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Abstract. We revisit the variational characterization of conservative diffusion as entropic gra-
dient flow and provide for it a probabilistic interpretation based on stochastic calculus. It was
shown by Jordan, Kinderlehrer, and Otto that, for diffusions of Langevin—-Smoluchowski type, the
Fokker—Planck probability density flow maximizes the rate of relative entropy dissipation, as mea-
sured by the distance traveled in the ambient space of probability measures with finite second
moments, in terms of the quadratic Wasserstein metric. We obtain novel, stochastic-process ver-
sions of these features, valid along almost every trajectory of the diffusive motion in the backwards
direction of time, using a very direct perturbation analysis. By averaging our trajectorial results
with respect to the underlying measure on path space, we establish the maximal rate of entropy
dissipation along the Fokker—Planck flow and measure exactly the deviation from this maximum
that corresponds to any given perturbation. A bonus of our trajectorial approach is that it derives
the HWI inequality relating relative entropy (H), Wasserstein distance (W), and relative Fisher
information (I).
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1. Introduction. We provide a trajectorial interpretation of a seminal result by
Jordan, Kinderlehrer, and Otto [31], and present a proof based on stochastic analysis.
The basic theme of our approach could be described epigrammatically as “applying It
calculus to Otto calculus.” More precisely, we follow a stochastic analysis approach to
the characterization of diffusions of Langevin—Smoluchowski type as entropic gradient
flows in Wasserstein space, as in [31]. We provide stronger, trajectorial versions of
these results. For consistency and readability we adopt the setting and notation
of [31], sometimes quoting almost verbatim from this paper in the remainder of this
section.

Along the lines of [31], we consider thus a Fokker—Planck or forward Kolmogorov
[36] equation of the form

1
(1.1) Op(t,x) = div(V¥(2) p(t,x)) + 5Ap(t7), (@) € (0,00) x R,
with initial condition
(1.2) p(0,z) = p°(x), xr e R™

Here, p is a real-valued function defined for (¢,z) € [0,00) x R™, the function
U: R™ — [0,00) is smooth and plays the role of a potential, and p° is a probability
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density on R™. The solution p(t,z) of (1.1) with initial condition (1.2) stays nonneg-
ative and conserves its mass, which means that the spatial integral fR" p(t,x)dx is
independent of the time parameter ¢ > 0 and is thus equal to f p0da = 1. Therefore,
p(t, -) must be a probability density on R™ for every fixed time ¢ > 0.

As in [31] we note that the Fokker—Planck equation (1.1) with initial condi-
tion (1.2) is inherently related to the stochastic differential equation of Langevin—
Smoluchowski type [23], [24], [48], [52]

(1.3) dX(t) = =V¥ (X (t)) dt + dW (¢), t>0.

In the equation above, (W (t));>0 is an n-dimensional Brownian motion started at the
origin, and the R™-valued random variable (r.v.) X(0) is independent of the process
(W (#))¢>0. The probability distribution of X (0) has density p°, and, unless specified
otherwise, the reference measure will always be the Lebesgue measure on R™. Then
p(t, - ), the solution of (1.1) with initial condition (1.2), gives at any given time ¢ > 0
the probability density function of the r.v. X(¢) from (1.3).

If the potential ¥ grows rapidly enough so that e=2% € L'(R"™), then the partition
constant

(1.4) Z = / e 2V gy

is finite, and there exists a unique stationary solution of the Fokker—Planck equa-
tion (1.1), namely, the probability density gz of the Gibbs distribution given by
(see [24], [30], [48])

(1.5) qz(z) = Z71e 2¥@

for x € R™. When it exists, the probability measure on R™ with density function ¢z
is called the Gibbs distribution and is the unique invariant measure for the Markov
process (X (t)):>0 defined by the stochastic differential equation (1.3); see, e.g., [35,
Exercise 5.6.18, p. 361].

In [30] it is shown that the stationary probability density g satisfies the following
variational principle: it minimizes the free energy functional

(1.6) F(p)=Ep) + %S(p)

over all probability densities p on R". Here, the functionals

a1 Ew= [ vepeds  SE)= [ p)hp)ds

model, respectively, the potential energy and the internal energy (given by the negative
of the Gibbs—Boltzmann entropy functional).

Preview. We set up in section 2 the model for the Langevin—Smoluchowski
diffusion and introduce its fundamental quantities: the current and the invariant
distributions of particles, the resulting likelihood ratio process, the associated concepts
of free energy, relative entropy, and relative Fisher information. In subsection 2.1 we
discuss the regularity assumptions imposed in the present paper.

Sections 3 and 4 present the basic results. Foremost among these is Theorem 3.1,
which computes in terms of the relative Fisher information the rate of decay for the
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relative entropy in the ambient Wasserstein space of probability density functions
with finite second moment, and its “perturbed” counterpart, Theorem 3.2. We com-
pute explicitly the difference between these perturbed and unperturbed rates and
show that it is always nonnegative—in fact strictly positive, unless the perturba-
tion and the gradient of the log-likelihood ratio function are collinear. This way, the
Langevin—Smoluchowski diffusion emerges as the steepest descent (or “gradient flow”)
of the relative entropy functional with respect to the Wasserstein metric— and the cel-
ebrated result of [31] receives a crisp, direct probabilistic treatment via perturbation
analysis. This is the main contribution of the present work.

Certain aspects of Theorems 3.1 and 3.2 are well known, and the special case
U(z) = |z|?/2 of Ornstein—Uhlenbeck dynamics goes as far back as the 1950s. Our
novel contribution here is that Theorems 3.1 and 3.2 are simple consequences of
their stronger, trajectorial versions, Theorems 4.1 and 4.2, respectively. These results
provide very detailed descriptions for the semimartingale dynamics of the relative
entropy process in both its “pure” and “perturbed” forms and are most transparent
when time is reversed. Theorems 3.1 and 3.2 then follow from Theorems 4.1 and 4.2
simply by taking expectations.

Several consequences and ramifications of Theorems 4.1 and 4.2 are developed
in subsections 4.1 and 4.2, including a derivation of the famous HWI inequality of
Otto and Villani [45], [56], [57], [14] that relates relative entropy (H) to Wasserstein
distance (W) and to relative Fisher information (I). Detailed arguments and proofs
are collected in section 5. The limiting behavior of the Wasserstein distance along
the Langevin—Smoluchowski diffusion is analyzed in section 6; here, most of the effort
goes into showing that relative entropy and Wasserstein distance have exactly the
same exceptional sets of zero Lebesgue measure for their temporal rate of change.
This, seemingly purely technical, point is of paramount importance for the rigorous
justification of the perturbation analysis deployed in Theorem 3.2; it turns out also
to involve a rather delicate analysis. We leave the probabilistic derivation of the
Wasserstein limits as an interesting open problem.

2. The stochastic approach. In section 1 we primarily quoted from the
paper [31]. We adopt now a more probabilistic point of view and translate our setting
into the language of stochastic processes and probability measures.

Let P(0) be a probability measure on the Borel sets of R™ with density func-
tion p = p(0, -). This measure induces a probability measure P on the path space
Q =C(R4;R™) of R™-valued continuous functions on R = [0, 00), under which the
canonical coordinate process (X (t,w))i>0 = (w(t)):>0 satisfies the stochastic differen-
tial equation (1.3) with initial probability distribution P(0). We denote by P(t) the
probability distribution of the random vector X (¢) under P, and by p(t) = p(t, - ) the
corresponding probability density function, at each time ¢ > 0. This function solves
the equation (1.1) with initial condition (1.2).

An important role will be played by the Radon—Nikodym derivative, or likelihood
ratio process,

dP(t) B _pt,x) 20 (a
W(X(t)) =((t,X(t)), where {(t,x):= @) = p(t, z)e*¥@

for t > 0 and = € R™. Here and throughout, we denote by Q the o-finite measure on
the Borel sets of R™, whose density with respect to Lebesgue measure is

(2.1)

(2.2) q(z) = e 2@ xz €R".
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The relative entropy and the relative Fisher information (see, e.g., [45], [15]) of P(t)
with respect to this measure Q, are defined, respectively, as

(23)  H(P(t)|Q) := Ep[Ine(t, X (1)] :/" 1n(p;7zg))p(t,x) dz,  t>0,

(24) I(P(H)|Q) == Ep[|v1ne(t,X(t))y2] :/n |VInl(t,z)*p(t,z)dz,  t>0.

It follows from section 3 in [38] (see also Appendix C in [34]) that the relative entropy
H(P|Q) is well defined and takes values in (—oo, oo] if the probability measure P has
finite second moment. The latter is always the case in our paper.

Direct computation reveals that, along the curve of probability measures
(P(t))t>0, the free energy functional (1.6) and the relative entropy (2.3) are related
for each ¢ > 0 through the equation

(2.5) 27 (p(t, -)) = H(P(t) | Q).

This shows that studying the decay of the free energy t — 7 (p(t, -)) is equivalent to
studying the decay of the relative entropy t — H(P(t) | Q), a key aspect of thermody-
namics. In light of condition (ii) in Assumptions 2.1 below, the identity (2.5) implies
that H(P(0)|Q) is finite, so the quantity in (2.3) is finite for ¢ = 0; thus, on account
of (4.13) below, it is finite also for ¢ > 0.

2.1. Regularity assumptions. In order to provide mathematically precise for-
mulations of subsequent results, we have to specify convenient regularity assumptions.
These issues are of a rather technical nature, and subsection 2.1 may be skipped on
a first reading of this paper.

By analogy with [31, Theorem 5.1] we consider the following assumptions.

Assumptions 2.1. (i) The potential ¥: R™ — [0, 00) is of the class C*°(R™; [0, 00)).

(ii) The distribution P(0) of X(0) in (1.3) has probability density function
p° = p(0, -) with respect to Lebesgue measure on R™, with finite second moment and
free energy, i.e.,

(2.6) /n p’(2)|z]*dz < oo and F(p°) = %H(P(O) |Q) € (—o0,00).

In [31] it is also assumed that the potential ¥ satisfies, for some real constant
C > 0, the bound |V¥| < C(¥ + 1), which we do not need here. Instead of this
requirement, we impose the following rather weak assumptions.

Assumptions 2.2 (regularity assumptions for the trajectorial results of the present
paper). In addition to conditions (i) and (ii) of Assumptions 2.1, we also impose the
following:

(iii) The potential ¥ satisfies, for some real constants ¢ > 0 and R > 0, the drift
(or coercivity) condition

(2.7) Yz eR", |z|>R: (2,VV¥(2))>= —clz|’.

iv) The potential ¥ is sufficiently well-behaved to guarantee that the solution
— p(t,x) of (1.1) with initial condition (1.2) is continuous and strictly positive
o0) x R™, differentiable with respect to the time variable ¢ for each z € R™, and

(
(t,z)
0

on (0,
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smooth in the space variable x for each t > 0. We also assume that the logarithmic
derivative (t,x) — VInp(t,z) is continuous on (0, 00) x R™.1

For the formulation of Theorem 3.2 we will need a vector field 8: R — R",
which is the gradient of a potential B: R™ — R satisfying the following regularity
assumption:

(v) The potential B: R™ — R is of class C>*(R";R) and has compact support.
Consequently, its gradient § := VB: R™ — R" is of class C*°(R"™; R"™) and again
compactly supported. We also assume that, for every such 3, the perturbed potential
U + B satisfies condition (iv).

Assumptions 2.2 are satisfied by typical convex potentials ¥. They also accom-
modate examples such as double-well potentials of the form ¥(z) = (2% —a?)? on the
real line for real constants a > 0. It is important to point out that these assumptions
do not rule out the case when the constant Z in (1.4) is infinite; thus, they allow for
cases (such as ¥ = 0) in which the stationary probability density function gz in (1.5)
does not exist. In fact, in [31] the authors point out explicitly that, even when the
stationary probability density gz is not defined, the free energy (1.6) of a density
p(t, x) satisfying the Fokker—Planck equation (1.1) with initial condition (1.2) can be
defined, provided that the free energy .#(p°) is finite. Furthermore, we note that
Assumptions 2.2 are designed in such a way that they are invariant when passing
from the potential ¥ to ¥ + B if B satisfies condition (v).

Under Assumptions 2.2, the Langevin—Smoluchowski diffusion equation (1.3)
with initial distribution P(0) admits a pathwise unique strong solution satisfying
P(t) € P5(R"™) for all t > 0; here &5(R"™) is the set of probability measures on
the Borel sets of R™ with finite second moment. Indeed, the drift condition (2.7)
guarantees that the second-moment condition in (2.6) propagates in time, i.e.,

(2.8) Vit > 0: / p(t,2)|z]? da < oo;

see [23, Theorem 2.2] and the first problem on page 125 of [23], as well as Appendix B
in [34], for a solution to this problem.

