

A 7 nW, 1 kHz, -40 – 170 °C Relaxation Oscillator with Switch-Leakage Compensation for Low-Power High-Temperature IoT Systems

Ashfakh Huluvallay^{1*}, Abhishek Pullela^{1*}, Ehab A. Hamed^{2*}, Arpan Jain¹, Naveen Dasari¹, Zia Abbas¹, and Inhee Lee²
International Institute of Information Technology, Hyderabad (IIIT-H), Hyderabad, India¹, University of Pittsburgh, Pittsburgh, PA, USA²
*These authors contributed equally.
zia.abbas@iiit.ac.in & inhee.lee@pitt.edu

Abstract—This paper proposes a low-power relaxation oscillator for low-power high-temperature IoT systems. It generates a 959 Hz clock signal from -40 to 170 °C, consuming 6.75 nW at 0.65 V. A proposed switch-leakage compensation scheme nullifies the effects of body diode and subthreshold leakages on oscillator output frequency at high temperatures, thereby obtaining a wide operating temperature range. The oscillator implemented in a 180 nm CMOS process achieves a temperature coefficient of 40 ppm/°C from -40 to 170 °C at 0.65 V and a line sensitivity of 0.5 %/V from 0.65 to 2.4 V at room temperature, in simulation. Compared with state-of-the-art sub- μ W oscillators, this circuit obtains the highest operating temperature and the maximum temperature range.

Keywords—low-power, oscillator, high temperature, leakage.

I. INTRODUCTION

The market size of the Internet-of-Things (IoT) has rapidly grown, where a wireless sensor node plays a critical role. A form factor of the sensor node has been reduced down to a millimeter scale for space-limited applications (e.g., $2.2 \times 1.1 \times 0.4$ mm³ [1]), including high-temperature applications such as down-hole monitoring (e.g. 152 °C [2]). The small size restricts energy storage capacity (e.g., 1 μ Ah [3]), and it becomes a more critical issue at high temperatures since leakage current exponentially increases with temperature. For a high-temperature application, [4] proposes a deep-sleep mode to aggressively reduce system power consumption down to 190 nW at 125 °C by turning off all the circuits except for a wake-up timer and a battery switch controller. However, it suffers from significant variation in a wakeup period due to the high sensitivity of oscillator output frequency (f_{osc}) on temperature although f_{osc} is stable against a varying battery voltage. Therefore, it is necessary to develop a low-power wake-up timer that generates stable f_{osc} for a wide range of temperatures and supply voltages. Here, we target to consume power less than 10 nW at room temperature so that the deep-sleep mode dissipates less power than a typical sleep mode of a target miniature system (40 nW [4]). Also, the power consumption should be minimized even at high temperatures since the timer is the only turned-on component with the battery switch controller in deep-sleep mode.

A typical wake-up timer is designed by a quartz crystal oscillator ([5]–[7]), a MEMS oscillator ([8]–[10]), or a CMOS harmonic oscillator ([11]) since they have good frequency stability against process, supply voltage, and temperature (PVT) variations (e.g. 0.49 ppm/°C [5], 0.39 ppm/°C [10], 90 ppm over PVT variations [11]). However, they require bulky off-chip

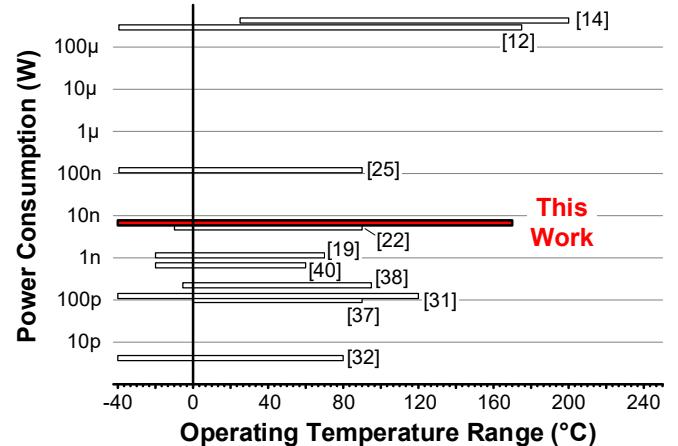


Fig. 1. Operating temperature range versus power consumption for the state-of-the-art oscillators.

