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Abstract In the spirit of the famous Komlós (1967) theorem, every sequence of nonnega-
tive, measurable functions ¹fnºn2N on a probability space contains a subsequence which—
along with all its subsequences—converges a.e. in Cesàro mean to some measurable f! W
!! Œ0;1". This result of von Weizsäcker (2004) is proved here using a new methodology
and elementary tools; these sharpen also a theorem of Delbaen and Schachermayer (1994),
replacing general convex combinations by Cesàro means.

1. Introduction

On a probability space .!;F ;P/, consider real-valued measurable functions f1; f2; : : :.
If these are independent and have the same distribution with E.jf1j/ <1, the cel-
ebrated Kolmogorov strong law of large numbers ([12, p. 73]; [19, 20]) states that
the “sample average” .f1 C ! ! !C fN /=N converges P-a.e. to the “ensemble average”
E.f1/D

R
! f1dP, as N !1. More generally, if fn.!/D f .T n"1.!//, n" 2, ! 2!

are the images of an integrable function f1 W !! R along the orbit of successive
actions of a measure-preserving transformation T W !! !, then the above sample
average converges P-a.e. to the conditional expectation f# D E.f1jI/ of f1, given
the " -algebra I of T -invariant sets, by the Birkhoff pointwise ergodic theorem [12, p.
333].

A deep result of Komlós [21], already 56 years old but always very striking, says
that such “stabilization via averaging” occurs within any sequence f1; f2; : : : of mea-
surable, real-valued functions with supn2N E.jfnj/ <1. More precisely, there exist
then an integrable function f# and a subsequence ¹fnk ºk2N such that .fn1 C ! ! ! C
fnK /=K converges to f#, P-a.e. as K!1; and the same is true for any further sub-
sequence of this ¹fnk ºk2N.
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This result inspired further path-breaking work in probability theory ([7, 8, 13]),
culminating with Aldous [1] and Berkes–Péter [5], where exchangeability plays a cru-
cial role. It—and its ramifications [10, 11] involving forward convex combinations—
has been very useful in the field of convex optimization; more generally, when one
seeks objects with specific properties and tries to ascertain their existence using weak
compactness arguments. Stochastic control, optimal stopping, and hypothesis testing
are examples of the former (e.g., [9, 17, 18, 23, 24]); the Doob–Meyer and Bichteler–
Dellacherie theorems in stochastic analysis provide instances of the latter (e.g., [2, 3,
14]).

We develop here a very simple argument for the Komlós theorem, in the important
special case of nonnegative f1; f2; : : : treated by von Weizsäcker (2004). The argument
dispenses with boundedness in L1, at the cost of allowing the function f# to take infinite
values.

2. Background

We place ourselves on a given, fixed probability space .!;F ;P/ and consider a
sequence f1; f2; : : : of measurable, real-valued functions defined on it. We say
that this sequence converges hereditarily in Cesàro mean to some measurable

f# W ! ! R [ ¹˙1º, and write fn
hC$$$$!
n!1 f#;P-a.e.; if, for every subsequence

¹fnk ºk2N of the original sequence, we have

(2.1) lim
K!1

1

K

KX
kD1

fnk D f#; P-a.e.

Clearly then, every other such sequence g1; g2; : : : which is equivalent to f1; f2; : : : , in
the sense of

P
n2N P.fn ¤ gn/ <1 (cf. [20]), also has this property.

In 1967, Komlós proved the following remarkable result. The argument in [21]
is very clear—but also long and quite involved. Simpler proofs and extensions have
appeared since (e.g., [4, 26, 28]).

THEOREM 2.1 (Komlós [21])
If the sequence ¹fnºn2N is bounded in L1 (i.e., supn2N E.jfnj/ <1 holds), there exist
an integrable f# W!! R and a subsequence ¹fnk ºk2N of ¹fnºn2N, which converges
hereditarily in Cesàro mean to f#:

(2.2) fnk
hC$$$$!
k!1

f#; P-a.e.

