A strong law of large numbers for positive
random variables

loannis Karatzas and Walter Schachermayer

Abstract In the spirit of the famous Komlds (1967) theorem, every sequence of nonnega-
tive, measurable functions { f3, }»,en on a probability space contains a subsequence which—
along with all its subsequences—converges a.e. in Cesaro mean to some measurable f :
2 — [0, 00]. This result of von Weizsicker (2004) is proved here using a new methodology
and elementary tools; these sharpen also a theorem of Delbaen and Schachermayer (1994),
replacing general convex combinations by Cesaro means.

1. Introduction

On a probability space (2, ¥, P), consider real-valued measurable functions fi, f2, .. ..
If these are independent and have the same distribution with E(| f1]|) < oo, the cel-
ebrated Kolmogorov strong law of large numbers ([12, p. 73]; [19, 20]) states that
the “sample average” (f1 +--- + fn)/N converges P-a.e. to the “ensemble average”
E(f1) = fQ f1dP, as N — oo. More generally, if f,(0) = f(T" '(w)),n>2,w € Q
are the images of an integrable function fi : Q2 — R along the orbit of successive
actions of a measure-preserving transformation 7' : Q2 — €2, then the above sample
average converges [P-a.e. to the conditional expectation f. = E(f1|d) of fi, given
the o-algebra d of T -invariant sets, by the Birkhoff pointwise ergodic theorem [12, p.
333].

A deep result of Komlés [21], already 56 years old but always very striking, says
that such “stabilization via averaging” occurs within any sequence fi, f>,... of mea-
surable, real-valued functions with sup, ¢y E(] f4|) < co. More precisely, there exist
then an integrable function fi and a subsequence {fy, }xen such that (fn, + -+ +
Jfur)/ K converges to f, P-a.e. as K — oo; and the same is true for any further sub-
sequence of this { f;, }xen.
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This result inspired further path-breaking work in probability theory ([7, 8, 13]),
culminating with Aldous [1] and Berkes—Péter [5], where exchangeability plays a cru-
cial role. It—and its ramifications [10, 11] involving forward convex combinations—
has been very useful in the field of convex optimization; more generally, when one
seeks objects with specific properties and tries to ascertain their existence using weak
compactness arguments. Stochastic control, optimal stopping, and hypothesis testing
are examples of the former (e.g., [9, 17, 18, 23, 24]); the Doob—Meyer and Bichteler—
Dellacherie theorems in stochastic analysis provide instances of the latter (e.g., [2, 3,
14]).

We develop here a very simple argument for the Komlés theorem, in the important
special case of nonnegative f1, f>,... treated by von Weizsécker (2004). The argument
dispenses with boundedness in 1!, at the cost of allowing the function f to take infinite
values.

2. Background

We place ourselves on a given, fixed probability space (2, % ,PP) and consider a
sequence f1, f2,... of measurable, real-valued functions defined on it. We say
that this sequence converges hereditarily in Cesaro mean to some measurable

hC
fe 1 > RU{£oo}, and write f, —— f«,P-ae., if, for every subsequence
n—>oo

{fu; tken of the original sequence, we have

K
. 1
@.1) Jim > fax = fr. Pae
k=1
Clearly then, every other such sequence g1, g2, . .. which is equivalent to f1, f>,...,in

the sense of ), . P(f # gn) < 00 (cf. [20]), also has this property.

In 1967, Komlés proved the following remarkable result. The argument in [21]
is very clear—but also long and quite involved. Simpler proofs and extensions have
appeared since (e.g., [4, 26, 28]).

THEOREM 2.1 (Komlés [21])

If the sequence { f, }nen is bounded in IL! (i.e., sup, ey E(| fu|) < 00 holds), there exist
an integrable f, :Q — R and a subsequence { fu, }ken Of { fu}nen, which converges
hereditarily in Cesaro mean to fy:

hC
(2.2) fox ——> [, P-ae
k—o0

This result was motivated by an earlier one (Theorem 2.2 below). For the convenience
of the reader, we provide in Section 5.1 a simple proof (in the manner of [6, pp. 137-
141]) of that precursor result, which proceeds by extracting first a martingale difference
subsequence. This crucial idea, which establishes a powerful link to martingale theory
and simplifies the arguments, appears in this context for the first time in [21] (for related
results, see [22]).



