UNIVERSAL EQUATIONS FOR HIGHER GENUS GROMOV-WITTEN
INVARIANTS FROM HODGE INTEGRALS

FELIX JANDA AND XIN WANG

ABSTRACT. We establish new universal equations for higher genus Gromov—Witten invari-
ants of target manifolds, by studying both the Chern character and Chern classes of the
Hodge bundle on the moduli space of curves. As a consequence, we find new push-forward
relations on the moduli space of stable curves.
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1. INTRODUCTION

Finding universal partial differential equations for Gromov-Witten invariants of any tar-
get manifold is a long-standing problem in Gromov—Witten theory. Such equations capture
fundamental properties for Gromov-Witten invariants. Usually, it is very difficult to find

2020 Mathematics Subject Classification. Primary 14N35; Secondary 14N10.
Key words and phrases. Gromov—Witten invariant, universal equation, push-forward relation.
1



2 F. JANDA AND X. WANG

explicit equations in all genera. So far, there have been mainly two approaches for finding
such universal equations for Gromov—Witten invariants. One approach is to use tautological
relations, in particular topological recursion relations, on the moduli space of stable curves.
For example, the equality between the boundary divisors on My, leads to the well-known
WDVYV equation for genus-0 Gromov—Witten invariants. Another approach is to use tauto-
logical relations on the moduli space of stable maps. For example, in [FP00aj, by using the
Grothedieck—Riemann—Roch formula on the moduli space of stable maps, Faber and Pand-
haripande obtained a family of explicit universal equations for descendant Gromov—Witten
invariants. In 2014, a remarkable formula for double ramification cycles was proposed by
Pixton and later proved in [JPPZ17|. In this paper, we use this new ingredient to obtain
new universal equations for descendant Gromov—Witten invariants.

1.1. New universal equations. Let X be a smooth projective variety and {¢, : a =
1,..., N} be a basis of its cohomology ring H*(X;C) with ¢; = 1 the identity. Recall that
the big phase space for Gromov—-Witten invariants of X is defined to be [~ , H*(X; C) with
standard basis {7,(¢s) : @« = 1,..., N,n > 0}. Denote the coordinates on the big phase
space with respect to the standard basis by {t&'}. Let F}, be the genus-g generating function,
which is a formal power series of t = (t%) with coefficients being the genus-g Gromov-Witten
invariants. Denote ((Ty, (@ay)s- - -, Tny (Pay)))g for the derivatives of Fj, with respect to the
variables 51, ... toF. Similarly, we use ((Tn, (Ga,), - - - Tny (Pay); Co k) )y to denote the correla-
tion function of Gromov-Witten theory twisted with a cohomology class ¢, € H* (Hgyk; C).
For convenience, we identify 7,(¢,) with the coordinate vector field a?a on [[)°, H*(X;C)
forn > 0. If n <0, 7,,(¢s) is understood to be the 0 vector field. We also abbreviate 70(Pa)
by ¢o. Let ¢ = n*®¢s with (n°°) representing the inverse matrix of the Poincaré intersec-
tion pairing on H*(X;C). As a convention, repeated Greek letter indices are summed over

their entire range. Recall the following T" operator which was studied in [Liu02]

TW) := 1 (W) = ((Wo™))oda (1)
for any vector field W on the big phase space, where 7, (W) is a linear operator defined by

T (T (0a)) = Tnt1(¢a)- o

Let A = (a1,...,a,) be a vector with integers 37" | a; = 0. Let PY(A) € H*(M,,) be
the cohomology class obtained from Pixton’s double ramification cycle formula [JPPZ17],
which is roughly a linear combination of descendant stratum classes.

Our first result is:

Theorem 1. For any g > 2, the following equation holds for pure descendant Gromouv- Witten
wmvariants of X

—Z%z<<m+29_1<<z>a>>>g+;Z(—ni{«n(%mg 2-4(6)))g- 1+Z i(¢a)) ng-z_i<¢a>>>gh}

i —

- al -1 kz -1 L ki—1—1: 7 1o gi
S D SE D DENND S Dl | = (li DT (6o S5O0

m=1 k1+ Akm=g g1+ +gm=g—1 a1, am=1i=1 " ;=0
kl?"'vkmzl 917~--,9m>1

—

(2)
where T, =1 — 6151 and g = auy,.

Together with [LP11, Theorem 4], Theorem |l| implies the following identity:
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Corollary 2. For any g > 2, the following equation holds for the pure descendant Gromov-
Witten invariants of X

29—2

D (DT (Ga) T2 (0%)))g1

=0

g i1 Nooomo g ki—1\,, el s o
=== DT SEENED SENED DE | =5 Dl (Sl ISl C A R AT

m=1 E1+-+km=g g1+ +gm=g—1 o1,...am=1i=1 * [;=0
ki,....km>1 g1se-gm=>1

3)
Proposition [12] in Section explains how to view the right hand side in and in

terms of pure descendant Gromov-Witten invariants.

Remark 3. In [FP00a), it was pointed out that Faber—Pandharipande’s equations are related
to the genus-0 zn—constraints proposed by Eguchi-Hori-Xiong in [EHX97]. However, the
explicit expression of the higher genus Zn-constraints remain unknown. We hope that
will give a hint at the explicit form of the higher genus corrections to the L,,-constraints.

1.2. A new push-forward relation. It is very interesting to find nontrivial classes in the
kernel of the boundary push-forward map

L R (Mya) — R (Myy)

which can also be written in terms of ¢ classes and boundary classes. Via the splitting
principle in genus g + 1 Gromov-Witten theory, this yields universal equations in genus g
from linear combinations of descendant boundary classes in the kernel of +,. Such tautological
relations were first constructed by Liu-Pandharipande in R+ (M, ) for r > 1 (cf. [LP11,
Theorem 2]). It is remarkable that the equation in Corollary [2| can be lifted to cycle level,
which gives an extension of Liu-Pandharipande’s relation to the case of r = 0.

Definition 4. A stable graph I' in the sense of [Panl8, §4.2] is a stable circular graph if its
vertices are connected in a closed chain. We denote the set of circular graphs by Gy ..