Assumptions 2.3 (regularity assumptions regarding the Wasserstein distance).
In addition to conditions (i)—(v) of Assumptions 2.2, we require the following:

(vi) For every t > 0, there exists a sequence of functions (@, (t,-))m>1 C
C>(R™; R), whose gradients (Vi (£, - ))m>1 converge in L?(P(t)) to the velocity field
v(t, -) = Vo(t, -) of gradient type as in (6.1) with ¢(t,z) = —¥(x) — (1/2) Inp(¢, z),
as m — oo.

This last requirement guarantees, for every ¢t > 0, that the velocity field v(¢, -) is
an element of the tangent space of %25(R™) at the point P(t) € P5(R"™) in the sense
of [4, Definition 8.4.1]. For details we refer the reader to section 6 below, in particular,
the display (6.2). We do not know whether this condition (vi) in Assumptions 2.3
is actually an additional requirement or whether it is automatically satisfied in our
setting. But as this issue only affects the Wasserstein distance, and has no relevance
for our trajectorial results Theorems 4.1 and 4.2, we will not pursue this issue further
here.

1For example, by requiring that all derivatives of ¥ grow at most exponentially as |x| tends to
infinity, one may adapt the arguments from [49] showing that this is indeed the case.
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The condition (vi) in Assumptions 2.3 is satisfied by simple potentials such as,
for example, ¥ = 0 or ¥(x) = |x|?/2. More generally, this condition is satisfied by the
potentials with a curvature lower bound Hess(¥) > x I, for some k € R (as in (4.45)
below), for instance, the double-well potential ¥(z) = (22 — a?)? on the real line;
more on this can be found in [4, Theorem 10.4.13], as was kindly pointed out to us

by Luigi Ambrosio.

3. The main theorems in aggregate form. In light of (2.5), the goal of [31]
is to relate the decay of the relative entropy functional

(3.1) P5(R") 3 P —s H(P|Q) € (—o0, 0],

along the curve (P(t));>0, to the quadratic Wasserstein distance

1/2
(3.2) Waluw) = (it Bl -2)" e @),
on P2 (R™) (ctf. [56], [4], [3]). We resume the remarkable relation between these
two quantities in the following two theorems; these quantify the relationship between
displacement in the ambient space (the denominator in (3.5)) and fluctuations of the
free energy or, equivalently, of the relative entropy (the numerator in (3.5)). The
proofs will be given in subsection 4.1 below.

THEOREM 3.1. Under Assumptions 2.3, the relative Fisher information
I(P(ty) | Q) is finite for Lebesgue-a.e. ty = 0, and we have the generalized de Bruijn
identity

(3.3) lim H(P()|Q) — H(P(to)|Q) _ f%I(P(toHQ),

t—to t—to

as well as the limiting behavior of the quadratic Wasserstein distance

W,y (P(t), P
.4 e NATTITE)

so that

. H(P(t)|Q) —H(P(t)|Q)\ _
(3.5) thﬁntlg (sgn(t K W (P(t), P(to)) > =— I(P(to) | Q).

Furthermore, if to > 0 is chosen so that the generalized de Bruijn identity (3.3) does
hold, then the limiting assertions (3.4) and (3.5) are also valid.

The ratio on the left-hand side of (3.5) can be interpreted as the rate of decay
for the relative entropy functional (3.1) at P = P(to) along the curve (P(t))i>0 if
distances in the ambient space &3(R™) are measured by the quadratic Wasserstein
distance W5. The quantity appearing on the right-hand side of (3.5) is the square
root of the relative Fisher information in (2.4), written more explicitly in terms of the
“score function” V(t, -)/l(t, ) as

2

2
+ 2V (2)| p(t,z)dz.
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For future reference, we denote by N the set of exceptional points t; > 0 for
which the right-hand side version of the limit in (3.3), i.e., the limiting assertion

W H(E®1Q) - H(P(t) |Q)
tlto t—to

(37) = L 1(P(0) Q).

fails. According to Theorem 3.1, this exceptional set N has zero Lebesgue measure.
The remarkable insight of [31] states that the rate of entropy decay (3.5) along

the curve (P(t)):>0 is, in fact, the slope of steepest descent for the relative entropy

functional (3.1) with respect to the Wasserstein distance W at the point P = P(t()

on the curve. To formalize this assertion, we fix a time t; > 0 and let the vector

field 5 = VB: R™ — R" be the gradient of a potential B, as in condition (v) of

Assumptions 2.2. This gradient vector field 8 will serve as a perturbation in

(3.8)

1
O’ (t,z) = div((V¥(z) + B(z)) p°(t,2)) + §Apﬁ(t,x), (t,z) € (tg,00) x R™,
and thus the perturbed Fokker—Planck equation with initial condition
(3.9) P (to, z) = p(to, ), x € R™

We denote by P? the probability measure on the path space Q = C([to, 00); R™), under
which the canonical coordinate process (X (t));>, satisfies the stochastic differential
equation

(3.10) dX(t) = —(VE(X(t)) + B(X(#))) dt + dWP(t),  t > to,

with initial probability distribution P(ty). Here, the process (W#(t));>, is a Brown-
ian motion under P?. The probability distribution of X (¢) under P# on R™ will be
denoted by PP(t) for t > to; as before, the corresponding probability density function
pP(t) = pP(t, - ) solves (3.8) subject to the initial condition (3.9).

After these preparations we can state the result formalizing the gradient flow,
or steepest descent, property of the curve (P(t));»o generated by the Langevin—
Smoluchowski diffusion (1.3) in the ambient space of probability measures %5 (R™)
endowed with the quadratic Wasserstein metric.

THEOREM 3.2. Under Assumptions 2.3, the following assertions hold for every
point to € Ry \ N (at which the right-hand side limiting identity (3.7) is valid):
the R™-valued random vectors

(3.11) a:=VInl(tg, X(to)) = Vinp(to, X(to)) + 2 V¥ (X (o)), b= B(X(t)),

are elements of the Hilbert space L?(P), and the perturbed version of the generalized
de Bruijn identity (3.3) reads

B — 8
grth(P (t)|Q17f(P (tO)|Q) — —%I(P(toﬂQ) _ <a7b>L2(P)
0 0

1
- <a,a + 2b>L2(p).

(3.12) 5

The limiting behavior of the quadratic Wasserstein distance (3.4) in this perturbed
context is given by

(3.13) i 2 (P7(1), PP (to))
’ tlto t—to

1
=3 lla+2b||L2p)-
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Combining (3.12) with (3.13), and assuming a + 2b # 0, we have

L HPPW[Q) - H(PY(W)[Q) _ /  a+2
(3.14) Jim W (PP (t), PA(to)) B < ’ ||a+2b||L2(P)>L2(P)7

and therefore

15 hm(H(Pﬁ(t) |Q) —H(P"(t0) |Q) H(P(t)|Q) — H(P(t) | Q) )
' ilto Wi (PB (1), P5(to)) Wy (P(t), P(to))
a+2b
(319 R e

In view of the Cauchy—Schwarz inequality, the expression in (3.16) is nonnegative
and vanishes if and only if a + 2b is a positive multiple of a. Consequently, when the
vector field 8 is not a scalar multiple of VIn£(t, - ), the difference between the two
slopes in (3.15) is strictly positive. In other words, the slope quantified by the first
term of the difference (3.15) is then strictly bigger than the (negative) slope expressed
by the second term of (3.15).

These two theorems are essentially well known. They build upon a vast amount of
previous work. In the quadratic case ¥(x) = |x|?/2, i.e., when the process (X (¢))¢>0
in (1.3) is Ornstein—Uhlenbeck, with invariant measure in (1.5) being standard Gauss-
ian, the relation

d

(3.17) %

H(P1)|Q) = —%I(P(t)IQ)

has been known since [53] as the de Bruijn identity. This relationship between the
two fundamental information measures, due to Shannon and Fisher, respectively, is
a dominant theme in many aspects of information theory and probability. We refer the
reader to the book [15] by Cover and Thomas for an account of the results by Barron,
Blachman, Brown, Linnik, Rényi, Shannon, Stam, and many others; in a similar
vein, see also the seminal work [7] by Bakry and Emery, as well as the paper [40]
by Markowich and Villani and the book [56] by Villani. Consult also Carlen and
Soffer [13] and Johnson [29] on the relation of (3.17) to the central limit theorem. For
connections with large deviations we refer the reader to [2] and [18]. In [21] related
pathwise results are obtained for the case ¥ = 0, i.e., when the process (X (t));>0 is
Brownian motion.

The paper [31] broke new ground in this respect, as it considered a general poten-
tial ¥ and established the relation to the quadratic Wasserstein distance, culminating
with the characterization of the curve (P(t)):>0 as a gradient flow. This relation was
further investigated by Otto in the paper [44], where the theory now known as Otto
calculus was developed. For a recent application of Otto calculus to the Schrodinger
problem, see [25].

The statements of our Theorems 3.1 and 3.2 complement the existing results in
some details, e.g., the precise form (3.16), measuring the difference of the two slopes
appearing in (3.15). The main novelty of our approach, however, will only become
apparent below with the formulation of Theorems 4.1 and 4.2, the trajectorial versions
of Theorems 3.1 and 3.2.
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4. The main theorems in trajectorial form. Our main goal is to investigate
Theorems 3.1 and 3.2 in a trajectorial fashion by considering the relative entropy
process

(4.1) Inf(t, X(t) = hl(pq(z’)(X(S;)

along each trajectory of the canonical coordinate process (X (t))¢>0, and calculat-
ing its dynamics (stochastic differential) under the probability measure P. The
P-expectation of this quantity is, of course, the relative entropy in (2.3). A deci-
sive tool in the analysis of the relative entropy process (4.1) is to reverse time,
and use a remarkable insight due to Pavon [47] and Fontbona and Jourdain [22].
These authors consider the canonical coordinate process (X(t))ogt<r on the path
space Q@ = C([0,7];R™) in the reverse direction of time, i.e., they work with the
time-reversed process (X (T — s))ogs<; it is then notationally convenient to consider
a finite time interval [0, T] rather than R,. For another application of time reversal
in a similar context, see [39].

At this stage it becomes important to specify the relevant filtrations. So, we
denote by (F(t)):>0 the smallest continuous filtration to which the canonical coordi-
nate process (X (t))i>o is adapted. That is, modulo P-augmentation, we have

(4.2) Ft)=0(X(u):0<u<t), t>0;
(F(t))e=o is called the filtration generated by (X(t))i>0.  Likewise, we let

(G(T'—s))oxs<t be the “filtration generated by the time-reversed canonical coordinate
process (X (T — s))ogs<r” in the same sense as before. In other words,

> =Inp(t, X()) +2¥(X(¢)), t>0,

(4.3) G(T—s)=0c(X(T—u): 0<u<s), 0<s<T,

modulo P-augmentation. For the necessary measure-theoretic operations that ensure
the continuity (from both the left and right) of filtrations associated with continuous
processes, the reader may consult section 2.7 in [35] —in particular, Problems 7.1-7.6
and Proposition 7.7.

Theorems 4.1 and 4.2 are the main new results of this paper. They can be regarded
as trajectorial versions of Theorems 3.1 and 3.2, whose proofs will follow from Theo-
rems 4.1 and 4.2 simply by taking expectations. Similar trajectorial approaches have
already been applied to the temporal dissipation of relative entropy and Fisher infor-
mation [16], [47], [22], to the theory of optimal stopping [17], to the Doob martingale
inequalities [1], and to the Burkholder-Davis—Gundy inequality [8]. An analogue of
Theorem 4.1 in a different setting is provided by Theorem 1.4 in [22]: it is formulated
under a probability measure Q on the path space, induced by a probability measure Q
on R”. In our context, it is crucial to allow for an invariant Gibbs measure QQ which has
possibly infinite mass. Our emphasis then lies in establishing the square-integrability
of the process (4.5) and in proving (4.7) under the mild assumption that the initial
relative entropy H(P(0)|Q) is finite.

The significance of Theorem 4.1 below is that the trade-off between the tempo-
ral decay of relative entropy, and the temporal growth of the quadratic Wasserstein
distance along the curve of probability measures (P(t)):>0, both of which are char-
acterized in terms of the cumulative relative Fisher information process, is valid not
only in expectation but also along (almost) every trajectory, provided we run time in
the reverse direction.?