components (e.g., $1.6 \times 1.0 \times 0.5$ mm³ for a crystal operating up to 125 °C, ABS05W, Abraccon) or consume significantly higher power (e.g., 13 mW [8]) than an entire system standby power budget (e.g., 40 nW [4]). Alternatively, a relaxation oscillator does not require any bulky components and offers stable f_{osc} for a wide range of temperatures and supply voltage changes (e.g., -40 – 175 °C & 1.8 – 3.6 V [12]). However, previous relaxation oscillators working at high temperatures ([12]–[14]) or a wide range of operating temperatures ([15]–[18]) consume power in a micro-watt level at room temperature (180 μ W [12], 13 μ W [17]), which prohibits their usage in a millimeter-scale system. Low-power relaxation oscillators consume power in a nano-watt level ([19]–[30]) or even pico-watt level ([31],[32]), but the maximum operating temperature is less than 125 °C.

This paper proposes a relaxation oscillator as a wake-up timer operating at a wide range of temperatures (-40 to 170 °C), consuming 6.75 nW at room temperature and 0.65 V. In simulation, it achieves a temperature coefficient (TC) of 40 ppm/°C from -40 to 170 °C at 0.65 V by employing switch-leakage compensation. Also, it obtains a line sensitivity (LS) of 0.5 %/V from 0.65 to 2.4 V at room temperature by generating reference voltage and current with a constant ratio across temperatures. Fig. 1 shows the operating temperature range of the state-of-the-art oscillators versus power consumption. The proposed design achieves the highest operating temperature and the maximum temperature range in sub- μ W oscillators.

This work was supported in part by NSF 2043017 and the University of Pittsburgh Center for Research Computing through the resources provided.

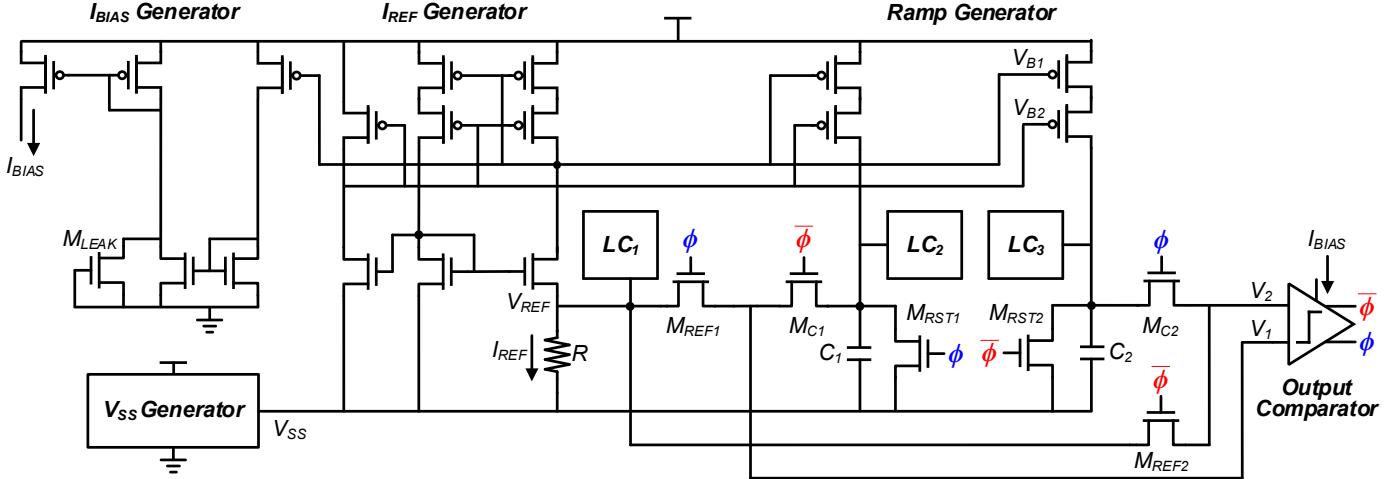


Fig. 2. Proposed oscillator design.

