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Abstract. Each sequence f1, f2, . . . of random variables satisfying limM!1(M supk2N P(|fk| >
M)) = 0 contains a subsequence fk1 , fk2 , . . . which, along with all its subsequences, satisfies the weak

law of large numbers limN!1
�
(1/N)

PN
n=1 fkn �DN

�
= 0 in probability. Here, DN is a “corrector”

random variable with values in [�N,N ] for each N 2 N; these correctors are all equal to zero if, in
addition, lim infn!1 E(f2

n1{|fn|6M}) = 0 for every M 2 (0,1).

Key words. weak law of large numbers, hereditary convergence, weak convergence, truncation,
generalized expectation, nonlinear expectation
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1. Introduction. On a probability space (⌦,F ,P), consider real-valued measur-
able functions f1, f2, . . . . If these are independent and have the same distribution with
E|f1| < 1, the celebrated Kolmogorov strong law of large numbers (SLLN [13], [12],
[7, section 2.4]) states that the “sample average” (f1 + · · ·+ fN )/N converges P-a.e.
to the “ensemble average” E(f1) =

R
⌦ f1 dP as N ! 1.

A deep result of Komlós [14], already 56 years old but always very striking, asserts
that such “stabilization via averaging” occurs within any sequence f1, f2, . . . of mea-
surable real-valued functions which is bounded in L

1, i.e., satisfies supn2N E|fn| < 1.
More precisely, there exist then an integrable function f⇤ and a subsequence {fkn}n2N

such that (fk1 + · · ·+ fkN )/N converges to f⇤, P-a.e. as N ! 1, and the same holds
“hereditarily,” i.e., for any further subsequence of {fkn}n2N.

We have also another celebrated result of Kolmogorov, the weak law of large
numbers (WLLN [13], [5, section 5.2], [7, section 2.2.3]) for a sequence f1, f2, . . .
of real-valued measurable functions which are independent. If these have the same
distribution and satisfy the weak L

1-type condition

(1.1) lim
M!1

�
M ·P(|f1| > M)

�
= 0

(rather than the stronger E|f1| < 1), then the WLLN

(1.2) lim
N!1

✓
1

N

NX

n=1

fn �DN

◆
= 0 in probability

holds for the sequence of “correctors”

(1.3) DN := E
�
f11{|f1|6N}

�
, N 2 N,
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502 I. KARATZAS AND W. SCHACHERMAYER

whereas, if the independent functions f1, f2, . . . do not have the same distribution but
satisfy

(1.4) lim
N!1

NX

n=1

P(|fn| > N) = 0, lim
N!1

1

N2

NX

n=1

E
�
f2
n1{|fn|6N}

�
= 0,

then again the convergence in probability (WLLN) in (1.2) holds, though now with
correctors

(1.5) DN :=
1

N

NX

n=1

E
�
fn1{|fn|6N}

�
, N 2 N.

It was shown in [9], [8], [5, Theorem 5.2.3] that, for independent f1, f2, . . . , the condi-
tions in (1.4) are not only su�cient but also necessary for the existence of a sequence
D1, D2, . . . of real numbers with property (1.2). Let us also note that the correctors
in both (1.3) and (1.5) satisfy |DN | 6 N and that they are all equal to zero if the
distribution of each of the f1, f2, . . . is symmetric.

1.1. Preview. The purpose of this note is to present a version of the weak
law of large numbers which is valid for a sequence of arbitrarily dependent random
variables (r.v.’s), and “hereditarily,” i.e., along an appropriate subsequence of the
given sequence, as well as along all further subsequences of this subsequence.

The result is formulated in the next section as Theorem 2.1 and proved in sec-
tion 3. It can be construed as yet another manifestation of the “principle of subse-
quences.” Motivated by the work of Komlós [14], this principle was enunciated by
Chatterji [3] and was further clarified, buttressed, and extended by Aldous [1] and
Berkes and Péter [2]; we refer the reader also to the excellent survey [4].

The proof of Theorem 2.1, considerably simpler than its counterpart for the strong
law in [14], appears in section 3. It is based on truncation and weak convergence
arguments, which provide su�cient conditions for the resulting correctors to be equal
to zero. It does not seem possible to deduce Theorem 2.1 from the abovementioned
general subsequence principle, as formulated on the first page of [4] (see also the first
page of [2]): the result here is not cast in terms of a norm, as that principle requires.
And although it might turn out to be possible to deduce this, or a related, result from
the abstract considerations in Theorem 2 of [2], the directness, simplicity, and brevity
of the approach adopted here have quite a bit going for them.