2As David Kinderlehrer kindly pointed out to the second author, the implicit Euler scheme used
in [31] also reflects the idea of going back in time at each step of the discretization.
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THEOREM 4.1. Under Assumptions 2.2, we fiz T € (0,00) and define the cumu-
lative relative Fisher information process, accumulated from the right, as

o S}‘Vﬁ( —u, X(T u))’2
F(T -s) '7/0 ) E( T W X(T ))2
1| V(T —u, X(T — u)) 2
(4.4) 7/0 2‘ (T —u, X(T —u)) + 2V (X(T — w))| du

for 0 < s <T. Then the process
(4.5) M(T—s) :== (Inl(T—s,X(T—s))—In (T, X(T))) - F(T —s), 0<s<T,

is a square-integrable martingale of the backwards filtration (G(T —s))ogs< under the
probability measure P. More explicitly, the martingale of (4.5) can be represented as

[ VT —u, X(T —u) —p
(4.6) M(Tfs)f/0 < (T —u X(T =) , dW (Tu)>, 0<s<T,

for a P-Brownian motion (WP (T — 3))0<5<T of the backwards filtration
(G(T — s))ogs<r- In particular, the quadratic variation of the martingale of (4.5)
is given by the nondecreasing process in (4.4), up to the multiplicative factor of 1/2,
and we have

T
(4.7) H(P(0)|Q) —H(P(T)|Q) = Ep[F(0)] = %/0 I(P(t)|Q) dt < oco.

Next, we state the trajectorial version of Theorem 3.2 or, equivalently, the “per-
turbed” analogue of Theorem 4.1. As we did in Theorem 3.2, in particular in the
preceding equations (3.8)—(3.10), we consider the perturbation 8: R®* — R™ and
denote the perturbed likelihood ratio function by

(4.8) Pt z) = pz((’;)x) = pP(t,2) Y@ (t,2) € [to,0) x R™.

The stochastic analogue of this quantity is the perturbed likelihood ratio process
08(t, X (t)), t > to. The logarithm of this process is the perturbed relative entropy
process

PP (t, X (1))

(4.9) 1n€5(t7X(t)):1n( (X))

) =Inp’(t, X(t)) +2¥(X(1), t=>to.
THEOREM 4.2. Under Assumptions 2.2, lettg = 0 and T > tg. We define the per-

turbed cumulative relative Fisher information process, accumulated from the right, as
(4.10)

ooy (L IVO(T —u, X(T —w)|’ ~div o) du
F(T >-/0(2 BT a X (T —w)’ + ((8,2V¥) — div B) (X(T )))d

for0< s<T —tyg. Then Eps [Fﬁ(to)] < 0o, and, for 0 < s < T — ty, the process

(411)  MP(T —s):= (nl’ (T — s, X(T —s)) —n (T, X(T))) — F*(T — s)
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is a square-integrable martingale of the backwards filtration (G(T — $))ogs<T—t, under
the probability measure P?. More explicitly, the martingale (4.11) can be represented
as

s (T — u, —u —_p#
(4.12) Mﬁ(T—s):/O <VE£(;Tu,X)i;Tu);)’dWP (T—u)>, 0<s<T—tp,

__p#
for a PP-Brownian motion (WP (T_S))O<3<T—t0 of the filtration (G(T—S$))ogs<T—to-

4.1. Consequences of the trajectorial results. Before tackling the proofs
of Theorems 4.1 and 4.2, we state several important consequences of these two basic
results. In particular, we indicate how the corresponding assertions in the earlier
Theorems 3.1 and 3.2 follow directly from these results by taking expectations.

COROLLARY 4.3 (dissipation of relative entropy). Under Assumptions 2.3, we
have for all t,tg > 0 the relative entropy identity

(4.13) — Ep [/j(-l m(“’w) du].

2 Z(u, X(u))2

Furthermore, we have for Lebesque-a.e. ty = 0 the generalized de Bruijn identity

2
O L
£(to, X (o))

t—to t—1g 2
as well as the limiting behavior of the quadratic Wasserstein distance

L Wa(P(). Plto) 1 (p [|VE(to, X () [F]N 2
(4.15) t1—>t0 |t_t0‘ B 2 (EP|: g(to,X(to))Q :|> -

If tog > 0 is chosen so that the generalized de Bruijn identity (4.14) holds, then the
limiting assertion (4.15) pertaining to the Wasserstein distance is also valid.

Proof of Corollary 4.3 from Theorem 4.1. The identity (4.13) follows by taking
expectations in (4.6) with respect to the probability measure P, recalling the def-
initions (4.4), (4.5), and invoking the martingale property of the process in (4.5)
for T > max{to,t}. In particular, (4.13) shows that the relative entropy function
t — H(P(t)|Q) from (2.3), and thus also the free energy function t — Z(p(t, -))
from (2.5), are strictly decreasing provided £(¢, - ) is not constant.

By the Lebesgue differentiation theorem, the monotone function ¢ — H(P(t)| Q)
is differentiable for Lebesgue-a.e. tg > 0, in which case (4.13) leads to the iden-
tity (4.14).

The limiting behavior (4.15) of the Wasserstein distance, for Lebesgue-a.e. tg > 0,
is well known and worked out in [4]; section 6 below provides details. Theorem 6.1
establishes the important, novel aspect of Corollary 4.3, namely, its last assertion that
the validity of (4.14) for some to > 0 implies that the limiting assertion (4.15) also
holds for the same point ty3. This seemingly harmless issue is actually quite delicate
and will be of crucial importance for our gradient flow analysis; it is here that we have
to rely on condition (vi) of Assumptions 2.3. Corollary 4.3 is proved.
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Proof of Theorem 3.1 from Theorem 4.1. This result is a direct consequence of
Corollary 4.3.

In a manner similar to the derivation of Corollary 4.3 from Theorem 4.1, we
deduce now from Theorem 4.2 the following Corollary 4.4. Its first identity (4.16)
shows, in particular, that the relative entropy H(P?(t)|Q) is finite for all ¢ > t,.

COROLLARY 4.4 (dissipation of relative entropy under perturbations). Under
Assumptions 2.3, we have, for all t >ty > 0, the relative entropy identity

B

(116) - Bps [ /tt <_;W T (div B — (8,290)) (X(u)))du} .

Furthermore, for every point to € Ry \ N (at which the right-sided limiting asser-
tion (3.7) is valid), we have also the limiting identities

o HPP(0)]Q) — H(PP(0) |Q) [_1 V£ (to, X (t0))|?
(4.17) o t—to 2 ((to, X (1))’
(v~ (5,29 (X(1) |
. Wa(PP(t),PP(ty)) 1 V{(to, X (to)) Shh
(418) ELI;I; P to = 5 (EP |: m + Qﬁ(X(tQ)) :|) .

Proof of Corollary 4.4 from Theorem 4.2. Taking expectations in (4.12) under
the probability measure P#, recalling the definitions (4.10) and (4.11), and using the
martingale property of the process in (4.11) for T' > t > tg leads to the identity (4.16).
In order to derive from (4.16) the limiting identity (4.17), extra care is needed to show
that (4.17) is valid for every time o € Ry \ N.

We will verify in Lemma 5.9 of subsection 5.3 the following estimates on the ratio
between the probability density function p(t, -) and its perturbed version p?(t, -):
For every to > 0 and T > tg, there is a constant C' > 0 such that

’Mm) ||

(4.19) 0t x) p(t, z)

- 1‘ <C(t—to), (t,z) € [to,T] x R,

as well as

(4.20) Ep [ /t t

We turn now to the derivation of (4.17) from (4.16). First, since the perturba-
tion ( is smooth and compactly supported, and the paths of the canonical coordinate
process (X (t));>0 are continuous, we have

2

v (LX)

K(u,X(u))

du] <Ct—1ty)?  to<t<T.

(4.21)
11&2 — Eps [/to (div 8 — (3,2V¥)) (X (u)) du} =Eps [(div 8 — (8,2V¥)) (X (to))]

for every to > 0. Second, the r.v. X (#¢) has the same distribution under P, as it does
under P?, so it is immaterial whether we express the expectation on the right-hand
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side of (4.21) with respect to the probability measure P or P?. Hence this expression

equals the corresponding term on the right-hand side of (4.17).
Regarding the remaining term on the right-hand side of (4.17), the equality

Lo [ (4552 )
)

o 1 1 |Ve(u, X (u))
(4.22) =l Ee [/to <_2 0w, X(w)?

holds as long as ty > 0 is chosen so that one of the limits exists. Indeed, the equality

‘ 2

! VO (u, X (u
=] )
tlto T — 1o to \ 2 gﬁ’ u X(u

e =G ‘Zi:é 1>L>)2| )]

follows from (4.20), and (4.19) implies that it is immaterial whether we take expec-
tations with respect to P or P? in the two limits appearing in (4.23). Summing up,
the existence and the equality of the limits in (4.22) are guaranteed if and only if
to € Ry \ N. It develops that both limits in (4.22) exist if ¢y > 0 is not in the
exceptional set N of zero Lebesgue measure, and their common value is

[Ve(to, X)) ']

1
4.24 — =1
20 (P 1Q) = =5 B e(to,X(to))2
In conjunction with (4.21), which is valid for every ¢y > 0, this establishes the limit-
ing identity (4.17) for every to € Ry \ N. Therefore, the right-sided limiting asser-
tion (3.7), and the similar perturbed limiting assertion in (4.17), fail on precisely the
same set of exceptional points N.

As regards the final assertion, we note that, by analogy with (4.15), the limiting
behavior of the Wasserstein distance (4.18), for Lebesgue-a.e. to > 0, is well known [4];
details are in section 6 below. More precisely, Theorem 6.2 establishes the novel and
very crucial aspect that the limiting assertion

. Wa(P(1),P(ty)) 1
(4.25) lim ——— =5 V1(P(t0)[Q)
is valid for every to € R4y \ N. Once again, concerning the relation between the
limits in (4.25) and (4.18) pertaining to the Wasserstein distance, we discern a similar
pattern as in the case of the generalized de Bruijn identity. In fact, Theorem 6.2 will
tell us that the perturbed Wasserstein limit (4.18) also holds for every to € Ry \ V.
Corollary 4.4 is proved.

Proof of Theorem 3.2 from Theorems 4.1 and 4.2 and Corollaries 4.3 and 4.4.
Let to € Ry \ N, so that the limiting identities (4.17) and (4.18) from Corollary 4.4
are valid. Recalling the abbreviations in (3.11), we summarize now the identities just
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mentioned as

o pp FPOIO—HPOIQ) 1

(127) i 2EOLOD Ty,

am g PPOQICOIA Ly
(4.29) i W (Pi (t_)} fﬁ (to)) _ % la.+ 2b]| 2 (p).-

Indeed, the equations (4.26), (4.27), and (4.29) correspond to (3.7), (4.25), and (4.18),
respectively. As for (4.28), we note that, according to equation (4.17) of Corollary 4.4,
the limit in (4.28) equals

1 .
(430) L al3aqe + Ee[(div 8 208, V) (X (1))
Therefore, in view of the right-hand side of (4.28), we have to show the identity

(4.31) Ep [(div 8 — (8,2V¥)) (X (t))] = —(a, b) r2(p)-

In order to do this, we write the left-hand side of (4.31) as

(4.32) / (v 5(z) — (B(x), 2V () pltg, ) -

Using — for the first time, and only in order to show the identity (4.31) —integration
by parts, and the fact that the perturbation 3 is assumed to be smooth and compactly
supported, we see that the expression (4.32) becomes

(4.33) - / {8(@), VI plto, 7) + 290 ()} plto, ) d,

which is the same as —(3(X (to)), VIn£(to, X (t0))) 12(p) = —(b, @) 2(p)-
The limiting identities (4.26)—(4.29) now imply the assertions of Theorem 3.2.

The following Propositions 4.5 and 4.7 are trajectorial versions of Corollaries 4.3
and 4.4, respectively. They compute the rate of temporal change of relative entropy
for (1.3) and for its perturbed version (3.10), respectively, in the more precise trajec-
torial manner of Theorems 4.1 and 4.2.

PROPOSITION 4.5 (trajectorial rate of relative entropy dissipation). Under
Assumptions 2.2, we let t¢ € Ry \ N and T > to. Then the relative entropy
process (4.1) satisfies the trajectorial relation

(4.34)
p Be[nl(to, X(t0)) [G(T — )] ~W(T 5, X(T—5) 1 V¢ (to, X (1)) |”
stT—to T—to—S 2 g(tO,X(to))Q

where the limit exists in L*(P).

Remark 4.6. The limiting assertion (4.34) of Proposition 4.5 is the conditional
trajectorial version of the generalized de Bruijn identity (4.14).
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Proof of Proposition 4.5 from Theorem 4.1. Let ¢y € R4 \ N, i.e., so that the
right-sided limiting assertion (3.7) is valid, and select T' > t3. The martingale property
of the process in (4.5) allows us to write the numerator in (4.34) as

(4.35) Ep [F(ty) — F(T —s)|G(T — s)], 0<s<T —ty,

in the notation of (4.4), which expresses the process (F (T —s))ogs<T as the primitive
of

1 ’Vﬁ(T—u,X(T—u)H2
2 YT —u, X(T - w)’

0<u<T.