II. OSCILLATOR DESIGN

Fig. 2 shows the proposed oscillator design, consisting of an I_{BIAS} generator, an I_{REF} generator, ramp generators, a V_{SS} generator, and an output comparator. When an output clock signal (ϕ) is low (the first clock phase), a reset switch (M_{RST1}) is turned off, and the mirrored I_{REF} of 1 nA charges a charge integration capacitor (C_1) while another switch (M_{RST2}) discharges another capacitor (C_2). Here, C_1 and C_2 have the same capacitance of 1 pF. A reference voltage (V_{REF}) and the voltage across C_1 (V_{C1}) are connected to the comparator through two comparator input selection switches (M_{REF2} and M_{C1}), respectively. As V_{C1} linearly increases from 0 V to V_{REF} , the comparator detects when V_{C1} crosses V_{REF} and flips the polarity of ϕ and thus the connectivity of all the switches (M_{RST1} , M_{RST2} , M_{C1} , M_{C2} , M_{REF1} , and M_{REF2}). For high ϕ (the second clock phase), M_{RST1} discharges C_1 immediately, and the mirrored I_{REF} of 1 nA charges C_2 slowly. V_{REF} and voltage across C_2 (V_{C2}) are connected to the comparator through M_{REF1} and M_{C2} , respectively. As V_{C2} reaches V_{REF} , the comparator changes ϕ and all the switch connectivity again. Exchanging connections of comparator inputs between V_{REF} and V_{C1}/V_{C2} cancels the comparator offset in one clock cycle [25].

The period of ϕ (T_{OSC}) can be expressed as ' $2C(V_{REF}/I_{REF}) + 2t_{COMP}$ ' where t_{COMP} is the comparator delay. Note that T_{OSC} is independent of the supply voltage (V_{DD}) since V_{REF} and I_{REF} are generated from the same resistance (R) of the I_{REF} generator, and their ratio is constant across temperatures by Ohm's law, assuming a negligible TC of R . The designed circuit uses a composite resistor of 50 M Ω with two different types of resistors with the opposite TC. The combined TC of R is minimized by controlling the amount of each resistance using trimming switches. The proposed design is similar to [25] by utilizing the differential capacitor structure, comparator input switching, and constant V_{REF}/I_{REF} ratio. However, the proposed design extends its operating temperature using a switch-leakage compensation scheme, which will be discussed in the following section.

III. SWITCH-LEAKAGE CANCELLATION SCHEME

The proposed design maintains its TC less than 100 ppm/ $^{\circ}$ C up to 120 $^{\circ}$ C without the proposed switch-leakage compensation. However, the maximum operating temperature

must be extended further (e.g., 170 $^{\circ}$ C) to cover high-temperature applications while maintaining the TC performance. TC degradation beyond 120 $^{\circ}$ C mainly comes from the increased leakage current of the switches. For example, the average leakage current of a reset switch (M_{RST1} or M_{RST2}) can increase from 0.13 pA at 27 $^{\circ}$ C to 60.2 pA at 170 $^{\circ}$ C (463 \times change), reducing f_{osc} by 5.8%, at FF corner. The switch leakage has two main components such as drain-to-body/source-to-body diode reverse-biased leakage and drain-to-source subthreshold leakage [33]. The leakage can be suppressed by equalizing drain, body, and source voltages using an amplifier [34], but it requires amplifiers with a very low offset voltage (V_{OFF}). The small V_{OFF} requirement significantly increases design complexity since even V_{OFF} of 10 mV induces 26 pA at 170 $^{\circ}$ C, degrading TC to 620 ppm/ $^{\circ}$ C. Therefore, we propose a new switch-leakage compensation scheme with three sub-techniques. It suppresses the leakage of a switch less than 400 fA in the worst case (FF corner & 170 $^{\circ}$ C), achieving TC of 40 ppm/ $^{\circ}$ C from -40 to 170 $^{\circ}$ C at 0.65 V.