A strong law of large numbers for positive random variables 519

THEOREM 2.2 (Révész [25])

If the sequence { f}nen satisfies sup, ey E(f,2) < oo, there exist a function g € L2
and a subsequence { fn, }xen, such that ) ;o ak(fn, — &) converges P-a.e. for any
sequence {ay }ren of real numbers with ) " oy a,% < 00.

It is clear that this property of the subsequence {fy, }xen is inherited by all its sub-
sequences (just “stretch out” the ay’s accordingly, and fill out the gaps with zeroes);
whereas, reading Theorem 2.2 with a; = 1/k and invoking the Kronecker lemma ([12,
p. 81]) leads to the convergence in (2.1) when the fi, f5, ... are bounded in L.? (rather
than in IL!, as posited in Theorem 2.1).

In a related development, Delbaen & Schachermayer ([10, Lemma Al.1],
[11]) showed with very simple arguments that, from every sequence {f,}nen Of
nonnegative, measurable functions, a sequence of forward convex combinations
gn € conv( fy, fu+1,---), n € N of its elements can be extracted, which converges
P-a.e. to a measurable fi : Q2 — [0,00]. This result was called “a somewhat vulgar
version of Komlés’s theorem” in [11], and is implied by Theorem 3.1 below. Indeed,
convergence for Cesaro averages is much more precise than for unspecified convex
combinations.

In several contexts, including optimization treated via convex duality, nonnegativ-
ity is often no restriction at all—but rather the natural setting (e.g., [15, 23, 24] and [16,
Chapter 3 and appendix]). Then, in the presence of convexity, Lemma Al.1 in [10], or
Theorem 3.1 here, are very useful analogues of Theorem 2.1: they lead to limit func-
tions f; in convex sets (such as the positive orthant in I.° or the unit ball in ') which
are not compact in the usual sense, but are “convexly compact” in the sense introduced
by Zitkovié [30].

3. Result

The purpose of this note is to prove with new and elementary tools the following version
of Theorem 2.1, due to von Weizsédcker [29] and studied further in [27] and [15, §5.2.3].

THEOREM 3.1

Given a sequence { fn }nen of nonnegative, measurable functions on a probability space
(2,5 ,P), there exists a measurable function fy : Q2 — [0,00] and a subsequence
{ Sy tken of the original sequence such that (2.2) holds.

Our proof appears in Section 5. We observe that the result imposes no restriction what-
soever on the functions fi, f>,..., apart from measurability and nonnegativity. This
comes at a price: the limiting function f, carefully constructed here in Equations
(4.3)—(4.6) below, can take the value 400 on a set of positive measure.

4. Preparation

We place ourselves in the setting of Theorem 3.1. The arguments that follow often
necessitate passing to subsequences, and to diagonal subsequences, of a given { f;, },en.
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To simplify typography, we frequently denote such subsequences by the same symbols,

{fn}nEN-

For each integer k € N, we introduce the truncated functions
4.1 £ = fy lg1<fy<ny, neN

and note the partition of unity ) ;o 18 = f,. vneN.

LEMMA 4.1

For the sequence of functions { fy}nen in Theorem 3.1, there exists a subsequence,
denoted by the same symbols and such that, for every k € N, the functions of (4.1)
converge to an appropriate measurable function &) Q- [0,00), in the sense

4.2) f(k) FO . Pge.
n o0

—

For each fixed k € N, this convergence holds also in L',

Proof (after [6, pp. 145—146])

For arbitrary, fixed k € N, the sequence { fn(k)},,eN of (4.1) is bounded in IL.°°, thus also
in 2. Theorem 2.2 provides a function f*) e .2 and a subsequence { fn(f)} jen of
{fa ( )}neN such that ) jen(n; ) — f®))/j converges P-a.e.; as mentioned right after
Theorem 2.2, this is inherited by all subsequences of { fn(f)} jen, and the Kronecker
Lemma ([12, p. 81]) gives

J
1
(k) &)y — i k) _ &) :
0= lim — E = r )—Jhm 7 -Elfnj Y, P-ae.

J—o0 J
j=

We pass now to a diagonal subsequence, denoted { f; }nen again, and such that (4.2)
holds for every k € N. The last claim follows by the dominated convergence theo-
rem. g

With these ingredients, we introduce the measurable function f : Q — [0, 0o] via
(4.3) f = Z F%  and consider the set Ao := { f = 00}.
keN

With the help of Fatou’s lemma, and the notation of (4.1)—(4.3), Lemma 4.1 then
gives

N
1
4.4) lim — fo > f, P-ae.
N—>ooNnX:; !
4.5) JgnmNanzoo f, P-ae.on Ay

for a suitable subsequence (denoted by the same symbols) of the original sequence
{ fn}nen and for all further subsequences of this subsequence.
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The inequality in (4.4) can easily be strict. Consider, for instance, f, = n so that
fn(k) = 0 holds in (4.1) for each fixed k € N and all n € N sufficiently large. We obtain
in this manner f(k) =0 in (4.2); thus, f = 0 in (4.3)—and yet % 2111\7:1 fn — 00 as
N — oo.