(4.36) B(u)

By analogy with the derivation of (4.14) from (4.13), where we calculated real-valued
expectations, we rely on the Lebesgue differentiation theorem to obtain the corres-
ponding result (4.34) for conditional expectations. Using the left-continuity of the
backwards filtration (G(T' — s))o<s<T, We can invoke the measure-theoretic result in
Proposition A.2 of Appendix A, with the choice of the process B as in (4.36) and
C = 0. This establishes the claim (4.34). Proposition 4.5 is proved.

PROPOSITION 4.7 (trajectorial rate of relative entropy dissipation under pertur-
bations). Under Assumptions 2.2, we let to € Ry \ N and T > to. Then the perturbed
relative entropy process (4.9) satisfies the trajectorial relations

i Eps [In 07 (to, X (t0)) | G(T — s)] —InlP(T — s, X(T — s))
sTTl"rEto T*to — S
1|Vt X (t0)

(437) S~ )+ (5(X(00) 29 ().
lim Ep [In¢? (to, X (to)) | G(T — s)] — In 0% (T — s, X(T — s))
st —to T—1ty—s
I X @) .
(4.38) T2 X(to)? div (X (to)) — (B(X (t0)), VInp(to, X (t0))),
. InlP(T—s,X(T—s)) —Inl(T —5,X(T—s))
lim
s —to T—1ty—s
(4.39) = div (X (to)) + (B(X (t0)), VInp(te, X (t0))),

where the limits in (4.37)—(4.39) exist in both L*(P) and L*(P?).

Remark 4.8. Tt is noteworthy that the three limiting expressions in (4.37), (4.38),
and (4.39) are quite different from one another. The first limiting assertion (4.37)
of Proposition 4.7 is the conditional trajectorial version of the perturbed de Bruijn
identity (4.17). We also note that in fact the third limiting assertion (4.39) is valid
for all tg > 0.

Proof of (4.37) from Theorem 4.2. Let to € Ry \ N, i.e., so that the right-sided
limiting assertion (3.7) is valid, and select T" > t5. In (4.22) from Corollary 4.4 of
Theorem 4.2 we have seen that the limits in (3.7) and (4.17) have the same exceptional
sets; hence the limiting identity (4.17) also holds. Now, for such tp € R4y \ N,
we derive the limiting assertion (4.37) in the same way as the assertion (4.34) in
the proof of Proposition 4.5 above. Indeed, this time we invoke the PA-martingale
property of the process in (4.11) and write the numerator on the first line of (4.37) as
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Eps[FP(tg) — FP(T — 5)|G(T — s)], 0 < s < T — ty, in the notation of (4.10), which
expresses the process (F?(T —s))o<s<7—t, as the primitive of (B(u)+C(u))o<s<T—to,
with

1|V (T - u, X(T —u))|?
B(u) == 5
(4.40) 2 08T —u, X(T —u))
C(u) = ((8,2V¥) — div 3) (X (T — u)).

An application of Proposition A.2 of Appendix A in this situation proves the
limiting identity (4.37) in L*(P#). As we will see in Lemma 5.8 of subsection 5.3 below,
the probability measures P and P? are equivalent, and the mutual Radon-Nikodym
derivatives dP? /dP and dP/dP# are bounded on the o-algebra F(T) = G(0) (recall,
in this vein, the claims of (4.19)). Hence, the convergence in L'(P) is equivalent to
that in L!(P#). This proves assertion (4.37).

The proofs of the limiting assertions (4.38) and (4.39) are postponed to subsec-
tion 5.4.

4.2. A trajectorial proof of the HWI inequality. The aim of this section is
to provide a proof of the celebrated HWI inequality due to Otto and Villani [45] by
applying trajectorial arguments similar to those in Theorem 4.1 (in fact quite easier).
We thus obtain an intuitive geometric picture and deduce the sharpened form of the
HWT inequality; see also [14], [45], and [57, p. 650].

The goal is to compare the relative entropies H(Py|Q) and H(P; | Q) for arbi-
trary probability measures Py, P € &2(R"™). Using Brenier’s theorem [12], we first
define the constant speed geodesic (P;)ogi<1 between Py and P; with respect to the
Wasserstein distance Ws (details are given below). We remark that we have chosen
the subscript notation for P; in order to avoid confusion with the probability measure
P(t) from our section 2 here. With p;(-) the density function of the probability
measure P;, we define the likelihood ratio function

(4.41) () = . (t,z) €[0,1] x R"

We will investigate the behavior of the relative entropy function ¢t — f(t) :=
H(P,|Q) along the constant speed geodesic (P;)ogi<1 by estimating two quantities.
First, we need a lower bound on the first derivative f’(0%). Second, we need a lower
bound on the second derivative (f”(¢))ogt<1- It should be geometrically obvious
(and will be spelled out in the proof of Theorem 4.11 below) that information on
these two lower bounds leads to a lower bound on f(1) — f(0). The latter is the
content of the HWT inequality. As regards the second derivative (f”(¢))o<i<1, we rely
on a fundamental result on displacement convexity due to McCann [41] and have
no novel contribution. As regards f’(07), however, we will obtain a sharp estimate
for this quantity by applying a trajectorial reasoning similar to that employed in the
proof of Theorem 4.1.

We will define an R"-valued stochastic process (X;)o<i<1, Wwith marginal dis-
tributions (P;)ogig1 moving along straight lines in R”, and calculate the relevant
quantities of this finite variation process along every trajectory, by analogy with the
proof of Theorem 4.1. This gives us the desired bound (and actually an equality) for
the derivative f/(07).
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We now cast these ideas into formal terms. The first step is to calculate the decay
of the relative entropy function ¢ — H(P;|Q) along the “straight line” (P;)o<i<1
joining the elements Py and P; in &5(R™). To this end, we impose temporarily the
following strong regularity conditions. In the proof of Theorem 4.11 we will see that
these will not restrict the generality of the argument.

Assumptions 4.9 (regularity assumptions of Lemma 4.10). We impose that Py and
Py are probability measures in &5(R"™) with smooth densities, which are compactly
supported and strictly positive in the interior of their respective supports. Hence
there exists a map v: R"® — R" of the form v(z) = V(G(x) — |z|?/2) for some convex
function G: R®™ — R, uniquely defined on and supported by the support of P,
and smooth in the interior of this set, such that v induces the optimal quadratic
Wasserstein transport from Py to Py via

(4.42) T (z) =z +ty(z) = (1-t)z+tVG(z) and Py:=(T,)4(Py) = Pyo(T}) ™!

for 0 <t < 1; to wit, the curve (P;)ogi<1 is the displacement interpolation (constant
speed geodesic) between Py and P;, and we have along it the linear growth of the
quadratic Wasserstein distance

(4.43)  Wa(Py, P,) =t \// @ — VG(@)[?dPy(x) = t|V]12(py),  0<t<1.

For the existence and uniqueness of the optimal transport map v we refer the reader
to [56, Theorem 2.12], and for its smoothness, to [56, Theorem 4.14] as well as to
[56, Remarks 4.15]. These results are known collectively under the rubric of Brenier’s
theorem [12].

Next, we compute the slope of the function ¢ — H(P; | Q) along the straight line
(Py)ogt<a-

LEMMA 4.10. Under Assumptions 4.9, let Xo: S — R™ be an r.v. with probability
distribution Py € Z2(R™) defined on some probability space (S,S,v). Then

(4.44) i HPQ) - H(R | Q)
t10 t

= (V1Inlo(Xo),7(Xo0)) L2 (v)-

We relegate to Appendix B the proof of Lemma 4.10, which follows a similar
(but considerably simpler) trajectorial line of reasoning as the proof of Theorem 3.2.
Combining Lemma 4.10 with well-known arguments, in particular, with a fundamen-
tal result on displacement convexity due to McCann [41], we derive now the HWI
inequality of Otto and Villani [45].

THEOREM 4.11 (HWI inequality [45]). We fiz Py, Pr € P2(R"™), assume that
the relative entropy H(Py | Q) is finite, and suppose, in addition, that the potential
U € C*(R™;[0,00)) satisfies a curvature lower bound

(4.45) Hess(¥) > kI,
for some k € R. Then

(446)  H(Py|Q)— H(P1|Q) < —(VInlo(Xo)./(X0)) 12 — 5 W3 (Po, Pr),

where the likelihood ratio function £y, the r.v. Xq, the optimal transport map =y, and
the probability measure v are as in Lemma 4.10.
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We stress that Theorem 4.11 does not require the measure Q with density
= e 2%(®) to be a finite measure in the formulation of the HWT inequality (4.46).
On the strength of the Cauchy—Schwarz inequality, we have

(4.47) — (VIn£o(Xo),7(Xo)) L2y < [[VInlo(Xo)ll 2wy [7(Xo)ll 20y

with equality if and only if the functions VIn/¢y(-) and () are negatively collinear.
The relative Fisher information of Py with respect to Q equals

(4.48) I(Py] Q) = E,[|VIntly(Xo)|?] = [|VInlo(Xo)|32(,).

q(x)

and by Brenier’s theorem [56, Theorem 2.12] we deduce
(4.49) [7(Xo) L2y = Wa(Fo, P1)

as in (4.43), along with the inequality

(4.50) —(VInly(Xo),v(X0)) 22y < VI(Po| Q) Wa(Py, Pr).
Inserting (4.50) into (4.46) we obtain the usual form of the HWTI inequality

(451 H(R|Q -~ H(P Q) < Wa(Po, P)VIR[Q) - 5 W3 (Po, ).

When there is a nontrivial angle between —VIn/(Xg) and v(Xo) in L?(v), the
inequality (4.46) gives a sharper bound than (4.51). We refer the reader to the original
paper [45], as well as to [14], [56, Chap. 5], [57, p. 650], and the recent papers [26], [33]
for detailed discussions of the HWI inequality in several contexts. For a good survey
on transport inequalities, see [27].

Proof of Theorem 4.11. As elaborated in [56, section 9.4] we may assume without
loss of generality that Py and P; satisfy the strong regularity Assumptions 4.9, which
guarantees the existence and smoothness of the optimal transport map ~.

We consider now the relative entropy with respect to Q along the constant-speed
geodesic (Pp)ogi<1, namely, the function f(t) := H(P;|Q), for 0 < ¢t < 1. The
displacement convexity results of McCann [41] imply

(4.52) f(t) = kW3 (Py, Py), 0<t< 1.

Indeed, under the condition (4.45), the potential ¥ is k-uniformly convex. Conse-
quently, by items (i) and (ii) of [56, Theorem 5.15], the internal and potential energies

(4.53) g(t) := /npt(x)lnpt(x) dz, h(t):= 2/n U(2)ps(x) de, 0<t<1,

are displacement convex and x-uniformly displacement convex, respectively; i.e.,
(4.54) g'(t) =0, h'(t)>rkWZ(Py,P), 0<t <1

As we have f = g+ h, we conclude that the relative entropy function f is k-uniformly
displacement convex, i.e., its second derivative satisfies (4.52). We appeal now to
Lemma 4.10, according to which

(4.55) 709 = tm T TO (@10 660000), 1 (X0 120,

Now (4.46) follows from the Taylor formula f(1) = f(0) 4+ f/(07) + fol(l —t)f"(t)dt
in conjunction with (4.52) and (4.55). Theorem 4.11 is proved.
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5. Details and proofs. In this section, we complete the proofs of Corollary 4.4
and Proposition 4.7, and provide the proofs of the crucial results, Theorems 4.1
and 4.2. For this, we apply It6’s formula so as to calculate the dynamics, i.e., the sto-
chastic differentials, of the “pure” and “perturbed” relative entropy processes of (4.1)
and (4.9) under the measures P and P?, respectively. As already discussed, we will
do this in the backwards direction of time.

5.1. The proof of Theorem 4.1. We start by calculating the stochastic dif-
ferential of the time-reversed canonical coordinate process (X (7" — s))o<s<r under P,
a well-known and classical theme; see, e.g., [19], [20], [28], [42], [43], and [46]. The
reader may consult Appendix G of [34] for an extensive presentation of the relevant
facts regarding the theory of time reversal for diffusion processes. The idea of time
reversal goes back to Boltzmann [9], [10], [11] and Schrédinger [50], [51], as well as
Kolmogorov [37]. In fact, the relation between time reversal of a Brownian motion
and the quadratic Wasserstein distance may in nuce be traced back to an insight
of Bachelier in his thesis [5], [6] from 1900. This theme is discussed in Appendix A
of [34].