Any stable circular graph I' has the same number of vertices and edges. For example, the
following is a list of all stable circular graphs in G

@ oo oo

Theorem 5. For g > 1, the following topological recursion relation holds in R*¥*(M,y,)
22g71

gD 2 CDulnsy)

a+b=2g

l(e

-1 ) Vi) v)

_ § P72(0,0

Z |Aut Z (ér) H k(e) Z l(e))!m(e)! H 4(0,0)

reGy ZSEE(F) k(e)=g ecE(T) l(e)+m(e)=k(e)—1 veV(T)
k(e)>1,YeeE(T)

(4)

where Mg,g — MQH and &0 Mp — ./Vg_i'_l are the canonical gluing maps. h(e) and ' (e)
denote the two half edges of e.
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Theorem [5|implies that Equation of Corollary [2| holds for any cohomological field the-
ory, as defined by Kontsevich and Manin in [KM97], in particular also for orbifold Gromov-
Witten theory and quantum singularity theory (cf. [CR02|, [FJR13]).

1.3. Universal relations from Hodge class. It was first mentioned in [FP00a] that a more
sophisticated method of obtaining differential equations for pure descendant Gromov-Witten
invariants from Faber-Pandharipande’s formula (cf. [FP00a) Proposition 2|) is to construct
differential operators that correspond to multiplying by a Chern class of the Hodge bundle
[E. The Chern classes of Hodge bundle E certainly vanish in degrees greater than g. One
obtains from [FP00Oa, Proposition 2]) (Equation in this paper) relations in degree greater
than g (for each g). It would be interesting to understand these equations and their relation
to topological recursion relations and the Virasoro constraints even when X is a point.

Let z be a formal variable. We consider the space H which is the space of polynomials
in one variable z with coefficients in H*(X;C). Its has a canonical linear basis {z"¢, :
a=1,...,N,n > 0}. Denote the coordinates on H, with respect to the canonical basis
by {g}. Then a general element in H; can be written in the form q(z) = >~ -4, ¢ ¢a?".
For convenience, we identify H with the big phase space [~ H*(X; C) via identification
between basis {2"¢,} and {7,,(¢4)}, and dilaton shift about coordinates ¢@ = .. We will
use the following convention

P(a) = P(t)] 0o

for any partition function P(t). Denote ((7n,(¢ay);---»Tn;,(Pay)))y (d(z)) for the deriva-
tives of ﬁg(q) = Fy(t),e—e with respect to the variables g;!,...,gp*. Similarly, we use
(71 (Dar )5 - Tog (Day); Cok) )y (A(2)) to denote the correlation function of Gromov-Witten

theory twisted with a cohomology class ¢, € H*(M,; C).
Theorem 6 (Theorem [17). Let

o0

By; 2i—1_2i—1
R(z) = exp(; mu 247,

Then, for g > 2, the following holds for descendant Gromov-Witten invariants

i 1 ontp = 0, 1>g
) 2 Tawqoy Co {ﬂwmpg(@»r(q(z» i=g

reGyo™ 29 g
where [u'] denotes taking the coefficient of u® and the contribution Contr of a Feynman graph

I' is defined as a contraction of tensors:

e Fach vertex v is assigned a tensor bracket

({( Now (B a)

with insertion coming from the half edges.

) ) ) . af o _peBR-1 . o R1 Io
e Fach edge e 1s assigned a bivector with descendants Zaus(1°09a@05 (Wn() (@) DR (Y ()) (85))

Yh(e) tUn (o)

Proposition 7 (see Proposition [19). Pizton’s 5-spin relations [Piz12] on the moduli space
of stable curves imply the i > g part of Theorem[I7.
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1.4. Plan of the paper. This paper is organized as follows. In Section [2| we review Faber
and Pandharipande’s formula for Hodge classes, Pixton’s double ramification cycle formula
for the top Hodge class, and prove Theorem [I] and Corollary In Section [3, we give
prove the new push-forward relation of Theorem [5] In Section [ we prove Theorem [0 and
Proposition [7]

2. CHERN CHARACTERS OF THE HODGE BUNDLE

2.1. Review of Faber and Pandharipande’s formula. Let M, (X, 3) be the moduli
space of stable maps {f : (C;p1,...,pn) — X}, where (C;py,...,pn) is a genus-g nodal
curve with n marked points and the image f.[C] = 5 € Hy(X;Z) is the effective class 5.
The Hodge bundle E over M, (X, ) is the rank g vector bundle with fiber H°(C,w¢) over
a moduli point f : (C,p1,...,p,) — X, where w¢ is the dualizing sheaf of the domain curve
C'. In fact, the Hodge bundle over ./\/lgn(X B) is the pullback of the Hodge bundle from
M,.,, under the stablization map St: M, (X, 8) — M,,. Let ch(E) be the Chern character
of E and denote its degree k component by chi(E). It is well-known that the positive even
Chern characters chgi(E) vanish (cf. [Mum83]). Let \; := ¢;(E) be the i-th Chern class of
Hodge bundle.

In [FP00Oa|, Faber and Pandharipande considered the following Hodge integrals over the
moduli space of stable maps:

m

<HTk ¢a, HChl< )>g,,3 = /M Xﬁ)]V'er) HevngaiHChlj(]E)

= i= j=1

where [M,,,(X, 8)]"" is the virtual fundamental class of M, (X, ), the descendant /-class
1; is the first Chern class of the tautological line bundle over M, (X, 3) defined by the
cotangent lines at the i-th marking of the domain curves, and ev;: mgm(X ,f) — X is the
evaluation map defined by the image of the i-th marking.

