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Trajectorial dissipation and gradient flow for the
relative entropy in Markov chains

Ioannis Karatzas∗, Jan Maas†, and Walter Schachermayer‡

We study the temporal dissipation of variance and relative entropy
for ergodic Markov Chains in continuous time, and compute explic-
itly the corresponding dissipation rates. These are identified, as is
well known, in the case of the variance in terms of an appropriate
Hilbertian norm; and in the case of the relative entropy, in terms of
a Dirichlet form which morphs into a version of the familiar Fisher
information under conditions of detailed balance. Here we obtain
trajectorial versions of these results, valid along almost every path
of the random motion and most transparent in the backwards di-
rection of time. Martingale arguments and time reversal play cru-
cial roles, as in the recent work of Karatzas, Schachermayer and
Tschiderer for conservative diffusions. Extensions are developed to
general “convex divergences” and to countable state-spaces. The
steepest descent and gradient flow properties for the variance, the
relative entropy, and appropriate generalizations, are studied along
with their respective geometries under conditions of detailed bal-
ance, leading to a very direct proof for the HWI inequality of Otto
and Villani in the present context.

1. Introduction and summary

We present a trajectorial approach to the temporal dissipation of variance
and relative entropy, in the context of ergodic Markov Chains in contin-
uous time. We follow the methodology of the recent work by Karatzas,
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Schachermayer & Tschiderer (2020), which is based on stochastic cal-
culus and uses time-reversal in a critical fashion. By aggregating the trajec-
torial results, i.e., by averaging them with respect to the invariant measure,
we obtain a very crisp, geometric picture of the steepest descent property for
the curve of time-marginals, relative to local perturbations. This holds for
an appropriate, locally flat metric on configuration space, defined in terms
of a suitable discrete Sobolev norm.

We adopt then a more global approach, and establish also the gradient
flow property—to the effect that the temporal evolution for the curve of the
Chain’s time-marginals is prescribed by an appropriate Riemannian met-
ric on the manifold of probability measures on configuration space, and by
the differential of the relative entropy functional along this curve; cf. Maas
(2011), Mielke (2011), Erbar & Maas (2012, 2014). Both steepest de-
scent and gradient flow are manifestations of the seminal Jordan, Kinder-
lehrer & Otto (1998) results and of their outgrowth, the so-called “Otto
Calculus” initiated in Otto (2001).

Preview For a finite state-space, we set up the probabilistic framework
in Section 2 and the functional-analytic one in Section 4. The appropriate
stochastic-analytic machinery and results appear in Sections 3 and 5. Tem-
poral dissipation and steepest descent are developed in increasing generality:
First in Section 6 for the variance and its associated, globally determined
and flat, metric; then in Section 7 for the Boltzmann-Gibbs-Shannon
relative entropy; and finally in Section 8 for general entropies induced by
convex functions. Gradient flows and their associated geometries are taken
up in Section 9, culminating with a very direct proof of a discrete version
of the celebrated HWI inequality of Otto & Villani (2000). Some exten-
sions to state-spaces with a countable infinity of elements are developed in
Section 10.

2. The setting

On a probability space (Ω, F , P), we start with an irreducible, positive recur-
rent, discrete-time Markov Chain Z = (Zn)n∈N0 with state-space S, tran-
sition probability matrix Π = (πxy)(x,y)∈S2 with entries πxy = P(Zn+1 =
y | Zn = x) for n ∈ N0, and initial distribution P (0) = (p(0, x))x∈S which
is a column vector with components p(0, x) := P(Z0 = x) > 0 for all x ∈ S.
Throughout Sections 2–9, the state-space S is assumed to be finite; exten-
sions to countable state-spaces are taken up in Section 10.
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It is straightforward to check that the sequence of random variables(
Mf

n
)
n∈N0

with Mf
0 := f(Z0),

(1) Mf
n := f(Zn) −

n−1∑

k=0

(
Πf − f

)
(Zk) , n ∈ N ,

is a martingale of the filtration generated by the Markov Chain Z, for any
given function f : S → R. Here and in what follows, we denote (Πf)(z) :=∑

y∈S πzy f(y), z ∈ S.

It is well known that such a Chain has a unique invariant distribution:
that is, a column vector Q =

(
q(y)

)
y∈S of positive numbers adding up to 1

and satisfying Π′Q = Q or, more explicitly,

(2) q(y) =
∑

z∈S
q(z)πzy , ∀ y ∈ S .

Here and throughout this paper, prime ′ denotes transposition of a matrix
or vector. A major result of discrete-time Markov Chain theory states that,
when Z is also aperiodic, the k-step transition probabilities

(3) π(0)
xy := 1x=y , π(k)

xy := P
(
Zk = y

∣∣Z0 = x
)
, k ∈ N

converge as k tends to infinity to q(y), for every pair of states (x, y) ∈ S2.
We refer to Chapter 1 in Norris (1997), in particular Theorems 1.7.7 and
1.8.3, for an excellent account of the relevant theory.

2.1. From discrete- to continuous-time Markov chains, via
Poisson

Let us now consider on the same probability space a Poisson process
N =

(
N(t)

)
0≤t<∞ with parameter λ = 1 and independent of the discrete-

time Markov Chain Z. We construct via time-change the continuous-time
process

(4) X(t) := ZN(t) , 0 ≤ t < ∞ ,

as well as the filtration FX =
{
FX(t)

}
0≤t<∞ this process generates via

FX(t) := σ
(
X(s), 0 ≤ s ≤ t

)
. Straightforward computation shows that this
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new, continuous-time process X = (X(t))0≤t<∞ has the Markov property,
and time-homogeneous transition probabilities

$h(x, y) := P
(
X(t + h) = y

∣∣X(t) = x
)

= e−h
∑

k∈N0

hk

k!
π(k)

xy , t ≥ 0, h > 0

(5)

with the notation of (3); we set $0(x, y) := 1x=y. The functions h (→ $h(x, y)
in (5) are uniformly continuous and continuously differentiable; cf. Theorems
2.13, 2.14 in Liggett (2010).

More generally, for arbitrary n ∈ N, 0 < θ1 < · · · < θn = θ < t < ∞,
(x, y1, · · · , yn, z) ∈ Sn+2 with y = yn, the finite-dimensional distributions
of this process are

P
(
X(0) = x, X(θ1) = y1, · · · , X(θn) = yn, X(t) = z

)
=

= p(0, x) $θ1
(x, y1) $θ2−θ1

(y1, y2) · · · $θn−θn−1
(yn−1, yn) · $t−θ(y, z)

(6)

and we deduce the time-homogeneous Markov property

(7) P
(
X(t) = z

∣∣FX(θ)
)

= $t−θ

(
X(θ), z

)
= P

(
X(t) = z

∣∣X(θ)
)
.

Finally, from the Chapman-Kolmogorov equations

π(m+n)
xy =

∑

z∈S
π(m)

xz π(n)
zy

for the k-step transition probabilities of Z in (3), we deduce these same
equations for the quantities in (5):

(8) $t+θ(x, y) =
∑

z∈S
$θ(x, z) $t(z, y) , (θ, t) ∈ [0,∞)2, (x, y) ∈ S2

Here we think of the temporal argument θ as the “backward variable”, and
of t as the “forward variable”.

2.2. Infinitesimal generators and martingales

We introduce now the matrix

K := Π− I =
{
κ(x, y)

}
(x,y)∈S2 with elements κ(x, y) := πxy − 1x=y :

(9)
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non-negative off the diagonal, adding up to zero across each row. From (5)
and with the help of time-homogeneity, we obtain for t ≥ 0, h > 0 the
infinitesimal “transition rates”

P
(
X(t + h) = y

∣∣X(t) = x
)

= h · κ(x, y) + o(h) , x )= y ,(10)

P
(
X(t + h) = x

∣∣X(t) = x
)

= 1 + h · κ(x, x) + o(h)(11)

with the standard convention limh↓0
(
o(h)/h

)
= 0, valid uniformly over

t ∈ [0,∞). In particular, (10) and (11) give the infinitesimals $h(x, y) −
$0(x, y) = h · κ(x, y) + o(h) for all (x, y) ∈ S2, and thus

(12) ∂$h(x, y)
∣∣
h=0

= κ(x, y) .

Here and throughout the paper, ∂g denotes partial differentiation of a func-
tion g with respect to its temporal argument.

A bit more generally, for any f : S → R we have from (10), (11) the
semigroup computation

(13)
(
Thf

)
(x) := E

[
f
(
X(t+h))

∣∣X(t) = x
]

= f(x)+h ·
(
Kf

)
(x)+ o(h) .

We deploy, here and in what follows, the infinitesimal generator of the Chain,
i.e., the linear operator

(14)

(
Kf

)
(x) :=

(
Πf

)
(x) − f(x) =

∑

y∈S
κ(x, y) f(y)

=
∑

y∈S
κ(x, y)

[
f(y) − f(x)

]
, x ∈ S .

Using the computation (13), it is shown fairly easily that the exact analogue
of the random sequence (1) in our present setting, namely, the process

(15) f
(
X(t)

)
−
∫ t

0

(
Kf

)(
X(θ)

)
dθ , 0 ≤ t < ∞ ,

is an FX -martingale; cf. Theorem 3.32 in Liggett (2010). As a slight gen-
eralization, we obtain also the following result (Lemma IV.20.12 in Rogers
& Williams (1987)).

Proposition 2.1. Given any function g : [0,∞) × S → R whose temporal
derivative t (→ ∂g(t, x) is continuous for every state x ∈ S, the process
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below is a local FX-martingale:

(16) Mg(t) := g
(
t, X(t)

)
−
∫ t

0

(
∂g + Kg

)(
θ, X(θ)

)
dθ , 0 ≤ t < ∞ .

Remark 2.1 (The General Case). Instead of starting with transition proba-
bilities πxy and defining κ(x, y) = πxy−1x=y as in (9), one can work instead
with any transition rates κ(x, y) satisfying: (i) κ(x, y) ≥ 0 for x )= y; and
(ii)

∑
y∈S κ(x, y) = 0 for every x ∈ S. In this manner, arbitrary irreducible

continuous-time Markov chains on finite state spaces can be constructed,
and studied with little extra effort. We have opted here for the somewhat
less general, but very concrete and intuitive, approach of the present Sec-
tion.

3. Forward and backward Kolmogorov equations

Let us differentiate both sides of the equations in (8) with respect to the
backward variable θ, then set θ = 0. We obtain on account of (12) the
Backward Kolmogorov differential equations

(17) ∂$t(x, y) =
∑

z∈S
κ(x, z) $t(z, y).

We can write this system of equations, for the matrix-valued function t (→
Pt =

(
$t(x, y)

)
(x,y)∈S2 of the forward variable t ∈ [0,∞), in the form ∂ Pt =

K Pt , P0 = I.

In a similar manner, differentiating formally the equations (8) with re-
spect to the forward variable t, then evaluating at t = 0 and recalling the
transpose

(18) K′ :=
(
κ′(y, z)

)
(y,z)∈S2 , κ′(y, z) := κ(z, y)

of the K-matrix, we obtain the Forward Kolmogorov equations

(19)
∂$θ(x, y) =

∑

z∈S
$θ(x, z)κ(z, y) =

∑

z∈S
κ′(y, z) $θ(x, z) , or

∂ Pθ = K′Pθ , P0 = I.
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3.1. A curve of probability vectors

For every t > 0, let us consider the column vector P (t) =
(
p(t, y)

)
y∈S of

probabilities for the P-distribution

(20) p(t, y) := P
(
X(t) = y

)
= e−t

∑

x∈S
p(0, x)

∑

k∈N0

tk

k!
π(k)

xy > 0

of the random variable X(t). The forward Kolmogorov equations of (19),
the law of total probability, and the Markov property, show that these
satisfy their own forward Kolmogorov equations, namely

(21) ∂p(t, y) =
∑

z∈S
p(t, z)κ(z, y) =

∑

z∈S
κ′(y, z) p(t, z) =:

(
K′p

)
(t, y) ;

or, more compactly and in matrix form, ∂P (t) = K′P (t) , 0 ≤ t < ∞ in the
notation of (18). We shall think of (P (t))0≤t<∞ as a curve on the manifold
M = P+(S), of vectors P = (p(x))x∈S with strictly positive elements and
total mass

∑
x∈S p(x) = 1, viewed as probability measures and governed

by (21).
Suppose that the initial distribution P (0) of the discrete-time Markov

Chain Z coincides with the column vector Q =
(
q(y)

)
y∈S of (2) satisfying

Π′Q = Q, or equivalently K′Q = 0 on account of (9). It follows that P (t) ≡
Q, ∀ t ∈ [0,∞) provides now the solution of (21): the distribution Q is
invariant also for the continuous-time Markov Chain X in (4).

A bit more generally, Q is the equilibrium distribution of X , in the
sense that for every initial distribution P (0) =

(
p(0, x)

)
x∈S and function

f : S → R we have the limiting behavior

lim
t→∞

p(t, y) = q(y) , ∀ y ∈ S,(22)

lim
T→∞

1

T

∫ T

0
f
(
X(t)

)
dt =

∑

y∈S
q(y) f(y) , P-a.e.;(23)

see Sections 3.6–3.8 in Norris (1997) for an account of these results. In the
present, continuous-time context, aperiodicity plays no role.

3.2. A curve of likelihood ratios

Let us compare now the components of the probability vector P (t) in (20),
with those of the invariant probability vector Q in (2). One way to do this,
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very fruitful in the present context, is by considering the likelihood ratio
column vector

(24) !t ≡ !(t) =
(
((t, y)

)
y∈S with components ((t, y) :=

p(t, y)

q(y)
.

Substituting the product p(t, y) = ((t, y) q(y) into the forward Kolmogo-
rov equation (21), we obtain for the likelihood ratios of (24) the Backward
Equation

∂((t, y) =
∑

z∈S
κ̂(y, z) ((t, z) =

∑

z∈S
κ̂(y, z)

[
((t, z) − ((t, y)

]
=:

(
K̂ !

)
(t, y) ,

(25)

or equivalently ∂!(t) = K̂ !(t) in matrix form, with the new transition rates

(26) K̂ :=
(
κ̂(y, z)

)

(y,z)∈S2
, κ̂(y, z) :=

q(z)

q(y)
κ(z, y) .

The entries of this matrix K̂ are non-negative off the diagonal, and add up
to zero

∑
z∈S κ̂(y, z) = 0 across every row y ∈ S, on account of (2), (9).