A. Body diode leakage compensation

The drain-to-body diode leakage current (I_{DB}) and the source-to-body diode leakage current (I_{SB}) disturb charging C_1 or C_2 and also contaminate the constant ratio between V_{REF} and I_{REF} . The current can be expressed as $I_S\{1 - \exp(-V_{DB}/V_T)\}$ and $I_S\{1 - \exp(-V_{SB}/V_T)\}$, respectively, where I_S is the diode saturation current, and V_T is the thermal voltage [33]. The leakage current becomes less sensitive to V_{DB} (or V_{SB}) with larger voltages. For example, V_{DB} larger than 4V $_T$ makes the term of $\exp(-V_{DB}/V_T)$ smaller than 0.018. At $V_{DB} = 4V_T$, V_{DB} changes I_{DB} only by 4%. We use this characteristic to compensate for the body diode leakage current by injecting a similar amount of leakage current.

Fig. 3 shows how the proposed design compensates for the body diode leakages. In the first clock phase (low ϕ), the mirrored I_{REF} charges C_1 , but $I_{DB,RST1}$, $I_{DB,C1}$, $I_{SB,C1}$, and $I_{SB,REF1}$ discharge the capacitor. Here, $I_{DB,X}$ and $I_{SB,X}$ are the drain-to-body and source-to-body diode leakage currents of a switch M_X , respectively. Also, $I_{DB,REF1}$, $I_{SB,REF2}$, $I_{DB,REF2}$, and $I_{DB,C2}$ make I_{REF} effectively smaller, resulting in less constant V_{REF}/I_{REF} . In the next clock phase (high ϕ), the mirrored I_{REF} charges C_2 while $I_{DB,RST2}$, $I_{DB,C2}$, $I_{SB,C2}$, and $I_{SB,REF2}$ discharge the capacitor.

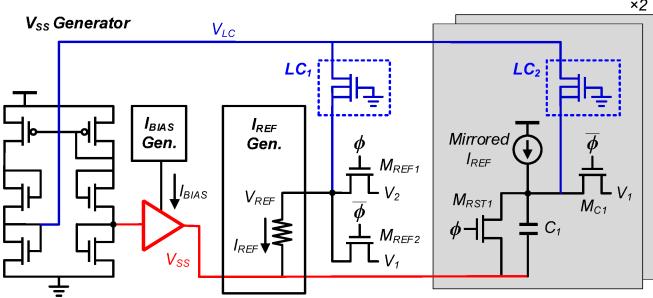


Fig. 3. Proposed body diode leakage compensation and subthreshold leakage suppression techniques.

$I_{DB,REF2}$, $I_{SB,REF1}$, $I_{DB,REF1}$, and $I_{DB,C1}$ make I_{REF} effectively smaller and thus V_{REF}/I_{REF} less constant. The proposed circuit adds body diode leakage compensation transistors at V_{REF} (LC_1), V_{C1} (LC_2), and V_{C2} (LC_3) to cancel the leakage current degrading TC performance. The gates of LC_1 – LC_3 are connected to ground not to inject subthreshold leakage current, and their bodies are connected to their source using Deep Nwell to set $I_{SB,LCX}$ to 0 and only keep $I_{DB,LCX}$. By connecting their drain voltages to V_{LC} of ~ 250 mV from the V_{SS} generator, LC_1 – LC_3 occupy V_{DS} larger than $4V_T$ and inject similar amounts of body leakage currents to V_{REF} , V_{C1} , and V_{C2} .

B. Subthreshold leakage suppression

The other leakage degrading TC performance is drain-to-source subthreshold leakage current. It disturbs charging C_1 or C_2 by discharging them through M_{RST1} or M_{RST2} , similarly to the body leakage. The subthreshold leakage also degrades TC by weakly connecting V_{C1} or V_{C2} to V_{REF} through M_{REF1} & M_{C1} or M_{REF2} & M_{C2} , affecting the charging operation. The leakage current of an NMOS transistor can be expressed using a current equation in a subthreshold region as [35]:

$$I_{DS} = \mu C_{Ox} \frac{W}{L} (m-1) V_T^2 \exp\left(\frac{V_{GS} - V_{th}}{mV_T}\right) \times \left(1 - \exp\left(\frac{-V_{DS}}{V_T}\right)\right) \quad (1)$$

