs each, with each composed of a random sample of 

 to 256 nodes per layer, 2 to 20 parameter layers, 2 to 20 coordi-

ate layers, a learning rate of 1 ∗ 10 −4 to 1 ∗ 10 −3 , and a batch size

f 32 to 512. The final network, chosen based on performance in 

his grid search, comprised 13 parameter layers and 6 coordinate 

ayers of 128 nodes each. The learning rate and batch size were 

 . 1 ∗ 10 −4 and 256, respectively. Residual skip connections [40] ev- 

ry two layers were used in both sub-networks. Flamelet solution 

raining data was generated using the GRI-Mech 3.0 model [30] in 

antera [29] in the counterflow configuration using fuel compo- 

ition and temperature boundary conditions that match the turbu- 

ent case (discussed in Section 2.2 ). Datasets were computed across 

 large range of strain rates from 3 ∗ 10 −2 1/s to near-extinction at 

 ∗ 10 2 1/s, defined here using the formulation in Eq. (2) . Scaling 

ules for rapid convergence across the strain rate coordinate were 

aken from [41] . Sigmoid-weighted linear units [42] were used as 

ctivation functions, and the ADAM optimizer [43] with a weight 

ecay of 1 ∗ 10 −4 was used to update the network parameters. 

Finally, with gradients evaluated in a trained neural network 

urrogate model and the active subspace algorithm as described 

n Eqs. (5) and (6) , we are able to compute the r u -dimensional

ubspace that is applied to the forward problem in the turbulent 

onpremixed combustion simulation described in Section 2.2 . This 

ubspace is expressed as a linear combination of kinetic param- 

ters, making it directly applicable to forward uncertainty quan- 

ification in any turbulent simulation using the same boundary 

onditions and chemical model. In this case, however, we in- 

estigate only the most direct and theory-supported application 

o a flamelet-based turbulent combustion simulation to demon- 

trate the methodology’s accuracy at a reasonable computational 

ost. 

.2. Benchmark turbulent flame simulation details 

A two-dimensional axisymmetric model of the piloted Sandia 

lame D [44] was used to evaluate the applicability of the flamelet- 

erived subspace to a multidimensional turbulent simulation. Such 

pplication of a kinetic subspace directly to the full temperature 

rofile of a turbulent simulation has not been previously reported 

n the literature to our knowledge, and is made possible by the 

xpanded methodology developed in this work. The flame config- 

ration involves a 7 . 2 ∗ 10 −3 m diameter partially premixed fuel 

et of 25% methane and 75% dry air (by volume) surrounded by 

 18 . 4 ∗ 10 −3 m pilot of hot combustion products (taken as Z = 0.27

s per [45] ), with an outer co-flow of cold air. The velocities of 

hese three flows are 49.6 m/s, 11.4 m/s, and 0.9 m/s, respectively. 

he inlet temperatures are 294 K, 1880 K, and 291 K, respectively. 

he final mesh used to investigate the forward problem, as well 

s a general description of the computational domain, is shown in 

ig. 3 . 

We construct a standard, straightforward, and relatively inex- 

ensive model for application in forward uncertainty propagation 

everaging various previously examined and verified methods for 

he Sandia Flame D [46–48] . A stretched grid of 24,180 cells ( Fig. 3 )

s used to discretize the 1.2 m × 0.3 m computational domain. The 

ame is simulated using the realizable k − ε model. The realizable 

odel differs from the standard k − ε model in its formulation of 

he dissipation rate and eddy viscosity equations, and was origi- 

ally proposed and later applied to the Sandia Flame D [46,49] for 

ts improved spreading rate performance in axisymmetric jet flame 

imulations. Standard values [49] of the constant C 2 as well as 

he turbulent kinetic energy and dissipation rate Prandtl numbers 

k and σε are taken as 1.9, 1.0, and 1.2, respectively. The choice 

f a RANS model was made to reduce the cost of the simulation 
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Fig. 2. Neural network surrogate model for flamelet simulations to accelerate sensitivity computations. The parameter and coordinate branches are independent until the 

last layer in which their results are combined via inner product to arrive at a final temperature prediction. Residual skip connections every two layers are not shown to 

maintain clarity. Training occurs independently of discretization, and the network can be evaluated on any inputs Z and a in an arbitrary grid. 