We shall think of (!(t))0≤t<∞ as a curve, now in the space L = L+(S) of
vectors Λ = (λ(x))x∈S with strictly positive elements and

∑
x∈S q(x)λ(x) =

1. These are viewed as likelihood ratios with respect to the invariant distri-
bution, and as evolving in time via (25).

Presently, we shall identify K̂ of (26) with the infinitesimal generator
of a suitable continuous-time Markov Chain, run backwards in time. A
special case, however, is worth mentioning already.

Definition 3.1 (Detailed Balance). The invariant distribution Q in (2) is
said to satisfy the detailed-balance conditions, if

(27) q(y)κ(y, z) = q(z)κ(z, y) , ∀ (y, z) ∈ S2.

This requirement is equivalent to the identity q(y) $t(y, z) = q(z) $t(z, y)
for all t ∈ (0,∞), (y, z) ∈ S2; one leg of the equivalence is immediate,
courtesy of (12). When (27) prevails, K̂ ≡ K holds in (26); and the backward
equation (25) for the likelihood ratios ((t(x))x∈S of (24), is then exactly
the same as the backward equation (17) for ($t(x, y))x∈S . We stress that,
whenever the detailed-balance conditions (27) are needed in the sequel, they
will be invoked explicitly.
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4. Discrete gradient and divergence; Dirichlet form, Hilbert
norms

It is apt at this point to introduce some necessary notation and functional-
analytic notions. For a given function f : S → R we consider the discrete
gradient ∇f : S2 → R given by

(28) ∇f(x, y) := f(y) − f(x) .

In a similar spirit, we consider the discrete divergence

(29)
(
∇ · F

)
(x) :=

1

2

∑

y∈S, y )=x

κ(x, y)
[
F (x, y) − F (y, x)

]

of a function F : S × S → R, and note the familiar concatenation formula

(30) Kf = ∇ ·
(
∇f

)

which allows us to think of the operator K in (14) also as a “discrete Lapla-
cian”. We introduce also the set Z := {(x, y) ∈ S × S : κ(x, y) > 0}
consisting of all edges in the incidence graph associated with the Markov
chain, and the measure C on Z defined by the “conductances”

(31) C{(x, y)} ≡ c(x, y) :=
1

2
κ(x, y) q(x) , (x, y) ∈ Z.

With these ingredients, we consider the bilinear forms

(32)

〈
f, g

〉
L2(S,Q)

:=
∑

x∈S
q(x) f(x) g(x) ,

〈
F, G

〉
L2(Z,C)

:=
∑

(x,y)∈Z

c(x, y) F (x, y) G(x, y)

for real-valued functions defined on S (lowercase f, g) and on S × S (up-
percase F, G), respectively. They induce the L2-norms

∥∥f
∥∥

L2(S,Q)
(relative

to the probability measure Q) and
∥∥F

∥∥
L2(Z,C)

(relative to the unnormalized

measure C on Z in (31)), given respectively via

(33)

∥∥f
∥∥2

L2(S,Q)
:=

〈
f, f

〉
L2(S,Q)

=
∑

x∈S
q(x) f2(x) ,

∥∥F
∥∥2

L2(Z,C)
:=

〈
F, F

〉
L2(Z,C)

=
∑

(x,y)∈Z

c(x, y) F 2(x, y) .
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Remark 4.1. We note from (25)–(26) the adjoint relationship

(34)
〈
f, K̂g

〉
L2(S,Q)

=
〈
Kf, g

〉
L2(S,Q)

.

Thus (27) holds if, and only if, the operator K in (14) is self-adjoint on
L2(S, Q).

Finally, we introduce the bilinear Dirichlet form

(35)

E(f, g) := −
〈
f, Kg

〉
L2(S,Q)

= −
∑

y∈S
q(y) f(y)

(
Kg

)
(y)

= −
∑

x∈S

∑

y∈S
q(y)κ(y, x) f(y) g(x)

associated with the Markov Chain. This form is not symmetric, in general;
but satisfies E(f, f) ≥ 0, as follows from Lemma 4.1 below.

Lemma 4.1. The Dirichlet form (35) can be cast equivalently as

(36) E(f, g) =
1

2

∑

x∈S

∑

y∈S
κ(y, x) q(y)

(
f(y) − g(x)

)2
.

Proof. We have clearly
∑

x∈S
∑

y∈S κ(y, x) q(y)f2(y) = 0 on account of∑
x∈S κ(y, x) = 0 for every y ∈ S ; as well as

∑

x∈S

∑

y∈S
κ(y, x) q(y) g2(x) =

∑

x∈S

∑

y∈S
κ̂(x, y) q(x) g2(x) = 0 ,

from the adjoint rates of (26) and their property
∑

y∈S κ̂(x, y) = 0, ∀ x ∈ S.
It follows from (35) that

∑

x∈S

∑

y∈S
κ(y, x) q(y)

(
f(y) − g(x)

)2
= −2

∑

x∈S

∑

y∈S
κ(y, x) q(y) f(y) g(x)

= 2 E(f, g) .

4.1. Consequences of detailed balance

The detailed-balance conditions (27) can be thought of as positing that “the
conductances of (31) do not depend on the direction of the current’s flow”.
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Under these conditions, we have for functions f : S → R and F : S×S → R
the discrete integration-by-parts formula

(37)
〈
∇f, F

〉
L2(Z,C)

= −
〈
f,∇ · F

〉
L2(S,Q)

,

in addition to the concatenation property (30). As a result, the bilinear
Dirichlet form of (35), (36) is now symmetric, and induces the Hilbert
H1-inner product and norm

〈
f, g

〉
H1(S,Q)

:= E(f, g) =
〈
∇f,∇g

〉

L2(Z,C)
,(38)

∥∥f
∥∥2

H1(S,Q)
:= E(f, f) = −

〈
f, Kf

〉
L2(S,Q)

=
∑

(x,y)∈Z

c(x, y)
(
f(y) − f(x)

)2
=

∥∥∇f
∥∥2

L2(Z,C)
,(39)

respectively. We introduce also the dual of this norm, the Hilbert H−1-
norm

(40)
∥∥f

∥∥
H−1(S,Q)

=

{ ∥∥∇
(
K−1f

)∥∥
L2(Z,C)

, if f ∈ Range(K)

+∞, otherwise;

and note the variational characterizations

∥∥f
∥∥

H−1(S,Q)
= sup

g:S→R

〈
f, g

〉
L2(S,Q)∥∥g

∥∥
H1(S,Q)

,(41)

∥∥f
∥∥

H−1(S,Q)
= inf

F :Z→R

{∥∥F
∥∥

L2(Z,C)
: f = ∇ · F

}

= inf
g:S→R

{∥∥∇g
∥∥

L2(Z,C)
: f = Kg

}
.

(42)

Basic Hilbert space theory shows that these two infima are attained.

Lemma 4.2. Under the conditions of (27), the expression (36) for the
Dirichlet form becomes

(43)

E(f, g) =
1

2

∑

x∈S

∑

y∈S
κ(y, x)q(y)

[
f(y) − f(x)

][
g(y) − g(x)

]

=
〈
∇f,∇g

〉

L2(Z,C)
=

〈
f, g

〉
H1(S,Q)

.
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Proof. Let us write the double summation in the above display as

∑

x∈S

∑

y∈S
κ(y, x)q(y)

[
f(y) g(y) − f(y) g(x) − f(x) g(y) + f(x) g(x)

]

= −
∑

x∈S

∑

y∈S
κ(y, x)q(y)

[
f(y) g(x) + f(x) g(y)

]

= − 2
∑

x∈S

∑

y∈S
κ(y, x)q(y) f(y) g(x) = − 2 E(f, g) .

Here, the first equality uses (26), as well as the properties
∑

x∈S κ(y, x) = 0
for every y ∈ S, and

∑
y∈S κ̂(x, y) = 0 for every x ∈ S; whereas, the second

equality uses the conditions (27), and the third equality is just (35).

This proves the first equality in (43). The second and third are just
restatements of (38).

Remark 4.2 (Additional Consequences). It follows from (37)–(39) that, un-
der the detailed-balance conditions (27), the mapping

∇ : H1(S, Q) → L2(Z, C)

is an isometric embedding. Whereas, the discrete divergence mapping ∇·
in (29) is, up to a minus sign, the adjoint of the mapping ∇ : L2(S, Q) →
L2(Z, C).

Remark 4.3 (A Counterexample). In the absence of detailed balance, the
Dirichlet form E(f, g) is not an inner product. Indeed, Remark 4.1 shows
that there exist functions f : S → R, g : S → R with

E(f, g) = −
〈
f, Kg

〉
L2(S,Q)

)= −
〈
g, Kf

〉
L2(S,Q)

= E(g, f).

An explicit example of this situation is provided by the matrix

K =




−1 1 0
0 −1 1
1 0 −1



 ,

whose invariant distribution Q = (1/3, 1/3, 1/3) is uniform on the state
space S = {1, 2, 3} and for which detailed balance fails. Whereas, with
f = e1 = (1, 0, 0) and g = e2 = (0, 1, 0) the first and second unit row
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vectors, respectively, and noting 3 E(ϕ, γ) = ϕK′γ′ from (35), we observe

3 E(f, g) =
(
1, 0, 0

)



1
−1
0



 = −1 , 3 E(g, f) =
(
0, 1, 0

)



−1
0
1



 = 0 .

Nevertheless,
∥∥f

∥∥
H1(S,Q)

=
√

E(f, f) is always a Hilbert norm, with

associated inner product given by the Dirichlet form Esym(f, g) of the
reversible Markov Chain, with symmetrized rates κsym(x, y) := (κ(x, y) +
κ̂(x, y))/2 in the manner of (35), (26); namely, Esym(f, f) ≡ E(f, f) and

〈
f, g

〉
H1(S,Q)

= −1

2

∑

x∈S

∑

y∈S

[
q(y)κ(y, x) + q(x)κ(x, y)

]
f(x)g(y)

= −
∑

x∈S

∑

y∈S
q(y)κsym(y, x) f(y) g(x).

5. Time reversal and associated martingales

It is well known that the Markov property is invariant under reversal of
time (interchanging the roles of “past” and “future”, keeping the “present”
as is). This means, in particular, that the time-reversed process

(44) X̂(s) := X(T − s) , 0 ≤ s ≤ T

is a Markov Chain, for any given T ∈ (0,∞). But how about the transition
probabilities of this time-reversed process? These are fairly easy to compute,
namely,

(45) P
(
X̂(s2) = z

∣∣ Ĝ(s1)
)

= P
(
X̂(s2) = z

∣∣ X̂(s1)
)

= ρ∗
(
s1, X̂(s1); s2, z

)

for 0 ≤ s1 ≤ s2 ≤ T , z ∈ S, where

(46) ρ∗
(
s1, y; s2, z

)
:=

p(T − s2, z)

p(T − s1, y)
$s2−s1

(
z, y

)
;

but need not be time-homogeneous in general.
However: Let us compute these same transition probabilities when the

Chain starts at its invariant distribution Q. We introduce at this point an-
other probability measure Q on the underlying measurable space (Ω, F),
under which the Markov Chain X has exactly the same dynamics as
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before, but its initial distribution is the invariant probability vector Q =(
q(y)

)
y∈S in (2). Then, in lieu of (6), the finite-dimensional distributions of

the Chain are

Q
(
X(0) = x, X(θ1) = y1, · · · , X(θn) = yn, X(t) = z

)
=

= q(x) $θ1
(x, y1) $θ2−θ1

(y1, y2) · · · $θn−θn−1
(yn−1, yn) · $t−θ(y, z) .

On each σ-algebra FX(t), 0 ≤ t < ∞, the two probability measures P and
Q are equivalent; in fact, on the smaller σ-algebra σ(X(t)), we single out in
the notation of (24) the so-called likelihood process

(47) L(t) :=
dP
dQ

∣∣∣∣
σ(X(t))

= (
(
t, X(t)

)
, 0 ≤ t < ∞ .

Under this dispensation, the transition probabilities are

(48) Q
(
X̂(s2) = z

∣∣ Ĝ(s1)
)

= Q
(
X̂(s2) = z

∣∣ X̂(s1)
)

= $̂s2−s1

(
X̂(s1), z

)
,

i.e., time-homogeneous, with

(49) $̂h(y, z) :=
q(z)

q(y)
$h

(
z, y

)
.

Invoking (49) and (12), we see that the Q-infinitesimal-generator of this
time-reversed Markov Chain X̂(s) = X(T − s), 0 ≤ s ≤ T in (44), is
given precisely by K̂ = (κ̂(y, z))(y,z)∈S2 as in (26). (We note parenthetically
that, when the detailed-balance conditions of (27) hold, the initial distri-
butions and transition probabilities of the continuous-time Markov Chain
X(t), 0 ≤ t ≤ T , and of its time-reversal (44), are exactly the same under
the probability measure Q.)

Remark 5.1. The standing assumption P (0) ∈ M, i.e., that all entries of the
initial distribution are strictly positive, is made for economy of exposition.
For even when the probability vector P (0) belongs to the closure M of M,
i.e., some of its entries are allowed to vanish, there is at least one x ∈ S with
p(0, x) > 0; then (20) and irreducibility imply p(t, y) > 0 for all t > 0, y ∈ S.
Thus, even if the curve (P (t))0≤t<∞ starts out on the boundary M \ M, it
enters M immediately and stays there for all times t ∈ (0,∞).

By complete analogy with Proposition 2.1, we formulate now the follow-
ing result.
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Proposition 5.1. For any given function g : [0, T ]×S → R whose temporal
derivative s (→ ∂g(s, x) is continuous for every state x ∈ S, the process
below is a

(
Ĝ, Q

)
-local martingale:

(50) M̂ g(s) := g
(
s, X̂(s)

)
−
∫ s

0

(
∂g + K̂g

)(
u, X̂(u)

)
du , 0 ≤ s ≤ T .

The following important result is due to Pavon (1989), Fontbona
& Jourdain (2016) in the context of diffusions. Its proof (cf. Theorem
4.2 in Karatzas, Schachermayer & Tschiderer (2019)) uses only the
Markov property and the definition of conditional expectation, and carries
over verbatim to our present context. An alternative argument, specific to
the Markov Chain context, uses Proposition 5.1 and is given right below.

Proposition 5.2 (Time-Reversed Likelihood Process as Martingale). Fix
T ∈ (0,∞) and consider the time-reversed Chain (44), as well as the filtra-
tion Ĝ =

{
Ĝ(s)

}
0≤s≤T

this process generates via Ĝ(s) := σ
(
X̂(u), 0 ≤ u ≤

s
)
. Then, the time-reversed likelihood process

(51) L(T−s) = (
(
T−s, X̂(s)

)
, 0 ≤ s ≤ T is a

(
Ĝ, Q

)
−martingale.