where m is the sub-threshold slope factor, V_{th} is the threshold voltage, and W/L is the aspect ratio of the transistor. A similar term of ' $1 - \exp(-V_{DS}/V_T)$ ' appears in the body diode leakage current, but the same compensation technique cannot be applied since V_{DSS} are usually smaller than $4V_T$ in the operation. Instead, we propose to suppress the subthreshold current using super cut-off by raising a part of the original negative power supply node (V_{SS}) and assigning negative V_{GS} to all the switches, as shown in Fig. 3. The reset switch transistors (M_{RST1} & M_{RST2}) have the minimum source voltages since it is originally connected to ground. The other switches (M_{C1} , M_{C2} , M_{REF1} , and M_{REF2}) have larger source voltages of V_{REF} , V_{C1} , and V_{C2} . The proposed subthreshold leakage suppression scheme lifts V_{SS} by ~ 60 mV and thus increases the source voltages by the same amount, resulting in super cut-off. The raised V_{SS} reduces the subthreshold leakage current from 60 pA to 11 pA at FF corner. The V_{SS} generator provides V_{SS} with a TC of 4500 ppm/ $^{\circ}$ C [36], which compensates for temperature dependency of V_{th} . Also, it generates V_{LC} higher than V_{SS} at least $4V_T$ for LC_1 – LC_3 by injecting amplified mirrored current to a replica of the diode-connected transistors.

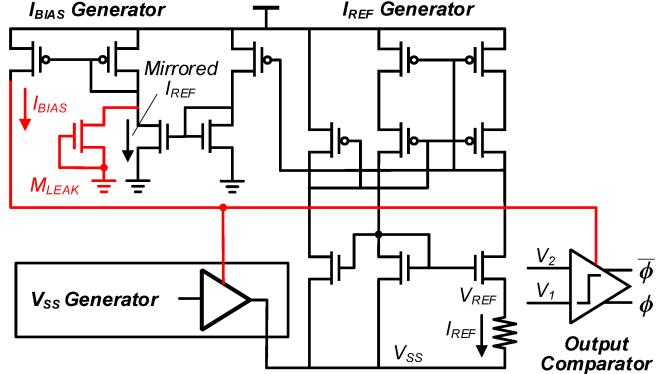


Fig. 4. Adaptive bias current.

The lifted V_{SS} increases the minimum supply voltage ($V_{DD,MIN}$) from 0.6 V to 0.65 V, resulting in only 8% higher power consumption. At $V_{DD} < 1$ V, a boot-strapped technique is applied to all the switches to locally boost the gate voltage to $2V_{DD}$. For $V_{DD} \geq 1$ V, a supply voltage detector disables the boot-strapped gate voltage, and the switches use V_{DD} for their gate voltage. For simplicity, the boot-strapped and V_{DD} detecting circuits are omitted in this paper.

C. Adaptive Bias Current

As shown in Fig. 4, the I_{BIAS} generator creates I_{BIAS} by adding leakage current of M_{LEAK} with V_{GS} of 0 V to a mirrored I_{REF} . I_{BIAS} sets the operating current of the analog buffer of the V_{SS} generator and the comparator. The adaptively added leakage current compensates for increased drain-to-body leakage and subthreshold leakage currents and enables the circuits to operate at targeted performance. For instance, the adaptive I_{BIAS} suppresses the voltage error of the analog buffer from 46.2% to 0.35% at 170 $^{\circ}$ C and reduces comparator delay variation across temperatures from 726% to 1% of T_{osc} .

IV. EXPERIMENT RESULTS

The proposed oscillator is implemented in a 180 nm CMOS process with an area of 0.4 mm², as shown in Fig. 5(a). It consumes 6.75 nW at 0.65 V in simulation, and Fig. 5(b) shows the simulated power breakdown. Fig. 6 shows the simulated fosc from -40 to 170 $^{\circ}$ C at three different corners (TT, FF, and SS) and two different supply voltages (0.65 and 1.2 V) after trimming. It achieves TC of 40, 45, and 75 ppm/ $^{\circ}$ C at the minimum supply voltage of 0.65 V and TC of 30, 59, and 69 ppm/ $^{\circ}$ C at 1.2 V as a nominal supply voltage, at TT, FF, and SS, respectively. Fig. 7 shows the simulated fosc from 0.65 to 2.4 V at room temperature, obtaining LS of 0.5 %/V.