This result was motivated by an earlier one (Theorem 2.2 below). For the convenience
of the reader, we provide in Section 5.1 a simple proof (in the manner of [6, pp. 137-
141]) of that precursor result, which proceeds by extracting first a martingale difference
subsequence. This crucial idea, which establishes a powerful link to martingale theory
and simplifies the arguments, appears in this context for the first time in [21] (for related
results, see [22]).
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THEOREM 2.2 ( Révész [25])
If the sequence ¹fnºn2N satisfies supn2N E.f 2n / <1, there exist a function g 2 L2
and a subsequence ¹fnk ºk2N, such that

P
k2N ak.fnk $ g/ converges P-a.e. for any

sequence ¹akºk2N of real numbers with
P
k2N a

2
k <1.

It is clear that this property of the subsequence ¹fnk ºk2N is inherited by all its sub-
sequences (just “stretch out” the ak’s accordingly, and fill out the gaps with zeroes);
whereas, reading Theorem 2.2 with ak D 1=k and invoking the Kronecker lemma ([12,
p. 81]) leads to the convergence in (2.1) when the f1; f2; : : : are bounded in L2 (rather
than in L1, as posited in Theorem 2.1).

In a related development, Delbaen & Schachermayer ([10, Lemma A1.1],
[11]) showed with very simple arguments that, from every sequence ¹fnºn2N of
nonnegative, measurable functions, a sequence of forward convex combinations
gn 2 conv.fn; fnC1; : : :/, n 2 N of its elements can be extracted, which converges
P-a.e. to a measurable f# W !! Œ0;1#. This result was called “a somewhat vulgar
version of Komlós’s theorem” in [11], and is implied by Theorem 3.1 below. Indeed,
convergence for Cesàro averages is much more precise than for unspecified convex
combinations.

In several contexts, including optimization treated via convex duality, nonnegativ-
ity is often no restriction at all—but rather the natural setting (e.g., [15, 23, 24] and [16,
Chapter 3 and appendix]). Then, in the presence of convexity, Lemma A1.1 in [10], or
Theorem 3.1 here, are very useful analogues of Theorem 2.1: they lead to limit func-
tions f# in convex sets (such as the positive orthant in L0 or the unit ball in L1) which
are not compact in the usual sense, but are “convexly compact” in the sense introduced
by Žitković [30].

3. Result

The purpose of this note is to prove with new and elementary tools the following version
of Theorem 2.1, due to von Weizsäcker [29] and studied further in [27] and [15, §5.2.3].

THEOREM 3.1
Given a sequence ¹fnºn2N of nonnegative, measurable functions on a probability space
.!;F ;P/, there exists a measurable function f# W !! Œ0;1# and a subsequence
¹fnk ºk2N of the original sequence such that (2.2) holds.

Our proof appears in Section 5. We observe that the result imposes no restriction what-
soever on the functions f1; f2; : : : , apart from measurability and nonnegativity. This
comes at a price: the limiting function f#, carefully constructed here in Equations
(4.3)–(4.6) below, can take the value C1 on a set of positive measure.

4. Preparation

We place ourselves in the setting of Theorem 3.1. The arguments that follow often
necessitate passing to subsequences, and to diagonal subsequences, of a given ¹fnºn2N.
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To simplify typography, we frequently denote such subsequences by the same symbols,
¹fnºn2N.

For each integer k 2N, we introduce the truncated functions

(4.1) f .k/n WD fn ! 1¹k"1$fn<kº; n 2N

and note the partition of unity
P
k2N f

.k/
n D fn, 8n 2N.

LEMMA 4.1
For the sequence of functions ¹fnºn2N in Theorem 3.1, there exists a subsequence,
denoted by the same symbols and such that, for every k 2 N, the functions of (4.1)
converge to an appropriate measurable function f .k/ W!! Œ0;1/, in the sense

(4.2) f .k/n

hC$$$$!
n!1 f .k/; P-a.e.

For each fixed k 2N, this convergence holds also in L1.