Ramifications are taken up in section 4, as are examples, which show that Theo-
rem 2.1 cannot be subsumed by the abovementioned Komlós hereditary SLLN.

2. Result. We consider real-valued measurable functions f1, f2, . . . on a proba-
bility space (⌦,F ,P) and introduce, for every M 2 (0,1), the quantities

(2.1) ⌧n(M) := M ·P(|fn| > M), ⌧(M) := sup
n2N

⌧n(M).

Theorem 2.1 (a general, hereditary WLLN). In the above context, we impose
the weak L

1-type condition

(2.2) lim
M!1

⌧(M) = 0.D
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A WEAK LAW OF LARGE NUMBERS 503

There exist then a sequence of corrector r.v.’s D1, D2, . . . with P(|DN | 6 N) = 1
for every N 2 N, and a subsequence {fkn}n2N of the original sequence such that
the WLLN

(2.3) lim
N!1

✓
1

N

NX

n=1

fkn �DN

◆
= 0 in probability

is satisfied hereditarily , i.e., not just along {fkn}n2N but also along all its subse-
quences.

As we shall see in the proof of Theorem 2.1, the correctors D1, D2, . . . correspond
to the generalized mathematical expectations in Kolmogorov [13, section 6.4]; they are
also related to the nonlinear expectations developed by Peng in [16]. The correctors
can be chosen as DN = 0 for every N 2 N whenever, for each M 2 (0,1), we have

(2.4) lim inf
n!1

E
�
f2
n1{|fn|6M}

�
= 0

or, more generally, lim infn!1 E(fn1{|fn|6M} · ⇠) = 0 for every ⇠ 2 L
2.

The hereditary aspect of the convergence in (2.3) holds automatically under inde-
pendence but requires attention in the present generality. The condition (2.2) can be
thought of as an “omnibus,” in that it implies both conditions in (1.4). As shown
in the examples of section 4, the condition (2.2) (or a suitable modification of it) is
satisfied in contexts with E|fn| = 1 for every n 2 N, as well as in contexts where
E|fn| < 1 holds for every n 2 N, but no subsequence exists which is bounded
in L

1 (and thus the Komlós [14] theorem cannot be applied). We note also that the
requirement

lim
M!1

⇣
M · sup

n2N
P(|fn| > M)

⌘
= 0

of (2.2) implies limM!1 supn2N P(|fn| > M) = 0 (boundedness in L
0, or tightness)

and is implied by limM!1 supn2N E(|fn| · 1{|fn|>M}) = 0 (uniform integrability).

3. Proof. We start with the simple but crucial idea of truncation. This goes
back at least to the work of Khintchine and Kolmogorov ([9], [10], [11]), where it
plays a major role in the proofs of laws of large numbers and of convergence results
for series of r.v.’s.

Lemma 3.1. Under condition (2.2),

(3.1) lim
N!1

✓
1

N

NX

n=1

fn � 1

N

NX

n=1

fn1{|fn|6N}

◆
= 0 in probability.

Proof. For every " > 0, the expression

P

✓����
1

N

NX

n=1

fn1{|fn|>N}

���� > "

◆
6 P

✓ N[

n=1

{|fn| > N}
◆

6
NX

n=1

P(|fn| > N) 6 N · max
16n6N

P(|fn| > N)

is dominated by N supn2N P(|fn| > N) = ⌧(N), which tends to zero as N " 1 on
the strength of (2.2). The lemma is proved.
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504 I. KARATZAS AND W. SCHACHERMAYER

It follows that, in order to establish (2.3), it is enough to prove

(3.2) lim
N!1

✓
1

N

NX

n=1

fn1{|fn|6N} �DN

◆
= 0 in probability

for a suitable sequenceD1, D2, . . . of correctors, and along an appropriate subsequence
of {fn}n2N denoted by the same symbols for economy of exposition—as well as along
all further subsequences of this subsequence.