The generating function of genus-g Hodge integrals is defined to be

Fi(t,s)= > Qﬁ<exp (Z tnTn(Pa ) ; eXp (Z S2m—1 Ch2m—1(E)> > ()

BEH>(X;Z) m>1

where () is the Novikov variable. In particular, after the restriction s = 0, the generating

function Fy(t) := F, ;E|S:0 becomes the usual generating function of genus-g pure descendant
Gromov—Witten invariants. For convenience, we identify 7,,(¢,) with a?a and ch, (E) with
a%. Moreover we use the convention that 79(¢n) = ¢o and 7,(¢,) = 0 if n < 0. Double

brackets denote differentiation of I ;E(t, s),

m 8n+m

. E _
<<Tk1 (gbal) R Tkn(qbocn)) H Ch2li—1(E)>>g — at;:ll o 3152:33211_1 o a$2lm_1 g

=1

and

(T (Bon) - - Tho (B); | | -1 (B)))g = (T (Par) - - - Tt (B ); HChzl “1(B)))gls=o.

i=1 i=1
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In [FP00a], the following universal equation for descendant Gromov—Witten invariants of
any smooth projective variety was proved for any [ > ¢:

(G0}, + 5 (1) {<<n<¢a>mm<¢a>>>g1 - Z<<n<¢a>>>h<<mu<¢a>>>gh} ~0

(6)

where #;, = t2—§15L. In fact, the Grothendieck-Riemann-Roch formula on the moduli space
of stable maps (cf. [FP00a]) implies

(21 .
5o (e 1 (B))5

= — 1, ({Tur2i-1(a)))y + % Z(—l)i {<<Ti(¢a>7—2l—2—z‘(¢a)>>§—1 + Z<<T¢(%)>>%(<Tzz—z—i(¢“)>>f_h}

(7)
where B,, are the classical Bernoulli numbers defined by

m2n

x x >
=14+ = By, ——.
+2+nz;: 2

e —1 (2n)!

Then (6] follows from (7)), the vanishing of Chern character of Hodge bundle chy_(E) = 0
for [ > g, and setting s = 0. This leads to the question how can these universal equations for
pure descendant Gromov—Witten invariants be extended to the case I < g7 In this paper,
we give an answer to this question in the case [ = g.

2.2. Pixton’s formula for double ramification cycles and the ), class.

2.2.1. Pizton’s formula for double ramification cycles. Denote G, to be the set of stable
graphs of genus-g, n marked points [Pan18, §4.2]. Let A = (a4, ..., a,) be a vector of double
ramification data, i.e. a vector of integers such that "  a, = 0. Let ' € G,,, be a stable
graph of genus g with n legs and r be a positive integer. A weighting mod r of I" is a function
on the set of half-edges,

w: HIT) —{0,...,r —1},
which satisfies the following three properties:
(i) Vh; € L(T"), corresponding to the marking i € {1,...,n},
w(h;) =a; mod r
(ii) Ve € E(I'), corresponding to two half-edges h,h’ € H(I'),
w(h)+w(h')=0 mod r,
(ili) Yo € V(T),
Z w(h) =0 mod r,

v(h)=v

where the sum is taken over all half-edges incident to v.
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Let Wr,. be the set of weightings mod 7 of I'. The set W, is finite, with cardinality b (@O,
For each stable graph I' € G ,,, we associate a moduli space My = HUEV(F) J\/lg(v),n(v and

define a natural map & : Mp — ./\/lgm to be the canonical gluing morphism.
We denote by PZ’T(A) € RYM,,) the degree d component of the tautological class

1 . 1 — exp(—w(h)w(h')(Yn + Yw))
Z Z |A11t Th1(r)fr* gexp(a?%u) ’ H wh—i_wh’ - .

reGyn weWr e=(h,h")eE(T)

in R*(M,,,). o
Pixton proved for fixed g, A, and d, the class P4"(A) € RY(M,,,) is polynomial in r for
r sufficiently large. We denote by Pg(A) the value at r = 0 of the polynomial associated to

P47(A). In other words, P4(A) is the constant term of the associated polynomial in r.
The following formula for double ramification cycles was first conjectured by Pixton.

Theorem 8 ( [JPPZ17)). For g > 0 and double ramification data A, we have
DRy(A) =279PY(A) € RY(M,,,).

2.2.2. Formula for \;. The top Chern class )\, of the Hodge bundle E is a very special case
of a double ramification cycle (see [JPPZ17, §0.5.3]):

DR,(0,...,0) = (=1)%\, € RY(M,,,). (8)

Combining Theorem |8 and , it leads to a nice formula for the top Chern class of Hodge
bundle \;, which is supported on the boundary divisor of curves with a non-separating node.
That is, in R9(M,,), we have

Ay = ﬂpg(o,...,oy (9)

To illustrate this, we list some explicit formulae of A\, on M, (g > 2) in low genus (cf.
[JPPZ17, §3.1], which also lists a longer formula in genus 4):
Genus 1.

M= —5PH0.0) = 56n. (1) (10)

where I' € (1 is the dual graph of the boundary divisor of singular stable curves with a
non-separating node.
Genus 2.

1 1

1 1
_L g @ o
2016 @ T 2016 @ 672 e o " 575 5760

13
T 30240 =—2 " 5760 Q’C" 82944 %Q

All these expressions are obtained by substituting A = () in Pixton’s formula for the double
ramification cycle (except in the genus one case, where we should set A = (0,0)).

Genus 3.

A =
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2.3. Universal equations from chy,_;(E). A well-known formula for chy,_;(E) (cf. [FP0OOD,
(46)]) is
(1

Chgg_l(E) = m/\g)\g_l. (11)

In fact, this is a consequence from the following general relationship between the Chern
characters and Chern classes of a vector bundle:

Z(_l)kfl(k — 1)' Chk(E)tk = log <Z Ck(E)tk> )

k>1 k>0
Taking derivative ddt, we get
D (=1)F Rl chy(B) = (Z A,ﬁ) (Zk-xktk*) .
k>1 k>0 k>1

Since ¢(E)~! = ¢(E*), the above becomes

D (—1)F Mkl chy (B)E ! = (Z)\k >'<ik~>\ktk1>. (12)

k>1
Taking the coefficients of 2972 on both sides of gives .
Recall the following important properties of the Hodge bundle:

e Pulling back via the gluing map ¢4, g4, : ﬂgl,nlﬂ X m927n2+1 — ngn, we have

E = 1]E91 @p;Egz (13)

91 92

where p;(i = 1,2) denotes via the projection maps from M, ,,, 11 X M, n,+1 Onto its
factors. o o
e Pulling back via the gluing map: ¢,—1: My_1 41 = M, ,, we have
,1Eg = ngl > O (14)

where O is the structure sheaf.