Proof (after [6, pp. 145–146])
For arbitrary, fixed k 2N, the sequence ¹f .k/n ºn2N of (4.1) is bounded in L1, thus also
in L2. Theorem 2.2 provides a function f .k/ 2 L2 and a subsequence ¹f .k/nj ºj2N of

¹f .k/n ºn2N such that
P
j2N.f

.k/
nj $ f .k//=j converges P-a.e.; as mentioned right after

Theorem 2.2, this is inherited by all subsequences of ¹f .k/nj ºj2N, and the Kronecker
Lemma ([12, p. 81]) gives

0D lim
J!1

1

J

JX
jD1

.f .k/nj
$ f .k//D lim

J!1
1

J

JX
jD1

f .k/nj
$ f .k/; P-a.e.

We pass now to a diagonal subsequence, denoted ¹fnºn2N again, and such that (4.2)
holds for every k 2 N. The last claim follows by the dominated convergence theo-
rem. !

With these ingredients, we introduce the measurable function f W!! Œ0;1# via

(4.3) f WD
X
k2N

f .k/; and consider the set A1 WD ¹f D1º:

With the help of Fatou’s lemma, and the notation of (4.1)–(4.3), Lemma 4.1 then
gives

lim
N!1

1

N

NX
nD1

fn " f; P-a.e.(4.4)

lim
N!1

1

N

NX
nD1

fn D1D f; P-a.e. on A1(4.5)

for a suitable subsequence (denoted by the same symbols) of the original sequence
¹fnºn2N and for all further subsequences of this subsequence.
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The inequality in (4.4) can easily be strict. Consider, for instance, fn % n so that
f
.k/
n D 0 holds in (4.1) for each fixed k 2N and all n 2N sufficiently large. We obtain

in this manner f .k/ D 0 in (4.2); thus, f D 0 in (4.3)—and yet 1
N

PN
nD1 fn!1 as

N !1.
This preparation allows us to formulate a more technical and precise version of

Theorem 3.1, Proposition 4.2 below, which implies it. The convention 1 ! 0 D 0 is
employed here and throughout.

PROPOSITION 4.2
Fix a sequence ¹fnºn2N of nonnegative, measurable functions on the probability space
.!;F ;P/, and recall the notation of (4.1)–(4.3). There exist then a subsequence, again
denoted ¹fnºn2N, and a set A&A1, such that

(4.6) fn
hC$$$$!
n!1 f# WDmax.f;1 ! 1A/; P-a.e.

We have ADA1, thus, also f# % f , when limK!1 limn!1 P.fn "K;f <1/D 0.

This last condition is satisfied when the sequence ¹fn1¹f <1ººn2N is bounded in L0;
i.e., when

lim
K!1

sup
n2N

P.fn "K;f <1/D 0

holds. A bit more stringently, if not only ¹fnºn2N but also its solid, convex hull in L0C
is bounded in L0, then ¹fnºn2N is bounded in L1.Q/ under some probability measure
Q' P, and thus P.f <1/D 1 (e.g., [16, Proposition A.11]); whereas, if ¹fnºn2N is
bounded in L1.P/ (i.e., $ WD supn2N E.fn/ <1), then f in (4.3) is integrable since
E.f /( $ holds from (4.4) and Fatou.

5. Proofs

We shall need a couple of auxiliary results. First, and always with the notation of (4.1)–
(4.3), we note the following consequence of monotone and dominated convergence.

LEMMA 5.1
Suppose a set D )!nA1 D ¹f <1º satisfies E.f 1D/ <1. Then for any given " 2
.0; 1/, there exist an integer K 2 N and a subsequence of the given sequence ¹fnºn2N
such that for it, and for any one of its subsequences .again denoted ¹fnºn2N/, we have
for all integers L>K:

(5.1) lim
n!1EŒfn1¹K$fn<Lº\D#DW lim

n!1EŒf ŒK;L/n 1D#< ":
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Throughout, we are using the notation

f ŒK;L/n WD
LX

kDKC1
f .k/n D fn1¹K$fn<Lº;

f ŒK;1/n WD
X

k%KC1
f .k/n D fn1¹fn%KºI

(5.2)

and in an analogous manner f ŒK;L/ WDPL
kDKC1 f

.k/, f ŒK;1/ WDPk%KC1 f
.k/, so

Lemma 4.1 gives

(5.3) f ŒK;L/n

hC$$$$!
n!1 f ŒK;L/; both P-a.e. and in L1.