Proof. We consider in (50) the function g(s, x) = ((T − s, x) , 0 ≤ s ≤
T, x ∈ S and note that ∂g(s, x) = −∂((T − s, x) = −

(
K̂ (

)
(T − s, x) holds

on account of (25). It follows from (50), whose integrand now vanishes, that
the time-reversed likelihood ratio process (

(
T − s, X̂(s)

)
, 0 ≤ s ≤ T is

a Q-local-martingale of the time-reversed filtration Ĝ. But this process is
positive, thus also a Q-supermartingale, and its expectation

EQ[(
(
T − s, X(T − s)

)]
=

∑

y∈S
q(y)

p(T − s, y)

q(y)
= 1 , 0 ≤ s ≤ T

is constant. Therefore (
(
T − s, X̂(s)

)
, 0 ≤ s ≤ T is a true Q-martingale,

exactly as stated in (51).

6. The variance process

For a probability vector P = (p(y))y∈S ∈ M with positive entries, we
introduce its likelihood vector ! = (((y))y∈S ∈ L with ((y) = p(y)/q(y)
as in (24), relative to the invariant distribution Q of the Chain. We define
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then in the manner of (33) the Variance of P relative to Q, also known as
χ2-divergence, as

(52) V
(
P | Q

)
≡ VarQ(!

)
:=

∑

y∈S
q(y) (2(y) − 1 =

∣∣∣∣!
∣∣∣∣2

L2(S,Q)
− 1 .

Let us recall now from (20) the curve
(
P (t)

)
0≤t<∞ ⊂ M of time-marginal

distributions for our continuous-time Markov Chain, and the correspond-
ing curve of likelihoods !t = (((t, y))y∈S , 0 ≤ t < ∞ in the space L, with
((t, y) = p(t, y)/q(y). We will show in Proposition 6.2 that the variance just
defined in (52) plays the role of Lyapunov function for the convergence to
equilibrium along this curve.

To see this, we summon the likelihood process L(t) = ((t, X(t)), 0 ≤
t < ∞ from (47) and consider its square L2(t), 0 ≤ t < ∞, the so-called
Variance Process, under time-reversal.

Proposition 6.1. For any given T ∈ (0,∞), we have the Doob-Meyer
decomposition

(2
(
T − s, X̂(s)

)
= M̂(s) +

∫ s

0

∑

y )=x

(
κ̂(x, y)

(
((t, y) − ((t, x)

)2
)∣∣∣∣

t=T−u

x=X̂(u)

du ,

(53)

for 0 ≤ s ≤ T , of the time-reversed variance process (2
(
T − s, X̂(s)

)
, 0 ≤

s ≤ T , where M̂ is a
(
Ĝ, Q

)
-martingale.

Proof. The first claim follows from Proposition 5.2 and the Jensen in-
equality. For the second claim we deploy Proposition 5.1 with g(s, x) :=
(2(T − s, x) , 0 ≤ s ≤ T, x ∈ S, to conclude via the calculation

(54)
(
∂g + K̂g

)
(T − s, x) =

∑

y∈S
κ̂(x, y)

(
((T − s, y) − ((T − s, x)

)2

that M̂ is a local
(
Ĝ, Q

)
-martingale. The uniform continuity of [0, T ] . t (→

pt(x, y) ∈ [0, 1] and the finiteness of the state-space imply that this process
is actually bounded, thus a true Q-martingale.

Let us now justify the claim (54). From the Backwards Equation (25),
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we have

(55)

∂g(T − s, x) = −2((T − s, x) ∂((T − s, x)

= −2((T − s, x)
∑

y∈S
κ̂(x, y)((T − s, y),

(
K̂g

)
(T − s, x) =

∑

y∈S
κ̂(x, y) (2(T − s, y)

=
∑

y∈S
κ̂(x, y)

[
(2(T − s, y) + (2(T − s, x)

]

on account of the property
∑

y∈S κ̂(x, y) = 0 for every x ∈ S; now (54)
follows readily.

Proposition 6.1 deals with the trajectorial behavior of the variance pro-
cess; and for this, it is crucial to let time run backwards. Now, we want to
adopt also an “aggregate” point of view, and take Q-expectations in (53).
When doing this, it does not matter any more whether time runs forwards
or backwards, so we state the following result “forwards in time”. Recalling
(26), we obtain thus the dissipation of the variance.

Proposition 6.2. Along the curve
(
P (t)

)
0≤t<∞ of time-marginal distribu-

tions in (20), the variance

(56)

V
(
P (t) | Q

)
= VarQ(!t

)
=

∑

y∈S
q(y) (2(t, y) − 1

=
∥∥!t

∥∥2
L2(S,Q)

− 1 , 0 ≤ t < ∞

is decreasing with limt→∞ ↓ V
(
P (t) | Q

)
= 0, and the rate of its decrease is

given by

(57) ∂
∥∥!t

∥∥2
L2(S,Q)

= ∂ V
(
P (t) | Q

)
= −2 E

(
!t , !t

)

(thus by −2
∥∥!t

∥∥2
H1(S,Q)

under the detailed-balance conditions (27)). More

precisely,

V
(
P (T ) | Q

)
= V

(
P (0) | Q

)
−
∫ T

0

∑

(x,y)∈Z

q(y)κ(y, x)
(
((t, y) − ((t, x)

)2
dt

(58)
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=

∫ ∞

T

∑

(x,y)∈Z

q(y)κ(y, x)
(
((t, y) − ((t, x)

)2
dt .(59)

The decomposition (53) is a trajectorial version of this variance dissi-
pation, at the level of the individual particle viewed under the probability
measure Q and under time-reversal. As a consequence of (53) and of the
Bayes rule, we deduce from (53) the Doob-Meyer decomposition

(60)

(
(
T − s, X̂(s)

)
= N̂(s)

+

∫ s

0

∑

y )=x

(
κ̂(x, y)

(
(
t, x

)
(
((t, y) − ((t, x)

)2
)∣∣∣∣

t=T−u

x=X̂(u)

du , 0 ≤ s ≤ T

of the time-reversed likelihood process, where N̂ is a
(
Ĝ, P

)
-martingale.

6.1. Steepest descent of the variance, under detailed balance

We state now and establish the following result, Theorem 6.3. As pointed
out in Jordan, Kinderlehrer & Otto (1998), results of this type go as
far back as the paper by Courant, Friedrichs & Lewy (1928) in the
Brownian motion context. We deploy the notation of (24) for the likelihood
ratios relative to the invariant distribution, as well as the following notion.

Definition 6.1. We say that a smooth curve of probability measures
(P (t))t0≤t<∞ ⊂ M = P+(S) is of steepest descent locally at t = t0, for
a given smooth functional F : M → R and relative to a given metric
$ on M, if it minimizes, among all curves (P̃ (t))t0≤t<∞ ⊂ M satisfying

P̃ (t0) = P (t0), the infinitesimal rate of change of F as measured on M in
terms of $, namely,

lim
h↓0

F
(
P̃ (t0 + h)

)
− F

(
P (t0)

)

$
(
P̃ (t0 + h), P (t0)

) .

Theorem 6.3 (Steepest Descent for the Variance). Under the conditions
(27) of detailed balance, the curve (P (t))0≤t<∞ of time-marginal distribu-
tions in (20) has the property of steepest decent for the variance of (56) with
respect to the metric distance bequeathed by the norm of (40), i.e.,

(61) $
(
P1, P2

)
:=

∥∥ !1−!2

∥∥
H−1(S,Q)

for P1 = !1Q and P2 = !2 Q.



Trajectorial dissipation and gradient flow 499

The proof of this result needs Proposition 6.5 below. We pave the way
towards it by formulating first a variational version of Propositions 6.1, 6.2.
For this purpose, we fix an arbitrary time-point t0 ∈ (0,∞) and let ψ(·) =
(ψ(t))t0≤t<t0+ε be a continuous curve of real-valued functions on the state-
space S. With these ingredients, we define a new curve
(ψ(·) = ((ψ(t))t0≤t<t0+ε of such functions, for a suitable ε > 0, by specify-
ing in the space L = L+(S) of subsection 3.2 the initial condition (ψ(t0) =
!(t0) ∈ L and the dynamics ∂(ψ(t) = (K̂ψ)(t) for t ∈ [t0, t0 + ε); in the
manner of (25) and a bit more explicitly,

(62) ∂(ψ(t, x) =
∑

y∈S
κ̂(x, y)ψ(t, y) , x ∈ S.

The curve (ψ(·) = ((ψ(t))t0≤t<t0+ε, the “output” of the system (62) corre-
sponding to the “input” ψ(·), is only defined on an interval [t0, t0 + ε) and
lives in the space L, since

∂
∑

x∈S
q(x) (ψ(t, x) =

∑

x∈S
q(x)

∑

y∈S
κ̂(x, y)ψ(t, y)

=
∑

y∈S

∑

x∈S
q(y)κ(y, x)ψ(t, y) = 0

implies
∑

x∈S q(x) (ψ(t, x) =
∑

x∈S q(x) !(t0, x) = 1 for all t ∈ [t0 + ε).
Thus, the recipe

(63) pψ(t, x) := q(x) (ψ(t, x), (t, x) ∈ [t0, t0 + ε) × S

procures a curve (Pψ(t))0≤t<t0+ε , on the manifold M = P+(S) in subsec-
tion 3.1, consisting of vectors P =

(
p(x)

)
x∈S with strictly positive elements

and total mass
∑

x∈S p(x) = 1.

Conversely: By irreducibility, the “input curve” ψ(·) is determined by
the “output curve” (ψ(·) up to an additive time-dependent constant. In
particular, every smooth curve (∗(·) = ((∗(t))t0≤t<t0+ε in L with (∗(t0) =
((t0) is representable as (ψ(·) for a suitable continuous ψ(·) as above. For
instance, !(·) ∈ L of (24) is the “output” that corresponds in this manner
to the “input” ψ(·) ≡ !(·) in (62), via (25).

We have the following generalization of Proposition 6.2, to which it re-
duces when ψ(·) ≡ !(·).
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Proposition 6.4. In the above context, we have for t ∈ [t0 + ε) the prop-
erties

∂ V
(
Pψ(t) | Q

)
= ∂ EQ

[(
(ψ
)2(

t, X(t)
)]

= 2
〈
ψt, K(ψt

〉
L2(S,Q)

= −2 E
(
ψt, (

ψ
t

)
.

Whereas, under the detailed balance conditions (27), this expression becomes

∂ V
(
Pψ(t) | Q

)
= −2 E

(
(ψt ,ψt

)

= −2
〈
∇(ψt ,∇ψt

〉

L2(Z,C)
= −2

〈
(ψt ,ψt

〉

H1(S,Q)
.

Proof. A reasoning similar to that in Propositions 6.1 and 6.2, and carried
out once again in the backwards direction of time, can be deployed by ap-
plying Proposition 5.1 to g(s, x) :=

(
(ψ
)2

(T − s, x) , 0 ≤ s ≤ T , x ∈ S for
arbitrary but fixed T ∈ (0, t0 + ε). But here is a simpler argument:

∂ V
(
Pψ(t) | Q

)
= ∂

∥∥(ψt
∥∥2

L2(S,Q)
= 2

〈
(ψt , K̂ψt

〉
L2(S,Q)

= 2
〈
ψt, K(ψt

〉
L2(S,Q)

= −2 E
(
ψt, (

ψ
t

)
,

on account of (34), (35) and (26). This reasoning proves Proposition 6.2 as
well.

In the next proposition we compute the “infinitesimal cost of moving
the curve”

(
(ψ(t)

)
t0≤t<t0+ε

.

Proposition 6.5. Under the conditions (27) of detailed balance, we have

(64) lim
h↓0

1

h

∥∥ !t+h − !t

∥∥
H−1(S,Q)

=
∥∥K !t

∥∥
H−1(S,Q)

=
∥∥ !t

∥∥
H1(S,Q)

for every t ∈ [t0, t0 + ε); and a bit more generally, in the notation just
developed,

(65) lim
h↓0

1

h

∥∥ (ψt+h − (ψt
∥∥

H−1(S,Q)
=

∥∥Kψt

∥∥
H−1(S,Q)

=
∥∥ψt

∥∥
H1(S,Q)

.

Proof. From (62), (27) it follows that for every x ∈ S we have

lim
h↓0

1

h

[
(ψt+h(x) − (ψt (x)

]
=

(
Kψt

)
(x),

so the first equality in (65) is evident. For the second equality in (65) it
suffices to recall (40)–(42), observe that ∇ψt is the unique element F ∈



Trajectorial dissipation and gradient flow 501

L2(Z, C) with the property ∇ · F = Kψt, and note from Remark 4.2 the
isometry

∥∥F
∥∥

L2(Z,C)
=

∥∥ψt

∥∥
H1(S,Q)

from the space L2(Z, C) to H1(S, Q).

Now, (64) is just a special case of (65) with ψ(·) ≡ !(·), as discussed
above.

6.2. The Proof of Theorem 6.3

We are ready to tackle the proof of Theorem 6.3. Along any smooth curve
of the form (Pψ(t))t0≤t<t0+ε created as in (62), (63) on the manifold of
probability vectors M = P+(S) and with (ψ(t0) = !(t0) ∈ L, we have from
Propositions 6.4, 6.5 the respective rates for the variance and the metric
distance, under detailed balance:

lim
h↓0

V
(
Pψ(t0 + h) | Q

)
− V

(
P (t0) | Q

)

h
= −2

〈
!t0 ,ψt0

〉

H1(S,Q)
,

lim
h↓0

$
(
Pψ(t0 + h), P (t0)

)

h
=

∥∥ψt0

∥∥
H1(S,Q)

.

Therefore, the rate of change for the variance along the perturbed curve
(Pψ(t))t0≤t<t0+ε, when measured on the manifold M by the metric distance
in (61), is

lim
h↓0

V
(
Pψ(t0 + h) | Q

)
− V

(
P (t0) | Q

)

$
(
Pψ(t0 + h), P (t0)

) = −2

〈
!t0 ,

ψt0∥∥ψt0

∥∥
H1(S,Q)

〉

H1(S,Q)

.

On the other hand, along the original curve (P (t))0≤t<∞ of time-margi-
nal distributions for the Chain (that is, with ψ(·) ≡ !(·) modulo an affine
transformation, as noted above), the rate of variance dissipation measured
in terms of the metric distance traveled on the manifold M is

lim
h↓0

V
(
P (t0 + h) | Q

)
− V

(
P (t0) | Q

)

$
(
P (t0 + h), P (t0)

) = −2
∥∥ !t0

∥∥
H1(S,Q)

< 0 .