Recall that the probability measure P was defined on the path space
Q = C(R4+;R™) so that the canonical coordinate process (X (¢,w))i>0 = (w(t))i>o0
satisfies the stochastic differential equation (1.3) with initial probability distribution
P(0) for X(0) under P. In other words, the process

(5.1) W(t) = X(t) — X(0) +/t V(X (w)du, t>0,

is a Brownian motion of the forward filtration (F(t))i>0 under the probability
measure P. Passing to the reverse direction of time, the following classical result is
well known to hold under the present assumptions. For proof and references we refer
the reader to Theorems G.2 and G.5 of Appendix G in [34].

PRrROPOSITION 5.1. Under Assumptions 2.2, let T > 0 be fized. The process
S
(5.2) WP(T—S) = W(T—s)—W(T)—/ Vinp(T—u, X(T—u)) du, 0<s<T,
0

is a Brownian motion of the backwards filtration (G(T —s))o<s<r under the probability
measure P. Moreover, the time-reversed canonical coordinate process (X (T —s))o<s<T
satisfies the stochastic differential equation

(5.3) dX(T —s) = (VInp(T — 5, X(T — s)) + VU(X(T — 5))) ds + dW" (T — s)
(5.4) = (VInl(T — 5, X(T — )) — V(X (T — 5))) ds + dIW" (T — s)

for 0 < s < T, with respect to the backwards filtration (G(T — s))ogs<T-

The following result computes the forward dynamics of the likelihood ratio process
(€(t, X(t)))t>0 of (2.1) and compares it with the stochastic differential of the time-
reversed likelihood ratio process

p(T -5, X(T — s))

0<s<T,
J(X(T =) s

(5.5) UT —s,X(T—5s)) =

as well as its logarithmic differential.
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PROPOSITION 5.2. Under Assumptions 2.2, the likelihood ratio process (2.1) is
a continuous semimartingale with respect to the forward filtration (F(t))i>o0 and sat-
isfies, for t > 0, the stochastic differential equation
(5.6)
de(t, X (1)) = (VL(t, X (t)),dW (1)) + (AL(t, X (1)) — (VE(t, X (t)),2V¥(X(1)))) dt.

Furthermore, the time-reversed likelihood ratio process (5.5) is a continuous semi-
martingale with respect to the backwards filtration (G(T — s))ocs<T and satisfies, for
0 < s < T, the stochastic differential equations

A0(T — 5, X(T — 8)) = (VI(T — 8, X(T — 5)),dW" (T — s))
V(T — 5, X(T - 5))°

(5.7) (T -5, X(T - s)) >
(T -5, X(T—s)) VT —5,X(T—s)) —p
(T —s,X(T —s)) < (T —s,X(T —s)) AW (Ts)>
58) V(T — 5, X(T - s))|°
' 0T -5, X(T—9)"
dIn (T — s, X(T — 5)) = <V£i;T_:’)i(TT_S§;) AW (T — s)>
(5.9) 1|VAUT =5, X(T = s))|

2 YT —5X(T-s5)

Proof. We start with the following observation. Writing the Fokker—Planck equa-
tion (1.1) as

1
(5.10) Op(t,z) = iAp(t’I) + (Vp(t,z), VU (x)) + p(t, z) AV (x), t>0,
and substituting the expression
5.11 pt, ) = L(t, x)g(x) = L(t, ) e 2¥ @), t>0,
(5.11) (t, )

into this equation, we find that the likelihood ratio function (¢, x) +— £(t, x) solves the
backwards Kolmogorov equation

(5.12) Ol(t,x) = %Aﬁ(t, x) — (VLU(t,z), V¥(z)), t>0.

Now we turn to the proofs of (5.6)-(5.9). By Assumptions 2.2, the likelihood
ratio function (¢,x) — £(t,z) is sufficiently smooth to allow an application of Itd’s
formula. Together with the Langevin—Smoluchowski dynamics (1.3) and the back-
wards Kolmogorov equation (5.10), we obtain (5.6) by direct calculation. A similar
calculation, this time relying on the backwards dynamics (5.4), shows (5.7). Finally,
the equations (5.8) and (5.9) follow from (5.7) and It6’s formula. Proposition 5.2 is
proved.

The crucial feature of the stochastic differentials (5.6)—(5.9) is that, after passing
to time reversal, the finite-variation term A¢ — (V{¢,2V¥) in (5.6), involving the
Laplacian A/, gets replaced by a term involving only the likelihood ratio function ¢
and its gradient V/.
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Proof of Theorem 4.1. On a formal level, the expressions (4.4), (4.6) are
just integral versions of the Ito differential (5.9). What remains to check is that
the integrals in (4.4) and (4.6) indeed make rigorous sense and satisfy the claimed
integrability conditions.

By condition (iv) of Assumptions 2.2 the function (¢,z) — VIn{(t,x) is contin-
uous. Together with the continuity of the paths of the canonical coordinate process
(X (t))t>0, this implies

T== V(T — u, X(T — u))
(519 /0 0T —u, X (T — ))2

|2
du < oo P-a.s.

for every 0 < ¢ < T. On account of (5.13), the sequence of stopping times (with
respect to the backwards filtration)

2
(5.14) Tnizinf{t /’VZ —w XTI )z’ du}n}/\T7 n € Ny,
T —u, X(T —u))

is nondecreasing and converges P-a.s. to T. Defining M via (4.5), each stopped
process M ™ is bounded in L?(P) and satisfies the stopped version of (4.6), i.e

M™(T —s)=M(T - (sAT,))

VT —u, X (T —u) P
(5.15) 7/0 <£(T—U,X(T—u)) , dW (Tu)>, 0<s<T.

To show that, in fact, the process M is a true P-martingale, we have to rely on
condition (2.6), which asserts that the initial relative entropy H(P(0) | Q) is finite.
We consider the process

a(X(T - s))
p(T— s, X(T — s))’

(5.16) YT —5,X(T—-5) = 0<s<T,

where (=1(t, -) = 1/(t, -) is the likelihood ratio function of dP(t ( ). Applying Ito’s
formula and using (5.7), we find the stochastic differential

VT — 5, X(T — s)) a7 (T - s)>
E(Tfs,X(Tfs))Q’ ’

(5.17) AT -5, X(T —s)) = —<

revealing that the locally bounded process (5.16) is a local martingale under P. In fact,
this result does not come as a surprise: it is a consequence of an eye-opening result
by Pavon [47], and Fontbona and Jourdain [22], at least when Q is a finite measure.
We refer the reader to subsection 4.2 of [34] for more information on this theme and
for a more direct proof of Theorem 4.1 in the case when Q is a finite measure on R"™;
see also Theorem 4.2 and Appendix E in [34] for an extensive discussion and a proof
of the Pavon—-Fontbona—Jourdain theorem.

From (5.17), we deduce the stochastic differential of the logarithm of the
process (5.16) and obtain in accordance with (5.9) its form

dlnt™(T - 5, X(T - s)) = _<V€§§’T—_:§§’T__S§;) AWt (T — s)>
1 |Ve(T - s, X(T )|2
2 (T -5 X(T )

(5.18)
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We know that the terminal value In£~1(0, X(0)) is P-integrable, with
(5.19) Ep[In¢~'(0,X(0))] = —H(P(0)|Q) € (—00,00).
On the other hand, the initial value
(5.20) Ep[ln¢ ' (T,X(T))] = —H(P(T)|Q) € [~00,00)

cannot take the value oo, as mentioned after the definition (2.3) of relative entropy.
Hence we can apply Proposition A.3 in Appendix A to the local martingale (5.16)
(in the reverse direction of time) and the deterministic stopping time 7 = T, to
conclude that

Ep[In¢~1(0,X(0))] — Ep [l (T, X(T))]
T 1 |V(T — u, X(T — )|
(5.21) - P M %‘ e(( T—u, X(T )g| u]’

where all terms are well defined and finite. This shows that the local martingale M
is bounded in L?(P), with

T
(6:2)  [MO)Iae, = H(PO)1Q) - HPT)Q) = 3 [ 1(P0)]Q)at <,

completing the proof of Theorem 4.1.

5.2. The proof of Theorem 4.2. The first step in the proof of Theorem 4.2 is
to compute the stochastic differentials of the time-reversed perturbed likelihood ratio
process

PP (T -5, X(T —s))
¢(X(T=s)

and its logarithm. By analogy with Proposition 5.1, the following result is well known

(see, e.g., Theorems G.2 and G.5 in Appendix G of [34]) to hold under suitable

regularity conditions, such as Assumptions 2.2. Recall that (W?(t));>¢, denotes the
PA-Brownian motion (in the forward direction of time) defined in (3.10).

(5.23) (T -5, X(T —s)) =

Ogngfto,

PROPOSITION 5.3. Under Assumptions 2.2, we let tg > 0 and T > ty. The process

(5.24) Wpﬁ(:r —5) = WT —s) = WHT) - / VInp’ (T —u, X(T — u)) du
0

for 0 < s < T—tg is a Brownian motion of the backwards filtration (G(T —$))ogs<T—to
under the probability measure P?. Furthermore, the semimartingale decomposition of
the time-reversed canonical coordinate process (X (T — s))o<s<T—t, 5 given by

(5.25)
dX(T —s) = (VInp® (T — s, X(T - 5)) + (V¥ + B) (X(T — 5))) ds + aw* (1 - s)
(5.26) = (VI (T — 5, X(T - 5)) — (V¥ = B)(X(T —s))) ds + aw®’ (T —s)

for 0 < s < T —to, with respect to the backwards filtration (G(T — $))o<s<T—to -
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713[3
Comparing (5.3) with (5.25), we see that the reverse-time Brownian motions W
—P
and W are related as follows.
LEMMA 5.4. Under Assumptions 2.2, let to > 0 and T > tg. Then, for 0 < s <
T~ tOu

—p _p’ - . N PP (T —s,X(T —s)) )
(527) AW =W ) (T —s) = (ﬂ(X(T ) +V1 (p(T_S’X(T_ ) ))d
5)

(5.28) - (/3(X(T —9) + Vln(gj(g__:;((g__s))) )) ds.

Remark 5.5. We apply Lemma 5.4 down the road, when s is close to T — tg.
In this case the logarithmic gradients in (5.27) and (5.28) will become small in view
of p(to, -) = p(to, - ), so that these logarithmic gradients will disappear in the limit
s T T — tp; see also Lemma 5.9 below. By contrast, the term 3(X (7T — s)) will not go
away in the limit s T T'— to. Rather, it will tend to the r.v. (X (¢9)), which plays an
important role in distinguishing between (4.37) and (4.38) in Proposition 4.7.

By analogy with the proof of Proposition 5.2, for ¢ > ty, we write now the
perturbed Fokker—Planck equation (3.8) as
(5.29)

0P (t, 7) = % AP (t,x) + (VPP (1, 2), VU(2) + B(z)) + pP (¢, 2) (AU (z) + div A(x)).
Using the relation
(5.30) pP(t,x) = 0°(t,x)q(x) = 0°(t, ) e 2V (@) t > to,
determined computation shows that the perturbed likelihood ratio function £°(t,x)
satisfies
0,08 (¢, ) = % AP, 2) + (VI (L, @), Bx) — VU (x)

(5.31) +02(t,z) (div B(z) — (B(x),2V¥(2))),  t>to;
this is the analogue of the backwards Kolmogorov equation (5.12) in this “perturbed”
context, and reduces to (5.12) when g = 0.

With these preparations, we obtain the following stochastic differentials for our
objects of interest.

LEMMA 5.6. Under Assumptions 2.2, we let tg > 0 and T > ty. The time-reversed
perturbed likelihood ratio process (5.23) and its logarithm satisfy the stochastic differ-
ential equations

AP (T — s, X(T — s))

fﬁ(T— S’X(T _ S)) = (<B72V\I/> — leﬁ)(X(T _ S)) ds

VO3 (T — 5, X(T —s))|° V(T -5, X(T—s) —p# ,
(532 03(T - 5, X(T — s))° ‘ < pr—sxr—s) " )>
and
(5.33)

dIn? (T — 5, X(T — s5)) = ((8,2V¥) — div B) (X (T — s)) ds

HVW(T_S’X(T_S))F VIO(T —5,X(T —5)) __ps —s
2O sX(T=s) +<€B(T—s,x<:r_s))’dw (T >>7
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respectively, for 0 < s < T — tg, with respect to the backwards filtration
(g(T - S))OQSQT—tD-

Proof. The equations (5.32), (5.33) follow from It6’s formula together with (5.26)
and (5.31).

We have assembled now all the ingredients needed for the proof of Theorem 4.2.

Proof of Theorem 4.2. Formally, the stochastic differential in (5.33) amounts to
the conclusions (4.10)—(4.12) of Theorem 4.2. But as in the proof of Theorem 4.1, we
still have to substantiate the claim that the stochastic process M# defined in (4.11)
with representation (4.12) is indeed a PP-martingale of the backwards filtration
(G(T — s))o<s<T—to, and is bounded in L2(P#).