Proof of Theorem 2.1. For each integer N 2 N, consider the truncated functions

(3.3) f [�N,N ]
n := fn1{|fn|6N}, n 2 N,

that appear in (3.1), (3.2). These are bounded in L
1 (since they take values in

[�N,N ]), and thus are bounded in L
2 as well. As a result we can extract, for each

N 2 N, a subsequence of {fn}n2N denoted by the same symbol for economy of
exposition, such that the sequence in (3.3) converges weakly in L

2 to some DN 2 L
2,

(3.4) lim
n!1

E
�
f [�N,N ]
n · ⇠

�
= E(DN · ⇠) 8 ⇠ 2 L

2.

And by standard diagonalization arguments, we can extract then a further subse-
quence of {fn}n2N, denoted again by the same symbol such that the convergence
in (3.4) is valid for every N 2 N. Clearly, the test function ⇠ in (3.4) can be taken
�(f1, f2, . . . )-measurable.

It is fairly straightforward to check that these weak L
2-limits in (3.4) satisfy

P(|DN | 6 N) = 1 for every N 2 N. On the other hand, the lower-semicontinuity of
the L

2-norm under weak L
2-convergence, in this case

kDNkL2 6 lim inf
n!1

��f [�N,N ]
n

��
L2 ,

establishes that P(DN = 0) = 1 for every N 2 N, under (2.4); this also holds if
lim infn!1 E(fn1{|fn|6M} · ⇠) = 0 for each M 2 (0,1) and every �(f1, f2, . . . )-mea-
surable ⇠ 2 L

2.
We introduce now, for each M 2 (0,1), the quantities

(3.5) �n(M) :=
1

M
E
�
f2
n1{|fn|6M}

�
, �(M) := sup

n2N
�n(M).

As shown by Feller [8, p. 235] (see also [7, section 2.3.3]), these quantities are related
to those in (2.1) via

(3.6) 0 6 �n(M) =
2

M

Z M

0
⌧n(t) dt� ⌧n(M) 6 2

M

Z M

0
⌧(t) dt

for every1 n 2 N, M 2 (0,1); thus

(3.7) 0 6 �(M) 6 2

M

Z M

0
⌧(t) dt, M 2 (0,1).

1In the integrand of this expression as it appears on page 235 of [8], there is a typographical error;
this is here corrected. The identity in (3.6) is in fact a simple consequence of the Fubini theorem.
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From bound (3.7) and assumption (2.2), it follows that we also have

(3.8) lim
M!1

�(M) = 0.

Furthermore, we note

(3.9) E
�
f [�M,M ]
n

�2
= E

�
f2
n1{|fn|6M}

�
= M · �n(M) 6 M · �(M),

for all n 2 N, M 2 (0,1), and, therefore, on account of (3.8),

(3.10) E(D2
M ) 6 sup

n2N
E
�
f [�M,M ]
n

�2 6 M · �(M) = o(M) as M ! 1.

We observe at this point that, in order to prove (3.2), and thus (2.3) as well, along
a suitable subsequence, it is enough to show convergence along such a subsequence
in L

2, namely,

(3.11) lim
N!1

1

N2
·E

✓ NX

n=1

�
f [�N,N ]
n �DN

�◆2

= 0.

And developing the square, we need to show that the expectations of both the sum
of squares and the double sum of cross-products, i.e.,

(3.12)
NX

n=1

E
�
f [�N,N ]
n �DN

�2

and

(3.13) 2
NX

n=1

X

16j<n

E
⇥�
f [�N,N ]
j �DN

��
f [�N,N ]
n �DN

�⇤
,

respectively, are of order o(N2) as N ! 1, for the subsequence in question and for
all its subsequences. Now, from (3.9), (3.10), the upper bound

NX

n=1

E
�
f [�N,N ]
n �DN

�2 6 2
NX

n=1

E
�
f [�N,N ]
n

�2
+ 2N ·E(D2

N )

for the expression in (3.12) is already dominated by 4N2 · �(N), which is of order
o(N2) as N ! 1 on account of (3.8).

It is instructive to recall what happens at this juncture, in the case of independent
f1, f2, . . . : the correctors DN are then the real constants in (1.5), so the di↵erences

f [�N,N ]
n �DN , n = 1, . . . , N , are independent with zero mean, and thus uncorrelated.
The expectations of their cross-products in (3.13) vanish, and the argument ends here.

In the general case, when nothing is assumed about the finite-dimensional distri-
butions of the f1, f2, . . . (in particular, when these functions are not independent), we
need to guarantee, by passing to a further subsequence if necessary, that the expres-
sion in (3.13) is also of order o(N2) as N ! 1. One way to accomplish this is to select
the terms f1, f2, . . . of the (relabeled) subsequence in such a way that the di↵erences

f [�N,N ]
n �DN , n = 1, . . . , N , are nearly uncorrelated.