Secondly, we recall (4.5) and observe the following dichotomy.

LEMMA 5.2
In the setting of Proposition 4.2, consider any measurable set B & ¹f D1º such that

the property fn
hC$$$$!
n!1 1 of (4.5) holds P-a.e. on B . Then either

(i) there exist a set C &B with P.C / > P.B/ and a subsequence, still denoted
¹fnºn2N, with

(5.4) fn
hC$$$$!
n!1 1 valid P-a.e. on C Ior;

(ii) the Cesàro convergence fn
hC$$$$!
n!1 f <1 holds P-a.e. on ! nB ) ¹f <1º.

Under Case (ii), the set B &A1 D ¹f D1º is maximal for the P-a.e. property fn
hC$!

1: it cannot be “inflated” to a set C &B , which satisfies (5.4) and has measure bigger
than that of B . This leads eventually to Proposition 4.2, and thence to Theorem 3.1.

Before proving these two results, we dispense with the proof of Theorem 2.2; this is
completely self-contained and has nothing to do with either Lemma 5.1 or Lemma 5.2.

5.1. Proof of Theorem 2.2
Because ¹fnºn2N is bounded in L2, we can extract a subsequence that converges to
some g 2 L2 weakly in L2. Thus, it suffices to prove the result for a sequence ¹gnºn2N
bounded in L2 and with gn! 0 weakly in L2. We take such a sequence, then, and
approximate each gn by a simple function hn 2 L2 with kgn $ hnk2 ( 2"n, 8n 2 N.
This gives, in particular,

(5.5)
X
n2N
jgn $ hnj<1; P-a.e.I hn! 0 weakly in L2:

We construct now, by induction, a sequence 1D n1 < n2 < ! ! ! of integers such that

(5.6) j#kj< 2"k holds P-a.e. for #k WD E.hnk jhn1 ; : : : ; hnk"1/; k D 2; 3; : : : ;

as follows: The function hn1 D h1 is simple, thus so is E.hnjh1/D
PJ
jD1 %

.n/
j 1Aj with

A1; : : : ;AJ a partition of the space, and P.Aj / > 0, % .n/j WD .1=P.Aj // ! E.hn1Aj /.



A strong law of large numbers for positive random variables 523

This last expectation tends to zero as n!1 from (5.5) for every fixed j , so we can
choose n2 > n1 D 1with j% .n2/j j< 2"2 for j D 1; : : : ; J ; i.e., j#2j< 2"2 P-a.e. Clearly,
we can keep repeating this argument since, at each stage, .hn1 ; : : : ; hnk"1/ generates a
finite partition of the space; this way we arrive at (5.6).

The sequence ¹hnºn2N is bounded in L2, thus so is the martingale Xk WDPk
`D0 a`.hn` $ #`/, k 2 N0, for any ¹akºk2N0 * R with

P
k2N a

2
k <1. The mar-

tingale convergence theory ([12, p. 236]) shows that the series
P
k2N ak.hnk $ #k/

converges P-a.e. But we have also
P
k2N.j#kj C jgnk $ hnk j/ <1, P-a.e. from (5.5)–

(5.6), and we deduce that
P
k2N akgnk converges P-a.e., the claim of the theorem.

5.2. Proof of Lemma 5.1
Let us call “Lemma 5.1”# the same statement as that of Lemma 5.1, except that (5.1) is
now replaced by

8LDK C 1;K C 2; : : : W

EŒf ŒK;L/n 1D#< " for all but finitely many n 2N:
(5.7)

CLAIM (Lemma 5.1! implies Lemma 5.1)
Let a subsequence of the original ¹fnºn2N be given (denoted ¹fnºn2N again), along
with arbitrary " 2 .0; 1/. Lemma 5.1# guarantees the existence ofK 2N, depending on
" and the subsequence, such that (5.7) holds for all integers L"K C 1.