By (5.33) and the same stopping argument as in the proof of Theorem 4.1,
the process M” is a local P#-martingale. We have to show that Eps[F?(ty)] < occ.

We recall that § = VB and define the density

(5.34) P (x) = e 2VHB)@) x € R™

This density function solves the stationary version of the perturbed Fokker—Planck
equation (3.8). Equivalently, it induces an invariant measure for the stochastic dif-
ferential equation (3.10). We now consider the “doubly perturbed” likelihood ratio
function
(5.35) Bt x) = Po(t,2) (t,z) € [to, 00) x R"
. B\" C q’B (.’I}) ) ) 05 .
Assumptions 2.2 are invariant under the passage from the potential ¥ to ¥ + B,

so we can apply Theorem 4.1 to the potential ¥ + B and obtain that the process
(cf. (4.4))

s 1 |VE(T — u, X(T — )|
1 ) gu,

0<s<T—tg,

(5.36) FJ(T —s) ::/O : BT —wX(T—w)

satisfies Eps [Fg (tg)] < oo. This latter condition implies also that Eps[F”(tg)] < oo,
where the process F# is defined as in (4.10). Indeed, the function (3,2V¥) — div 3
in (4.10) is bounded, so that

(5.37) Eps [/0 B 18,2V ) — div B|(X(T — u)) du| < .

As regards the remaining difference between (5.36) and (4.10), note that
Kﬁ(t,x)/ﬂg(t,x) = ¢?B@) and consequently VIné?(t, x) — Vlnﬁg(t,x) = 2VDB(z),
which again is a bounded function.

In conclusion, we obtain Eps[F?(t)] < oo, finishing the proof of Theorem 4.2.

5.3. Some useful lemmas. In this subsection we collect some useful results
needed to justify the claims (4.19), (4.20) made in the course of the proof of Corol-
lary 4.4, and to complete the proof of Proposition 4.7 in subsection 5.4.

First, let us introduce the “perturbed-to-unperturbed” ratio

_ P(t, x) _ pA(t, )

(5.38) YP(t,x): W) = pito)

, (t,z) € [to,00) x R",
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and recall the backwards Kolmogorov-type equations (5.12), (5.31). These lead to the
equation

1
oY P (t,x) = 3 AYP(t,x) + (VY P(t,x), B(zx) + VInp(t,z) + VI(z))
(5.39) +YP(t,z)(div B(z) + (B(x), VInp(t,z))),  t>to,
with YA (tg, -) = 1, for the ratio in (5.38). In conjunction with (5.3), this equation
leads by direct calculation to the following backwards dynamics.

LEMMA 5.7. Under Assumptions 2.2, let tg = 0 and T > ty. The time-reversed
ratio process (YP(T — s, X (T — s))) and its logarithm satisfy the stochastic

differential equations
AYA(T — 5, X(T — s))
YB(T — 5, X(T —s))

0<s<T—to

B(T —s — S —P
(5.40) = <VYY[; (;T_ . ’;E;T_ s);) AW (T = s) — B(X(T - s)) ds>
— (div B(X(T — s)) + (B(X(T = 5)),VInp(T — s, X(T — 5)))) ds
and

dInY? (T - 5, X(T - s))
_ VYP(T — 5, X(T — s))
(5-41) _< YB(Tfs,X(T—s))
— (divB(X(T = s)) + (B(X(T = 5)),Vinp(T — s, X(T — s)))) ds
L VYA(T = s, X(T - 5))|
2 YB(T—s,X(T—s))’

AW (T — ) — B(X(T — 9)) ds>

)

respectively, for 0 < s < T — tg, relative to the filtration (G(T — s))o<s<T—to -
We first establish a preliminary control on Y#(-, ), which will be refined in
Lemma 5.9 below.
LEMMA 5.8. Under Assumptions 2.2, let to > 0 and T > tg. There is a real
constant C' > 1 such that
1
(5.42) G < YA(t,z) < C, (t,x) € [to, T] x R™.

Proof. In the forward direction of time, the canonical coordinate process
(X (t))to<t<T on the path space Q = C([to, T]; R™) satisfies equations (1.3) and (3.10)
with initial distribution P(ty) under the probability measures P and P#, respectively.
Hence the P-Brownian motion (W (t)):,<t<r from (1.3) can be represented as

(5A43) W) — W(to) = WE(t) — WP (k) — /t B(X(w)du, to<t<T,

where (W#(t))i,<t<r is the PP-Brownian motion appearing in (3.10). By the Gir-
sanov theorem, this amounts, for tg <t < T, to the likelihood ratio computation

B t ¢ 2
(G41) 2 :=‘f;f(t)=exp(— [ px).aw) - 5 [ sl ac).
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Now, for each (¢,z) € [to, T] x R™, the ratio Y2 (¢, z) = p®(t, z)/p(t, z) equals the
conditional expectation of the r.v. (5.44) with respect to the probability measure P,
where we condition on X (t) = z; to wit,

(5.45) VA (t,z) = Ep[Z(t)| X(t) = ], (t,x) € [to, T] x R™.

Therefore, in order to obtain the estimate (5.42), it suffices to show that the log-density
process (In Z(t))i,<t<r is uniformly bounded. Since the perturbation 8 is smooth
and has compact support, the Lebesgue integral inside the exponential of (5.44) is
uniformly bounded, as required.

In order to handle the stochastic integral with respect to the P-Brownian motion
(W ())ty<uxe inside the exponential (5.44), we invoke the assumption that the vector
field B equals the gradient of a potential B: R™ — R, which is of class C*(R™;R)
and has compact support. According to It6’s formula and (1.3), we can express the
stochastic integral appearing in (5.44) as

(5.46)
/t (B(X (), dW (w)) = B(X(1) — B(X(ts)) + /t (<5,qu> - Law 5) (X(u)) du

for to < t < T. At this stage it becomes obvious that the expression of (5.46) is
uniformly bounded. This completes the proof of Lemma 5.8.

The following Lemma 5.9 provides the crucial estimates (4.19) and (4.20) required
in the proofs of Corollary 4.4 and Proposition 4.7.

LEMMA 5.9. Under Assumptions 2.2, let to > 0 and T > tg. There is a constant
C > 0 such that

(5.47) YT —s,2) —1| < C(T -ty — s),

as well as

T—to
(5.48) Ep U IV In Y (T —u, X (T —u))|* du

X(T-s) —x} < C(T—to—s)?,

hold for all 0 < s < T —tg and x € R™. Furthermore, for every tg > 0 and z € R",
the pointwise limiting assertion

In Y (T —
(5.49) i 2T =5 7)

i S = A () + (3), Vinp(e, )

holds, where the fraction on the left of (5.49) is uniformly bounded on [0, T —to] X R™.

Remark 5.10. The pointwise limiting assertion (5.49) is the deterministic analogue
of the trajectorial relation (4.39) from Proposition 4.7. In subsection 5.4 below we
will prove that the limiting assertion (4.39) holds in L' under both P and P# and is
valid for all ty > 0.

Proof. AsInY”? =1n¢f —In¢, we obtain from Theorems 4.1 and 4.2 and (5.42)
that the martingale part of the process in (5.41) is bounded in L?(P), i.e.,

(5.50)

[ T=to | VY B(T — u, X(T — u))|*
Ep/ du| < 0.
0

Y8(T —u, X(T — u))
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Once again using (5.42), we compare VY?/Y# with VY? to see that (5.50) also
implies

(5.51) Ep UOHO]VW(T—u,X(T—u))fdu < 0.

By (5.40), the time-reversed ratio process (Y#(T — s, X (T — s)))0<s<T_t0 satisfies
with respect to the backwards filtration (G(T — s))ogs<7—t, the stochastic differential

equation
AYP(T — s, X(T - s))
= (VYT = 5, X(T —5)), dW (T — s) — B(X(T — s)) ds)
—YP(T — 5, X(T - 5)) (div B(X (t — 5))
(5.52) +{(B(X(T —s)),VInp(T — s, X(T —s)))) ds.
In view of (5.51), the martingale part in (5.52) is bounded in L?(P). As regards
the drift term of this equation, we observe that it vanishes when X (T — s) takes values

outside the compact support of the smooth vector field 5. Consequently, the drift term
is bounded, i.e., the constant

(5.53) Cy:= sup
to<t<T
yeRn

¥ ?(a,) (v 8 + B0, Vnple.) + m>> |

is finite, and the processes

(5.54) V(T -5, X(T—s)) +Cis and YP(T —s,X(T—s))—Cis

for 0 < s < T —ty are a sub- and a supermartingale, respectively. We conclude that
(555)  |[YH(T —s,2) —Ep[Y?(to, X(t0)) | X(T —s) =2]| < C1(T —to — s)

holds for all 0 < s < T —tg and € R™. Since Y? (to, -) = 1, this establishes the first
estimate

(5.56) YA(T —s,2) — 1] < CL(T — to — s).

Now we turn our attention to the second estimate (5.48). We fix 0 < s < T — 1
and x € R". By means of the stochastic differentials in (5.41) and (5.52), we find
that the expression

(5.57) %EP UT_to\vaB(T—u,X(T_u))|2du

X(T —s) = x}

is equal to
(5.58)

T—to
InY?(T—s,2)-Y?(T—s,2)+1+Ep {/ G(T—u, X(T—u)) du

X(T-s)= x} ,
where we have set

B
(5.59)  G(t,y) = (YP(t,y)—1) (div Bly) + <5(y), Vinp(t,y) + W>)
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for tg <t < T and y € R™. Introducing the finite constant

(5.60) Cy = tos,%)T div B(y) + <B(y)7 Vinp(ty) + 555
yeR"

and using the just proved estimate (5.56), we see that the absolute value of the
conditional expectation appearing in (5.58) can be bounded by C1Co(T — to — s)%.
In order to handle the remaining terms of (5.58), we apply the elementary inequality
Inp < p — 1, which is valid for all p > 0, and obtain

(5.61) InY?(T - s,2) = YP(T — s5,2) +1 <0.

This implies that the expression of (5.57) is bounded by C1Co(T — to — s)?, which
establishes the second estimate (5.48). We also note that the elementary inequality
(5.61) in conjunction with the estimate (5.56) shows that

(5.62) YT —s,2) < CL(T —to — s)

forall 0 < s < T —tg and x € R™; this implies that the fraction on the left-hand side
of (5.49) is uniformly bounded on [0,T — #o] x R".

Regarding the limiting assertion (5.49), we fix tg > 0,z € R™, and 0 < s < T —ty
and take conditional expectations with respect to X (7' —s) = z in the integral version
of the stochastic differential (5.41). On account of (5.50), the stochastic integral with

respect to the P-Brownian motion (WP(T —5))ogs<r in (5.41) vanishes. Dividing by
T — to — s and passing to the limit as s + T — tg, we can use the estimate (5.48) to
deduce that the expression in the fourth line of (5.41) vanishes in the limit. Applying
the Cauchy—Schwarz inequality, we see that the normalized integral involving the
perturbation § appearing in the first line of (5.41) can be bounded by

1

T—to
/ |VInY?(T —u, X(T — )| - |3(X(T — u))| du.

By conditions (iv) and (v) of Assumptions 2.2, the function (¢,z) — VInY#(t, x) is
continuous on (0,00) x R™, and thus the expression in (5.63) is uniformly bounded
on the rectangle [0, T — to] x supp 8. As InY?(tg, -) = 0, it converges P-a.s. to zero;
hence also

) 1 T—to
i, Ep {T_to_s / |VInYP(T — u, X(T —u))]

(5.64) |B(X(T = u))| du

X(T—s)zx] —0.

Finally, the continuity and uniform boundedness imply that the conditional expec-
tations of the normalized integrals over the second line of (5.41) converge to the
right-hand side of (5.49), as claimed. Lemma 5.9 is proved.