Fig. 3. Stretched axisymmetric computational mesh used for Sandia Flame D simluations, with nominal temperature profile overlaid in red for visualization. Green arrows 

in mesh show profile sampling locations used for forward propagation visualization and metrics in Figs. 11 and 12 . (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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nd enable accuracy comparisons between subspace samples and 

ull kinetic space samples. The inexpensive RANS model enables 

ostly-converged exploration of the full kinetic uncertainty space 

irectly in the turbulent flame, which establishes an estimate of 

he ground truth of the kinetic uncertainty effect on the temper- 

ture profile. An LES model would have resulted in more accurate 

odel predictions, but based on a computational cost on the order 

f 10,0 0 0 CPU hours per simulation [1] , would not have allowed

or similar ground truth comparisons. That being said, the kinetic 

eduction methodology of Section 2.1 is not restricted to any spe- 

ific turbulence model, so while a RANS model is used here for 

roof-of-concept demonstration and accuracy evaluation purposes 

sers can alternatively propagate the reduced kinetic models for- 

ard through an LES simulation if better-resolved turbulence ef- 

ects are desired. 

Following the flamelet-based uncertainty method (and similarly 

o [47] ), the steady laminar diffusion flamelet model with unity 

ewis numbers is used for the turbulence-chemistry interaction 

long with the GRI-Mech 3.0 model [30] . A presumed PDF with 

 beta distribution is used to model the unresolved mixture frac- 

ion fluctuations in this implementation, while a delta function is 

sed for the scalar dissipation rate. This model’s parameterization 

f flamelets using the mixture fraction and scalar dissipation rate 

t the stoichiometric mixture fraction, the latter being linearly re- 

ated to the characteristic strain rate formulation we use ( Eq. (2) ), 

llows for uncertain solutions that are theoretically directly cou- 

led to information contained in the subspaces discovered from 

he (a, Z) flamelet table used in Section 2.1 . Additional discussion 

f the model formulations are available in [50] , while validation of 

he simulation results is provided in Section 3.2 . 
5 
. Results and discussion 

We begin in the following subsections by presenting results of 

he neural network surrogate model and active subspace genera- 

ion process, along with discussion of the accompanying kinetic in- 

ights and comparisons against related work. We then present val- 

dation of the turbulent simulation used for forward uncertainty 

ropagation, both in mesh refinement consistency and in consis- 

ency with experimental and computational results from the lit- 

rature. Next, we examine and discuss how the simulation un- 

ertainty’s dependence on the various subspace directions varies 

ubstantially when evaluated at different locations in the turbu- 

ent combustion simulation domain, highlighting the versatility of 

he multi-target subspace generation process. Finally, we present 

he results of the subspace-enabled efficient forward uncertainty 

ropagation in the turbulent simulation and compare its accuracy 

gainst the estimated ground truth. 

.1. Kinetic subspace results 

Recalling that we use a neural network surrogate model trained 

n perturbed flamelet solutions in Cantera to accelerate the ki- 

etic reduction, we first present in Fig. 4 a comparison between 

he network-generated solutions and Cantera solutions for out-of- 

ample testing cases at various strain rates spanning three orders 

f magnitude. The agreement is very strong overall, with the high- 

st observable error occurring near the fuel inlet for the low strain 

ase, and near the peak temperature region for the highly strained 

ase. 
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Fig. 4. Network temperature evaluation on the out-of-sample testing data at the end of the training, shown for a broad range of strain rates across three orders of magnitude: 

(a) 0.088 s −1 , (b) 3.3 s −1 , and (c) 93 s −1 . 

Fig. 5. Percentage of variance across all local subspaces captured by global sub- 

spaces with variable dimension r u , computed through the percentage of all squares 

of singular values of A in the sum up to a given index. Here, we select r u = 3 for 

88% accuracy to the local subspaces. 
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Using the inexpensive gradient evaluations provided by this 

rained network, we implement the kinetic subspace discovery al- 

orithm outlined in Section 2.1 . We evaluate Eq. (5) once at each 

ixture fraction and strain rate pair using 500 kinetically per- 

urbed samples, then use the SVD in Eq. (6) to reduce globally 

cross the entire flamelet table. The percentage of local subspace 

nformation captured by various sizes of global subspace, com- 

uted using the square of the singular values, is reported in Fig. 5 .

 percentage of 100 at r u would indicate that subspace variation 

cross A could be represented entirely by the set of directions up 

o r u . Here, we choose r u = 3 for the remainder of this work to

ompromise between more directions for high accuracy and fewer 

irections for efficient forward propagation. At this point, we have 

dentified the multi-target, low-dimensional subspace to be used 

n the forward propagation of kinetic uncertainty in the turbulent 
6 
ombustion simulation of Section 3.4 . The remainder of the current 

ubsection involves a detailed report of the kinetic composition of 

he identified three-dimensional global subspace, as well as a dis- 

ussion of the mixture fraction and strain rate dependences of the 

igendecomposition and SVD used to arrive at this final subspace. 

hese analyses respectively support the proposed cost reduction 

ttached to the active subspace method, as well as the require- 

ent for multi-target reduction methods when handling multidi- 

ensional flow fields. 