Choose L D K C 1 first. From Lemma 5.1# and Bolzano–Weierstrass, (the current)
¹fnºn2N has a subsequence for which the expectation in (5.7) converges, with limit
( "=2. Now choose LDK C 2 and a subsequence of the last subsequence, for which
the expectation in (5.7) converges and has limit ( "=2. Continuing in this manner, then
diagonalizing, we obtain a subsequence that satisfies (5.7).

Proof of Lemma 5.1#

We argue by contradiction, assuming that ¹fnºn2N has a subsequence for which
Lemma 5.1# fails. Then there exists an " 2 .0; 1/ with the property that for every
subsequence of ¹fnºn2N and every K 2N, there exists an integer L>K such that

(5.8) E
h LX
kDKC1

f .k/n 1D
i
D E.f ŒK;L/n 1D/" "

holds for infinitely many integers n 2 N. But this means that there is a subsequence,
again denoted by ¹fnºn2N, along which we have (5.8) for every n 2N, and, as a result,
also

(5.9) E
h LX
kDKC1

! 1
N

NX
nD1

f .k/n

"
1D
i
" "; 8N 2N:

Now all the truncated functions f .k/n in (4.1) for k DKC 1; : : : ;L and n 2N take val-
ues on the “Procrustean bed” ¹0º [ ŒK;L/; and limN!1 1

N

PN
nD1 f

.k/
n D f .k/ holds
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P-a.e. for the selected subsequence and all its subsequences, on account of Lemma 4.1.
Thus, EŒ

PL
kDKC1 f

.k/1D#" " from bounded convergence and (5.9), and the nonneg-
ativity of these f .k/’s also implies that

(5.10) E
! X
k%KC1

f .k/1D
"
D E.f ŒK;1/1D/" "; 8K 2N:

The nonnegativity also gives limK!1 "
PK
kD1 f

.k/1D D f 1D , both P-a.e. and
in L1. Since E.f 1D/ <1 by assumption, EŒf ŒK;1/1D# < "=2 holds for all K 2 N
large enough. But this contradicts (5.10), and we are done. !

5.3. Proof of Lemma 5.2
We start by fixing j 2N and distinguishing two contingencies, with the definitions

Dj WD ¹f ( j ºnB;

EŒK;1/n WD ¹f ŒK;1/n "Kº \Dj D ¹fn "Kº \Dj ;
(5.11)

˛ WD lim
K!1

lim
n!1P.EŒK;1/n /:(5.12)

Contingency I: ˛ > 0.
Contingency II: ˛D 0.

Under Contingency I, we pass to a subsequence ¹fnºn2N with P.EŒn
2;1/

n /" ˛=2,
8n 2N and consider indicators gn WD 1

E
Œn2;1/
n

, n 2N, all of them supported on the set

!nB . Arguing as in Lemma 4.1, we obtain a subsequence, still denoted ¹gnºn2N, with

gn
hC$$$$!
n!1 g, P-a.e. for some g W!! Œ0; 1# with ¹g > 0º )!nB and E.g/ " ˛=2 by

bounded convergence.

Thus, fn
hC$$$$!
n!1 1 holds P-a.e. on ¹g > 0º. This set has measure P.g > 0/ D

EŒ1¹g>0º#" E.g/" ˛=2; we are under Case (i) of Lemma 5.2, with C WD ¹g > 0º [B
and P.C / > P.B/.

Now we pass to Contingency II. We fix " > 0, Dj D ¹f ( j ºnB , and apply
Lemma 5.1 with this Dj to construct inductively a subsequence ¹nmºm2N, along with
sequences ¹Kmºm2N, ¹Lmºm2N of integers increasing to infinity and such that

P.EŒLm;1/nm
/D P

#
¹fnm "Lmº \Dj

$
< 2"m(5.13)

EŒf ŒKm;Lp/np 1Dj # < 2
"m; 8pDm;mC 1; : : :(5.14)

hold for every m 2 N. With the choice (5.13), the sequences ¹fnm ! 1Dj ºm2N and

¹f Œ0;Lm/nm ! 1Dj ºm2N are equivalent in the sense introduced in Section 2 because the
probability of their respective general terms being different is bounded from above by
2"m. We claim that

(5.15) fnm ! 1Dj
hC$$$$!

m!1 f ! 1Dj ; P-a.e.I
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and in view of the previous statement, this amounts to

(5.16) f Œ0;Lm/nm
! 1Dj

hC$$$$!
m!1 f ! 1Dj ; P-a.e.