This preparation allows us to formulate a more technical and precise version of
Theorem 3.1, Proposition 4.2 below, which implies it. The convention oo - 0 = 0 is
employed here and throughout.

PROPOSITION 4.2

Fix a sequence { fy }nen of nonnegative, measurable functions on the probability space
(2, F,P), and recall the notation of (4.1)—(4.3). There exist then a subsequence, again
denoted { fy }nen, and a set A D Aoo, such that

(4.6) fn h_c) fv :=max(f,00-1y), P-ae
n—o0

We have A = Aoo, thus, also fyx = f, when img o0 limy 00 P(f, = K, f < 00) = 0.

This last condition is satisfied when the sequence { f,1{ 7 <oo}}nen is bounded in LY;
i.e., when
lim supP(f, > K, f <00)=0
K—o0 neN

holds. A bit more stringently, if not only { f;, }»en but also its solid, convex hull in ]Lf’1r
is bounded in IL?, then { f;, }»ey is bounded in IL!(Q) under some probability measure
Q ~ P, and thus P(f < o00) =1 (e.g., [16, Proposition A.11]); whereas, if { f;, },en is
bounded in L1(P) (i.e., k := sup, ey E(f%) < o0), then f in (4.3) is integrable since
E(f) <k holds from (4.4) and Fatou.

5. Proofs

We shall need a couple of auxiliary results. First, and always with the notation of (4.1)—
(4.3), we note the following consequence of monotone and dominated convergence.

LEMMA 5.1

Suppose a set D C Q\Aoo = {f < 00} satisfies E(f1p) < o0o. Then for any given ¢ €
(0, 1), there exist an integer K € N and a subsequence of the given sequence { f, }nen
such that for it, and for any one of its subsequences (again denoted { f,, }nen), we have
for all integers L > K :

.1) lim B[ fulik<s,<0ynp] =: lim E[£P1p] <e.
n—>00 n—>oo



522 loannis Karatzas and Walter Schachermayer

Throughout, we are using the notation

L
HEE = 30 L0 = filik<p<py.
(52) k=K+1
= 30 S0 = flygsky

k>K+1
and in an analogous manner fUKD) .= S0 f®) | flKo0) . — sk S®,s0
Lemma 4.1 gives
hC
(5.3) fiED _— fIKL - poth P-ae. and in L.
n—oo

Secondly, we recall (4.5) and observe the following dichotomy.

LEMMA 5.2
In the setting of Proposition 4.2, consider any measurable set B 2 { f = oo} such that

hC
the property f, — 00 of (4.5) holds P-a.e. on B. Then either
n—>o0

(i) there exist a set C 2 B with P(C) > P(B) and a subsequence, still denoted
{fn}nen, with

hC
(5.4) fn ——> 00 valid P-a.e. on C;or,
n—>00

hC
(ii) the Cesaro convergence f, ——> [ < oo holds P-a.e. on Q\ B C{f < oo}.
n—o0

Under Case (ii), the set B 2 A, = {f = oo} is maximal for the P-a.e. property f, E)
oo: it cannot be “inflated” to a set C 2 B, which satisfies (5.4) and has measure bigger
than that of B. This leads eventually to Proposition 4.2, and thence to Theorem 3.1.
Before proving these two results, we dispense with the proof of Theorem 2.2; this is
completely self-contained and has nothing to do with either Lemma 5.1 or Lemma 5.2.