In Fig. 6 , we plot the kinetic components of the final three sub- 

pace directions, as well as the activity scores computed from the 

VD of Eq. (6) as per the following equation adapted from [51] , 

� = 

d ∑ 

m =1 

σ 2 
m 
w 

2 
m,� , (7) 

here the activity score α for each reaction � is essentially a sum 

f the square of the subspace components w m,� , weighted by the 

orresponding squared singular value σ 2 . Fairly rigorous mathe- 

atical and simulation-based verification in [51] supports the use 

f activity scores as a global sensitivity metric, which we lever- 

ge here to discuss a major advantage of the active subspace ap- 

roach when compared to traditional sensitivity analysis-based re- 

ction perturbations. 

According to these activity scores, R37 is the most important for 

he forward propagation of uncertainty. However, it fails to capture 

ven half of the global temperature variance as defined by the ac- 

ivity score. The next four reactions each account for between four 

nd six percent of the total variance, with a further seven captur- 

ng between one and three percent each. In fact, it takes the set 

f the thirteen most sensitive reactions to even capture 75% of the 

otal variance present across the flamelet table. In contrast, the ac- 
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Fig. 6. Kinetic analysis based on the first three global subspace directions and activity scores. (a) w 1 , (b) w 2 , (c) w 3 , and (d) activity scores. The top six reactions in each 

direction are labeled in subspace direction plots, and the top ten overall sensitive reactions are labeled in the activity score plot. (e) : Reactions corresponding to each index 

labeled in (a-d) , in order of activity score. Dominant subspaces are reported according to the labeled reactions in (a-c) . Only four reactions appear in these rankings for more 

than one subspace and none appear in all three, indicating the relatively large set of sensitive reactions spread over these three subspace directions. 
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ive subspace method’s exploration of sensitivity directions instead 

f sensitivity indices allows for greater compression of information. 

e observe that the first active subspace direction w 1 is largely 

ominated by the key R37, but that the second and third direc- 

ions w 2 and w 3 contain perturbations of many of the remaining 

ey reactions compressed into fewer sensitivity directions. While 

erturbing these sensitive reactions themselves would require the 

xploration of a kinetic space of dimension greater than ten in or- 

er to achieve fair accuracy, with just three active subspace direc- 

ions we are able to very efficiently explore the same uncertainty 

pace with fewer required turbulent simulations. 

We additionally report on the strain dependence of the local 

inetic subspaces. It was found in [28] that the local kinetic sub- 

paces varied strongly across the mixture fraction space of a sin- 

le flamelet, which originally motivated the SVD from Eq. (6) for 

he construction of a global subspace. The authors of that work 

ited the result of [52] , which showed that kinetic sensitivity di- 

ections did not change with strain rate, and proposed that their 

ubspace constructed from a flamelet at a highly strained condi- 

ion might apply across the entire flamelet table. We report vari- 

us strain rate-dependent local subspace quantities in Fig. 7 to test 

his hypothesis. In Fig. 7 a, we see that as the strain rate moves

way from the extinction value, it becomes more and more dif- 

cult to capture a significant portion of the local sensitivity in- 

ormation in a single subspace direction. The choice of uniformly 

ne-dimensional subspaces was justified fairly rigorously in the 
7 
igh-strain case of [28] , though as we move to include all strained 

ases in this work this rigorous justification no longer holds. In- 

tead, we show in the supplemental Fig. S3 that the bulk of the 

ncertainty in the flamelets occurs in the regions of the (a, Z) do- 

ain where a one-dimensional local subspace dominates the un- 

ertainty response, according to the result of Fig. 7 a, and that the 

egions of Fig. 7 a that demonstrate a need for greater than one 

ubspace direction contain relatively little of the temperature un- 

ertainty. The lower temperature uncertainty magnitude seen in 

he generally lower-strain regions can be physically interpreted as 

 shift away from kinetics and toward equilibrium chemistry, mak- 

ng accurate kinetic uncertainty quantification in these areas less 

ssential for overall performance. Thus, by adding additional local 

ubspace directions to the areas of Fig. 7 a that cannot be captured 

ell with a single direction, the resulting global subspace would 

kew more toward the regions of the flamelet table with relatively 

ess kinetic sensitivity importance, and may result in lower per- 

ormance than if a single local subspace direction was used at all 

oints in the flamelet table. The validity of this theory is demon- 

trated in the turbulent simulation later in Section 3.4 . We proceed 

urrently with the kinetic reduction process using one-dimensional 

ocal subspaces across the full (a, Z) domain. 