To prove (5.16), we start by observing that the sequence ¹f Œ0;Lm/nm !1Dj ºm2N is uni-

formly integrable, thus bounded in L1 since sup p2N
p#m

EŒf Œ0;Lp/np 1Dj ! 1¹f Œ0;Lp/np %Kmº#<

2"m holds on account of (5.14) for everym 2N. Theorem 2.1 gives an integrable func-
tion h W!! Œ0;1/ with

(5.17) f Œ0;Lm/nm
! 1Dj

hC$$$$!
m!1 h ! 1Dj ; P-a.e.;

and we need to argue that this h agrees with f from (4.3), P-a.e. on Dj .
Indeed, for every K 2 N and all m large enough,

PK
kD1 fnm1¹k"1$fnm<kº D

f
Œ0;K/
nm ( f Œ0;Lm/nm holds; therefore,

PK
kD1 f

.k/ ! 1Dj ( h ! 1Dj by letting m!1,
on account of (5.17) and Lemma 4.1. Passing now to the limit asK!1 and recalling
(4.3), we arrive at

(5.18) f ! 1Dj ( h ! 1Dj ; P-a.e.

To obtain the inequality in the reverse direction, we take expectations. From the

analogue of (5.17) f Œ0;Lm^K/nm ! 1Dj
hC$$$$!

m!1 h.K/ ! 1Dj ;P-a.e., with 0 ( h.K/ " h as

K !1, uniform integrability, and Lemma 4.1, we have EŒf Œ0;Lm^K/nm ! 1Dj #
hC$$$$!

m!1
EŒh.K/ ! 1Dj #. Also, therefore,

EŒh.K/ ! 1Dj #D lim
M!1

1

M
E
h MX
mD1

f Œ0;Lm^K/nm
! 1Dj

i

D lim
M!1

1

M
E
h MX
mD1

Lm^KX
kD1

f .k/nm
! 1Dj

i

( lim
M!1

1

M
E
h MX
mD1

! KX
kD1

f .k/nm

"
! 1Dj

i

D E
h KX
kD1

f .k/ ! 1Dj
i
( EŒf ! 1Dj #

for every K 2 N. Letting K !1, monotone convergence gives EŒh ! 1Dj # ( EŒf !
1Dj #; in conjunction with (5.18), this shows f ! 1Dj D h ! 1Dj ;P-a.e., and on account
of (5.17), it establishes (5.16)—thus (5.15) as well.

Finally, we let j !1: we do this by extracting subsequences successively for
each j 2 N and then passing to a diagonal subsequence; obtaining (5.15) with Dj
replaced by D WDSj2NDj D ¹f <1ºnB ; and deducing that we are in Case (ii) of
Lemma 5.2.
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5.4. Proofs of Proposition 4.2 and Theorem 3.1
On the strength of Lemma 5.2, we construct, by exhaustion or transfinite induction
arguments and as long as we are under the dispensation of its Case (i), an increas-
ing sequence B ) B1 ) B2 ) : : : of sets as postulated there, whose union B1 WDS
j2NBj & B & ¹f D1º is maximal with the property (5.4) for an appropriate sub-

sequence. But maximality means that, on the complement !nB1 of this set, we must
be in the realm of Case (ii) in Lemma 5.2. This establishes the first claim of Proposi-
tion 4.2 with ADB1 & ¹f D1º, thus Theorem 3.1 as well.

For the second claim of the proposition, we note that equality holds right above—
that is, B1 D ¹f D1º—if we are under Contingency II (i.e., ˛ D 0) in Section 5.3
(proof of Lemma 5.2) and with B D ¹f D1º in (5.11); a sufficient condition for this,
is limK!1 limn!1 P.fn "K;f <1/D 0. The claim now follows.
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