5.4. Completing the proof of Proposition 4.7. With the preparations of
subsection 5.3, we are now able to complete the proof of Proposition 4.7 by establishing
the remaining limiting assertions (4.39) and (4.38) therein.
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Proof of (4.39) in Proposition 4.7. Let to > 0 and select T" > to. Using the
notation of (5.38) above, we have to calculate the limit

nY#(T — s, X(T —
(5.65) o YT =8 X(T—5))
stT—to T—to—s

Fix 0 < s < T — ty. According to the integral version of the stochastic differen-
tial (5.41), the fraction in (5.65) is equal to the sum of the following four normal-
ized integral terms (5.66)—(5.68) and (5.70), whose behavior as s T T — to we will
study separately below. By conditions (iv) and (v) of Assumptions 2.2, the function
(t,z) = VInY#H(t,z) is continuous on (0,00) x R™; thus the first expression

T—t,
(5.66) ﬁo_s/ (div BCX (T —w)) + (BX (T ), VInp(T —u, X (T —u)))) du

is uniformly bounded on [0, T —ty] X supp 3. By continuity and uniform boundedness,
we conclude that (5.66) converges P-a.s. as well as in L!(P) to the right-hand side
of (4.39), as required. Thus it remains to show that the three remaining terms con-
verge to zero. Using the continuity and uniform boundedness once again, we deduce
from InY#(ty, - ) = 0 that the second integral term

1 /T—to <VYﬁ (T — u, X(T — u))

(5.67) T—ty—s YB(T = u, X(T — u))

BT =) Y

converges to zero P-a.s. and in L*(P). Since InY#(tg, -) = 0 and because the inte-
grand is continuous, we see that the third expression

(5.68)

1 /Tf01 |VY (T — u, X(T — u))|
T—to=s/)s 2 YOT—u,X(T—-u))’

converges P-a.s. to zero. Furthermore, owing to Lemma 5.9, there is a constant C' > 0
such that

1 /Tto VY B(T — u, X(T — w)) |’

(5.69) Ep [T—to—s YB(T—u,X(T—u))Q du} <C(T —ty—9)

holds for all 0 < s < T —tg, which implies that (5.68) converges to zero also in L!(P).
The fourth and last term is the stochastic integral

1 T=to yVYP(T —u, X(T —u)) P
(5.70) —7T_t0_s/s < P " (T—u)>.

The expression (5.68) converges to zero P-a.s., and according to (5.69) we have

’ 2

1 /Ttﬂ VY B(T — u, X (T — u))

(5.71) Ep {(T—to—s)Q YA(T —u, X(T — u))

du} < C.

By means of the It6 isometry, we deduce that the expression

or wel (e [ (S v -w)) |

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/03/22 to 46.242.15.47 by Alexey Alimov (alexey.alimov@gmail.com) Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

TRAJECTORIAL APPROACH TO LANGEVIN-SMOLUCHOWSKI DIFFUSIONS 697

converges to zero as s T T — to. In other words, the normalized stochastic integral
of (5.70) converges to zero in L?(P).

Summing up, we have shown that the limiting assertion (4.39) holds in L!(P) for
every to > 0. As we have seen in Lemma 5.8, the probability measures P and P”?
are equivalent, the Radon-Nikodym derivatives dP”/dP and dP/dP# are bounded
on the g-algebra F(T) = G(0), and therefore convergence in L!(P) is equivalent to
convergence in L'(P#). This completes the proof of (4.39).

Proof of (4.38) in Proposition 4.7. This is proved in very much the same
way, as (4.37) and (4.39). The only novelty here is the use of (5.27) to
8

pass to the P-Brownian motion WP from the PP-Brownian motion WP and
the reliance on Eps [F p (to)] < 00 to ensure that the resulting stochastic integral is
a (square-integrable) P-martingale. We leave the details to the diligent reader.

6. The rate of growth for the Wasserstein distance. Let us recapitulate
the message of Corollaries 4.3 and 4.4: in these results we compare the rate of decay
for the relative entropy with the rate of growth for the quadratic Wasserstein distance
Wy along the curves (P(t));>0 and (P?(t))>¢, in Z2(R™). This is the essence of the
gradient flow property formalized in Theorem 3.2.

In order to complete the proofs of Corollaries 4.3 and 4.4, we have to establish
the limits (4.15) and (4.18). The limit (4.15) is well known (see [4]) to exist, under
suitable regularity assumptions, for Lebesgue-a.e. tyg > 0. A similar remark pertains
to the “perturbed” limit (4.18): if we replace tg by so in (4.18), it is well known that
this limit exists for Lebesgue-a.e. sg = to. But this is not what we need. We have to
prove the validity of (4.18) for the point to itself, in order to calculate the slope of
the function (H(P?(t)|Q))i>t, with respect to the Wasserstein distance at time to.
After all, the deviation of P?(t) from P(t) takes place at time tg.

This technical aspect turns out to be quite delicate. We already needed a careful
analysis (recall the estimates (4.19) and (4.20)) to show that the exceptional set N
of (3.7), defined in terms of the decay of entropy of the unperturbed curve (P(t)):>0,
does not change when passing to the perturbed curve (P?(t))>4,. In addition, we have
to show that this set N also cannot increase when passing from the unperturbed
Wasserstein limit (4.15) to its perturbed counterpart (4.18). In order to do this,
we have to rely here (and only here) on condition (vi) of Assumptions 2.3.

For a detailed discussion of metric measure spaces and in particular Wasserstein
spaces, we refer the reader to [3], [4], [54], and [55]. We also refer to section 5
in [34], where some results on quadratic Wasserstein transport are reviewed for the
convenience of the reader.

For fixed T € (0,0), we define now the time-dependent velocity field

1 Vp(t, )
2 p(t,x)

1 Vet x)

T2 e R

(6.1) [0, T]xR" > (t,z) — v(t,z) := —( +V\IJ($)> =

According to condition (vi) in Assumptions 2.3, this gradient vector field v(¢, - ) is
an element of the tangent space (see Definition 8.4.1 in [4]) of ZP5(R™) at the point
P(t) S yQ(R”), i.e.,

L2(P(t
(6.2) u(t, -) € Tanp) 22(R") = (Vg: peCo@®uR) 7,

We can now formulate the “unperturbed” version of our desired result.
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THEOREM 6.1 (the limiting behavior of the quadratic Wasserstein distance).
Under Assumptions 2.3, let tg = 0 be such that the gemeralized de Bruijn identity
(3.3), (4.14) is valid. Then we have the two-sided limit

W2 (P(t)r P(tO))

(63)  Jim = = (Ep [|o(to, X (t0)) []) "/ = % VIP(t)] Q).

Before dealing with Theorem 6.1, we will prove the more general Theorem 6.2
below which amounts to the perturbed version of Theorem 6.1. For right-derivatives,
the latter then simply follows by setting 8 = 0 in the statement of Theorem 6.2.

We consider the “perturbed” curve (PP(t));sq, in P2(R"™), as defined
in (3.8)—(3.10), and define the time-dependent perturbed velocity field

1 VpP(t,2)

(64) [t0.T) X R 2 (1.0) s 0¥ (15) 1= (5 5

+V¥(z) 4+ ﬁ(m)) e R".
At this point, we recall that the perturbation 5: R™ — R" is a gradient vector field,
i.e., of the form g = VB for some smooth potential B: R" — R with compact
support. Since p(to, - ) = p?(to, - ), at time o the vector fields of (6.1) and (6.4) are
related via

(6.5) v (to, 2) = v(te,2) — VB(x) = —V(; In (tg, z) + B(90)>7 z e R™

Using the regularity assumption that the potential B is of class C°(R™; R), we con-
clude from (6.2) and (6.5) that the perturbed vector field v°(ty, - ) is also an element
of the tangent space of Z,(R™) at the point P?(ty) = P(ty) € Zo(R"), i.e.,

L2(PP(¢
(66) 0 (to, -) € Tanpsg,) 22(R") = (VeP: @ € Co@®@uR)y ),

THEOREM 6.2 (the limiting behavior of the quadratic Wasserstein distance under
perturbations). Under Assumptions 2.3, for every point to € Ry \ N (at which the
right-sided limiting identity (3.7) is valid), we have the one-sided limit

12 1
2

(6.7)  lim W (PP(t), PP(to))

thto t—to = (Be [|o” (t0. X (10) |'])

lla + 2b||L2(p)-

Here a = VInl(ty, X (to)) and b = B(X (to)) as in (3.11).

Proof of Theorem 6.2. The second equality in (6.7) is apparent from the definition
of the time-dependent perturbed velocity field (v°(t, -))i>¢, from (6.4) above. The
delicate point is to show that the limiting assertion (6.7) is valid for every to € R4\ N.

In order to see this, let us fix some ¢ty € R4\ N so that the limiting identity (3.7)
is valid. In the following steps we prove that the limiting assertion (6.7) also holds.

Step 1. The gradient vector field v° (¢, - ) induces a family of linearized transport
maps

(6.8) XP(z) =+ (t—to) v (to,x), =z €R",

for t > to in the manner of (4.42), and we denote by P)B((t) the image measure of
PB(ty) = P(ty) under the transport map X’: R® — R", i.e.,

(6.9) PE(t) = (XY 4 PP(ty),  t>to.
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To motivate the arguments that follow, let us first pretend that, for all ¢ > t; suffi-
ciently close to tg, the map Xtﬁ is the optimal quadratic Wasserstein transport from
PB(ty) to PL(t), ie.,
(6.10)
2 2
W3 (Py(t), PP (to)) = Eps [| 4/ (X (t0)) — X(to)|"] = Ep[|X7 (X (t0)) — X (to)| ],

where we have used in the last equality the fact that X (¢9) has the same distribution
under P# as it does under P. Then, on account of (6.8), we could conclude that

P2(t), P8(t
(6.11)  lim Wa(Px (1), PP (to))
tlto t—to

2 1

= (B [|o” (t0, X (1) ['])/* = 5

||a + lele(p).

Furthermore, let us suppose that we can show the limiting identity

(6.12) lim 12 (PP(1), Py (1)
’ tito t—tg

:O’

which has the interpretation that “the straight line (Pf( (t))i>1, is tangential to the
curve (PP(t))i>1,.” Using (6.11) and (6.12), we could now derive the desired equal-
ity (6.7). Indeed, invoking the triangle inequality for the quadratic Wasserstein dis-
tance, we obtain

Wo (P2(t), PB(¢ Wa (P2 (1), PA(t Wa (PP (1), PP (¢
613) i 2PEO PO L Wa(PR(.POW) | Wa(PP(0). P (1)
tlto t—to tlto t—to tlto t—to

)

and one more application of the triangle inequality yields

A A PA(t), P2 P2 (+) pB
(614) lim sup W2 (P (t)7 P (tO)) < lim W2( (t)v X(t)) + lim WQ( X(t)v (to)) .
tlto t— to tlto t— to tlto t— to

Step 2. The bad news at this point is that there is little reason why, for t > ¢
sufficiently close to tg, the map Xtﬁ defined in (6.8) of Step 1 should be optimal with
respect to quadratic Wasserstein transportation costs, i.e., by Brenier’s theorem [12],
equal to the gradient of a convezr function. The good news is that we can reduce the
general case to the situation of optimal transports Xf as in Step 1 by localizing the
vector field v#(tg, ) as well as the transport maps (X}’ )t>t, to compact subsets of R™
(Steps 2—4) and that, after these localizations have been carried out, an analogue of
the equality (6.12) also holds, allowing us to complete the argument (Steps 5 and 6).

To this end, we recall that v?(ty, -) from (6.5) is an element of the tangent
space Tanps () Z2(R™) of the quadratic Wasserstein space &2(R") at the point
PB(tg) € P5(R™). Thus, we can choose a sequence of functions (¢2, (o, ))m>1 C
C(R™;R) such that

(6.15) lim Ep [[v” (to, X (t)) — Vb, (to, X (to))|"] = 0.

m—ro0

Next, for each m € N, we define the localized gradient vector fields
(6.16) 08 (to, ) == Vb (to, z), x € R™

These have compact support, approximate the gradient vector field v?(t, -)

in L2(P(to)) as in (6.15), and induce a family of localized linear transports (Xtﬂ’m)t>t0
defined by analogy with (6.8) via

(6.17) XPM() =2+ (t—to) -0l (to,x),  xeR"

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/03/22 to 46.242.15.47 by Alexey Alimov (alexey.alimov@gmail.com) Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

700 1. KARATZAS, W. SCHACHERMAYER, AND B. TSCHIDERER

We denote by Pf{’m(t) the image measure of P?(ty) = P(to) under this localized linear
transport map X”™: R" — R", i.c.,

(6.18) PRT(E) = (X)) 4 PP (to), > to.

Step 3. We claim that, for every m € N, there exists some ¢, > 0 such that for
all t € (to,to + &m), the localized linear transport map Xtﬁ M R™ — R™ constructed
in Step 2 defines an optimal Wasserstein transport from P?(t() to Pfi’m(t). Hence, by
Brenier’s theorem [12], [56, Theorem 2.12], we have to show that X™ is the gradient
of a convez function, for all t > ty sufficiently close to tg.