Table I summarizes the performance of the proposed oscillator and compares it with state-of-the-art oscillators. For overall performance comparison, we define a Figure-of-Merit (FoM) as:

$$FoM(dB) = 10 \log \left(\frac{f_{osc} \cdot L_{Min} \cdot TR}{P \cdot TC \cdot A \cdot LS} \right) \quad (2)$$

including the oscillation frequency (f_{osc} in Hz), the minimum length of a technology node (L_{min} in nm), the temperature range (TR in $^{\circ}$ C), the power consumption (P in μ W), the temperature coefficient (TC in ppm / $^{\circ}$ C), the area occupied (A in mm²), and

TABLE I. COMPARISON WITH STATE-OF-THE-ART OSCILLATORS.

Specifications	This Work [*]	[12]	[14]	[19]	[22]	[25]	[31]	[32]	[37]	[38]	[40]
Oscillator Type	Relaxation	Relaxation	Relaxation	Relaxation	Relaxation	Relaxation	Relaxation	Relaxation	Program & Hold	Gate-leakage	Gate leakage
Technology (nm)	180	40	130	180	180	65	65	180	130	130	130
f_{osc} (Hz)	959	140 M	1 M	1.22 k	11	18.5 k	12.8	18	11	90	0.37
Temperature (°C)	-40 - 170	-40 - 175	25 - 200	-20 - 70	-10 - 90	-40 - 90	-40 - 120	-40 - 80	0 - 90	-5 - 95	-20 - 60
TC (ppm/°C)	40	28	108	94	45	19	1000	21000	50000	260	31
Supply Range (V)	0.65 - 2.4	1.1 - 1.4	2 - 3	0.4 - 0.65	1.2 - 2.2	1 - 3.3	0.6 - 1.1	0.6 - 1.8	0.55 - 0.65	1.1 - 3.3	0.65 - 0.75
Power (W)	6.75 n	294 μ	428 μ	1.14 n	5.8 n	120 n	124 p	4.2 p	100 p	224 p	660 p
LS (%/V)	0.5	8	2.18	4.3	1	1	1.6	240	6	0.93	420
Area (mm ²)	0.4	0.009	0.007	0.2	0.24	0.032	0.009	0.18	0.019	0.057	0.01
FoM (dB)	88	93	75	83	65	93	79	50	54	86	47

^{*}Simulation result.

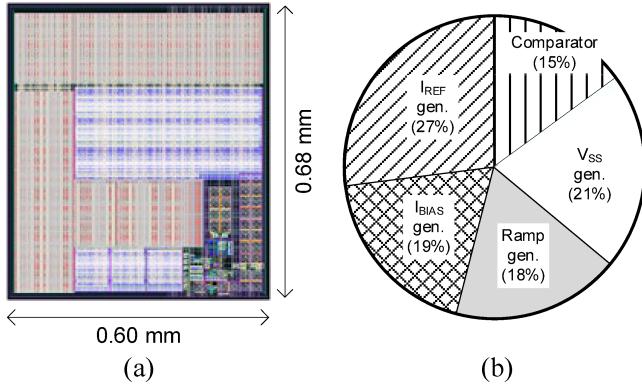


Fig. 5. (a) Layout. (b) Power breakdown.

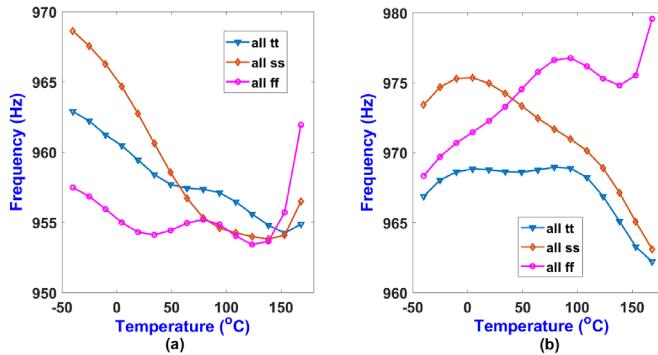


Fig. 6. f_{osc} across temperatures. (a) At 0.65 V. (b) At 1.2 V.