A simple comparison of the last two displays, via Cauchy-Schwarz, gives
the steepest descent property of the variance with respect to the metric dis-
tance in (61), i.e.,

lim
h↓0

V
(
Pψ(t0 + h) | Q

)
− V

(
P (t0) | Q

)

$
(
Pψ(t0 + h), P (t0)

)
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− lim
h↓0

V
(
P (t0 + h) | Q

)
− V

(
P (t0) | Q

)

$
(
P (t0 + h), P (t0)

)

= 2

(
∥∥!t0

∥∥
H1(S,Q)

−
〈
!t0 ,

ψt0∥∥ψt0

∥∥
H1(S,Q)

〉

H1(S,Q)

)
≥ 0 ,

along the original curve (P (t))0≤t<∞ of time-marginals for the Markov
Chain. Equality holds here if, and only if, c + ψt0 is a positive constant
multiple of !t0 for some c ∈ R.

We will revisit this theme in Sections 8 and 9.

7. The relative entropy process

For an arbitrary probability vector P = (p(x))x∈S with strictly positive
elements, let us recall the definition of its relative entropy, or Kullback–
Leibler divergence,

(66) H(P | Q) :=
∑

x∈S
p(x) log

( p(x)

q(x)

)

with respect to the invariant distribution Q = (q(x))x∈S of (2). In terms of
the likelihood function in (24), the relative entropy of the probability vector
P (t) in (20) with respect to Q, is

(67) H
(
P (t)

∣∣Q
)

= EP
[
log (

(
t, X(t)

)]
, 0 ≤ t < ∞ ,

the P-expectation of the log-likelihood at time t. We shall see presently that
this function

t (−→ H
(
P (t)

∣∣Q
)

is non-negative, and satisfies lim
t→∞

↓ H
(
P (t)

∣∣Q
)

= 0 .
(68)

In other words, the relative entropy functional of (66) is a Lyapunov func-
tion for the curve (P (t))0≤t<∞ of time-marginal distributions for our conti-
nuous-time Markov Chain. We shall compute in subsection 7.2 the rate of
temporal decrease for the function in (68). Of course, all this is in accordance
with general thermodynamic principles governing the approach to equilib-
rium in physical systems (e.g., Chapter 2 in Cover & Thomas (1991) in
the discrete-time Markov Chain context of our Section 2).
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Let us note also, that the relative entropy in (67) can be cast equivalently
as the Q-expectation

(69)

H
(
P (t)

∣∣Q
)

=
∑

y∈S
q(y)

p(t, y)

q(y)
log

(
p(t, y)

q(y)

)

= EQ
[
(
(
t, X(t)

)
log (

(
t, X(t)

)]

of the relative entropy process (
(
t, X(t)

)
· log (

(
t, X(t)

)
, 0 ≤ t < ∞ . This

allows us to justify the first claim in (68), regarding non-negativity. Indeed,
the convexity of the function (0,∞) . ( (→ Φ(() := ( log ( gives, on the
strength of the Jensen inequality,

H
(
P (t)

∣∣Q
)

= EQ[Φ
(
(
(
t, X(t)

))]
≥ Φ

(
EQ[(

(
t, X(t)

)])
= f(1) = 0 .

(70)

Alternatively, this follows from H
(
P (t)

∣∣Q
)

= EQ[Ψ
(
((t, X(t)))], with Ψ ≥

0 as in (78) below.

Proposition 7.1. In the context of Proposition 5.2, the time-reversed rela-
tive entropy process

(
(
T − s, X̂(s)

)
· log (

(
T − s, X̂(s)

)
, 0 ≤ s ≤ T is a

(
Ĝ, Q

)
-submartingale;

(71)

the properties in (68) hold; and the time-reversed log-likelihood process

(72) log (
(
T − s, X̂(s)

)
, 0 ≤ s ≤ T is a

(
Ĝ, P

)
-submartingale.

Proof. The first claim follows from (51) and the convexity of the function
Φ(() = ( log ( appearing inside the expectation in (69), along with the
Jensen inequality. The Q-expectation

(73) H
(
P (T − s) | Q) = EQ[Φ

(
(
(
T − s, X̂(s)

))]
, 0 ≤ s ≤ T

of the process in (71) is thus increasing. This is precisely the monotonicity
in (68); the remaining claim

(74) lim
t→∞

↓ H
(
P (t)

∣∣Q
)

= 0

there, follows now from (22), (69), and the finiteness of S. The claim of (72)
is a consequence of (71), (47), and the familiar Bayes rule (Lemma 3.5.3 in
Karatzas & Shreve (1988)).
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7.1. Trajectorial relative entropy dissipation

We read now Proposition 5.1 with Φ(() = ( log ( and the function

(75) h(s, x) = Φ
(
((T − s, x)

)
, 0 ≤ s ≤ T, x ∈ S .

As argued in Propositions 5.2 and 7.1, the “time-reversed relative entropy”
H
(
P (T − s) | Q) = EQ[h

(
s, X̂(s)

)]
, 0 ≤ s ≤ T is increasing; and

(76) M̂h(s) := h
(
s, X̂(s)

)
−
∫ s

0

(
∂h + K̂h

)(
u, X̂(u)

)
du , 0 ≤ s ≤ T

is a Q-local-martingale of the time-reversed filtration Ĝ. The integrand in
(76) is straightforward to compute: from (25), (26), and with t = T − s for
notational convenience, we get

∂h(s, x) = −
(
1+log ((t, x)

) (
K̂ (

)
(t, x) = −

(
1+log ((t, x)

) ∑

y∈S
κ̂(x, y) ((t, y),

thus

(77)

(
∂h + K̂h

)
(s, x) =

∑

y∈S
κ̂(x, y) ((t, y)

[
log

((t, y)

((t, x)
− 1

]

= ((t, x)
∑

y∈S
y #=x

κ̂(x, y)Ψ
( ((t, y)

((t, x)

)
≥ 0 .

Here the function

(78) Ψ(r) := r log r − r + 1 , r > 0

is nonnegative, convex, and attains its minimum Ψ(1) = 0 at r = 1. We have
used in the last equality of (77) the property

∑
y∈S κ̂(x, y) = 0 for every

x ∈ S.

Proposition 7.2. The submartingales of (71), (72) admit the respective
Doob-Meyer decompositions

(
(
T − s, X̂(s)

)
log

(
(
(
T − s, X̂(s)

))
= M̂ h(s) +

∫ s

0
λQ(u) du , 0 ≤ s ≤ T ,

(79)
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log
(
(
(
T − s, X̂(s)

))
= N̂ h(s) +

∫ s

0
λP(u) du , 0 ≤ s ≤ T ,(80)

in the notation of (77) and (78), with λQ(s) = ΛQ(T − s, X̂(s)
)
, λP(s) =

ΛP(T − s, X̂(s)
)

and

(81)
ΛP(t, x) :=

∑

y∈S, y )=x

κ̂(x, y)Ψ
( ((t, y)

((t, x)

)
≥ 0 ,

ΛQ(t, x) := ((t, x)ΛP(t, x) ≥ 0 .

Here M̂ h is the process of (76) and a
(
Ĝ, Q

)
-martingale, whereas N̂ h is

a
(
Ĝ, P

)
-martingale.

Proof. Let us take a look at the expressions of (75)–(77). We have already
noted that each function [0, T ] . t (→ p(t, x) ∈ (0, 1) is uniformly continu-
ous. This fact, along with the finiteness of the state space S, implies that
the quantities in (75), (77) are actually uniformly bounded. This implies a
similar boundedness for the

(
Ĝ, Q

)
-local martingale in (76), which is thus

seen to be a true
(
Ĝ, Q

)
-martingale. The remaining claims follow from the

Bayes rule.

The decomposition (79) is a trajectorial version of relative entropy dis-
sipation. This manifests itself at the level of the individual particles that
undergo the Markov Chain motion viewed under the lens of the probabil-
ity measure Q and under time-reversal, rather than only at the level of their
ensembles.

We note that the first quantity of (81) provides the exact rate of relative
entropy dissipation, in the sense that for every 0 < t < T < ∞ we have the
following convergence, a.e. and in L1(P):

(82)

lim
s↑T−t

1

T − t − s

(
EP

[
log (

(
t, X(t)

) ∣∣∣ Ĝ(s)
]

− log
(
(
(
T − s, X̂(s)

)))
= ΛP(t, X(t)

)
.

The decomposition (80) and the trajectorial rate (82) are exact analogues of
those in Theorem 4.1 and Proposition 4.5 of Karatzas, Schachermayer
& Tschiderer (2020). They constitute trajectorial versions of relative en-
tropy dissipation, viewed now under the original probability measure P —
and again under time-reversal.
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7.2. de Bruijn-type identities

With this preparation, we are now in a position to recover the precise rate
of decay for the relative entropy function in (67); cf. Diaconis & Saloff-
Coste (1996), Lemma 2.5. All this takes, is to “aggregate” in (79) by taking
Q-expectations. This leads to an analogue of equation (4.14) in Karatzas,
Schachermayer & Tschiderer (2020), as we describe now.1

Theorem 7.3 (de Bruijn-type identity for the Dissipation of Relative En-
tropy). The relative entropy of (67) is a decreasing function of time, and
satisfies

(83)
H
(
P (T ) | Q) = H

(
P (0) | Q) −

∫ T

0
I(t) dt =

∫ ∞

T
I(t) dt ,

I(t) = E
(
!t, log !t

)
≥ 0

for all T ∈ [0,∞), in the notation of (35), (24).

Proof. The first claim is simply a restatement of (68); and by taking Q-ex-
pectations in (79) we obtain in conjunction with (75) the first equality of
(83), with

I(t) := EQ[(∂h + K̂h
)(

T − t, X(t)
)]

.

From (77) and (35), this quantity coincides with the last expression in (83):
to wit,

(84)

I(t) =
∑

x∈S
q(x)

(
∂h + K̂h

)
(T − t, x)

=
∑

(x,y)∈Z

q(x) κ̂(x, y) ((t, y)
[
log

((t, y)

((t, x)
− 1

]

=
∑

x∈S
q(x) ((t, x)

∑

y∈S
y #=x

κ̂(x, y)Ψ
( ((t, y)

((t, x)

)

= −
∑

x∈S

∑

y∈S
κ(y, x) q(y) ((t, y) log ((t, x) = E

(
!t, log !t

)
.

1The seminal paper Stam (1959), from the early days of Information Theory,
establishes the first identity of this type, and in a context where the invariant
measure Q is standard Gaussian. A.J. Stam gives credit for this result to his
teacher, the analyst, number theorist, combinatorialist and logician Nicolaas de
Bruijn.
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It is non-negative on account of the non-negativity of the last expression in
(77), and uniformly continuous as a function of time. In the display (84), the
second equality follows from the first equality in (77); the third from the last
equality in (77); the fourth from (26) and the property

∑
y∈S κ(y, x) = 0 for

every y ∈ S; and the fifth from the definition (35). We deduce H
(
P (0) | Q) =∫∞

0 I(t) dt by letting T → ∞ in (83) and recalling (74); then the second
identity in (83) follows.

Remark 7.1. Whenever there exists a positive real constant α (respectively,
β ) such that the Poincaré (resp., the modified log-Sobolev) inequality

α ≤ 2 E(f, f)∑
y∈S q(y)f2(y) − 1

(
resp., β ≤ E(f, log f)∑

y∈S q(y)f(y) log f(y)

)(85)

holds for every function f : S → (0,∞) with
∑

y∈S q(y)f(y) = 1, it is clear
from (56), (57) and (69), (83) that the variance (resp., the relative entropy)
decays exponentially:

(86)
VarQ(L(t)

)
≤ VarQ(L(0)

)
e−α t

(
resp., H

(
P (t) | Q) ≤ H

(
P (0) | Q) e−β t

)
.

Remark 7.2. To the best of our knowledge, the identities (57), (83) ap-
pear in the Markov Chain context first in Lemma 2.5 of Diaconis &
Saloff-Coste (1996); see also Bobkov & Tetali (2006), Montenegro
& Tetali (2006), Caputo et al. (2009) and Conforti (2020). These au-
thors use slightly different arguments, based on semigroups. One advantage
of the more probabilistic approach we follow here, is that it provides a very
sharp picture for the dissipation of relative entropy along trajectories, as
exemplified in subsection 7.1.

7.3. Fisher information under detailed balance

The following is now a direct consequence of Lemma 4.2.

Proposition 7.4. Under the detailed-balance condition (27), the rate of
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relative entropy dissipation in (83) can be cast as

I(t) = E
(
!t, log !t

)

=
1

2

∑

(x,y)∈Z

(
log (

(
t, y

)
− log (

(
t, x

))2
Θ
(
((t, y), ((t, x)

)
κ(y, x) q(y)

=
1

2

∑

(x,y)∈Z

(
((t, y) − ((t, x)

)2

Θ
(
((t, y), ((t, x)

) κ(y, x) q(y)

(87)

in terms of the “logarithmic mean” function

(88) Θ(q, p) :=
q − p

log q − log p
=

∫ 1

0
qr p1−r dr , (q, p) ∈ (0,∞)2.

Remark 7.3. The expression in (87) is reminiscent of the familiar Fisher
Information in Statistics and Information Theory; cf. Bobkov & Tetali
(2006). Always under the detailed-balance condition (27), the expression of
(87) can be cast in terms of a “score function”, the discrete logarithmic-
gradient of the likelihood ratio, as

〈
∇!t,∇ log !t

〉
L2(Z,C)

in the notation of

(28)–(32).
As shown in Bobkov & Tetali (2006), the inequality 2(a − b)2 ≤

(a2 − b2) log(a/b) for 0 < a, b < ∞ leads under detailed-balance (27) to the
Diaconis and Saloff-Coste (1996) estimate

E
(
eg, g

)
≥ 4 E

(
eg/2, eg/2

)
, and thus to

I(t) = E
(
!t, log !t

)
≥ 4 E

(√
!t ,

√
!t

)
.

8. The Φ-relative entropy process

In order to reveal the common thread running through the examples of
the last two Sections, let us consider now a continuously differentiable and
convex function Φ : (0,∞) → R with Φ(1) = 0 with continuous, strictly
positive second derivative. We denote by ϕ : (0,∞) → R its derivative
Φ′ = ϕ. For each η > 0, ξ > 0 we define the Bregman Φ-divergence

(89) divΦ
(
η | ξ

)
:= Φ(η) − Φ(ξ) − (η − ξ)ϕ(ξ) ,

a quantity which is non-negative on account of the convexity of Φ (and
has nothing to do with the “discrete divergence” we introduced in (29)). For
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instance, divΦ
(
η | ξ

)
= (ξ−η)2 for Φ(ξ) = ξ2−1; whereas, for Φ(ξ) = ξ log ξ

and in the notation of (78), we have

(90) divΦ
(
η | ξ

)
= divΨ

(
η | ξ

)
= ξΨ(η/ξ) .