In Fig. 7 b, the kinetic similarity is seen to be preserved fairly 

ell in the highly strained range leading up to extinction, corrobo- 

ating the conclusion of [52] that for near-extinction flamelets the 

inetic sensitivity does not depend on the strain rate. Below this 
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Fig. 7. (a) Percent of sum of all eigenvalues represented by the first eigenvalue from Eq. (5) , describing the variation in gradient information that can be captured by a 

single subspace direction at each (a, Z) coordinate in the flamelet table. The stoichiometric mixture fraction here is Z = 0 . 351 . (b) Strain dependence of the cosine similarity 

of local kinetic subspaces at three sampled mixture fractions when compared to the near-extinction strain rate. Values near unity are observed in the high-strain region, 

while as the strain is further reduced the kinetic similarities decrease substantially. 

Fig. 8. Accuracy of the three-dimensional global subspace at each local (a, Z) in the 

flamelet space, measured by agreement in uncertainty quantiles when compared to 

full-dimensional uncertainty ranges. 
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oint, however, as we move into the lower strain rates that were 

ot considered in [52] , we observe that the similarity in kinetic 

ensitivity breaks down significantly at all three sampled mixture 

ractions - stoichiometric, fuel side, and oxidizer side. Further de- 

ails regarding these shifts in kinetic sensitivity and the large num- 

er of sensitive reactions present when investigating the entire 

amelet table are available in Table S2 and Figure S2 of the sup- 

lementary material. It is this breakdown of similarity that calls 

or the two-dimensional reduction step detailed in Section 2.1 . 

Next, we investigate the accuracy of this three-dimensional sub- 

pace in predicting the temperature uncertainty in the flamelets. 

e use the same methodology as is used in [28] to compare per- 

urbed flamelet solution profiles in the subspace against those in 

he full kinetic parameter spaces, using the percent error between 

he magnitude of the temperature uncertainty ranges derived from 

he subspace-perturbed solutions against the fully perturbed solu- 

ions to gauge the accuracy of the subspace. We plot these accu- 

acies locally at each mixture fraction and strain rate in Fig. 8 and 

bserve a similar trend to that of Fig. 7 a, where at lower strains
8 
he three-dimensional subspace is not able to predict the tem- 

erature uncertainty as well as at higher strains. The difference 

n the exact shape of these two plots is likely due to shared in- 

ormation or a lack thereof across subsets of the (a, Z) domain - 

hat is, the existence of local one-dimensional subspaces across a 

wath of the domain does not imply similarity across such one- 

imensional subspaces, and conversely a swath of the domain with 

oor one-dimensional behavior does not necessarily imply the dis- 

imilarity of these multidimensional subspaces. Such discrepancies 

re evident in Fig. 7 b when comparing the fuel-rich slice against 

he stoichiometric and lean slices at mid-range strain rates. Re- 

ardless of the minutiae of such a comparison, we note the overall 

ccuracy here defined by mean absolute error is 85% , which cor- 

esponds fairly well to the 88% accuracy to the local subspaces 

hat we predicted in Fig. 5 . We conclude that even with the strain-

ased discrepancies seen in Fig. 7 a, three subspace directions are 

till sufficient to largely capture the temperature uncertainty in the 

amelet table. In the following sections, we shift to discuss the 

hree-dimensional subspace’s predictive capabilities in the scaled- 

p turbulent combustion simulation. 

.2. Turbulent simulation validation 

Here we briefly present validation of the turbulent combustion 

imulation used in the following sections. The mesh size is eval- 

ated through the refinement test in Fig. 9 a-b, motivating use of 

4,180 cells in later applications. The converged results were then 

erified against the model results of [47] and the experimental 

ata of [53] , in Figs. 9 c through 9 h. 