Lemma 9. For any g > 2 and a stable circular graph I' € G2
P3(0) is
9

COHtFPZ(@)ZMf—Jj&)’ >, -]l (%wh(e)wh/(e))“e*l)- (15)

> ecE(m)=g kle)=g ecE(T)
k(e)>1,YecE(T)

9.0, the contribution of T' to

Proof. For any graph I' € G (,, the associated weighting modulo r is either identically equal
to 0, or alternatingly a and r — a for some 1 < a < r — 1. From [JPPZ17, Appendix], we
know that
r—1
1 lz(&) 11 1 —exp(—a(r — a)(Yne) + Vwie))
| Aut(I)] Un(e) + Vni(e)

=1
a ecE(T) deg=g
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is polynomial in r for r sufficiently large. The contribution Contr PJ(()) of the graph I' to
Pg(@) equals the constant term of this polynomial. By a direct computation,
1 1< 1 —exp(—a(r — a)(Vne) + Un(e)))
n Z(§F> H (e) (e)
| Aut(D)| r Uh(e) + Uni(e)

a=1 ecE(T) deg—g
—1 k(e) k(e) k(e)—1
\Aut Z Z (€r)- H k(e)!a (a—=7)"(Ynee) + Yw(e))
a=13 ccrm) kle)=g ecE(T)
1 5 9 9 —1 —1 k(e)—1
=\ Za (@—r)?]- Z (&r)- H 77 (Un(e) + w(e))
r | Aut(T)]| k(e)!
a=1 Deen(r) k(e)=g e€E(I)
Therefore,
By
Contp PY(0) = —9— . - ,
oo P30 = ity 3 (e T (ptone +owea ™)
ecE(T) ecE(T)
where we have used Faulhaber’s formula
r—1 m
1 1
Z 4 1 (m ; ) Bk
a=1 m+ k=0
for any m > 1. 0

Proposition 10. For any g > 2, the following relation holds on Mg :
AgAg_1
B 1 Ui Yo o(v)

_ P2y — e (e

_22912 Z (€r)- H k(e Z 1e) m(e) HP()(OO)
] () (e)! m(e)

FGG;O ZGEE(F) k(e)=g ecE(T) l(e)+m(e)=k(e)—1 v

k(e)>1,Yec E(T)

Proof. We compute:
Ag—1-PI(0) = Ag_1 - Z Contr PY(0) = Z Ay - Contr P9(0)

IeGyo0 reGs ,
_ BQg —1 k(e)—1 A
= TAGL(D (&)« ol H(Uhte) + Vwe)) : 9(0)
< | Aut(T)] _ (e)!
TeGy, > ecr(r) k(e)=g e€ () veV (T)
k(e)>1VecE(T)

In the second equality, we used both that, first, by definition, no stable graph with at
least one separating edge contributes to Pg(@). Second, no graph with more than one loop
contributes, since applying the properties of the Hodge bundle and to A\g_1, the
contribution of such a graph would involve a Hodge class A; for i > g(v) on some vertex
moduli space Mg(v)m(v). Finally, in the third equality, we again used the properties of the
Hodge bundle, combined with Lemma @ We next apply @ twice, and obtain

—1)9
Aghg-1 = (29))‘9—1Pg(®)



10 F. JANDA AND X. WANG

—1)9 B29 e)
:(zg) 3 D) 3 3 (H el [ (Vne) + Vw(e) PO T Ao )
)

FGG;,O c€E(T) k(e)= ecE(T) veV(T)

k(e)>1VecE(T

_(=px Bag -1 k()1 9(v)
=g 2 w2 @ 1 pmiee Hewe) T T P00
FeGgo Yeen(m) kle)=g ecE(T) veV ()

k(e)>1Vee B(T)

After expanding each factor (Yp(e) + ¥nr(e))" (©)=1 via the binomial theorem, this yields (16]).

O
To illustrate this, we list formulae for A\,\,_; on M, in low genus:
Genus 2. '
Mo = ——% :
2T 4R0 QP}(O@)
Genus 3.
1 ) 1
Ay = ——¥ — - —— W :
2= 5061 @py00) 8064 @ p200)  2688p1(0,0) @@ P100)
Genus 4.
1 1
A3 = — Ve — —J} — 2 — P
178 = 75360 st 00 5120 @ p200) | 2304061 (0.0) €@ r200) T 3072051 (00) ®—2 p2(00)
1 1 1

2

N _— p —_— p
+ 11520p1(0,0) & 050 * 15360 pr1(0,0) o9 P2(0,0) + 23040, (0,0) OP%(O,O)

P1(0,0)
1 1

P - — .
T 30720p1(0.0) © @ p200) 7680100 ® VO P1(00)

2.4. Proof of Theorem |1, We first recall some standard results about the correspondence
between descendant and ancestor invariants (cf. [CG07, Appendix 2]). Consider the stabliza-
tion morphism

St: Myn(X,8) = Myn

which forgets the map f in (C;xy, ..., 7,; f) € Myn(X, 8) and stabilizes the curve (C; zy, . . ., z,,)
by contracting unstable components to points. Let

Tm - Mg,n—l-m(X? ﬁ) — Mg,n(X7 B)

be the morphism, which forgets the last m markings, and stabilizes the curve. For 1 < i < n,
denote the cotangent line bundle along the i-th marked point over Mg,n and ﬂg,ner(X ,B)
by L; and L;, respectively. The bundles £; and 7, St* L; over mg,ner(X ,3) are identified
outside the locus D consisting of maps such that the i-th marked point is situated on a
component of the curve which gets collapsed by St omr,,.

This locus D is the image of the gluing map

it Umyma Mo (i} ermi (X, B1) X x Mg (i} +04ma (X, B2) = Mgnim(X, 5)
1

where the two markings e and o are glued together under map . We denote the domain of this
map by y®

n,m,3"

The virtual normal bundle to D at a generic point is Hom(7}, St™ ¢;(L;), £;),
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and so D is “virtually Poincaré-dual” to ¢;(L£;) — 7, St* ¢1(L;) in the sense that
(e1(£:) = 75, St €1 (L)) N Mo (X, B = 0¥, o] (17)
Define mixed type of ancestor and descendant twisted correlator as follows:

<<ﬂ1ﬂ'1(¢1) e TinTin (Pn); g, n>>g(t(¢))

/ ( X evkq§k> H evy t(¢y) - mh, St cgn. (18)
Mg ntm (X BT g

5>0 k=n+1

for certain cohomology class c,,, € H*(M,,), where 1 1= c;(L},) and ¥, = 7%, St* ¢ (Ly,).
Below we only focus the cases of ¢, , =1 or A,.

