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Abstract. Eachsequence fi1, f2,... of random variables satisfying lim s, o (M supyen P (| fi| >
M)) = 0 contains a subsequence f, , fi,, ... which, along with all its subsequences, satisfies the weak
law of large numbers lim s o ((l/N) 25:1 frn —DN) = 0 in probability. Here, Dy is a “corrector”
random variable with values in [N, N] for each N € Nj; these correctors are all equal to zero if, in
addition, liminf,—co E(f21()y, |<ar}) = 0 for every M € (0, 00).
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1. Introduction. On a probability space (£2, F, P), consider real-valued measur-
able functions f1, fs,... . If these are independent and have the same distribution with
E|f1| < o0, the celebrated Kolmogorov strong law of large numbers (SLLN [13], [12],
[7, section 2.4]) states that the “sample average” (f1 +---+ fn)/N converges P-a.e.
to the “ensemble average” E(f1) = [, fi dP as N — co.

A deep result of Komlds [14], already 56 years old but always very striking, asserts
that such “stabilization via averaging” occurs within any sequence fi, fo,... of mea-
surable real-valued functions which is bounded in L', i.e., satisfies sup, e E|f5| < 0.
More precisely, there exist then an integrable function f, and a subsequence { f, }nen
such that (fx, + -+ fry)/IN converges to f., P-a.e. as N — oo, and the same holds
“hereditarily,” i.e., for any further subsequence of {fx, }nen-

We have also another celebrated result of Kolmogorov, the weak law of large
numbers (WLLN [13], [5, section 5.2], [7, section 2.2.3]) for a sequence fi, fa,...
of real-valued measurable functions which are independent. If these have the same
distribution and satisfy the weak L!-type condition

(L.1) Tim (M -P(fi| > M) =0
(rather than the stronger E|f;]| < c0), then the WLLN

| XN
(1.2) ngnoo<N nz;l o — DN> =0 in probability

holds for the sequence of “correctors”

(1.3) Dy =E(filys<ny); N eN,
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502 I. KARATZAS AND W. SCHACHERMAYER

whereas, if the independent functions f1, f2,... do not have the same distribution but
satisfy
N | XN
(1.4) Jdim Y OP(Iful > N) =0, lim o Y B(fLgp ) =0,
n=1 n=1

then again the convergence in probability (WLLN) in (1.2) holds, though now with
correctors

N
1
(1.5) Dy = N;E(fnl{‘anN}), N e N.

It was shown in [9], [8], [5, Theorem 5.2.3] that, for independent f1, fa, ..., the condi-
tions in (1.4) are not only sufficient but also necessary for the existence of a sequence
D1, Do, ... of real numbers with property (1.2). Let us also note that the correctors
in both (1.3) and (1.5) satisfy |Dx| < N and that they are all equal to zero if the
distribution of each of the f1, f2,... is symmetric.

1.1. Preview. The purpose of this note is to present a version of the weak
law of large numbers which is valid for a sequence of arbitrarily dependent random
variables (r.v.’s), and “hereditarily,” i.e., along an appropriate subsequence of the
given sequence, as well as along all further subsequences of this subsequence.

The result is formulated in the next section as Theorem 2.1 and proved in sec-
tion 3. It can be construed as yet another manifestation of the “principle of subse-
quences.” Motivated by the work of Komlés [14], this principle was enunciated by
Chatterji [3] and was further clarified, buttressed, and extended by Aldous [1] and
Berkes and Péter [2]; we refer the reader also to the excellent survey [4].

The proof of Theorem 2.1, considerably simpler than its counterpart for the strong
law in [14], appears in section 3. It is based on truncation and weak convergence
arguments, which provide sufficient conditions for the resulting correctors to be equal
to zero. It does not seem possible to deduce Theorem 2.1 from the abovementioned
general subsequence principle, as formulated on the first page of [4] (see also the first
page of [2]): the result here is not cast in terms of a norm, as that principle requires.
And although it might turn out to be possible to deduce this, or a related, result from
the abstract considerations in Theorem 2 of [2], the directness, simplicity, and brevity
of the approach adopted here have quite a bit going for them.

Ramifications are taken up in section 4, as are examples, which show that Theo-
rem 2.1 cannot be subsumed by the abovementioned Komlés hereditary SLLN.

2. Result. We consider real-valued measurable functions fi, f2,... on a proba-
bility space (2, F,P) and introduce, for every M € (0, 00), the quantities

(2.1) (M) := M -P(|fn| > M), T(M) = Slellp\)ITn(M)

THEOREM 2.1 (a general, hereditary WLLN). In the above context, we impose
the weak L' -type condition

(2.2) lim 7(M)=0.