Let us consider now, for a general convex Φ as above, the so-called Φ-
relative entropy

HΦ
(
P (t)

∣∣Q
)

:= EQ[Φ
(
((t, X(t)

)]
=

∑

y∈S
q(y)Φ

(p(t, y)

q(y)

)
, 0 ≤ t < ∞ ;

(91)

see Chafäı (2004) for a general study of such functions. The convexity
of Φ and the Jensen inequality imply that this function is nonnegative,
since Φ(1) = 0; and from Proposition 5.2, that the time-reversed Φ-relative
entropy process

Φ
(
((T − s, X̂(s)

)
, 0 ≤ s ≤ T

is a (Ĝ, Q)-submartingale, for every fixed T ∈ (0,∞). As a consequence the
function in (91) decreases, in fact satisfies limt→∞ ↓ HΦ

(
P (t)

∣∣Q
)

= 0 by
virtue of (22) and the finiteness of the state space.

8.1. Trajectorial dissipation of the Φ-relative entropy

The Doob-Meyer decomposition of this submartingale is obtained from
Proposition 5.1 as follows: Consider the function g(s, x) = Φ

(
((T − s, x)

)

and compute, in the manner of (77), the quantities

∂g(s, x) = −ϕ
(
((t, x)

)∑

y∈S
κ̂(x, y)

[
((t, y) − ((t, x)

]
,

(
K̂g

)
(s, x) =

∑

y∈S
κ̂(x, y)

[
Φ
(
((t, y)

)
− Φ

(
((t, x)

)]

with t = T − s, on account of (25). Combining these expressions with (89),
we deduce

(
∂g + K̂g

)
(s, x) =

∑

y∈S, y )=x

κ̂(x, y) divΦ
(
η | ξ

)∣∣∣∣
η="(t,y)

ξ="(t,x)

=: ΛΦ,Q(t, x) ≥ 0 .

(92)
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The following result is now a direct consequence of Proposition 5.1 and
the Bayes rule. Once again, the finiteness of the state-space and the conti-
nuity of the functions involved, turn local into true martingales.

Proposition 8.1. For any given T ∈ (0,∞), the process below is a (Ĝ, Q)-
martingale:

(93) Φ
(
((T − s, X̂(s))

)
−
∫ s

0
ΛΦ,Q(T − u, X̂(u)

)
du , 0 ≤ s ≤ T .

Whereas, with ΛΦ,P(t, x) := ΛΦ,Q(t, x)/((t, x), the process below is a (Ĝ, P)-
martingale:

(94)
Φ
(
((T − s, X̂(s))

)

((T − s, X̂(s))
−
∫ s

0
ΛΦ,P(T − u, X̂(u)

)
du , 0 ≤ s ≤ T.

8.2. Generalized de Bruijn identities

In view of these considerations, it is now straightforward to “aggregate”
(i.e., take Q-expectations of) the (Ĝ, Q)-martingale of (93). We obtain in
the manner of (83) the following result, stated again in the forward direction
of time; cf. Chafäı (2004), Proposition 1.1.

Proposition 8.2 (Generalized de Bruijn-type identity). The temporal dis-
sipation of the Φ-relative entropy of (91) is given for 0 ≤ T < ∞ as

(95)
HΦ

(
P (T ) | Q) = HΦ

(
P (0) | Q) −

∫ T

0
IΦ(t) dt =

∫ ∞

T
IΦ(t) dt ,

IΦ(t) := EQ[ΛΦ,Q(t, X(t)
)]

≥ 0 .

In view of (92), the dissipation rate in (95) is given by the Φ-Fisher In-
formation

(96)

IΦ(t) =
∑

(x,y)∈Z

q(x) κ̂(x, y) divΦ
(
((t, y)

∣∣((t, x)
)

=
∑

x∈S

∑

y∈S
q(x) κ̂(x, y) divΦ

(
((t, y)

∣∣((t, x)
)

= −
∑

x∈S

∑

y∈S
q(y)κ(y, x) ((t, y)ϕ

(
((t, x)

)
= E

(
!t,ϕ(!t)

)
.
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Proof. The third equality in (96) is a consequence of the properties

∑

y∈S
κ̂(x, y) = 0 for every x ∈ S, and

∑

x∈S
κ(y, x) = 0 for every y ∈ S,

as well as of (26). It underscores the fact that, when passing from the trajec-
torial to the “aggregate” point of view (that is, when taking Q-expectations),
the term ξϕ(ξ)−Φ(ξ) that depends only on the variable ξ = ((t, x), as well
as the term Φ(η) that depends only on the variable η = ((t, y), can be
ignored in (89); only the “mixed term” −η ϕ(ξ) remains relevant. We note
that similar reasoning was deployed in the proof of Lemma 4.1.

Remark 8.1 (Some Special Cases). (i) For the convex function Φ(ξ) =
ξ log ξ , and recalling (90), (78), the quantity IΦ(t) of (96) is seen to co-
incide with I(t) in (84), (83).

(ii) On the other hand, when Φ(ξ) = ξ2 − 1 we have divΦ
(
η | ξ

)
= (η− ξ)2

in (89) and

HΦ
(
P (t)

∣∣Q
)

= EQ((2(t, X(t)
)
− 1 =

∣∣!t

∣∣2
L2(S,Q)

− 1

= VarQ(L(t)) = V
(
P (t) | Q

)
, 0 ≤ t < ∞

as in (52), and the rate of temporal dissipation for this function is precisely
the integrand in (59):

(97) IΦ(t) = −2
∑

x∈S

∑

y∈S
q(y)κ(y, x) ((t, x) ((t, y) = 2 E

(
!t, !t

)
.

(iii) A bit more generally, the choice of convex function Φ(ξ) = (ξm −
1)/(m − 1) with m > 1, leads to the so-called “Rényi relative entropy”

(98) HΦ
(
P (t)

∣∣Q
)

=
EQ((m(t, X(t)

)
− 1

m − 1
, 0 ≤ t < ∞

whose rate of temporal dissipation is a generalized version of (97):

IΦ(t) = − m

m − 1

∑

x∈S

∑

y∈S
q(y)κ(y, x) ((t, y)

(
((t, x)

)m−1

=
m

m − 1
E
(
!t, !

m−1
t

)
.
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The variance VarQ(L(t)) is thus a special case of the Rényi relative entropy,
corresponding to m = 2; whereas the relative entropy in (69) corresponds
to the limit of (98) as m ↓ 1.

We stress that nowhere in this subsection, or in the one preceding it, did
we invoke the detailed-balance conditions of (27).

8.3. Locally steepest descent for the Φ-relative entropy under
detailed balance

We formulate now a variational version of Proposition 8.2 under the condi-
tions (27) of detailed balance. These will be in force throughout the current
subsection.

Remark 8.2. First, let us take a look at the expression of (96). From the con-
sequence q(x) κ̂(x, y) = q(y)κ(y, x) = q(y) κ̂(y, x) of the detailed balance
conditions (27), as well as from the consequence

divΦ
(
η | ξ

)
+ divΦ

(
ξ | η

)
=

(
η − ξ

)(
ϕ(η) − ϕ(ξ)

)

of (89), we see that the Φ-Fisher Information of (96) can be cast now as

IΦ(t) =
1

2

∑

x∈S

∑

y∈S
q(x) κ̂(x, y)

(
divΦ

(
η | ξ

)
+ divΦ

(
ξ | η

))∣∣∣∣
η="(t,y)

ξ="(t,x)

=
1

2

∑

x∈S

∑

y∈S
q(y)κ(y, x)

((
η − ξ

)(
ϕ(η) − ϕ(ξ)

))∣∣∣∣
η="(t,y)

ξ="(t,x)

= E
(
ϕ(!t), !t

)

=
1

2

∑

(x,y)∈Z

q(x)κ(x, y)ΘΦ(ξ, η)
(
ϕ(ξ) − ϕ(η)

)2
∣∣∣∣

ξ="(t,x)

η="(t,y)

(99)

in the manner of (87); we recall the notation ϕ = Φ′. Here, the function

(100)

ΘΦ(q, p) :=
q − p

ϕ(q) − ϕ(p)
, 0 < q )= p < ∞ ,

ΘΦ(p, p) :=
1

Φ′′(p)
, 0 < p < ∞ ,

extends the “logarithmic mean” of (88), to which it reduces when Φ(ξ) =
ξ log ξ. With Φ(ξ) = ξ2 − 1 we get ΘΦ ≡ 1/2, and the last expression in

(99) reduces to
∑

(x,y)∈Z q(x)κ(x, y) ·
(
((t, x)−((t, y)

)2
as in (59). We shall

comment further on this choice of (100), in subsection 9.2 below.
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We set out now to find a metric on the manifold M = P+(S) of prob-
ability vectors on the state-space, relative to which the time-marginals for
the Markov Chain (P (t))0≤t<∞ constitute a curve of steepest descent for
the Φ-relative entropy. In other words, we look for a metric on M that can
play — in the current general context — a role similar to that played by the
Hilbert norm ‖ · ‖H−1(S,Q) in Section 6.

This norm defines the metric distance of (61) that works for the variance
V (P (t)|Q), i.e., in the special case Φ(ξ) = ξ2 − 1. But except for such very
special cases, the Riemannian metric on the manifold M will not be flat;
i.e., not induced by such a simple norm as in Proposition 6.5. For this
reason we are forced to consider the machinery of Riemannian geometry,
which we take up in the next Section 9. In the present Section we avoid
Riemannian terminology, and present the steepest descent property of the
curve (P (t))0≤t<∞ in terms of appropriate Hilbert norms that capture
the local behavior of the Riemannian metric.

8.3.1. Locally weighted Sobolev norms We start this effort by re-
calling from (33) the norm ‖F‖L2(Z,C) for functions F : Z → R. This is
defined on the “off-diagonal Cartesian product” Z by assigning to its ele-
ments (x, y), where x )= y, the weights c(x, y) = q(x)κ(x, y)/2 and taking
the usual L2-norm relative to the positive measure with these weights. For a
fixed likelihood ratio ( in the space L = L+(S) of subsection 3.2 we consider
now, in place of c(x, y) ≡ q(x)κ(x, y)/2 and with the notation of (100), the
new weights

c(x, y) · ϑ'(x, y) , where ϑ'(x, y) := ΘΦ
(
((x), ((y)

)
=

∇((x, y)

∇(ϕ ◦ ()(x, y)
.

(101)

The resulting weighted inner product and norm, extensions of the respective
quantities for real-valued functions on S × S in (32), (33) (to which they
reduce when Φ(ξ) = ξ2/2 ), are respectively

〈
F, G

〉
L2(Z,ϑ"C)

:=
∑

(x,y)∈Z

c(x, y)ϑ'(x, y)F (x, y)G(x, y) =
〈
ϑ'F, G

〉
L2(Z,C)

,

∥∥F
∥∥2

L2(Z,ϑ"C)
:=

〈
F, F

〉
L2(Z,ϑ"C)

.

(102)

We define now for f : S → R the Weighted Sobolev Norm ‖ ·‖H1
Θ(S,'Q),

by replacing on the right-hand sides of (38)–(40) the norm ‖ · ‖L2(Z,C) by
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the new norm ‖ · ‖L2(Z,ϑ"C) in (102):

(103)

〈
f, g

〉
H1

Θ(S,'Q)
:=

〈
∇f,∇g

〉
L2(Z,ϑ"C)

,
∥∥f

∥∥2
H1

Θ(S,'Q)
:=

〈
f, f

〉
H1

Θ(S,'Q)
=

∥∥∇f
∥∥2

L2(Z,ϑ"C)
.

Remark 8.3. It is interesting to note at this point, and will become quite
important down the road, that the Φ-Fisher Information of (96), (99) can
be expressed in terms of the square of this new, weighted Sobolev norm.
Indeed, for any ( ∈ L+(S) we have

E
(
(,ϕ(()

)
=

〈
∇(,∇ϕ(()

〉
L2(Z,C)

=
〈
ϑ'∇ϕ((),∇ϕ(()

〉
L2(Z,C)

=
∥∥∇ϕ(()

∥∥2
L2(Z,ϑ"C)

=
∥∥ϕ(()

∥∥2
H1

Θ(S,'Q)
.

Therefore, the Φ-Fisher Information of (96) takes the form IΦ(t) =∥∥ϕ(!t)
∥∥2

H1
Θ(S,!tQ)

.

Finally, we introduce in the manner of (41), (42) the dual of this weighted
Sobolev norm

(104)
∥∥f

∥∥
H−1

Θ (S,'Q)
:= sup

g:S→R

〈
f, g

〉
L2(S,Q)∥∥g

∥∥
H1

Θ(S,'Q)

.

This admits a variational characterization analogous to (42), which will be
crucial in what follows.

Proposition 8.3 (Variational Interpretation). For any function f : S → R
we have

∥∥f
∥∥

H−1
Θ (S,'Q)

= inf
G:Z→R

{
‖G‖L2(Z,ϑ"C) : f + ∇ ·

(
ϑ'G

)
= 0

}
.(105)

Moreover,
∥∥f

∥∥
H−1

Θ (S,'Q)
is finite if, and only if,

∑
x∈S q(x)f(x) = 0; in this

case the infimum is attained, and uniquely, by the unique discrete gradient
that is admissible.

Proof. Consider a function f : S → R such that
∑

x∈S q(x)f(x) = 0; if this
is not the case, it is straightforward to verify that both sides in (105) are
infinite. We note that the set of admissible G on the right-hand side of (105)
is non-empty (indeed, G0 := − 1

ϑ"
∇K−1f is admissible) and that a minimizer

exists.
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Let G : Z → R be such a minimizer. We show first that G is a discrete
gradient, by a projection argument in the Hilbert space L2(Z,ϑ'C).

To this end, let us denote by ∇h the orthogonal projection of G onto the
subspace of discrete gradients in L2(Z,ϑ'C). We claim that ∇h is admissible
on the right-hand side of (105). Indeed, G−∇h is orthogonal in L2(Z,ϑ'C)
to ∇g for any g : S → R. This implies

−
〈
g,∇ ·

(
ϑ'(G −∇h)

) 〉
L2(S,Q)

=
〈
∇g,ϑ'(G −∇h)

〉
L2(Z,C)

=
〈
∇g, G −∇h

〉
L2(Z,ϑ"C)

= 0

and yields ∇ ·
(
ϑ'G

)
= ∇ ·

(
ϑ'∇h

)
, proving the claim.