5.1. Proof of Theorem 2.2

Because { f,}nen is bounded in L2, we can extract a subsequence that converges to
some g € .2 weakly in IL2. Thus, it suffices to prove the result for a sequence {g, }nen
bounded in L.? and with g, — 0 weakly in 2. We take such a sequence, then, and
approximate each g, by a simple function h, € > with ||g, — h,|2 <27", Vn € N.
This gives, in particular,

(5.5) > lgn —hnl <00, P-ae. hy — 0 weakly in L2.
neN

We construct now, by induction, a sequence 1 =n; <n, <--- of integers such that

(5.6) |9 <27% holds P-ae. for O := E(hny |hny,- s hng_ )k =2,3,...,

as follows: The function %, = h; is simple, thus so is E(h,|h;) = ij-zl yJ(-")lAj with

Ay, ..., Ay a partition of the space, and P(4;) > 0, yj(.") = (1/P(A;)) - E(hnla,).
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This last expectation tends to zero as n — oo from (5.5) for every fixed j, so we can
choose n, > ny = 1 with |y](-"2)| <22forj =1,...,J;ie, |02] <272 P-ae. Clearly,
we can keep repeating this argument since, at each stage, (h,, ...,/ _,) generates a
finite partition of the space; this way we arrive at (5.6).

The sequence {h,}nen is bounded in L2, thus so is the martingale X; :=
Zlgzo ag(hn, — V), k € Ny, for any {ax}xen, C R with ZkeNai < 00. The mar-
tingale convergence theory ([12, p. 236]) shows that the series ) oy @k (fn, — Uk)
converges P-a.e. But we have also ) ; cn(|9%| + |gny — hin, |) < 00, P-ace. from (5.5)—
(5.6), and we deduce that ) ; .y @k &n, converges P-a.e., the claim of the theorem.

5.2. Proof of Lemma 5.1
Let us call “Lemma 5.1”% the same statement as that of Lemma 5.1, except that (5.1) is
now replaced by

VL=K+1,K+2,...:

(5.7
]E[fn[K’L)ID] < ¢ for all but finitely many n € N.

CLAIM (Lemma 5.1T implies Lemma 5.1)

Let a subsequence of the original { fy}nen be given (denoted { f, }nen again), along
with arbitrary ¢ € (0, 1). Lemma 5.17 guarantees the existence of K € N, depending on
& and the subsequence, such that (5.7) holds for all integers L > K + 1.

Choose L = K + 1 first. From Lemma 5.1 and Bolzano—Weierstrass, (the current)
{ fu}nen has a subsequence for which the expectation in (5.7) converges, with limit
<¢&/2. Now choose L = K + 2 and a subsequence of the last subsequence, for which
the expectation in (5.7) converges and has limit < ¢/2. Continuing in this manner, then
diagonalizing, we obtain a subsequence that satisfies (5.7).

Proof of Lemma 5.17

We argue by contradiction, assuming that { f,},en has a subsequence for which
Lemma 5.17 fails. Then there exists an ¢ € (0,1) with the property that for every
subsequence of { f,; }nen and every K € N, there exists an integer L > K such that

L
(5.8) IE[ 3 fn(k)lp] —E(fKD1p) >
k=K+1

holds for infinitely many integers n € N. But this means that there is a subsequence,

again denoted by { f;, }nen, along which we have (5.8) for every n € N, and, as a result,
also

(5.9) E[k;;l(% é f9)1p|ze VN eN.

Now all the truncated functions fn(k) in(4.1)fork =K +1,...,L and n € N take val-
ues on the “Procrustean bed” {0} U [K, L); and limy % ZnN=1 n(k) = & holds
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P-a.e. for the selected subsequence and all its subsequences, on account of Lemma 4.1.
Thus, E[legz k1S (®)1p] > & from bounded convergence and (5.9), and the nonneg-
ativity of these f%)’s also implies that

(5.10) E( 3 f(k)lp)zE(f[K’“’)lD)ze, VK eN.
k>K+1

The nonnegativity also gives limg o0 1 Zf=1 f ®1, = f1p, both P-a.e. and
in L', Since E(f1p) < oo by assumption, E[ fIK:*)1p] < ¢/2 holds for all K € N
large enough. But this contradicts (5.10), and we are done. g

5.3. Proof of Lemma 5.2
We start by fixing j € N and distinguishing two contingencies, with the definitions

Dj:={f = Jj}\B,

(5.11)
Effo0 = (£ = Ky N D, = {fu = K} N D},
(5.12) a:= lim [im P(EX->)
K—oon—>o0

Contingency I: o > 0.
Contingency II: o = 0.

2
Under Contingency I, we pass to a subsequence { f; }nen with P(EL %) > o/2,
Vn € N and consider indicators g, := lE[,,zyoo), n € N, all of them supported on the set

Q\ B. Arguing as in Lemma 4.1, we obtain a subsequence, still denoted {gy, },,en, With

hC
gn ——> g, P-a.e. for some g : Q — [0, 1] with {g > 0} € Q\B and E(g) > /2 by

n—>oo
bounded convergence.

hC
Thus, f, ——> oo holds P-a.e. on {g > 0}. This set has measure P(g > 0) =
n—>oo

E[1{g>03] > E(g) > /2; we are under Case (i) of Lemma 5.2, with C := {g >0} U B
and P(C) > P(B).