.3. Spatial dependence of kinetic sensitivity 

With a finalized three-dimensional kinetic subspace and a veri- 

ed turbulent model, we move next to analysis of the spatial vari- 

tion of kinetic sensitivity directions in the turbulent flame. To be- 

in, we establish a baseline result by sampling the full-scale uncer- 

ain kinetics and generating solution profiles for 20 0 0 kinetic per- 

urbations. The statistics have not yet fully converged with 20 0 0 

amples, though to save on computational effort we refer to the 

esult found in [1] , where 20 0 0 flamelet samples was reported as 

 lower bound for good performance in the same physical prob- 

em with a similar flamelet model and an identical chemical reac- 

ion model. We additionally emphasize that these samples are not 
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Fig. 9. Validation of the current Sandia Flame D simulation. (a-b) Grid convergence results of temperature slices at x/D = 7 . 5 and x/D = 30 on top and bottom, respectively. 

24,180 cells used henceforth. (c-h) Validation against computational [47] and experimental [53] results in the literature for (c-d) temperature, (e-f) methane mass fractions, 

and (g-h) oxygen mass fractions. The top plots show comparisons at x/L = 1 / 8 , and the bottom at x/L = 5 / 8 , where L = 1 . 2 m is the full length of the computational domain. 
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equired for the proposed subspace-powered forward uncertainty 

uantification in the turbulent simulation. They instead serve to 

elp us visualize how the uncertainty in the full kinetic space re- 

cts to each subspace, and propose accuracy values for the effi- 

ient subspace-driven forward uncertainty solutions shown later in 

ection 3.4 . This type of detailed spatial analysis and accuracy pre- 

iction was not possible in [1] due to the more accurate and more 

xpensive large eddy simulations used, as well as the previously 

iscussed difference in approach to kinetic reduction. 

The summary plots in Fig. 10 show how the maximum temper- 

ture at the centerline and maximum temperature at the x/D = 30 

lice in the turbulent simulation change with motion along the 

hree subspace directions. Such motion is characterized by the dot 

roduct between the given subspace direction and the randomly 

erturbed kinetic parameter vectors (which in this section are 

ampled from the full, 217-dimensional kinetic uncertainty space). 

 perfect one-to-one functional mapping of temperatures to mo- 

ion along a single subspace direction would indicate that such a 

ne-dimensional subspace is able to fully explain all of the tar- 

et temperature variation, regardless of motion along the other 

16 kinetic directions contained in each sample. Alternatively, an 

ncorrelated, cloud-like shape in such a mapping indicates that 

hose other 216 kinetic directions substantially affect the temper- 

ture response, and thus the investigated subspace is not able to 

nilaterally predict the temperature response well. We see from 

he two-dimensional summary plots, moving from the top toward 

he bottom, that the centerline maximum temperature is not cor- 

elated with movement in direction w 1 , which is fairly surprising 

iven the relative dominance of w 1 from Fig. 5 . On the other hand,

he response of the maximum temperature of the near-nozzle slice 

esponds extremely well to w 1 . Both temperatures respond fairly 

ell to w 2 , though the centerline temperature has a tighter spread 

nd can thus be said to more closely align with motion in the 

 2 direction. The centerline temperature responds fairly strongly 

o w 3 , while the near-nozzle slice has a much weaker and in- 

erestingly inverse relationship with w 3 . Finally, when we choose 

he strongest pair of subspaces for the bottom set of Fig. 10 plots 

howing temperature responses to coupled inputs, we see con- 

incing two-dimensional behavior in both cases. We note, how- 

ver, that the meaningful two-dimensional behavior is observed 
9 
n w 2 and w 3 for the centerline maximum temperature and con- 

ersely w 1 and w 2 for the axial maximum temperature, following 

rom the above discussion. We also note stronger overall correla- 

ion to the three subspace directions of the near-nozzle temper- 

ture values compared against that of the centerline temperature 

alues, seen most clearly when comparing Fig. 10 a against 10 f, or 

0 d against 10 h. This trend is unsurprising in light of the results

hown in Fig. 8 , where stronger performance in the flamelets was 

bserved at higher strain rates (corresponding to upstream, near- 

ozzle sampling in the turbulent simulation), and lower perfor- 

ance in the flamelets was observed at lower strain rates (corre- 

poinding to downstream regions). However, it does emphasize the 

irect coupling of the flamelet table and the turbulent simulation, 

uggesting that prior error estimates based on flamelet results are 

ossible not only globally, but also locally across the axial coordi- 

ate of the turbulent domain. 