M—o00
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There exist then a sequence of corrector r.v.’s Dy, Da,... with P(|Dny| < N) =1
for every N € N, and a subsequence {fx, }nen of the original sequence such that
the WLLN

N
. 1 . .
(2.3) ngnoo<N ; fr, — DN) =0 in probability
is satisfied hereditarily, i.e., not just along {fi, tnen but also along all its subse-
quences.

As we shall see in the proof of Theorem 2.1, the correctors D1, Ds, ... correspond
to the generalized mathematical expectations in Kolmogorov [13, section 6.4]; they are
also related to the nonlinear expectations developed by Peng in [16]. The correctors
can be chosen as Dy = 0 for every N € N whenever, for each M € (0, 00), we have

(2.4) lim inf B(f317,<ary) =0

or, more generally, lim inf,, o E(fn 15, 1<y - §) = 0 for every £ € L2,

The hereditary aspect of the convergence in (2.3) holds automatically under inde-
pendence but requires attention in the present generality. The condition (2.2) can be
thought of as an “omnibus,” in that it implies both conditions in (1.4). As shown
in the examples of section 4, the condition (2.2) (or a suitable modification of it) is
satisfied in contexts with E|f,| = oo for every n € N, as well as in contexts where
E|f.] < oo holds for every n € N, but no subsequence exists which is bounded
in L' (and thus the Komlds [14] theorem cannot be applied). We note also that the
requirement

A/}lgloo(M : SEEP(\JH > M)) =0

of (2.2) implies limps o0 SUP,en P(|fn] > M) = 0 (boundedness in L, or tightness)
and is implied by lims 00 sUp,en E(| fnl - 1¢jf,|>a}) = 0 (uniform integrability).

3. Proof. We start with the simple but crucial idea of truncation. This goes
back at least to the work of Khintchine and Kolmogorov ([9], [10], [11]), where it
plays a major role in the proofs of laws of large numbers and of convergence results
for series of r.v.’s.

LEMMA 3.1. Under condition (2.2),

N N
1 1
(3.1) lim <N g fn— i g fn1{|fn<N}) =0 in probability.
n=1

N—oc0
n=1

Proof. For every € > 0, the expression

1 N N
P(‘Nanl{lfn>N}’ > €> < P(U{fn| > N})
n=1

n=1

M=

< P(|fn|>N)<N'1gqagNP(|fn|>N)

n=1

is dominated by N sup,cn P(|fn| > N) = 7(N), which tends to zero as N 1 co on
the strength of (2.2). The lemma is proved.
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It follows that, in order to establish (2.3), it is enough to prove

N
. 1 . e
(3.2) ngnoo (N X:I Tnlgpa<ny — DN> =0 in probability
n—
for a suitable sequence D1, Do, ... of correctors, and along an appropriate subsequence

of { fn}nen denoted by the same symbols for economy of exposition — as well as along
all further subsequences of this subsequence.

Proof of Theorem 2.1. For each integer N € N, consider the truncated functions
(3.3) NN = fog s <nys n € N,

that appear in (3.1), (3.2). These are bounded in L (since they take values in
[N, N]), and thus are bounded in L? as well. As a result we can extract, for each
N € N, a subsequence of {f,}nen denoted by the same symbol for economy of
exposition, such that the sequence in (3.3) converges weakly in L? to some Dy € L2,

(3.4) lim E(fITVN.¢)=E(Dy-€) VEel2

And by standard diagonalization arguments, we can extract then a further subse-
quence of {f,}nen, denoted again by the same symbol such that the convergence
in (3.4) is valid for every N € N. Clearly, the test function £ in (3.4) can be taken
o(f1, fa,...)-measurable.

It is fairly straightforward to check that these weak LZ2-limits in (3.4) satisfy
P(|Dn| < N) =1 for every N € N. On the other hand, the lower-semicontinuity of
the L2-norm under weak L2-convergence, in this case

o —N,N
”l)NHL2 glhnilogfnf’f[l ]HL27
establishes that P(Dy = 0) = 1 for every N € N, under (2.4); this also holds if
liminf, oo B(fnlqs, 1<y - §) = 0 for each M € (0,00) and every o(fi, fa,...)-mea-

surable ¢ € L2.
We introduce now, for each M € (0, 00), the quantities

Lo o
(3.5) on(M) = ME(fnl{Ifn\éM})v o(M) : slelgan(M)

As shown by Feller [8, p.235] (see also [7, section 2.3.3]), these quantities are related
to those in (2.1) via

2 (M 2 M
(3.6) 0<o,(M) = M/o Tn () dt — 7, (M) < M/o 7(t) dt
for every! n € N, M € (0, 0); thus

(3.7) 0< o(M)< % /OMT(t) dt, M e (0,00).

n the integrand of this expression as it appears on page 235 of [8], there is a typographical error;
this is here corrected. The identity in (3.6) is in fact a simple consequence of the Fubini theorem.
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From bound (3.7) and assumption (2.2), it follows that we also have

(3.8) lim o(M)=0.