Lemma 11. For any 29 — 2+ n > 0, on the big phase space, we have
<<77—j17_i1(¢041)7 cee ’%jnTin<¢a'n); /\g>>g = <<Tj1 (Ti1 (¢a1))7 s 7Tjn (Tin (gban)); )‘g>>g (19)
for any {¢a, i =1,...,n} C H(X;C) and T is the operator from . In particular,
(T2 (Bar)s s T (Ban)i Ag))g = (T (D) - s T (Ban )i Ag) ) (20)
Note that by @, these two equations also hold true if we replace Ay by P9(0, .., 0).

Proof. We will focus on the first marked point, and for simplicity, suppress the content of
the other marked points from our notation. By and , the following identity holds
for mixed type twisted correlators on the big phase space

(T 1T (0)s -5 A g = (T T (@) -3 Ag))g + ({701 (9), 8800 (T -1 (67), - 5 Ag))g
for any ¢ € H*(X;C).
This implies
<<77—]'17—i1(¢041)7 cee )\g>>g = <<’7_j1—1 (Ti1+1(¢041) - <<Ti1(¢041)7 ¢5>>0¢6> Yo )\g>>g
:<<7_—j1—1T(7-i1 (¢a1))7 R /\g>>g'

Repeating this j; — 1 more times, we get

<<7_—le1'1 (d)al)? cee )‘g>>g = <<Tj1 (Til ((rbm))v S /\g>>g

Similar analysis for the other markings, yields ((19)). U
For any g,n such that 29 —2+n>0and t =3 102"d. € H*(X)[[{t7}][[2]], define a

homomorphism €, + H*(X)[[]]*" — H*(M,,)[[QI][[{t}]] via

. B n ‘ n+m
b (G i) = S %Swm* (Hev;;cw,? I1 evztwk)).

m,3>0 k=1 k=n-+1

From the “cutting edges” axiom of virtual cycles of moduli of stable maps to X, this system
of homomorphisms satisfies the splitting axioms:

g1 9249, n(gbal L 7¢an¢ln Z le n1+1 ®k€11 %kw/ik, ¢5) ® sz,n2+1(®k612 qbakwlick ® (ZSIB)

(21)
and

<¢a1 7 R ¢anwzn Z Qg 1,n+2 ¢a1 7 R (ban ;L'lnv (bﬁa ¢5) (22>
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where tg, gy 1 Mgy myt1 X Mgy mpi1 — Mg and 1y 1: My 100 — M,, are the two canonical
gluing maps. Note that, by definition, €2 is related to the double bracket of descendant
potential via integration on the moduli space of curve, i.e.

| ot ) = (o), )0
Now let us prove Theorem . On the one hand, taking [ = g and s = 0 in yields

ek (BN,

= Bl (B +

I
~—~
|
—_
~—

<

4 {<<Ti(¢a)ng—2—i(¢a)>>g—1 + Z<<Ti(¢a)>>h<<ng—2—i(¢°‘)>>g—h}

=0
(23)

On the other hand, by combining and Proposition we obtain

2g)!

(BZ!); Ch2g—1(]E)

(*1)99 1 Z (é_ ) ( H ( 71 Z ’(/};L((ee)) w}?gz;) H Pq(v)(o O))
T 9292 TJx k(e) ! 1 g(v)

2 FEGS7O ‘AUt(F)‘ ZeEE(F) k(e)=g ecE(T) k(e) l(e)+m(e)=k(e)—1 l(e) m(e) veV(T)

k(e)>1,VecE(T)
Then combining with Lemma the splitting axioms and , we get

(29) CE
B (b a®N)y = 2 [0t ey 1@

lle) ,mle)
. -1 ne) Yhie)
E E &0, - _—
229 3 W&, |Aut Dl s~ E(p)k(e)g/MF el eel;!:F) K(O) oy smiari(e1 &) me)!
ec
k(e)>1,YecE(T)

g(v)
H P (0, 0))

veV(T)
-1 N m ki—1
—1)9g w— 1 1= (k-1 _ L e e
:(229)2 > o > > > Hp > ( y ><<T“(¢a”)T’“’ =l (¢2); P(0,0)))g,
m=1 k14 +km=g g1+ +gm=g—1 a1,...,am=11i=1 v 1;=0 g

Etynkm>1 g1,e0gm>1

where oy = «,,. In the last equality, we took into account the symmetries from stable
circular graphs I' and indices {k;}7,, {g:}:",. Therefore, we prove Theorem []

2.5. Reformulation of Theorem In this subsection, explain how to use Pixton’s for-
mula to rewrite each factor of the form ((T(vy)T"(v2); P4(0,0))), in the right hand side of
in terms of pure descendant Gromov-Witten invariants. For convenience, let P%(0,0)
denote the constant term of the following polynomial in r for sufficiently large r

Z 1 1 H 1 — exp(—w(h)w(h')(Pn + ¥n))

PY =C ffro 1
r(0,0) o€ | Aut(D)[ r" T U+ U

weWr . e=(h,h')€E(T)

(24)
for any I' € G 2. We may view PL(0,0) as a polynomial in the v-classes {¢y, : h € H(T)}.
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We next define a linear operator P+ ((T%(v1)T®(vz); P))r that turns any polynomial in
the i-classes {¢, : h € H(I')} into a product of correlation functions. Given a monomial
P=c-[lhenm ¢, we let ({(T*(v1)T?(v9); P))r to be the contraction of the multilinear form

e IT (- Naw

veV(I)
with arguments corresponding to half-edges h € H(I") via:

e for the argument corresponding to the first and second leg, use the vectors T%(v;)
and T°(vy), respectively;

e for each edge e = (h, k'), use the bivector T (¢,) @ T (¢*) for the corresponding
arguments.