Indeed, from the definitions in (6.16) and (6.17) we see that the functions X™
are gradients for all m € N and ¢ > tg. More precisely, we have

1
619) 7@ =V (Gl -0 Ghlo), R

As the Hessian matrix of ¢ (¢, -) is uniformly bounded, the function in the bracket
of (6.19) is a convex function of x for every m € N and ¢ € (¢o,t0 + &) for e, > 0
small enough. We also note for later use that Xtﬁ "™ defines a Lipschitz bijection on R™
again for every m € N and t € (tg,t0 + &m)-

Step 4. From Step 3 we know that, for every m € N, there exists some €, > 0
such that for all ¢ € (to,to + &,) the localized map Xtﬁ "™ is the optimal transport
from PP (ty) to P2™ (t) with respect to quadratic Wasserstein costs. Therefore, we can

apply the considerations of Step 1 to the optimal map Xf "™ in (6.17) and deduce that

Wo (P2™ (1), PA(t
tlto t— to

= (Be [[vf, (to. X (10))[*])"*

holds for every m € N. Invoking (6.15) and (6.16), we obtain from this
(6.21)

Wao (P2™ (1), PB(t
lim lim 2( & ®), (0))

m—oo tltg t—1to

12 1
2

2
= (Ep[|v” (to, X (t0))|]) lla +2b[| 2(p).
From the inequalities (6.13) and (6.14) of Step 1 (with P2 (t) instead of Py (t)) it
follows that, in order to conclude (6.7), it remains to establish the analogue of the
identity (6.12):

(6.22) i Tim 2P A1), PR (1)

m—o0 tltg t— to

=0.

Step 5. The time-dependent velocity field (v°(¢, - ))i>s, induces a curved flow
(0% )t>1,, Which is characterized by

d
(6.23) &yf =07, Y)) forallt>ty, V. =Idr~.

Then, for every ¢ > to, the map Y’ : R" — R" transports the measure P (ty) = P(to)
to PA(t), i.e., (V2)4PP(to) = PP(t).

The localized linear mappings X”™: R™ — R™ of (6.17) transport P?(ty)
to P)’g’m(t), as in (6.18). As mentioned at the end of Step 3, the inverse mappings
(xP™)=1: R™ — R™ are well defined for all m € N and ¢ € (to, to + & ); they satisfy

(6.24) ((X7™)7) , PE™ (1) = PP(to),  t€ (to,to +&m)-
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From Step 4, our remaining task is to prove (6.22). To this end, we have to con-
struct maps 27 : R™ — R™ that transport Py (t) to PA(t), i.e., (Z2™) 2 P2 ™ () =
PA(t), and satisfy

(6.25) lim lim L(Epgm (120 (x 1) — x0)'D? =0,

m—oo tltg T — 0

where P/jv’m denotes a probability measure on the path space under which the r.v.
X (t) has distribution Po™ () as in (6.18). We define for this job the candidate maps

(6.26) ZPm = Yo (XP™ 7Tt e (to,to +em);

recall that (X”"™)~! transports PL™(t) to PP(ty), while ) transports P?(ty)
to PP(t); and conclude that Z™ of (6.26) transports Py™(t) to PP(t). Thus,
we obtain

(627)  Bpen [|2) (X)) — X(1)[*] = B [/ (X (t0)) — 27" (X (1) [].
Combining (6.25) with (6.27), we see that we have to establish

(6.28) Jim_lim ﬁ Ep |3/ (X (t)) — X" (X (t0))|*] = 0.

Using (6.17) and the elementary inequality |z + y|? < 2(|z]? + |y|?) for z,y € R™,
we derive the estimate

(6.29) % V(@) = XD (@) < (E—t0)? - [0 (to, ) — o} (to, )|
(6.30) + (VP () — @) = (t —to) - v (t0,2)|*.

Therefore, in order to establish (6.28), it suffices to show the limiting asser-
tions (6.31) and (6.32) below; these correspond to (6.29) and (6.30), respectively.
We already have the first limiting identity from (6.15) and (6.16) of Step 2, namely,

(6.31) lim Ep [[v” (to, X (o)) — v}, (o, X () "] = 0.

m—oo
2
|0

To this end, we first note that by (6.23) we have for all ¢ > ¢y the identity

Step 6. Our final task is to justify that

ﬁ(yf(x’(to)) ~ X(to)) — v (t0, X (t0)

tlto

(6.32) lim Ep {

(6.33) Vi) =2+ /t v? (u,yf(:r)) du, xzeR™,

to

on whose account the expectation in (6.32) is equal to

2}
As VP transports P8 (ty) = P(to) to PP(t), and because the r.v. X(fo) has the same
distribution under P? as it does under P, this expectation can also be expressed

¢ —1t0 / v (u, Vi (X (t0))) du — 07 (to, X (t0))

to

(6.34) Ep {
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with respect to the probability measure P?, and it thus suffices to show the limiting
assertion

2

} 0.

For this purpose, we first observe that by the continuity of the paths of the canonical
coordinate process (X (t));>0, the family of r.v.’s

2

) t>to

converges PP-a.s. to zero, as t | ty. In order to show that their expectations also
converge to zero, i.e., that (6.35) does hold, we have to verify that the family
of (6.36) is uniformly integrable with respect to PP. As the r.v. [v°(to, X (t0))|?
belongs to L'(P#), and we have

A [ X0 0, X(0)

— to

(635) E,Itrg EP/i |:

(6.36) (’ ! /t VP (u, X(u)) du — 8 (to, X(to))

t—to Ji,

2 1
<
t—to

(6.37) ‘ /t 0P (u, X (u)) du

to

¢
/ |vﬁ(u,X(u))|2du, t > to,
t_to tO

by Jensen’s inequality, it is sufficient to prove the uniform integrability of the family

(6.38) (t _1t0 /t:’vﬁ (1, X (1)) ’2du)

Invoking the definition of the time-dependent velocity field (v° (¢, -))i>4, in (6.4) and
the fact that the perturbation § is smooth and compactly supported, the uniform
integrability of the family in (6.38) above is equivalent to the uniform integrability of
the family

1|V (u, X ()|
(6-39) <t—to to €B(u,X(u))2 du)t>t0'

t>to

=

Now by continuity, the family (6.39) converges P?-a.s. to |V In £(tg, X (t9))|?. Thus, to
establish this uniform integrability, it suffices to show that the family of r.v.’s in (6.39)
converges in L'(P#). Hence, in view of Scheffé’s lemma (Lemma A.1), it remains to
check that the corresponding expectations also converge. But at this point we use for
the first time our choice of ty € Ry \ N and recall (4.22) and (4.24) from the proof of
Corollary 4.4, which gives us
PR 2 2
(6.40)  limEps [ ! / AT X(“))Q‘ du} —Ep [W :
tto t—to to AP (ua X(u)) Z(th X(to))

as required. This completes the proof of the claim made at the beginning of Step 6.

Summing up, in light of (6.29) and (6.30) from Step 5, the limiting assertions
(6.31) and (6.32) imply the limiting behavior (6.28). According to the results of
Steps 4 and 5, the latter also entails the validity of the limiting identity (6.22), which
completes the proof of Theorem 6.2.

Equipped with Theorem 6.2, we can now easily deduce Theorem 6.1.
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Proof of Theorem 6.1. The second equality in (6.3) follows from the representation
of the relative Fisher information in (3.6) and the definition of the time-dependent
velocity field (v(t, - ))i>g, in (6.1). The first equality in (6.3) follows from Theo-
rem 6.2 if we set 5 = 0. However, the limit in (6.7) is only from the right, while the
limit in (6.3) is two-sided. But the only reason for considering right-sided limits in
Theorem 6.2 was the presence of the perturbation 8 at time t > tg. If there is no
such perturbation, one can replace all limits from the right by two-sided ones. This
completes the proof of Theorem 6.1.

Open question. Derive the main results of the present section, Theorems 6.1
and 6.2, using probabilistic, rather than analytical, tools.

Appendix A. Some measure-theoretic results. In the proofs of Propositions
4.5 and 4.7, we have used a result about conditional expectations, which we formulate
below as Proposition A.2; we refer the reader to Proposition D.2 in Appendix D
of [34] for its proof. We place ourselves on a probability space (2, F,P) endowed
with a left-continuous filtration (F(t));>0. We first recall the following result, which
is well known under the name of Scheffé’s lemma [58, 5.10].

LEMMA A.1 (Scheffé’s lemma). For a sequence of integrable r.v.”s (X )nen which
converges P-a.s. to another integrable r.v. X, the convergence of the L'(P)-norms
(i.e., lim, o E[|X,|] = E[|X]]) is equivalent to the convergence in L'(P) (i.e.,
lim, - E[|X,, — X|] = 0).

PROPOSITION A.2. Let (B(t))o<i<r and (C(t))o<i<r be adapted continuous pro-
cesses which are nonnegative and uniformly bounded, respectively. Define the process

(A.1) At) == /t (B(u) + C(u)) du, 0<t<T,
0

and assume that EUOT B(u) du] is finite. By the Lebesgue differentiation theorem, for
Lebesgue-a.e. ty € |0, 7],

(A.2) gxtx;w = l}rrtrg P— Euo (B(uw)+C(w)) du| = E[B(to) +C(to))-

Now fix a “Lebesgue point” to € [0,T] for which (A.2) does hold. Then we have the
analogous limiting assertion for the conditional expectations, i.e.,

(A.3) i ElA() — A@) | F(?)]
' t1to to—1

= B(to) + C(to),

where the limit exists in L*(P).

In the proof of Theorem 4.1 we invoked the following result. For its proof, we
apply Lemma 2.48 in [32] to the continuous local martingale N (t) = N (¢)/N(0), t > 0.

PROPOSITION A.3. Suppose (N(t))i>0 is a strictly positive local martingale with
continuous paths. Let T be a [0, 00)-valued stopping time such that In N (1) is integrable
and E[(In N(0))*] < co. Then In N(0) is integrable, and

(A4) Efln N (r)] - Blln N(0)] = — 3 B[{In N) (7)),

where (In N) denotes the quadratic variation of (In N(t));>o0-
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Appendix B. The proof of Lemma 4.10. In order to show (4.44), we recall
the notation of (4.42) and consider the time-dependent velocity field

(B.1) [0,1] x R 5 (,€) — v:(€) = ((T7) 7' (€)) € R™,

which is well defined P;-a.s. for every t € [0,1]. Then (v)ogi<1 is the velocity field
associated with (T} )o<i<1, i-€.,

t

(B.2) T) (z) = z+/0 vg (T} (2)) db,

on account of (4.42). Let p¢(-) be the probability density function of the probability
measure P; in (4.42). Then, according to [56, Theorem 5.34], the function p:(-)
satisfies the continuity equation

(B.3) Ape(z) + div (v () pe(z)) = 0, (t,z) € (0,1) x R",
which can be written equivalently as
(B.4) — Oip(x) = div(vy(x)) pe(x) + (ve(x), Vpe()), (t,x) € (0,1) x R".

Recall that X is an r.v. with probability distribution P, on the probability space
(S,S,v). Then the integral equation

(B.5) Xt:Xo+/0tvg(X9)d0, 0<t<l,

defines r.v.’s X; with probability distributions P, =(T}")4(P) for t €0, 1], as in (4.42).
We have

(B.6) dpe(Xy) = Oupe(Xy) dt + (Vpe(Xy), dXy) = —pe(Xy) div (v (X)) di

on account of (B.4) and (B.5); thus also

(B.7) dlnp,(Xy) = — div (v (X,)) dt, 0<t< L.

Recall the function ¢(z) = e=2%(®)_ for which

(B.8) dlng(Xy) = —(2V¥(X,),dX;) = —(2VU(Xy), v(Xy)) dt.

For the likelihood ratio function £;(-) of (4.41) we get from (B.7) and (B.8) that
(B.9) dInly(Xy) = (2VU(Xy), v4(Xy)) dt — div (v (Xy)) dt, 0<t< 1.

Taking expectations in the integral version of (B.9), we obtain that the difference

(B.10) H(P;|Q) — H(Py| Q) = E, [In£,(X,)] — E, [In £o(Xo)]
is equal to
(B.11) E, Uot(@v\p(xe), vg(Xg)) — div(ve(Xyp))) df

for t € [0,1]. Consequently,

(B.12)  lim H(P|Q) - H(PR|Q)
10 n

=E, [(2V¥(Xy), v0(X0)) — div(vo(X0))].
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Integrating by parts, we see that

(B.13)  E,[div(vo(Xo))] = /Rn div(vo())po(z) dz = —/n(vo(:c)7Vpo(x)>dx
(B.14) = —(VInpo(Xo),vo(Xo))r2(x)-

Recalling (B.12) and combining it with the relation VIn/¢;(z) = Vinp(z) +2V¥(z),
as well as with (B.13) and (B.14), we get

(B.15) li

o HPIQ) ~ (R Q)

t10 t = (VIntlo(Xo), vo(Xo))L2(1)-

Since vy = 7, this leads to (4.44). Lemma 4.10 is proved.
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