M—o0

Furthermore, we note
(3.9) E(fIMM) = B(f21), 1<) = M - 0, (M) < M - o(M),
for all n € N, M € (0,00), and, therefore, on account of (3.8),

(3.10) E(D3,) < sup E(fT[l_M’M])2 <M-o(M)=0(M) as M — .
neN

We observe at this point that, in order to prove (3.2), and thus (2.3) as well, along
a suitable subsequence, it is enough to show convergence along such a subsequence
in L2, namely,

1 N 2
(3.11) lim — 'E<Z(f£N’N] DN)) —0.

N—oc0
n=1

And developing the square, we need to show that the expectations of both the sum
of squares and the double sum of cross-products, i.e.,

N
(3.12) SE(NN - Dy)”
n=1
and
N
(3.13) 23 N B[N - D) (FNN - Dy,
n=11<j<n

respectively, are of order o(N?) as N — oo, for the subsequence in question and for
all its subsequences. Now, from (3.9), (3.10), the upper bound

N N
S E(EYN - Dy)? <23 E(fIVY)? 2N - E(DY)

n=1 n=1

for the expression in (3.12) is already dominated by 4N? - o(N), which is of order
o(N?) as N — oo on account of (3.8).
It is instructive to recall what happens at this juncture, in the case of independent
f1, fa,...: the correctors Dy are then the real constants in (1.5), so the differences
" —Dy,n=1,...,N, are independent with zero mean, and thus uncorrelated.
The expectations of their cross-products in (3.13) vanish, and the argument ends here.
In the general case, when nothing is assumed about the finite-dimensional distri-
butions of the fi, fa,... (in particular, when these functions are not independent), we
need to guarantee, by passing to a further subsequence if necessary, that the expres-
sion in (3.13) is also of order o(N?) as N — oo. One way to accomplish this is to select

the terms fi, fa,... of the (relabeled) subsequence in such a way that the differences
[-N,N] _ _
" Dn,n=1,...,N, are nearly uncorrelated.
We do this by induction in the following manner: Suppose the terms f1,..., fn—1

of the subsequence have been chosen. We select the next term f,, in such a way
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that the difference f,[l_N’N] — Dy, with N < 6”2, is “almost orthogonal” to all of the
preceding differences
fl[_N7N] _DN7 DR f’r[L_—]¥7N] _DN7
namely, that
_ 2 1
(.19 BI(Y - D) (F N - D] < e <
holds for every j =1,...,n—1, N < e"’. Such a choice of fn is certainly possible on

account of (3.4) and completes the induction step.
Returning to (3.13), we note that the double summation

[VIn N |
—N,N _
2 3 >0 B = D) (A7 - D]
n=1 1<j<n

is then straightforward to control: each summand is bounded by N - o (V) on account
of (3.9), (3.10), so the entire summation is of the order

[VIn N |
No(N) > 2n~No(N)-InN = o(N?)
n=1

as N — co. On the other hand, the validity of (3.14) for j =1,...,n—1and N < e’
implies that the double summation

N
2 Y Y EATYM = D) (N - D)
n=1+|vIn N| 1<j<n
is of the order

N N

. 1
2 Z ne™™ ~ / 2re~™ dz = N e N’

n=1+|vVIn N| il

as N — oo, and thus certainly of order o(N?).

Thus, it follows that the expression of (3.13) is of order o(N?) as well, and the
argument is now complete. It is also straightforward to check that the argument
works just as well for an arbitrary subsequence, of the subsequence just constructed.
Theorem 2.1 is proved.

4. Ramifications and examples. Condition (2.2), which reads

lim (sup 7,(M)) =0,

M — o0 neN
can be weakened to
(4.1) lim <liminf Tn(M)) = 0.
M-—00o\ neN
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Indeed, by passing to a subsequence, this becomes

(4.2) lim <lim sup Tn(M)) —0,

M —o00 neN
and one checks relatively easily that (4.2) can replace (2.2) in the inductive construc-
tion of the subsequence (of) {fn}nen. We note also that the condition (4.2) can be
satisfied in situations where (2.2) fails.

Ezxample 4.1. To illustrate this last point, take g € L° with
(4.3) limsup (M - P(|g| > M)) >0,

M—o0
and thus El|g| = oo, e.g., with Cauchy distribution P(g € A) = [, (7(1 4 2?))" ! dx,
and define the functions

(4.4) fn =gq- 1{|g|>n}7 n € N,

also with E|f,| = oco. We have then 7,(M) = M - P(lg| > M Vv n), 7(M) =
M -P(lg| > M), so (4.3) means that (2.2) fails. However, for every M € (0,00),
we have lim, o0 7, (M) = M - lim,,—,o P(|g| > n) =0, so (4.2) is satisfied.