We do this by induction in the following manner: Suppose the terms f1, . . . , fn�1

of the subsequence have been chosen. We select the next term fn in such a way
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506 I. KARATZAS AND W. SCHACHERMAYER

that the di↵erence f [�N,N ]
n �DN , with N 6 en

2

, is “almost orthogonal” to all of the
preceding di↵erences

f [�N,N ]
1 �DN , . . . , f [�N,N ]

n�1 �DN ,

namely, that

(3.14)
��E

⇥�
f [�N,N ]
j �DN

��
f [�N,N ]
n �DN

�⇤�� 6 e�n2 6 1

N

holds for every j = 1, . . . , n� 1, N 6 en
2

. Such a choice of fn is certainly possible on
account of (3.4) and completes the induction step.

Returning to (3.13), we note that the double summation

2

b
p
lnNcX

n=1

X

16j<n

��E
⇥�
f [�N,N ]
j �DN

��
f [�N,N ]
n �DN

�⇤��

is then straightforward to control: each summand is bounded by N ·�(N) on account
of (3.9), (3.10), so the entire summation is of the order

N�(N)

b
p
lnNcX

n=1

2n ⇠ N�(N) · lnN = o(N2)

as N ! 1. On the other hand, the validity of (3.14) for j = 1, . . . , n�1 and N 6 en
2

implies that the double summation

2
NX

n=1+b
p
lnNc

X

16j<n

��E
⇥�
f [�N,N ]
j �DN

��
f [�N,N ]
n �DN

�⇤��

is of the order

2
NX

n=1+b
p
lnNc

ne�n2

⇠
Z N

p
lnN

2xe�x2

dx =
1

N
� e�N2

as N ! 1, and thus certainly of order o(N2).
Thus, it follows that the expression of (3.13) is of order o(N2) as well, and the

argument is now complete. It is also straightforward to check that the argument
works just as well for an arbitrary subsequence, of the subsequence just constructed.
Theorem 2.1 is proved.

4. Ramifications and examples. Condition (2.2), which reads

lim
M!1

(sup
n2N

⌧n(M)) = 0,

can be weakened to

(4.1) lim
M!1

⇣
lim inf
n2N

⌧n(M)
⌘
= 0.
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Indeed, by passing to a subsequence, this becomes

(4.2) lim
M!1

⇣
lim sup
n2N

⌧n(M)
⌘
= 0,

and one checks relatively easily that (4.2) can replace (2.2) in the inductive construc-
tion of the subsequence (of) {fn}n2N. We note also that the condition (4.2) can be
satisfied in situations where (2.2) fails.

Example 4.1. To illustrate this last point, take g 2 L
0 with

(4.3) lim sup
M!1

�
M ·P(|g| > M)

�
> 0,

and thus E|g| = 1, e.g., with Cauchy distribution P(g 2 A) =
R
A(⇡(1 + x2))�1 dx,

and define the functions

(4.4) fn := g · 1{|g|>n}, n 2 N,

also with E|fn| = 1. We have then ⌧n(M) = M · P(|g| > M _ n), ⌧(M) =
M ·P(|g| > M), so (4.3) means that (2.2) fails. However, for every M 2 (0,1),
we have limn!1 ⌧n(M) = M · limn!1 P(|g| > n) = 0, so (4.2) is satisfied.

Thus, the WLLN (2.3) follows for a suitable sequence of correctors D1, D2, . . . .
It is also checked that the condition (2.4) is satisfied here, so all these correctors can
actually be chosen equal to zero.

Example 4.2. To provide another illustration of Theorem 2.1 which highlights the
role of condition (2.2) in a somewhat more substantial manner, let us revisit an old
example from [11] (see also section 5.2 of [5]). Suppose that the functions f1, f2, . . .
satisfy

(4.5) P(fn = ±k) =
c

k2 ln k
, k = 2, 3, . . . ,

with constant 2c =
�P

k>2 k
�2

�
1/ ln k

���1
and thus E|fn| = 1, for every n 2 N.

We assume nothing about the finite-dimensional joint distributions of the f1, f2, . . . ;
in particular, we do not require these functions to be independent.