Proposition 12.
(T (01) T (02); P§(0,0)))g = > ((T*(v1)T"(v2); PL(0,0)))r-

I'eGy,2

Proof. By in Lemma [11] and (9)), together with definition of Qf, we have
(T (v1)T* (v2); P5(0,0)))g = ((Talv1)T5(v2); P§(0,0))),

B _ 3 m+2
=2 Q—'/ (85 evivn) (Dhevien) T evitlwn) - mi, Se* P3(0,0)
M (Mo, m2 (X, 6)17 paley

m,3>0
i @Z}(llqu)g ' 92,2(U17U2) : Pg(ov O)
Mgz

By the projection formula, this equals

S il Qo(vn,ve) - £ PR0,0) = Y [ Wb - &7 (01, 02) - PE(0,0).
TeGy o Y Mo:2 PeGy o Y Mr
Then by the splitting axioms , and equation , we can express each sum-
mand as a product of descendant correlation functions according to the operator P +—»
{(T%(v,)T"(v2); P))r. In the process, the two marked points are assigned the vectors vy, vy,
and the cotangent line class 1) is translated to descendants using the operator 7. Each node
is translated into a sum of pairs of primary vector fields ¢, and ¢“. 0

2.6. Proof of Corollary The following vanishing indentity for the Gromov—Witten in-
avriants of any smooth projective variety was first conjectured by K. Liu and H. Xu in [LX09],
and was later proven in [LP11].

0=, ({Taszg-1(¢a)))g + . > (1) {Z<<Ti(¢a)>>h<<T2g—2—i<¢a)>>g—h} (25)

2 4
=0 h=0
for n > 0.
Combining and , we obtain
2g9—2

D (1) (7i(Pa)T2g-2-i(6%))) g1

1=0
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m=1 k1+~--+km=gg1+~~~+gm:g—1 at,..,am=11i=1
k1y..oskm>1 915y gm>1

(26)

Recall that for any arbitrary contravariant tensors P and () on the big phase space, the
following formula was proved in |Liull, Proposition 3.2]:
Y (D' P(8a)Q(Tm-i(67) = Y (=1 P(T"(6)Q(T™(6"))
=0 i=0
for m > 0. In particular, if we take P(W) = Q(W) = W, the left hand side of becomes
29—2
D DU ()T 27 (67))g 1
i=0

This completes the proof of Corollary [2]

3. PUSH-FORWARD RELATIONS ON M, FOR (g > 2)

3.1. Push-forward relations. First, we introduce our definition of push-forward relations,
which is slightly different from the notion proposed in |[Panl8|, Section 4.9.2]. Consider the
gluing map,
L: ./\/lgg — M9+1

with image equal to the boundary divisor Ag C Mgﬂ of curves with a nonseparating node.
A push-forward relation can be understand as an element of ker(s,), where ¢,: R*(M,2) —
R (mg+1). Push-forward relations among descendant stratum classes yield universal equa-
tions for genus less than or equal to ¢ Gromov-Witten invariants, despite the fact that the

relations are embedded in genus g+1 moduli space of curves. A simple family of push-forward
relations in R?9F" (M, ) for (¢ > 1,7 > 1) were first found in [LP11]

> (=D () = 0. (27)
a+b=2g+r
Comparing equations and , we see gives the correction terms explicitly for the
left hand side of equation for r = 0.

3.2. Proof of Theorem |5 Let j: A(gy, go) = mghg X ﬂg%g — Mg-i—la denote the bound-
ary divisor parametrizing nodal curves with two components C; and C5 with genus ¢g; and
g2, where gy + go = g+ 1. Let 1,; be the cotangent line class at the node along the curve C;
for i = 1,2. By the relation |[LP11, Proposition 2] in genus g + 1, we have

- %g+3 - ¢§g+3 + Z Z J *1¢22 N[A(g1, 92)]) =0 (28)
g1+g92=9g+1:9;>0 a+b=2g+2

in R2973(M,y,12). Pushing forward equation to M,y by forgetting the two marked
points, via string equation, we have the following relation on M

K2g+1 + % Z Z 4ty N [A(g1, 92)]) = 0. (29)

91+92=9,9:>0 a+b=2g

sy > 2 g (M o T )P 0.0



UNIVERSAL EQUATIONS FROM HODGE INTEGRALS 15

Meanwhile, by Mumford’s Grothendieck-Riemann-Roch calculation (cf. [Mum83]), the fol-
lowing holds on M, :

2 2)!
(29 +2)! chags1(E)
BQg+2
1 1 . (a
=R2g+1 + éb* ( Z (—1)%?1/13) + ) Z Z (=1)%)x (1/1*11/’22 N [A(91792)])
a+b=2g 91+92=9,9:>0 a+b=2g

Thus we get the following relation on mg+1,

Qoo m- L, ( 5 <—1>w3)

B29+2 a+b=2g
Together with equation and Proposition , we obtain Theorem .

3.3. Connection to degree-g topological recursion relations. We propose the fol-
lowing connection between the relations (3), and a class of degree-g topological recursion
relations on the moduli space of stable curves:

Conjecture 13. The universal equation is a consequence of the degree-g topological
recursion relations proposed in [CJWZ23)].

We verify the conjecture for ¢ = 2 case in the example below.

Example 14. For genus g = 2, the equation specializes to
2

D DT (6a)T* (@)

=0

,_.

m 1.’4:Z

1
- SR SR ||
m k;!
m=1 i+ 4km=2 g1++gm=11i=1
ki,skm>1 " g1,..,9m>1

ki —1 _ L e A
(% Gu )T s 0.0)),
1,=0
(30)
We will check that is a consequence of the genus-1 topological recursion relation:

(T = 57 S (W 6u6%))o (31)

for any vector field W on the big phase space. We start by rewriting the left hand side of
B0) as

ZZ (T (0a) T (%) 1—22 (T2 N)1 — (T (@) T(6"))1

a =0 [

= S BT (6650,

aMB

where we have used and its derivatives in the last equality. The right hand side of
equals

e ()t earten oo,

a 11=0
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__ —Z (606" PLO, 0 — 3 " ((6aT(6): PL0,0)))s

«

:——Z (6aT(6%): PLO, 0D = 5 (6T (6)650") )0

a,B
where we have used the identity
> {(T(¢a)$"; P1(0,0)) Zno‘ﬁ (¢a)$; PL(0,00))1 = D> ({65T("); P1(0,0)))1.
a B
in the second equality, and the formula for P1(0,0) in the last equality.

4. CHERN CLASS OF HODGE BUNDLE

Unlike the Chern characters, the Chern classes \; = ¢;(E) already vanish in degrees i > g.
Thus for degree reasons, we believe the vanishing of the \; implies much stronger relations
than the relations from the Chern characters we have studied in Section [2| and this makes
it very interesting to study what kind of relations the vanishing of the A; for ¢ > ¢ leads to.