By orthogonality, ‖G‖2
L2(Z,ϑ"C) = ‖∇h‖2

L2(Z,ϑ"C) + ‖G − ∇h‖2
L2(Z,ϑ"C).

Since G is a minimizer, we infer ‖G −∇h‖L2(Z,ϑ"C) = 0, which implies that
G ≡ ∇h. This shows that ∇h is a minimizer, and that the right-hand side
of (105) is equal to ‖h

∥∥
H1

Θ(S,'Q)
. It is shown in Maas (2011) that ∇h is

actually the unique discrete gradient satisfying the constraint in (105).
To prove the equality in (105), we note for any g : S → R the identities

〈f, g〉L2(S,Q) = −
〈
∇ ·

(
ϑ'∇h

)
, g
〉

L2(S,Q)

=
〈
ϑ'∇h,∇g

〉
L2(Z,C)

=
〈
h, g

〉
H1

Θ(S,'Q) .

Writing the dual norm as a Legendre transform, we obtain

∥∥f
∥∥2

H−1
Θ (S,'Q)

= sup
g:S→R

{
2〈f, g〉L2(S,Q) −

∥∥g
∥∥2

H1
Θ(S,'Q)

}

= sup
g:S→R

{
2
〈
h, g

〉
H1

Θ(S,'Q)
−
∥∥g

∥∥2
H1

Θ(S,'Q)

}
= ‖h

∥∥2
H1

Θ(S,'Q)
,

which establishes the equality in (105).

Let us consider now as in Section 6, for some ε > 0 an arbitrary smooth
curve (ψ(·) = ((ψ(t))t0≤t<t0+ε with initial position (ψ(t0) = ! ≡ !(t0) in
L = L+(S). In order to compute H−1

Θ (S, (Q)-norms, it is natural in view
of Proposition 8.3 to write the time-evolution in the manner of a “discrete
continuity equation”

∂(ψt + ∇ · (ϑ't
∇ψt) = 0

as in subsection 6.1, where ψt : S → R is unique up to an additive constant.
We regard here ψ(·) as an input, whose gradient is the velocity vector

field that yields the infinitesimal change ∂(ψt of the likelihood ratio flow.
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In light of (25), (101) and detailed balance, the original backward equation
∂!t = K̂!t = K!t = ∇ · (∇!t) = ∇ · (ϑ!t

∇ϕ(!t) corresponds to ψt = −ϕ(!t)
in this scheme of things.

We define as in (63) the corresponding curve Pψ(·) =
(
Pψ(t)

)
t0≤t<t0+ε

on the manifold M = P+(S) of probability vectors on the state-space. We
obtain the following generalization of Proposition 8.2.

Proposition 8.4. In the above context, we have

(106) ∂HΦ
(
Pψ(t) | Q

)
=

〈
ϕ((ψt ),ψt

〉
H1

Θ(S,'tQ)
.

Proof. Using the above-mentioned discrete continuity equation, a discrete
integration by parts, and the definitions of the scalar products, we deduce

∂HΦ
(
Pψ(t) | Q

)
= ∂ EQ

[
Φ
(
(ψ
(
t, X(t)

))]
= −

〈
ϕ((ψt ),∇ · (ϑ't

∇ψt)
〉

L2(S,Q)

=
〈
∇ϕ((ψt ),ϑ't

∇ψt
〉

L2(Z,C)
=

〈
∇ϕ((ψt ),∇ψt

〉
L2(Z,ϑ"tC)

=
〈
ϕ((ψt ),ψt

〉
H1

Θ(S,'tQ)
,

as desired.

With the context and notation just established, and always for ! ≡
!(t0) = (((t0, x))x∈S , we can formulate the following analogue of Proposi-
tion 6.5. This result uses the characterizations of the weighted H−1-norm
in (104), along with the identity K! = ∇ ·

(
ϑ!∇ϕ(!)

)
.

Proposition 8.5. Under the conditions (27) of detailed balance, we have,
with (ψ(t0) = ! ≡ !(t0),

lim
h↓0

1

h

∥∥ !t0+h − !t0

∥∥
H−1

Θ (S,!Q)
=

∥∥K !t0

∥∥
H−1

Θ (S,!Q)
=

∥∥ϕ(!t0)
∥∥

H1
Θ(S,!Q)

;

(107)

and a bit more generally,

lim
h↓0

1

h

∥∥ (ψt0+h − (ψt0
∥∥

H−1
Θ (S,!Q)

=
∥∥∇ · (ϑ!t0

∇ψt0)
∥∥

H−1
Θ (S,!Q)

=
∥∥ψt0

∥∥
H1

Θ(S,'Q)
.

(108)

We pass now to the principal result of the Section. This generalizes The-
orem 6.3, to which it reduces when Φ(ξ) = ξ2−1. It is also a direct analogue
of Theorem 3.2 in Karatzas, Schachermayer & Tschiderer (2020),
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where a similar steepest-descent for the relative entropy is established for
Langevin diffusions, and with distance on the ambient space measured by
the quadratic Wasserstein metric. The role of that metric is played now
by the locally flat metric defined in (109) below.

Theorem 8.6 (Steepest Descent for the Φ-Relative Entropy). Under the
detailed-balance conditions (27), the curve (P (t))t0≤t<∞ of time-marginal
distributions in (20) has the property of steepest descent in Definition 6.1
for the Φ-Relative Entropy of (91), locally at t = t0, and with respect to the
distance induced by the “flat metric”

$)
(
P1, P2

)
:=

∥∥ !1 − !2

∥∥
H−1

Θ (S,'Q)
for P1 = !1Q and P2 = !2 Q.

(109)

Here again we have ! ≡ !(t0).

Proof. This is proved exactly as in subsection 6.2, with the caveat that the
distance-inducing flat metric is now determined “locally”, that is, depends on
(t0, !) ≡ (t0, !(t0)) in the weighted norms of (102)–(104). We go through the
argument again, however, in order to highlight the role that these weighted
norms play in the present, more general context. From (106), and recalling
the initial position (ψ(t0) = !(t0) ∈ L, we obtain

lim
h↓0

HΦ
(
Pψ(t0 + h) | Q

)
− HΦ

(
P (t0) | Q

)

h
=

〈
ϕ(!t0),ψt0

〉

H1
Θ(S,'Q)

;

whereas (108) gives

lim
h↓0

$)
(
Pψ(t0 + h), P (t0)

)

h
=

∥∥ψt0

∥∥
H1

Θ(S,'Q)
,

thus

(110)

lim
h↓0

HΦ
(
Pψ(t0 + h) | Q

)
− HΦ

(
P (t0) | Q

)

$)
(
Pψ(t0 + h), P (t0)

)

=

〈
ϕ(!t0),

ψt0∥∥ψt0

∥∥
H1

Θ(S,'Q)

〉

H1
Θ(S,'Q)

.

This is the rate of change for the Φ-relative entropy along the perturbed
curve

(
Pψ(t)

)
t0≤t<t0+ε

, as measured on the manifold M by the distance in

(109).
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On the other hand, we have from (96), (95) and (99), the following obser-
vation: Along the original curve of time-marginal distributions (P (t))t0≤t<∞
for the Chain, corresponding to taking ψ(·) ≡ ϕ(!)(·) above, the rate of Φ-
relative entropy dissipation measured in terms of the “flat metric” distance
traveled on the manifold M, is given as

lim
h↓0

HΦ
(
P (t0 + h) | Q

)
− HΦ

(
P (t0) | Q

)

$)
(
P (t0 + h), P (t0)

) = −
∥∥ϕ(!t0)

∥∥
H1

Θ(S,'Q)
< 0 .

A simple comparison of the last two displays, via Cauchy-Schwarz, gives
the steepest descent property

lim
h↓0

HΦ
(
Pψ(t0 + h) | Q

)
− HΦ

(
P (t0) | Q

)

$)
(
Pψ(t0 + h), P (t0)

)

− lim
h↓0

HΦ
(
P (t0 + h) | Q

)
− HΦ

(
P (t0) | Q

)

$)
(
P (t0 + h), P (t0)

)

=
∥∥ϕ(!t0)

∥∥
H1

Θ(S,'Q)
+

〈
ϕ(!t0),

ψt0∥∥ψt0

∥∥
H1

Θ(S,'Q)

〉

H1
Θ(S,'Q)

≥ 0

of the Φ-relative entropy with respect to the distance in (61), along the
original curve of Markov Chain time-marginals. Equality holds if, and
only if, ∇ψt0 is a negative constant multiple of ∇ϕ(!t0).

8.3.2. Non-uniqueness of the flat metric There exist norms other
than H−1

Θ (S, !Q) of (104), for which Theorem 8.6 remains valid; see Dietert
(2015) and Proposition 9.4 below. Here we exhibit an explicit example.

Fix ( ∈ L+(S) and consider the “modified weighted H−1-norm” given
by

∥∥f
∥∥2

H̃−1
Θ (S,'Q)

:=
〈 1

ϑ'
∇
(
K−1f

)
,∇

(
K−1f

)〉

L2(Z,C)
(111)

for functions f : S → R with
∑

x∈S f(x)q(x) = 0. This norm is never smaller
than the original H−1

Θ (S, (Q)-norm as defined in (103); namely,

∥∥f
∥∥

H̃−1
Θ (S,'Q)

≥
∥∥f

∥∥
H−1

Θ (S,'Q)
.(112)

And equality holds when f = K(; to wit,

∥∥K(
∥∥

H̃−1
Θ (S,'Q)

=
∥∥K(

∥∥
H−1

Θ (S,'Q)
.(113)
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These two facts imply that the curve (P (t))t0≤t<∞ from Theorem 8.6, which
corresponds to the original backward equation ∂!t = ∇·(∇!t) = K!t of (25),
is a curve of steepest descent also with respect to the modified H̃−1

Θ (S, (Q)-
norms in (111).

To prove the inequality (112), we use Proposition 8.3 and the identity
Kf = ∇ · (∇f) to obtain

∥∥f
∥∥2

H−1
Θ (S,'Q)

= inf
G:Z→R

{〈
G,ϑ'G

〉
L2(Z,C)

: f + ∇ ·
(
ϑ'G

)
= 0

}

≤
〈 1

ϑ'
∇
(
K−1f

)
, ϑ'

( 1

ϑ'
∇
(
K−1f

))〉

L2(Z,C)
=

∥∥f
∥∥2

H̃−1
Θ (S,'Q)

.

(114)

On the one hand, the equality (113) holds for f = K(, since

∥∥K(
∥∥2

H̃−1
Θ (S,'Q)

=
〈 1

ϑ'
∇(,∇(

〉

L2(Z,C)
=

〈
∇ϕ((),∇(

〉

L2(Z,C)

=
〈
∇ϕ((),ϑ'∇ϕ(()

〉

L2(Z,C)
=

∥∥ϕ(()
∥∥2

H1
Θ(S,'Q)

;

while, on the other hand, Proposition 8.3 yields

∥∥K(
∥∥2

H−1
Θ (S,'Q)

=
∥∥∇ · (∇()

∥∥2
H−1

Θ (S,'Q)

=
∥∥∇ ·

(
ϑ'∇ϕ(()

)∥∥2
H−1

Θ (S,'Q)
=

∥∥ϕ(()
∥∥2

H1
Θ(S,'Q)

.

Remark 8.4. In general, the norms
∥∥f

∥∥
H̃−1

Θ (S,'Q)
and

∥∥f
∥∥

H−1
Θ (S,'Q)

are differ-

ent. Indeed, it follows from Proposition 8.3 and (114) that equality of norms
holds if, and only if, 1

ϑ"
∇
(
K−1f

)
is a discrete gradient.

This is in general false, but is true in the following very special cases:

• At equilibrium, i.e., with ( ≡ 1, we have ϑ' ≡ 1, so that 1
ϑ"
∇
(
K−1f

)
=

∇
(
K−1f

)
;

• For the variance functional Φ(ξ) = 1
2(ξ2 − 1) as in Section 6, ϑ' ≡ 1

for every likelihood ratio (;
• If the state space S consists of only two points, 1

ϑ"
∇
(
K−1f

)
is a discrete

gradient, since this holds for every anti-symmetric function on S × S.

9. Gradient flows

Let us reconsider now, under conditions of detailed balance, the results of
Sections 6–9 from a different, “Riemannian” point of view. We shall see here
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that, under the conditions (27), the curve (P (t))0≤t<∞ of time-marginal dis-
tributions for the Chain evolves as a gradient flow of the relative Φ-entropy.
This takes place in a suitable geometry on the space of probability measures,
in the spirit of the pioneering work by Jordan, Kinderlehrer & Otto
(1998). We refer to Erbar & Maas (2012, 2014), Mielke (2011, 2013) and
to the expository paper Maas (2017), for an in-depth study of such issues
in discrete spaces.

We summon from subsection 3.1 the manifold M = P+(S) of proba-
bility vectors P =

(
p(x)

)
x∈S with strictly positive entries; i.e., M is the

interior of the lateral face of the unit simplex in Rn, with n = |S| the
cardinality of the state-space. We denote by M0(S) the collection of vec-
tors W =

(
w(x)

)
x∈S with total mass

∑
x∈S w(x) = 0, viewed as “signed

measures”, and observe that M is a relatively open subset of the (n − 1)-
dimensional affine space P + M0(S) = {P + W : W ∈ M0(S)}, for an
arbitrary P ∈ M. This observation allows us to identify the tangent space
at each P ∈ M with M0(S).

9.1. Gradient flow for the variance

As a warmup, let us start as in Section 6 with a derivation for the gradient
flow property for the variance functional M . P (→ V (P |Q) ∈ R+ of (6.1).
Following de Giorgi’s approach to curves of maximal slope (cf. Ambrosio,
Gigli & Savaré (2008)), we compute the dissipation of this functional
along an arbitrary smooth curve (P̃t)0≤t<∞ on M; or equivalently, along

the curve ((̃t)0≤t<∞ induced on the space L by the likelihood ratios (̃t(y) =
p̃t(y)/q(y), y ∈ S.