The key takeaway from these summary plots is that the ki- 

etic dissimilarity noted in the flamelet mixture fraction space in 

28] as well as in the strain rate space in Fig. 7 appears to sub-

tantially propagate forward to the turbulent combustion simula- 

ion. When we sample temperatures near the nozzle, we see re- 

ponses that are strongly coupled to w 1 , which as we recall from 

ig. 6 is dominated by R37. Further downstream, however, this de- 

endence appears to become nearly negligible, and the maximum 

emperature response is instead tied strongly to w 2 and w 3 , which 

re made up of linear combinations of a much more diverse set 

f reactions. This spatially dependent result further highlights a 

rawback of the traditional, single-target combustion applications 

f the active subspace algorithm when the uncertainty target is a 

ontinuous profile and not simply a scalar value. We observe addi- 

ionally (in Fig. 6 ) that there is no substantial overlap in key reac-

ions across these three subspace directions. It is thus not simply 

 shifting dependence in a small set of key reactions that we ob- 

erve, it is instead a shift in the list of key reactions themselves 

hat is occurring across the turbulent flame. This makes sensitiv- 

ty index-based forward propagation more expensive due to the 

nflated number of sensitive reactions when considering the en- 

ire solution domain, an issue that is not observed here thanks 

o the greater dimensional compression offered by the active 

ubspace. 
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Fig. 10. Summary plots showing the response of (a-c) the near-nozzle ( x/D = 30 ) maximum temperature and (e-g) the centerline maximum temperature to motion along 

the w 1 , w 2 , and w 3 subspace directions, respectively. (d) and (h) show coupled responses of the respective temperature values to motion along two subspace directions. 

Based on the substantial shifts in the dominant subspace directions seen across each pair in the top six subplots, the axes in (d) and (h) are w 2 vs. w 1 and w 3 vs. w 2 , 

respectively. 
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.4. Efficient uncertainty quantification using kinetic subspace 

In this section, we investigate the accuracy of kinetic pertur- 

ations within the three-dimensional subspace when applied to 

he forward problem in the Sandia Flame D simulation. In the 

revious section, we discussed the need for greater than 20 0 0 

amples in the full kinetic space in order to converge the statis- 

ics of the turbulent simulation. Here, we sample directly within 
10 
he uncertainty space defined by the three-dimensional subspace 

as opposed to the 217-dimensional full kinetic space), and find 

hat with computational savings of multiple orders of magni- 

ude we are able to reconstruct the full uncertainty profiles with 

trong accuracy. In Fig. 11 a-b, we compare the three sigma tem- 

erature uncertainty ranges of the centerline profile and near- 

ozzle profile when using just seven subspace-informed Latin Hy- 

ercube samples [54] against those with the full 20 0 0 samples, 
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Fig. 11. Uncertainty ranges for temperature and CO mass fractions at representative locations. The estimated ground truths are from 20 0 0 samples in the full kinetic 

uncertainty space. The subspace results are computed using just seven samples from the three-dimensional subspace. (a) Temperature uncertainty along the centerline. (b) 

Temperature uncertainty across the x/D = 30 near-nozzle slice. (c) CO mass fraction uncertainty along the centerline. (d) CO mass fraction uncertainty across the x/D = 30 

near-nozzle slice. 
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nd observe 70 . 4% and 82 . 3% accuracy, respectively, where accu- 

acy here is defined using the percent error between the mag- 

itude of the temperature uncertainty ranges (defined using the 

tandard deviation) derived from the subspace-perturbed solu- 

ions against those from the fully perturbed solutions. We can 

race the discrepancy in accuracy between these locations back to 

he results of Figs. 8 and 10 where we generally noted stronger 

ubspace performance in the high-strain flamelets and in the 

xial maximum temperature, and weaker subspace performance 

n the lower-strain flamelets and in the centerline maximum 

emperature. 

We additionally plot the CO mass fraction uncertainty ranges in 

ig. 11 c-d based on both the full 2,0 0 0-sample run as well as the

ubspace-reduced 7-sample run. The accuracies here were found 

o be 68 . 7% and 69 . 7% , respectively, for the centerline profile and

ear-nozzle profile. CO was not tracked in the surrogate modelling 

nd subspace reduction process, thus all agreement here is due to 

he strong coupling between the temperature profile and species 

volution profiles. If higher-accuracy species uncertainty profiles 

re desired, users can either (1) replace the temperature predic- 

ion network with a species prediction network and otherwise re- 

ain an identical methodology for a subspace that is tailored to a 

ingle species profile, or (2) increase the size of the network out- 

ut layer to facilitate the learning of temperature and/or multiple 

pecies profiles, and simply add the additional species-based local 

inetic subspaces into the A matrix as was done in this work for 

he strain-dependent temperature profiles. For brevity, we do not 
11 
onsider such generalizations in this work and instead present the 

xtrapolation capabilities of the temperature subspace to the CO 

pecies profiles to highlight promise for such future applications. 