4.1. Linear Hodge integrals. Define the linear Hodge integral

n

<Tk1 <¢a1>7 w0y Thy <¢an>; /\j>g,n,6 = / H wfz evj Pa - )‘j (32>

[mg,n (Xvﬁ)]wr =1

where \; = ¢;(E) is the j-th Chern class of the Hodge bundle E.
The generating function of genus-g linear Hodge integrals is given by

FE(t,u) = <exp (Zthn(¢a));A(u)> (33)

g

where A(u) = >°7 ; \ju’ is the Chern polynomial of the Hodge bundle E, and w is a formal
parameter. Via a standard identity relating the Chern classes and Chern characters of a
vector bundle, we have

A(u) = exp (Z(Zl — 2)ly? chzll(E)> : (34)

>1

The generating function of genus-g linear Hodge integrals F;E(t,u) can be obtained from
F}(t,s) via the substitution

S9;—-1 — (22 - 2)' . U%_l. (35)
4.2. The Faber—Pandharipande relation and Givental quantization.

4.2.1. The Faber—Pandharipande relation. Define the differential operator for [ > 1

Doy : i > i 0 .n 25( 1)mnd — 0 _9 (36)
20-1 = — naa T 5 - -
n=0 « 8t”+2l_1 2 n=0 at 8t§l 2—
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Let DE(t,s) = exp <Zg20 ho—1EE(t, s)) be the total descendant potential of Hodge integrals.
The following differential equation was proved in [FP00a, Propositon 2]

0 By,
D*(t 2Dy - DE(t
8825_1 ( ) ) (2[) 2l-1" ( 7S> (37)
for any I > 1. The identity (37) may be used to derive the following formula (cf. |Giv01])
B
DF(t,s) = exp()_ —2su1Da1) - DX (t) (38)

= (20)!

for DE(t,s) in terms of DX(t) = exp <ZgZO hgleg(t)>, the total descendant potential of

Gromov—Witten invariants of X.

4.2.2. Quantization of quadratic Hamiltonians. In this section, we give a brief review of
Givental’s quantization of quadratic Hamiltonians (see [Giv01] for more details).

Let z be a formal variable. We consider the space H which is the space of Laurent
polynomials in one variable z with coefficients in H*(X;C). We define a symplectic form €
on H via

Q(f7 g) = Res.—o n(f<_z)7 g(Z))dZ
for any f,g € H. Note that we have Q(f,g) = —Q(g, f). There is a natural polarization
H = H, ®H_ corresponding to the decomposition f(z,271) = f(2)+f_(271)2z"! of Laurent
polynomials into polynomial and polar parts. It is easy to see that H, and H_ are both
Lagrangian subspaces of H with respect to §2.

Introduce a Darboux coordinate system {p”,q%} on H with respect to the above polar-
ization. A general element f € H can be written in the form

D ohd? (=) Y e
m>0,8 n>0,a
where {¢*} is the dual basis to {¢,}. Denote
= > P’ (=) alz) = > ¢as"
m>0,8 n>0,a

For convenience, we identify H, with the big phase space via identification between basis
{z"¢o} and {7,,(¢a)}, and dilaton shift about coordinates ¢% =t — §14..

Let A: H — H be a linear infinitesimal symplectic transformation, i.e. Q(Af, ¢)+Q(f, Ag) =
0 for any f,g € H. In Darboux coordinates, the quadratic Hamiltonian

1
is a series of homogeneous degree two monomials in {p?, ¢*}.
We define the quantization of quadratic monomials as
B> 5 0 3 = o 0
a:qmqn ﬁa: /3_ 5a:h__
where A is a formal variable. We define the quantization A of a general A by extending

the above equalities linearly. The differential operators qﬁ@qn,qmpn,pmpn act on the Fock
space, which is the space of formal functions in q(z) € H,. For example, the descendant
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potential D(t) may be regarded as an element in the Fock space via the dilaton shift q(z) =

t(z)—1z. The quantization of a symplectic transform of the form exp(A), with A infinitesimal
An

n>0 nl

symplectic, is defined as exp(ﬁ) =5
4.3. Universal relations from the Chern classes of the Hodge bundle. It is easy

to see that multiplication by z?*~! defines an infinitesimal symplectic transformation on
(H, €2), and we denote by 2z2*~1 the corresponding quantization. It may be checked that

—

22=1 coincides with the operator Doy from (36)). For convenience, we will use the following
convention

P<q) - P(t>|t(2):q(z)+1z
for any partition function P(t). This allows us to restate as

—

D*(q,s) = R(=) - D¥(q) (39)
for the R-matrix
— By -
R(z) = exp( Yy —s59; 12771).
; (20175

So under the substitution , taking the logarithm of equation , we obtain

Z hg_lﬁf(q, u) = log (exp (Z (%)égﬁuzl_lz/ﬂ_\l>5x(Q)> .

g>0 >1
Denote

(T (@1), -, Tin(Dn); cgn))g (A(2)) = ((Tir (€1), - -5 Tirs (Dn); Com) g (4(2)) [e(2)=a(z) 412 (40)

for certain cohomology class c,, € H*(M,,,).

Proposition 15. Let g > 0 and i > 0. Then, the following holds for descendant Gromov—
Witten invariants

i = g— BQl 2l—1/\ ~NX 0 ) 7’fZ > g,
[u'h? ] log [ exp ( — le—1>D (@] =< (19 N .
Z @HEi=1) G5 AGPYON); (az) L ifi=g.
Here [u'h9~'] denotes taking the coefficient of u'h9~.
Proof. This follows from the vanishing \; = 0 if ¢ > ¢, and equation @ O

Theorem 16 ( [Giv04]). Let q(z) =), , dm®az™ be an element of H,. Given a partition
function D(q) on H,, the quantized operators act as follows. The quantization of an R-

matriz R acts on D via
~ Ev<i’i> _1
RD(q) = |e? \%a’%a/D| (R 'q)

where R™1q is the power series R™1(2)q(z), and the quadratic form V = > k(P Viapr) is
defined via
R(—w)"R(—z)

w—+z

1—
V(w,z) = Z Viqw" 2! =

k>0

)

where x denotes the adjoint with respect to the intersection paring on H*(X;C).
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The action of the exponential of the quadratic differential operator in Theorem [16]| has a
Feynman graph expansion, and its logarithm only involves connected graphs (c.f. [CPS18]).
Let T" denote a connected dual graph consisting of vertices V', edges FE, and legs L, with
each vertex v labeled by a genus g(v). We define the genus of the graph by g(T") = A'(T") +
> vev 9(v) where h! denotes the first Betti number of the Feynman graph I'. Denote Ggey n
to be the set of connected Feynman graphs of genus g. Feynman graphs differ from the
stable graphs from Section [2.2.1]in that they allow genus zero vertices of valence 1 or 2.