As in Section 6, we express the time-evolution of this likelihood ratio
curve as ∂(̃t = Kft = ∇ ·

(
∇ft

)
in the manner of (25), for a suitable curve

(ft)0≤t<∞ of functions ft : S → R. This is uniquely determined up to an
additive constant on account of the Chain’s irreducibility, and its discrete
gradient provides the “momentum vector field” of the motion. Recalling the
consequences K̂f = Kf = ∇ · (∇f) of detailed balance (27) and of (30), as
well as the fact that ∇· is the adjoint of −∇ from (37), we obtain

(115)

∂V
(
P̃t

∣∣Q
)

= ∂
∥∥(̃t

∥∥2
L2(S,Q)

= 2
〈
(̃t, ∂(̃t

〉
L2(S,Q)

= 2
〈
(̃t, Kft

〉
L2(S,Q)

= −2
〈
∇(̃t,∇ft

〉
L2(Z,C)

≥ −2
∥∥∇(̃t

∥∥
L2(Z,C)

∥∥∇ft

∥∥
L2(Z,C)

≥ −
∥∥∇(̃t

∥∥2
L2(Z,C)

−
∥∥∇ft

∥∥2
L2(Z,C)

.

Equality holds in the first (resp., the second) of these inequalities if, and

only if, ∇ft and ∇(̃t are positively collinear (resp., have the same norm). In
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other words, both these last two inequalities hold as equalities if and only
if ∇ft = ∇(̃t, and this leads to the backwards equation (25) on account of
detailed balance:

∂(̃t = Kft = ∇ ·
(
∇ft

)
= ∇ ·

(
∇(̃t

)
= K (̃t = K̂ (̃t .

But the last two norms in (115) are then

‖∇ft‖L2(Z,C) = ‖∇(K−1(∂(̃t))‖L2(Z,C) = ‖∂(̃t‖H−1(S,Q)

as well as ‖∇(̃t‖L2(Z,C) = ‖(̃t‖H1(S,Q).
In this manner we obtain from (115) the following classical result. This

provides another proof for Theorem 6.3 by identifying the solutions of ∂Pt =
K′Pt in (21) as curves in the direction of steepest descent for the variance,
relative to the distance induced by the H−1(S, Q) norm. But it also strength-
ens Theorem 6.3, by identifying also the correct velocity with which the
gradient flow moves into this direction.

Theorem 9.1. For any given probability vector P ∈ M and with ! ∈ L the
likelihood ratio vector corresponding to P , we have along any smooth curve
(P̃t)0≤t<∞ on M with P̃0 = P the inequality

(
∂V

(
P̃t

∣∣Q
)

+
∥∥∂(̃t

∥∥2
H−1(S,Q)

)∣∣∣∣
t=0

≥ −
∥∥!

∥∥2
H1(S,Q)

.

Equality holds if, and only if, the curve (P̃t)0≤t<∞ ⊂ M satisfies the for-

ward equation ∂P̃t = K′P̃t (equivalently, the induced likelihood ratio curve

((̃t)0≤t<∞ ⊂ L satisfies the backward equation ∂(̃t = K(̃t).

9.2. Gradient flow for the Φ-relative entropy

Let us examine now, how these ideas might work in the context of the
generalized relative entropy functional

(116) M . P (−→ HΦ
(
P
∣∣Q

)
:=

∑

y∈S
q(y)Φ

(p(y)

q(y)

)
∈ [0,∞)

corresponding to a convex function Φ, as in Section 8.
We fix a smooth curve (P̃t)0≤t<∞ on M emanating from a given P̃0 =

P ∈ M; and consider the induced curve ((̃t)0≤t<∞ ⊂ L of likelihood ratios

(̃t(y) = p̃t(y)/q(y), y ∈ S emanating from ! = (0.
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As in subsection 8.3, we cast the time-evolution of the likelihood ratio
curve as a continuity equation

(117) ∂(̃t + ∇ ·
(
ϑ̃t∇ft

)
= 0

where the “velocity vector field” is the discrete gradient of a suitable function
ft : S → R, and ϑ̃t is a shorthand for ϑ'̃t

from (101). In the manner of
(115), this expresses the time-evolution of the Φ-relative entropy functional

HΦ
(
P̃t

∣∣Q
)

=
∑

y∈S q(y)Φ
(
(̃t(y)

)
in (116) along the curve

(
P̃t
)
0≤t<∞ as

(118)

∂HΦ
(
P̃t

∣∣Q
)

=
〈
ϕ((̃t), ∂(̃t

〉
L2(S,Q)

= −
〈
ϕ((̃t),∇ · (ϑ̃t∇ft)

〉
L2(S,Q)

=
〈
∇ϕ((̃t), ϑ̃t∇ft

〉
L2(Z,C)

=
〈
∇ϕ((̃t),∇ft

〉
L2(Z,ϑ̃tC)

≥ −
∥∥∇ϕ((̃t)

∥∥
L2(Z,ϑ̃tC)

∥∥∇ft

∥∥
L2(Z,ϑ̃tC)

≥ −
(∥∥∇ϕ((̃t)

∥∥2
L2(Z,ϑ̃tC)

+
∥∥∇ft

∥∥2
L2(Z,ϑ̃tC)

)/
2 .

Once again, equality holds if and only if ∇ft = ∇
(
ϕ((̃t)

)
, and this leads by

detailed balance to the backwards equation

∂(̃t = −∇ ·
(
ϑ̃t ∇ft

)
= ∇ ·

(
ϑ̃t ∇(ϕ((̃t))

)
= ∇ ·

(
∇(̃t

)
= K (̃t = K̂ (̃t

of (25). We have used here the elementary but crucial consequence ∇(̃t =

ϑ̃t ∇(ϕ((̃t)) of (101), a “discrete chain rule” that sheds light on our choice of
weight-function ΘΦ in (100). But the last two norms displayed in (118) are

‖∇ft‖L2(Z,ϑ̃tC) = ‖∂(̃t‖H−1
Θ

(S,"̃tQ)
and ‖∇ϕ((̃t)‖L2(Z,ϑ̃tC) = ‖ϕ((̃t)‖H1

Θ(S,'̃tQ).

We summarize the situation in Theorem 9.2 below; this corresponds
to Theorem 8.6, in the same manner as Theorem 9.1 corresponds to Theo-
rem 6.3. Again, the de Giorgi argument (118) gives not only the “direction
of steepest descent” into which the gradient flow travels, but also the velocity
of this flow.

Theorem 9.2. For any given probability vector P ∈ M, and with ! ∈ L the
likelihood ratio vector corresponding to P , we have along any smooth curve
(P̃t)0≤t<∞ on M with P̃0 = P the inequality

(119)

(
2 ∂HΦ

(
P̃t

∣∣Q
)

+
∥∥∂(̃t

∥∥2
H−1

Θ (S,!Q)

)∣∣∣∣
t=0

≥ −
∥∥ϕ(!)

∥∥2
H1

Θ(S,!Q)
.

Equality holds here if, and only if, the curve (P̃t)0≤t<∞ ⊂ M satisfies

the forward equation ∂P̃t = K′P̃t (equivalently, the likelihood ratio curve
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((̃t)0≤t<∞ ⊂ L satisfies the backward equation ∂(̃t = K (̃t, and the corre-

sponding “driver” in (117) is ft = −ϕ((̃t) .)

9.3. A Riemannian framework

Let us take up these same ideas again, but now in a Riemannian-geometric
framework as for instance in Maas (2011), Mielke (2011). For any given
probability vector P ∈ M , we define the “likelihood ratio” vector ! =(
((x)

)
x∈S ∈ L with strictly positive elements ((x) := p(x)/q(x). We consider

then the Riemannian metric (g!)!∈L on L induced by the scalar products

g!(∂(1, ∂(2) :=
〈
∇ψ1,∇ψ2

〉
L2(Z,ϑ"C)

,

where ∇ψi is the unique discrete gradient satisfying the equation of “con-
tinuity type” ∂(i = ∇ · (ϑ'∇ψi) for i = 1, 2. In particular, g!(∂(, ∂() =
‖∇ψ‖2

L2(Z,ϑ"C) = ‖∂(‖2
H−1

Θ (S,!Q)
on account of (105).

The Riemannian gradient grad F of a smooth functional F : L → R is
then given by

grad F = −∇ ·
(
ϑ' ∇D'F

)
, where D'F ≡ δF

δ(

is the L2(S, Q)-derivative defined by

lim
ε→0

ε−1
(
F (( + εη) − F (()

)
= 〈D'F, η〉L2(S,Q)

for η : S → R with
∑

x∈X η(x)q(x) = 0.
In particular, the gradient flow equation ∂( = − grad F (() reads

∂( = ∇ ·
(
ϑ' ∇D'F

)
.(120)

The Riemannian metric g on L can be turned into a Riemannian met-
ric G on the manifold of probability measures M, via GP (∂P1, ∂P2) :=
g!(∂(1, ∂(2), where P = !Q and ∂Pi = ∂(i Q for i = 1, 2.

Theorem 9.3 (Maas (2011), Mielke (2011)). Under the detailed bal-
ance conditions (27), and with Θ the function of (100), the Forward Kol-
mogorov equation ∂P (t) = K′P (t) in (21) is the gradient flow of the Φ-
relative entropy in (116) with respect to the Riemannian metric G induced
on the manifold M.
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Proof. Let (P (t))0≤t<∞ solve the Forward Kolmogorov equation ∂P (t) =
K′P (t). By the detailed balance equations, the associated likelihood ratio
curve

(
!(t)

)
0≤t<∞ ⊂ L satisfies the backward equation ∂!(t) = K !(t). In

view of (120), we thus need to verify the identity

K ( = ∇ ·
(
ϑ'∇D'h

Φ
)

,

where hΦ : L → R is defined by hΦ(() = HΦ((Q|Q).
For ! ∈ L and η : S → R with

∑
x∈S η(x)q(x) = 0, we have the

directional derivative computation

(121)

d

dε
hΦ

(
! + εη

) ∣∣∣∣
ε=0

=
∑

x∈S
η(x)ϕ

(
((x)

)
;

thus D'h
Φ ≡ δhΦ

δ(
= ϕ(!) :=

(
ϕ(((x))

)

x∈S
.

Invoking the “discrete chain-rule” ϑ'∇(ϕ(!)) = ∇( we obtain the desired
identity

∇ ·
(
ϑ'∇D'h

Φ
)

= ∇ ·
(
ϑ'∇(ϕ(!))

)
= ∇ ·

(
∇(

)
= K(.

Theorem 9.3 has a converse, developed in Dietert (2015) as follows.

Proposition 9.4. Suppose that there exists a C1 Riemannian metric on the
manifold of probability vectors M, under which the Forward Kolmogorov
equation ∂P (t) = K′P (t) of (21) is the gradient flow for the relative entropy
in (66).

Then the Markov Chain satisfies the detailed balance conditions (27).

9.4. The HWI inequality

In the Riemannian framework of this Section, we present now a version of the
celebrated HWI inequality of Otto & Villani (2000). The basic ingredient
is the notion of Ricci curvature in the present context, as in Definition 1.3
of Maas (2011). We recast this definition using the more general notion
of Φ-entropy in Section 8 — rather than the classical entropy which is, of
course, a special case.

We recall also from subsection 3.1 and Remark 5.1 the manifold M of
probability vectors on S with strictly positive entries, its closure M of prob-
ability vectors with nonnegative entries, and the corresponding manifolds L,
L of likelihood ratios.
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Definition 9.1 (RicciΦ-curvature). We say that our finite-state Markov
Chain with generator K has non-local Ricci curvature bounded from below
by κ ∈ R relative to Φ as above, and write RicciΦ(K) ≥ κ, if for every
constant-speed geodesic (Pt)0≤t≤1 on the closed manifold M we have the
inequality

(122)
HΦ

(
Pt

∣∣Q
)
≤ (1 − t)HΦ

(
P0

∣∣Q
)

+ tHΦ
(
P1

∣∣Q
)

− κ

2
t(1 − t) W2(P0, P1), 0 ≤ t ≤ 1 .

Here W(· , ·) is the geodesic distance with respect to the Riemannian
metric of subsection 9.3. It admits the Benamou-Brenier-type represen-
tation

W2(P0, P1) = inf

{∫ 1

0

∥∥ft

∥∥2
H1

Θ(S,'̃tQ)
dt : ∂(̃t + ∇ ·

(
ϑ̃t∇ft

)
= 0

}
,(123)

with the infimum running over all solutions to the continuity equation con-
necting P0 ≡ (̃0Q with P1 ≡ (̃1Q; cf. Maas (2011), Erbar & Maas (2012),
Mielke (2013). We shall apply the above inequality (122) in the form of
the following fact about functions of a real variable.

Proposition 9.5. Let
(
f(t)

)
0≤t≤1

be a continuous, real-valued function such
that

(124) f(t + h) − 2f(t) + f(t − h) ≥ κh2

holds for some κ ∈ R and every pair (t, h) ∈ R2
+ with h ≤ t ≤ 1−h. Suppose

also that f is right-differentiable at t = 0 with derivative f ′(0). Then

(125) f(1) ≥ f(0) + f ′(0) +
κ

2
.

Proof. If f is twice differentiable, the condition (124) amounts to f ′′ ≥ κ.
For general f and supposing κ = 0, condition (124) is tantamount to the
convexity of f , so the inequality (125) becomes obvious. The case of general
κ follows by subtracting from f(t) the quadratic κ t2/2.

For a constant-speed geodesic (Pt)0≤t≤1 joining P0 ∈ M with P1 ∈
M such that W(P0, P1) = 1, the function f(t) = HΦ(Pt|Q) satisfies the
conditions of Proposition 9.5 under the assumption RicciΦ(K) ≥ κ.

Indeed, (Pu)t−h≤u≤t+h is then a constant-speed geodesic which joins Pt−h

with Pt+h and satisfies W(Pt−h, Pt+h) = 2h, so (122) applies with t = 1/2.
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The existence of constant-speed geodesics and of f ′(0), follows respectively
from Theorem 3.2 and Proposition 3.4 in Erbar & Maas (2012).

We formulate now a version of the HWI inequality in the present context.
This sharpens slightly Theorem 7.3 of Erbar & Maas (2012), where P1

in the following theorem is the invariant measure Q; and its proof does not
rely on the “evolution variational inequality” (the EVI of Theorem 4.5 in
Erbar & Maas (2012)), but rather on the very elementary estimate of
Proposition 9.5.

Theorem 9.6 (HWI Inequality of Otto-Villani). Under the assumptions
of subsection 9.2, suppose that RicciΦ(K) ≥ κ holds for some κ ∈ R.