In this setting,

⌧n(M) = 2cM
X

k>M

1

k2 ln k
⇠ 2c

lnM

holds for integers M > 2 in the notation of (2.1). Thus,

⌧(M) = sup
n2N

⌧n(M) 6 2c

lnM
,

the condition (2.2) is satisfied, and there exists a sequence D1, D2, . . . of correctors
such that (2.3) holds for a subsequence fk1 , fk2 , . . . of f1, f2, . . . and for all further
subsequences.

These correctors are all equal to zero, and limN!1(1/N)
PN

n=1 fn = 0 holds in
probability for the original sequence, when the f1, f2, . . . are also independent; cf. the
example in section 5.2 of [5].

Remark 4.1. Theorem 2.1 has a direct extension, with only very obvious nota-
tional changes, to the case where f1, f2, . . . take values in some Euclidean space R

d,
rather than the real line.

In such an extension, it does not matter whether balls or cubes of Rd are consid-
ered in the truncation scheme (3.3).

D
ow

nl
oa

de
d 

01
/1

8/
24

 to
 1

28
.5

9.
19

3.
18

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

508 I. KARATZAS AND W. SCHACHERMAYER

4.1. Equivalent change of measure; weak, but not strong, hereditary

LLN. In both Examples 4.1 and 4.2, we have E|fn| = 1 for every n 2 N. Let us
consider now situations where E|fn| < 1 holds for every n 2 N.

In the present context, this situation is actually the most important case for the
following reason: It has been observed by Dellacherie–Meyer (cf. [6, VII:57]) that,
given measurable functions h1, h2, . . . on a probability space (⌦,F ,P) with values in
[0,1), an equivalent probability measure Q ⇠ P can be constructed on F with P-a.e.
bounded density dQ/dP and E

Q(hn) < 1 for all n 2 N. In light of this result, and of
the fact that convergence in probability depends only on the equivalence class of the
underlying probability measure P, it follows that whenever there exists a subsequence
fk1 , fk2 , . . . of f1, f2, . . . with supn2N E|fkn | < 1 (we drop reference to the equivalent
probability measure Q ⇠ P from now on), the Komlós hereditary SLLN in [14] can
be applied to this fk1 , fk2 , . . . and to all its subsequences.

The interesting question, then, is whether the requirement E|fn| < 1 for every
n 2 N can coexist with both (2.2) and

(4.6) lim inf
n!1

E|fn| = sup
N2N

inf
n>N

E|fn| = 1,

thus precluding the applicability of the Komlós hereditary SLLN in [14] but allowing
that of the hereditary WLLN in Theorem 2.1.

This question is answered a�rmatively by the example that follows. We are
greatly indebted to Andrew Lyaso↵ [15] for raising it, and for prompting us to con-
struct such an example.

Example 4.3. Let us modify slightly the setting of Example 4.2, by considering
functions f1, f2, . . . that satisfy

(4.7) P(fn = ±k) =
cn

k2+(1/n) ln k
, k = 2, 3, . . . ,

with constant 2cn =
�P

k>2 k
�(2+(1/n))(1/ ln k)

��1
for every n 2 N; once again,

nothing is assumed about the finite-dimensional joint distributions of these functions.
Clearly,

E|fn| = 2cn
X

k>2

1

k1+(1/n) ln k
< 1, E(fn) = 0 8n 2 N,

hold, as does

X

k>2

1

k1+(1/N) ln k

✓X

k>2

1

k2 ln k

◆�1

6 inf
n>N

E|fn| < 1,

for every N 2 N. The leftmost side in this inequality increases to infinity as N " 1,
so (4.6) is satisfied. On the other hand, it is checked readily that the quantity of (2.1)
is here

⌧n(M) = M ·P(|fn| > M) = M
X

k>M

1

k2+(1/n) ln k

✓X

k>2

1

k2+(1/n) ln k

◆�1

,

and that (2.2) is satisfied as well: for some real constant C > 0, we have

⌧(M) = sup
n2N

⌧n(M) 6 C

lnM

✓X

k>2

1

k3 ln k

◆�1

! 0 as M ! 1.
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According to Theorem 2.1, there exists a sequence D1, D2, . . . of correctors, with the
property that (2.3) holds for some subsequence fk1 , fk2 , . . . of f1, f2, . . . and for all
its subsequences.

We note that in (4.7), and throughout this example, 1/n in the exponent of the
denominator can be replaced by any an 2 (0, 1) which decreases to zero as n ! 1.
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