Theorem 17. Let

o0

B 2i—1 2i—1
R(z) = exp(; mu 2970,

Then, for g > 2, the following holds for descendant Gromov—Witten invariants

, 1 0 1>g
[w'] ——— Contr = ¢ "}y N , (41)
GZ | Aut(I) S5 AGPION; (al) i=g
where [u'] denotes taking the coefficient of u® and the contribution Contr of a Feynman graph
I' is defined as a contraction of tensors:

e Fach vertex v is assigned a tensor bracket

( Now (B a)

with insertion coming from the half edges.
e Fach edge e is assigned a bivector with descendants

> as (1700 ® 5 — 1P R (i) (¢a) @ R (Ww(e)) (¢5))
Unie) + V(e
4.4. Connection to Pixton’s 3-spin relations. In 2011, Pixton [Pix12| proposed a large
class of conjectural relations in the tautological ring of ﬂgm, which extend the Faber—
Zagier relations on the moduli space of smooth curves M. In [PPZ15], these relations were
proven to hold in cohomology by studying the cohomological field theory of Witten’s 3-spin
class, and so these relations are now usually called Pizton’s 3-spin relations. In |[Janl7], the
relations were established in Chow via a study of the equivariant Gromov-Witten theory of
P!. Pulling back to the moduli space of stable maps, Pixton’s 3-spin relations lead to a large
class of differential equations for ancestor Gromov-Witten invariants of any target manifold.
This work leads to a natural question:

Question 18. Is there any connection between the Hodge class relations and Pixton’s
3-spin relations?

To answer this question, we start by making a connection between Pixton’s 3-spin relations,
and the Chern classes of the Hodge bundle. There is a canonical way of writing the \; in
terms of boundary classes, 1-classes and k-classes, i.e. as elements of the strata algebra. As
explained in [Panl8, §1.3], the Chern polynomial \(u) forms a one-dimensional semisimple
CohFT Q% The Givental-Teleman classification for Q*® yields the required canonical
expression for A(u).

Proposition 19. Pixton’s 3-spin relations on the moduli space of stable curves imply the
vanishing \; = 0 for i > g. More precisely, as elements of the strata algebra, we may write
A as a linear combination of Pixton’s 3-spin relations.
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Proof. We use the results of [Jan18|], which show that a large class of tautological relations
from cohomological field theories are linear combinations of the 3-spin relations. In par-
ticular, the discussion of [Janl8, Section 3.8] applies to the CohFT OF' of the degree zero
C*-equivariant Gromov-Witten theory of P!. We first analyze this CohFT, then relate it to
the Hodge CohFT, and finally study their tautological relations.

The state space of QF " is the equivariant cohomology

HE(P*) 2 Clu][H]/(H(H — p)) = C[u([0], [o0])

viewed as a 2-dimensional free module over the base ring Clu|. Here, [0] = H and [oo] = H—p
are the cohomology classes of the points 0 and co in P!, respectively. Then eq = [0]/uo and
€oo = [00]/poo for o = p and po = —p form a basis of orthogonal idempotents. In
particular, this CohFT is semisimple. In the basis ey, e, the pairing is given by the matrix

1/ o 0
0 1/ps)”
Note that there is the formula

URCRIAES SETY B | CRICET e

for ¢1,..., ¢, € HE(PY). If we decompose ¢; = ¢i0€0 + Pico€oo, We may rewrite this as
Up(1,- )= > pd 1H¢m Zma ST (fras - bua)-
a€e{0,00} ae{0,00}

Thus, QF' is a direct sum of two Hodge CohFTs.
There is a Givental-Teleman reconstruction

QM = Rw, (42)
where
R(z2) = exp i B y2iml2t
— (2)(21 — 1)
=1
and wy,(ar,...,a,) =ay-----ay, for ay,...,a, € C. For O the Givental Teleman recon-
struction

O (b1, b)) = BT wF (01, ) (43)

respects the direct sum structure, with R-matrix

R¥(2) = (R(Z)B“““l R(z)\o_ )

U=poo
if written in the basis {eg, e}, and topological field theory defined via
1
wlg,n(¢17'-~7¢n = Z ,U wgn ¢1a7'--7¢na)
ae{0,00}

The results of [Jan18| Section 3.8] imply that for any choice of ¢y, ..., ¢, (well-defined in
the non-equivariant limit g — 0), the polar terms in g on the right hand side of are a
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linear combination of Pixton’s 3-spin relations. If n > 0, note that because of the diagonal
form of the pairing and RPI, we have

QF (0], 1,1, ., 1) = pf (Rw)(L, ..., 1)) eyt

and thus the polar terms correspond exactly to the terms in of degree ¢ > g. This
establishes the proposition in the case n > 0.

The case n = 0 follows from the case n = 1 via the dilaton equation, and the fact that
Pixton’s relations are stable under pushing-forward via forgetful morphisms. O

Remark 20. The result of Proposition [19] immediately implies that the differential equa-
tions for ancestor Gromov-Witten invariants from the vanishing A; = 0 for ¢ > g are linear
combinations of those for Pixton’s 3-spin relations. We expect a comptability between the
Givental-Teleman reconstruction, quantization of quadratic Hamiltonian, and the descen-
dant /ancestor correspondence, however we were not able to find a reference for this fact. This
compatibility would imply that in a strong sense, the ¢ > g part of is a consequence of
Pixton’s 3-spin relations.

Remark 21. Given that Pixton’s 3-spin relations are expected to be a complete set of rela-
tions in the tautological ring, we also expect the i = g part of to also be a consequence
of Pixton’s 3-spin relations. However, we do not know how to prove this. One difficulty is
that the two sides of have very different origins. On a basic level, the left hand side
of comes from the Grothendieck-Riemann-Roch computation of the \,-class, while the
right hand side comes from relative Gromov—Witten theory.
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