Thus, the WLLN (2.3) follows for a suitable sequence of correctors Dy, Da,. .. .
It is also checked that the condition (2.4) is satisfied here, so all these correctors can
actually be chosen equal to zero.

Ezxample 4.2. To provide another illustration of Theorem 2.1 which highlights the
role of condition (2.2) in a somewhat more substantial manner, let us revisit an old
example from [11] (see also section 5.2 of [5]). Suppose that the functions fi, fa, ...
satisfy

c
(4.5) P(f,==xk) = T k=2,3,...,
with constant 2¢ = (Zk>2 k=2(1/In k))f and thus E|f,| = oo, for every n € N.
We assume nothing about the finite-dimensional joint distributions of the f1, fa,...;
in particular, we do not require these functions to be independent.

In this setting,

M)=2eM Y X
(M) =2 KInk  InM
E>M

holds for integers M > 2 in the notation of (2.1). Thus,

2c
T(M) =sup 7,(M) < ——,
( ) nellzl n( ) ~ lnM
the condition (2.2) is satisfied, and there exists a sequence Dy, D, ... of correctors

such that (2.3) holds for a subsequence fx,, fk,,-.. of fi1, fa,... and for all further
subsequences.

These correctors are all equal to zero, and limy_,(1/N) 25:1 fn = 0 holds in
probability for the original sequence, when the fi, f2,... are also independent; cf. the
example in section 5.2 of [5].

Remark 4.1. Theorem 2.1 has a direct extension, with only very obvious nota-
tional changes, to the case where fi, fa,... take values in some Euclidean space R?,
rather than the real line.

In such an extension, it does not matter whether balls or cubes of R? are consid-
ered in the truncation scheme (3.3).
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4.1. Equivalent change of measure; weak, but not strong, hereditary
LLN. In both Examples 4.1 and 4.2, we have E|f,,| = oo for every n € N. Let us
consider now situations where E|f,| < oo holds for every n € N.

In the present context, this situation is actually the most important case for the
following reason: It has been observed by Dellacherie-Meyer (cf. [6, VII:57]) that,
given measurable functions hy, ha, ... on a probability space (2, F,P) with values in
[0,0), an equivalent probability measure Q ~ P can be constructed on F with P-a.e.
bounded density dQ/dP and EQ(h,,) < oo for all n € N. In light of this result, and of
the fact that convergence in probability depends only on the equivalence class of the
underlying probability measure P, it follows that whenever there exists a subsequence
Jrrs fras - of f1, fo, ... withsup, cn E|fk, | < 0o (we drop reference to the equivalent
probability measure Q ~ P from now on), the Komlds hereditary SLLN in [14] can
be applied to this fx,, fx,,... and to all its subsequences.

The interesting question, then, is whether the requirement E|f,| < oo for every
n € N can coexist with both (2.2) and
(4.6) liminf E|f,| = sup inf E|f,|= oo,

n—00 n>N
thus precluding the applicability of the Komlés hereditary SLLN in [14] but allowing
that of the hereditary WLLN in Theorem 2.1.

This question is answered affirmatively by the example that follows. We are
greatly indebted to Andrew Lyasoff [15] for raising it, and for prompting us to con-
struct such an example.

Ezxample 4.3. Let us modify slightly the setting of Example 4.2, by considering
functions fi, fa,... that satisfy
(4.7) P(fn = +£k) =

Cn

m k:2,3,..‘,

with constant 2¢, = (3,5, k=™ (1/1In k)) for every n € N; once again,
nothing is assumed about the finite-dimensional joint distributions of these functions.
Clearly,

1
E|fn *QCan < 0, E(fn):O VHEN,

hold, as does

-1
1 1 )
D T <Z ;2 mk) < Jnf Blfal < o0,
E>2 k>2

for every N € N. The leftmost side in this inequality increases to infinity as N 1 oo,
so (4.6) is satisfied. On the other hand, it is checked readily that the quantity of (2.1)
is here

1 1 !
(M) = M- P(|fu] > M) = Mk;M K2+ (/™) In k (,;2 2+ (1) m) ’

and that (2.2) is satisfied as well: for some real constant C' > 0, we have

C

-1
1
= < .
T(M) SEETH(M)\IHM(k>2k3lnk> -0 as M — o0
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According to Theorem 2.1, there exists a sequence D1, Ds, ... of correctors, with the
property that (2.3) holds for some subsequence fi,, fiy,-.. of fi, fo,... and for all
its subsequences.

We note that in (4.7), and throughout this example, 1/n in the exponent of the
denominator can be replaced by any a,, € (0,1) which decreases to zero as n — oco.
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