Due to the relatively inexpensive turbulence model used in 

his work, we are able to repeat this subspace-informed forward 

ncertainty propagation multiple times to confirm the reliabil- 

ty of this result. We independently sampled between 7 and 50 

ubspace-informed perturbations for each trial. In Fig. 12 , we plot 

he accuracy of the uncertainty ranges of each of these runs when 

ompared against the full-space 20 0 0 sample case. We observe 

reater than 70% and greater than 80% accuracy for the centerline 

nd near-nozzle temperature uncertainty ranges, respectively, at all 

ample numbers. In the samples leading up to 20, there is a noisy 

et overall substantial trend of increasing accuracy. Past 20, the 

ccuracy values tend to fairly stable quantities in the 80 − 90%+ 

ange for temperatures and the 85 − 95%+ range for CO mass frac- 

ions. There is one noticeable outlier in the axial near-nozzle tem- 

erature agreement in the 40 sample case, which we note to still 

chieve 82 . 6% and 83 . 9% accuracy in the near-nozzle and center- 

ine profiles, respectively. Barring this outlier, all sample numbers 

aw roughly 10% better performance in reconstructing the near- 

ozzle temperature profile when compared against the centerline 

rofile. This result is again not surprising given the trend of higher 

ccuracy in higher strain regions seen in the flamelet results of 

ig. 8 , and later on in the turbulent simulation summary plots of 

ig. 10 . However, the continuation of this trend across the various 

etrics of Figs. 8, 10 , and 12 suggest the capability of the inex- 
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Fig. 12. Percent accuracy of small-sample subspace uncertainty ranges against the set of 20 0 0 full model runs, calculated across various slices in the turbulent simulation 

domain. Temperature profile accuracies follow the pattern discussed in Fig. 10 of stronger performance closer to the nozzle. CO profiles were not included in the set of 

subspace targets but see strong agreement nonetheless. 
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ensive flamelet table statistics to effectively predict local accuracy 

ariations in the turbulent flame via their own accuracy distribu- 

ions in the (a, Z) domain. 

Accuracy averages across additional experiments to verify the 

reviously made assumption of one-dimensional local subspaces 

re available in the Supplemental Table S3. Results there support 

he hypothesis of Section 3.1 that including a second local sub- 

pace direction would dilute the high-strain, high-information ar- 

as shown in Fig. S3 that are already well-captured by uniquely 

ne-dimensional local subspaces. 

In all cases, the uncertainty reductions shown here represent 

 large amount of computational savings. When compared against 

he greater than 20 0 0 samples needed to fully converge the uncer- 

ainty of the full kinetic space, the current subspace enables 300x 

ewer runs to achieve strong accuracy using just 7 samples. For 

heaper simulations where the user is able to sample the subspace 

0–50 times, the uncertainty ranges appear to converge with up- 

ards of 80 − 90% accuracy, depending on the sampling location. 

arge computational savings are similarly to be expected when 

ompared against comparable or even larger chemical models than 

ethane. 

We additionally point to the sensitivity analysis results of Fig. 6 , 

here we discussed the benefit of the active subspace method in 

erms of more compact dimensional representations of the key ki- 

etic parameters. The sensitivity analysis revealed more than ten 

ighly sensitive reactions, individual perturbations of which would 

ot even be possible with the seven samples used as a low-end 

enchmark here. Thus, even in the more realistic case where the 

omputational savings of the current method are compared against 

 reduced model or perturbations of highly sensitive reactions only 

as opposed to the fully detailed model), our proposed frame- 

ork still offers a cheaper and more substantially reduced space 

ithin which users must sample. We acknowledge that we appear 

o require no fewer samples than [1] in order to characterize the 

ame Sandia Flame D temperature uncertainties, indicating no in- 

rease in savings compared to that work. However, we note that 

he differing reduction methodology performed here allows for ac- 

uracy estimation in the flamelet table, which we see based on 

igs. 8 and 12 is a good indicator of the subspace’s global accuracy 

n the larger turbulent simulation. The preceding discussion in this 

ubsection also shows how the global subspace’s accuracy met- 

ics across the flamelet table can predict the spatial dependence of 

ccuracy in the turbulent simulation, enabling local accuracy pre- 

ictions in the turbulent case based on flow regime comparison 
s

12 
gainst the cheap surrogate samples. This methodology finally al- 

ows for the direct relation of uncertainty responses to kinetic pa- 

ameters, as was shown in Fig. 6 . This tradeoff between compu- 

ational cost, accuracy predictions, and kinetic interpretability is a 

ecision that can be made based on the needs of the case at hand, 

hough we demonstrate in this turbulent case the promise of our 

ethodology in handling all three. 