With P0, P1 any probability measures in M, M, respectively, denote by
W(P0, P1) their geodesic distance and by IΦ(P0|Q) the Φ-Fisher informa-
tion of (96) with t = 0. We have then

(126) HΦ(P0|Q)−HΦ(P1|Q) ≤
(
IΦ(P0|Q)

)1/2
W(P0, P1)−

κ

2
W2(P0, P1).

Proof. We follow the argument in Theorem 4.11 of Karatzas, Schacher-
mayer & Tschiderer (2020), where the HWI inequality is established for
diffusions in Rn. We let (Pt)0≤t≤1 ⊂ M be a constant-speed geodesic of
probability measures joining P0 with P1 (which we know exists, by Theorem
3.2 of Erbar & Maas (2012)), denote by ((t)0≤t≤1 ⊂ L the corresponding
likelihood-ratio curve, consider the function f(t) := HΦ(Pt|Q) , 0 ≤ t ≤ 1,
and pass to the parametrization

u = u(t) =
w

i1/2
t , 0 ≤ u ≤ w

i1/2
,

where i = IΦ(P0) = E((0,φ((0)) and w = W(P0, P1). We set g(u) =
g(u(t)) = f(t). Recalling the likelihood ratio (t corresponding to Pt, con-
sider the continuous curve of likelihood ratios

(̃(u) = (t , 0 ≤ u ≤ w

i1/2

so that (̃(0) = (0 and (̃(w i−1/2) = (1, as well as the corresponding curve
P̃ (u), 0 ≤ u ≤ w i−1/2 of probabilities. Since (Pt)0≤t≤1 is a geodesic of
constant speed w with ! = (0, we have

∥∥∂(0
∥∥

H−1
Θ (S,'Q)

= W(P0, P1) = w, thus
∥∥∂(̃(0)

∥∥2
H−1

Θ (S,'Q)
= i ;

this last display gives the second term in (119).
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As for the term
∥∥ϕ(!)

∥∥2
H1

Θ(S,!Q)
in (119), the expression (96) and Re-

mark 8.3 give
∥∥ϕ(!̃(0))

∥∥2
H1

Θ(S,!Q)
= E((0,ϕ((0)) = i. In this manner, (119)

leads to the inequality

(127) g′(0) = ∂HΦ(P̃u|Q)
∣∣∣
u=0

≥ −i,

where the existence of the right-derivative g′(0) is assured by Proposition
3.4 of Erbar & Maas (2012).

Going back to the original parametrization, we obtain f ′(0) ≥ −wi1/2.
The assumption RicciΦ(K) ≥ κ implies that f satisfies (124), with κ replaced
by κw2. In conclusion, (125) gives

HΦ(P1|Q) ≥ HΦ(P0|Q) − i1/2w +
κ

2
w2,

which is tantamount to the HWI inequality (126).

Remark 9.1. As is well known (e.g., Erbar & Maas (2012)), the HWI
inequality leads directly to the corresponding versions of the Modified Log-
Sobolev and Talagrand inequalities, by taking Φ(·) = Ψ(·) as in (7.13)
and P1 = Q. Poincaré-type inequalities also follow this way, by linearizing
the Modified Log-Sobolev inequality.

The HWI inequality (126) can be sharpened. In the above proof, we
estimated the slope of the function t (→ HΦ(Pt|Q) at t = 0 in terms of the
“worst case”, i.e., the steepest possible descent; this led to the square root of
the Fisher information, by Theorem 8.6. But Propositions 8.4, 8.5 allow us
to calculate the slope of this function with respect to the norm H−1

Θ (S, (Q),
which induces the local Riemannian metric at ( = (0. We obtain in this
manner the following more precise result, in the spirit of Otto & Villani
(2000), Cordero-Erausquin (2002) or Karatzas, Schachermayer &
Tschiderer (2020).

Proposition 9.7. Under the assumptions of Theorem 9.6, suppose in ad-
dition that the curve (Pt)0≤t≤1 is driven by a continuous function (ψt)0≤t≤1

via the “discrete continuity equation”

(128) ∂(ψt + ∇ · (ϑ't
∇ψt) = 0.
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Then with ! = (0, we have the inequality

HΦ(P0|Q) − HΦ(P1|Q) ≤ W(P0, P1)

〈
ϕ(!),

ψ0∥∥ψ0

∥∥
H1

Θ(S,!Q)

〉

H1
Θ(S,!Q)

− κ

2
W2(P0, P1).

(129)

Proof. From (110), the slope of the function HΦ(Pt|Q) with respect to the
norm H−1

Θ (S, !Q) on M, which induces the local Riemannian metric at
(t, !) = (0, (0), is given by the bracket term on the right hand side of (129).
Hence, we may replace the inequality (127) by the more precise equality

(130) g′(0) = −
〈
ϕ((0),

ψ0∥∥ψ0

∥∥
H1

Θ(S,!Q)

〉

H1
Θ(S,!Q)

.

The rest of the proof of Theorem 9.6 can be repeated verbatim, to arrive as
(129) instead of (126).

Remark 9.2. What happens when P0 is on the boundary of M, as in Re-
mark 5.1? That is, when the set N0 = {x ∈ S : P0(x) = 0} is non-empty?
To be specific, let us concentrate on the classical entropy Φ(() = ( log (.
Then the Fisher information IΦ(P0|Q) is infinite, and the HWI inequal-
ity (126) holds trivially. On the other hand, the refined version (129) may
deliver some nontrivial information.

Indeed, suppose that (Pt)0≤t≤1 is driven in the “discrete continuity equa-
tion” (128) by a continuous function (ψt)0≤t≤1. If ψ0 also vanishes on N0,
the bracket term in (129) is finite (via the rule 0 · ∞ = 0). As we assume
that ψ(·) is continuous (actually, we only need this continuity at t = 0), we
can still apply the above argument and conclude that (129) holds, yielding
a nontrivial result. The geometric interpretation of ψ0 vanishing on N0 , is
that the curve (Pt)0≤t≤1 starts “tangentially to the boundary of M”, when
departing from P0 at this boundary.

10. Countable state-space

It is well known that the results of Sections 2 and 3 hold also for countably
infinite state-spaces S; see Chapters 2, 3 in Norris (1997) and Liggett
(2010). In particular, the ergodic property (23) holds at least for bounded
functions f : S → R. The crucial Proposition 5.2 also remains valid.



Trajectorial dissipation and gradient flow 529

Propositions 6.1, 6.2 carry over to countable state-spaces under the as-
sumption V

(
P (0) | Q

)
< ∞. To see this, we start by observing that we

can guarantee now prima facie only the local martingale property of the
processes M̂ in (53). Still, we can localize M̂ by an increasing sequence{
σn

}
n∈N of Ĝ-stopping-times with values in [0, T ] and limn→∞ ↑ σn = T ,

and create the bounded (Ĝ, Q)-martingales M̂(s ∧ σn) , 0 ≤ s ≤ T . Taking
expectations in (53) with s = σn, then letting n → ∞ and using monotone
convergence, the Q-submartingale property of (2

(
T − s, X̂(s)

)
, 0 ≤ s ≤ T

from Proposition 5.2, and optional sampling, we obtain from (36) the in-
equality

EQ[(2
(
T, X(T )

)]
+

∫ T

0
2 E

(
(t , (t

)
dt = lim

n→∞
↑ EQ[(2

(
T − σn, X̂(σn)

)]

≤ EQ[(2
(
0, X(0)

)]
.

But the reverse of this last inequality also holds, on account of Fatou’s
Lemma; thus (58) follows for countable state-spaces as well, and M̂ is seen to
be a true (Ĝ, Q)-martingale. Then limt→∞ V

(
P (t) | Q

)
= 0, and with it (59),

are proved for a countable state-space in the manner of Proposition 10.1
below.

10.1. Relative entropy dissipates all the way down to zero

When the state-spaces S is countably infinite, the results of Section 7 per-
taining to the relative entropy need the additional assumption

(131) H
(
P (0)

∣∣Q
)

=
∑

y∈S
p(0, y) log

(
p(0, y)

q(y)

)
< ∞ .

Then everything goes through as before, including the non-negativity and
decrease claims in (68) – except for the argument establishing (74), which
uses the finiteness of the state-space in a crucial manner.

Here is a proof for this result in the countable case.

Proposition 10.1. The dissipation of relative entropy all the way down to
zero, as in (74), holds for a countable state-space under the condition (131).

Proof. Let us recall the likelihood process L(t) := (
(
t, X(t)

)
, 0 ≤ t < ∞

of (47), and from (51) that its time-reversal L(T − s), 0 ≤ s ≤ T is a(
Ĝ, Q

)
-martingale.
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Fix 0 ≤ t1 < t2 < ∞. For any T ∈ (t2,∞), this means EQ[L(T −
s1)

∣∣G(T − s2)
]

= L(T − s2) for s1 = T − t1, s2 = T − t2, or equivalently:

EQ[L(t1)
∣∣σ

(
X(θ), t2 ≤ θ ≤ T

)]
= L(t2) .

But this last identity holds for any T ∈ (t2,∞), so it leads — on the strength
of the P. Lévy martingale convergence Theorem 9.4.8 in Chung (1974) —
to

(132) EQ[L(t1)
∣∣H(t2)

]
= L(t2) , H(t) := σ

(
X(θ), t ≤ θ < ∞

)
.

To wit, the likelihood ratio process
(
L(t)

)
0≤t<∞ is a martingale of the

backwards filtration
(
H(t)

)
0≤t<∞, whose “tail” sigma-algebra is trivial on

account of the ergodicity property (23) of the Markov Chain (Blackwell
& Freedman (1964)):

H(∞) :=
⋂

0≤t<∞
H(t) =

{
∅,Ω

}
, mod. Q .

We invoke now the martingale version of the backward submartingale
convergence Theorem 9.4.7 in Chung (1974). It follows from this result that(
L(t)

)
0≤t<∞ is a Q-uniformly integrable family; that the limit L(∞) :=

limt→∞ L(t) exists, both a.e. and in L1 under Q; and that the backward
martingale property (132) extends all the way to infinity, namely

(133) EQ[L(t1)
∣∣H(∞)

]
= L(∞) .

But the triviality under Q of the tail sigma-algebra, implies that L(∞) is
Q-a.e. constant. Then the extended martingale property (133) identifies this
constant as L(∞) = EQ[L(∞)

]
= EQ[L(t1)

]
= 1 .

We recall the relative entropy from (70). The convexity of the function
Φ(() = ( log ( shows, in conjunction with (132) and the Jensen inequality,
that

(134)
(
Φ
(
L(t)

)
, H(t)

)

0≤t<∞
is a backward Q-submartingale,

with decreasing expectation EQ[Φ
(
L(t)

]
= H

(
P (t)

∣∣Q
)
≥ 0. Because this

expectation is bounded from below, we can appeal once again to the back-
ward submartingale convergence Theorem 9.4.7 in Chung (1974). We de-
duce that the process in (134) is a Q-uniformly integrable family which con-
verges, again both a.e. and in L1 under Q, to limt→∞Φ

(
L(t)

)
= Φ

(
L(∞)

)
=

Φ(1) = 0 .
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Furthermore, the aforementioned uniform integrability gives

lim
t→∞

↓ H
(
P (t)

∣∣Q
)

= lim
t→∞

EQ[Φ
(
L(t)

)]
= EQ

(
lim
t→∞

Φ
(
L(t)

))
= 0 ;

that is, (74) is also valid in this general case with countable state-space.

10.1.1. Relative entropy is continuous at the origin We discuss now
the de Bruijn identities of (83) when the state-space is countable.

Proposition 10.2. The de Bruijn identities of (83) for the dissipation of
relative entropy are valid for a countable state-space, under the finite entropy
condition (131).

To justify this claim, we would like to use the argument already deployed;
but there is now no obvious, general way to turn the local martingale M̂ h

of (76) into a true Q-martingale. Thus, we localize M̂ h by an increasing
sequence

{
σn

}
n∈N of Ĝ-stopping-times with values in [0, T ] and limn→∞ ↑

σn = T . In this manner we create the bounded (Ĝ, Q)-martingales M̂ h(s ∧
σn) , 0 ≤ s ≤ T , which then give

EQ
∫ σn

0

(
∂h + K̂h

)(
u, X̂(u)

)
du = EQ[h

(
σn, X̂(σn)

)]
− EQ[h

(
0, X̂(0)

)]

= H
(
P (T − σn)

∣∣Q
)
− H

(
P (T )

∣∣Q
)

≤ H
(
P (0)

∣∣Q
)
− H

(
P (T )

∣∣Q
)
≤ H

(
P (0)

∣∣Q
)

< ∞

(135)

for every n ∈ N, on account of (131); see also the argument straddling (138)
below. In particular, the sequence of real numbers in (135) takes values in
the compact interval [−H(P (0) | Q), H(P (0) | Q)].

We would like now to let n → ∞ in (135), and establish the de Bruijn
identity (83) in this case. The issue once again is continuity of the relative
entropy — though now at the origin (rather than at infinity, as in (74)); and
not along fixed times, but rather along an appropriate sequence of stopping
times, i.e.,

(136) lim
n→∞

↑ H
(
P (T − σn)

∣∣Q
)

= H
(
P (0)

∣∣Q
)
.

Accepting this for a moment, and letting n → ∞ in (135), we obtain the
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de Bruijn identity (83), i.e.,

∫ T

0
I(t) dt = EQ

∫ T

0

(
∂h + K̂h

)(
u, X̂(u)

)
du = H

(
P (0)

∣∣Q
)
− H

(
P (T )

∣∣Q
)

(137)

by monotone convergence. We let now T → ∞ in (137) and arrive at the
second identity in (83), thanks to the property (74) already established in
Proposition 10.1.

Proof of (136). By analogy with (73), and invoking now additionally the
optional sampling theorem for the bounded stopping times

{
σn

}
n∈N of Ĝ

with values in [0, T ], we deduce that the sequence of non-negative real num-
bers

(138) H
(
P (T − σn) | Q) = EQ[Φ

(
(
(
T − σn, X̂(σn)

))]
, n ∈ N

is increasing; in particular, limn→∞ H
(
P (T − σn)

∣∣Q
)
≤ H

(
P (0)

∣∣Q
)
. On

the other hand, the boundedness-from-below of the function Φ(() = ( log (
gives

lim
n→∞

H
(
P (T − σn)

∣∣Q
)
≥ EQ

[
lim

n→∞
Φ
(
(
(
T − σn, X̂(σn)

))]

= EQ[Φ
(
(
(
0, X(0)

))]
= H

(
P (0)

∣∣Q
)

with the help of Fatou’s Lemma, and (136) follows.

Remark 10.1 (The General Case). Exacly the same methods show that the
results of Propositions 8.1 and 8.2, pertaining to a general convex function
Φ : (0,∞) → R with the properties imposed there, continue to hold for the
generalized relative entropy functional of (116) in the case of a countable
state-space S, under the condition HΦ

(
P (0)|Q

)
< ∞.

Once again, it is important to stress that nowhere in the present Section
have we invoked the detailed-balance conditions of (27).
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