Now we pass to Contingency II. We fix ¢ > 0, D; = {f < j}\B, and apply
Lemma 5.1 with this D to construct inductively a subsequence {11, }men, along with
sequences { Ky }men, {Lm}men of integers increasing to infinity and such that

(5.13) P(ELm)) = P({ fu,, = Lm} N D;) <27
(5.14) E[fikmEp 1 <2, Vp=mm+1,...

hold for every m € N. With the choice (5.13), the sequences { f,, - lpj }men and

{fn[O’Lm) 1p, }men are equivalent in the sense introduced in Section 2 because the

probability of their respective general terms being different is bounded from above by
27™. We claim that

h
(5.15) fom D, —— f1p,. Pae:
- m—>00
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and in view of the previous statement, this amounts to

h
(5.16) floLm oy 2 pap . Pae
“ m-—00

nm

To prove (5.16), we start by observing that the sequence { fn[gq’L’”) “1p; Ymen 18 uni-
formly integrable, thus bounded in IL! since sup pen E[fn[?,’L”)IDi 'l{f[O.Lp)>K )
p=m : np —Hm
27" holds on account of (5.14) for every m € N. Theorem 2.1 gives an integrable func-
tion /1 : Q — [0, 00) with

1<

hC
(5.17) [OLm) A ——h-1p,, P-ae.,
m—0o0

nm

and we need to argue that this /& agrees with f from (4.3), P-a.e. on D;.
Indeed, for every K € N and all m large enough, Z,le Jm Vik—1<f,,, <k} =
,,[gl’K) < f,,[gl’L’”) holds; therefore, Zle fo. 1p; <h-1p; by letting m — oo,
on account of (5.17) and Lemma 4.1. Passing now to the limit as K — oo and recalling
(4.3), we arrive at

(5.18) f1p, <h-1p,, P-ae.

To obtain the inequality in the reverse direction, we take expectations. From the
hC
analogue of (5.17) f,,[,(:,’L’"AK) “Ap, —— hE) . 1p;,P-ae., with 0 < Hh&K) 1t h as
m—>0o0
hC

K — o0, uniform integrability, and Lemma 4.1, we have IE[f,,[,(:,’L’”AK) “1p;] ——
m—0o0

E[h(K) -1p;]. Also, therefore,

M
1 ~- -
ER®) 1p,]= lim —E[ Y f0LnrK g,

Moo M L m J
m=1
1 r M LuAK _
. 2 : k
- Alll—r>noo ME f”(m) ’ le
m=1 k=1 .

| MK }
= Jim 572 (2 45) 1o, ]

:E[é f(k)-lpj] <E[f-1p,]

for every K € N. Letting K — oo, monotone convergence gives E[h - 1p ] < E[f -
ID_/]; in conjunction with (5.18), this shows f - 1Dj =h- 1Dj ,P-a.e., and on account
of (5.17), it establishes (5.16)—thus (5.15) as well.

Finally, we let j — oco: we do this by extracting subsequences successively for
each j € N and then passing to a diagonal subsequence; obtaining (5.15) with D;
replaced by D := UjeN D ={f < oco}\B; and deducing that we are in Case (ii) of
Lemma 5.2.
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5.4. Proofs of Proposition 4.2 and Theorem 3.1
On the strength of Lemma 5.2, we construct, by exhaustion or transfinite induction
arguments and as long as we are under the dispensation of its Case (i), an increas-
ing sequence B € B} € B, C ... of sets as postulated there, whose union By, :=
U jenBj 2B 2 {f = oo} is maximal with the property (5.4) for an appropriate sub-
sequence. But maximality means that, on the complement Q\ By, of this set, we must
be in the realm of Case (ii) in Lemma 5.2. This establishes the first claim of Proposi-
tion 4.2 with A = By 2 { f = oo}, thus Theorem 3.1 as well.

For the second claim of the proposition, we note that equality holds right above—
that is, Boo = { f = oco}—if we are under Contingency II (i.e., « = 0) in Section 5.3
(proof of Lemma 5.2) and with B = { f = oo} in (5.11); a sufficient condition for this,
is lim g — o0 limy 00 P(f; > K, f < 00) = 0. The claim now follows.
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