As a final note, we recall that the turbulent simulations carried 

ut in Sections 3.2 through 3.4 to evaluate this novel kinetic re- 

uction methodology used a flamelet-based turbulent combustion 

odel to take advantage of the direct link to the flamelet-based 

ubspace. However, the application of the kinetic subspaces dis- 

overed here is not strictly limited to flamelet-based models. The 

inetic reduction process occurs in the kinetic parameters them- 

elves, as opposed to directly in the flamelet solution data as was 

one in the highly efficient result of [1] . It is therefore possible to 

pply the perturbed kinetic models in a broader range of combus- 

ion regimes and models than just flamelet methods. Much like the 

trong kinetic uncertainty correlations found in [2] and [22] be- 

ween the sensitivity of homogeneous ignition delay times and au- 

oignited turbulent flame liftoff heights (even without a strict the- 

retical connection between those two scalar quantities), we the- 

rize that our methodology will remain accurate and efficient to 

 certain extent even in non-flamelet-based turbulent combustion 

imulations thanks to the shared chemistry and flow conditions 

ith the flamelet table. While not investigated here, we note this 

roader applicability for its potential in future work. 

. Conclusions 

In this work, we demonstrated a complete framework for 

amelet-based kinetic sensitivity reduction in a two-dimensional 

urbulent combustion simulation in the flamelet regime. Using a 

ulti-target, neural network-accelerated active subspace reduction 

n the flamelet table, we discovered a three-dimensional kinetic 

ubspace that was able to reconstruct the full temperature un- 

ertainty profile of the Sandia Flame D with strong accuracy in a 

eynolds-averaged, flamelet-based simulation. The accuracy of this 

econstruction corresponded fairly well both globally and locally to 

he accuracy observed in the much cheaper flamelet simulations, 

llowing for meaningful a priori error estimates across the turbu- 

ent flame profile even in the realistic case where expensive con- 

ergence testing cannot be carried out in the full-scale turbulent 

imulation. 
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In addition to the strong uncertainty quantification results, the 

ehavior of the subspaces across both the flamelet table input 

arameters and the turbulent simulation spatial domain revealed 

otable insights into the shifting kinetic sensitivity dependencies 

cross these various input domains, which would not be possi- 

le to capture using a standard, scalar quantity of interest sen- 

itivity method. While the kinetic sensitivities were more com- 

lex and strain rate-dependent than expected in the literature, 

he multi-target methodology proposed here proved to be ro- 

ust and maintained high accuracy and significant dimension re- 

uction. The temperature-based subspace is also shown to have 

ood species profile predictive capabilities, with strong potential 

or further improvement when the network and subspace portions 

f the methodology are adjusted on a case-by-case basis to in- 

lude species targets. The flexibility, multi-target applicability, pre- 

ictable error ranges, low computational cost, and kinetic inter- 

retability of this method make it a promising tool for efficient un- 

ertainty quantification in small-scale turbulent combustion simu- 

ations similar to that which was demonstrated here, as well as in 

ore expensive large eddy simulations. 

ovelty and Significance Statement 

This work developed a framework to enable efficient kinetic un- 

ertainty quantification in turbulent combustion, especially in the 

amelet regime, and demonstrates such feasibility in the bench- 

ark Sandia Flame D simulation. It confirms the existence of and 

rocedure to obtain low-dimensional active kinetic subspaces that 

ominate the response of the entire flamelet table to kinetic uncer- 

ainty, expanding on previous active subspace effort s that typically 

nvestigate the response of a single scalar output quantity only. 

his expanded consideration of the full two-dimensional phase 

pace of the flamelet table is enabled by a specialized neural net- 

ork surrogate model. The demonstrated methodology allows sub- 

tantially more efficiency in the sampling of kinetic uncertainty 

or forward propagation in turbulent combustion simulations than 

tandard sensitivity-based methods, while retaining high accuracy 

nd strong kinetic interpretability. 
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