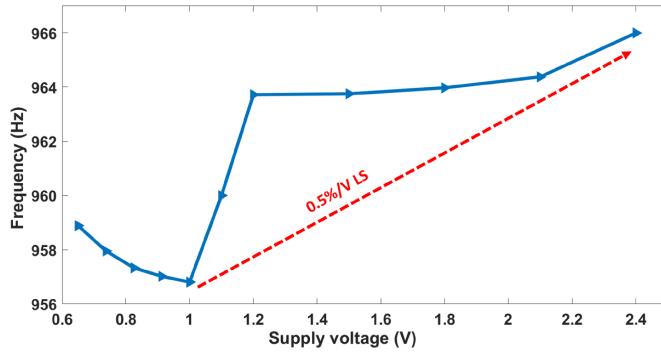


Fig. 7. f_{osc} across supply voltages.

line sensitivity (LS in %/V). The proposed oscillator achieves the highest operating temperature, the maximum temperature range, and the best FoM, except for [12], [14], and [25]. Compared with this work, [12] and [14] consume $\geq 43,556\times$ higher power, and [25] operates only up to 90 °C and requires 18 \times higher power consumption.

V. CONCLUSION

This paper proposes a low-power relaxation oscillator that satisfies the requirements of low-power high-temperature systems that operates up to 170 °C without using any discrete components while consuming power less than 10 nW at room temperature. The circuit provides a 959 Hz clock signal from -40 to 170 °C by compensating for both sub-threshold and bulk diode leakages. It achieves a TC of 40 ppm/°C and a LS of 0.5 %/V, consuming 6.75 nW at 0.65 V. The proposed design achieves the highest operating temperature and the maximum temperature range in sub- μ W oscillators.

REFERENCES

- [1] Y. Lee, S. Bang, I. Lee, Y. Kim, G. Kim, M. H. Ghaed, P. Pannuto, P. Dutta, D. Sylvester, and D. Blaauw, "A Modular 1 mm³ Die-Stacked Sensing Platform With Low Power I²C Inter-Die Communication and Multi-Modal Energy Harvesting," *IEEE Journal of Solid-State Circuits*, vol. 48, no. 1, pp. 229-243, 2013.
- [2] Z. Shi, Y. Chen, M. Yu, S. Zhou, and N. Al-Khanferi, "Development and Field Evaluation of a Distributed Microchip Downhole Measurement System," in *SPE Digital Energy Conference and Exhibition*, The Woodlands, Texas, 2015.
- [3] M. H. Ghaed, G. Chen, R.-u. Haque, M. Wieckowski, Y. Kim, G. Kim, Y. Lee, I. Lee, D. Fick, D. Kim, M. Seok, K. D. Wise, D. Blaauw and D. Sylvester, "Circuits for a Cubic-Millimeter Energy-Autonomous Wireless Intraocular Pressure Monitor," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 60, no. 12, pp. 3152-3162, 2013.
- [4] Q. Dong, Y. Kim, I. Lee, M. Choi, Z. Li, J. Wang, K. Yang, Y.-P. Chen, J. Dong, M. Cho, G. Kim, W.-K. Chang, Y.-S. Chen, Y.-D. Chih, D. Blaauw and D. Sylvester, "A 1Mb embedded NOR flash memory with 39 μ W program power for mm-scale high-temperature sensor nodes," in *IEEE International Solid-State Circuits Conference (ISSCC)*, San Francisco, 2017.
- [5] K.-J. Hsiao, "A 1.89nW/0.15V self-charged XO for real-time clock generation," in *IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)*, San Francisco, 2014.

[6] D. Yoon, T. Jang, D. Sylvester, and D. Blaauw, "A 5.58 nW Crystal Oscillator Using Pulsed Driver for Real-Time Clocks," *IEEE Journal of Solid-State Circuits*, vol. 51, no. 2, pp. 509-522, 2016.

[7] D. Lanfranchi, E. Dijkstra, and D. Aebischer, "A microprocessor-based analog wristwatch chip with 3 seconds/year accuracy," in *IEEE International Solid-State Circuits Conference (ISSCC)*, San Francisco, 1994.

[8] M. H. Perrott, J. C. Salvia, F. S. Lee, A. Partridge, S. Mukherjee, C. Arft, J. Kim, N. Arumugam, P. Gupta, S. Tabatabaei, S. Pamarti, H. Lee and F. Assaderaghi, "A Temperature-to-Digital Converter for a MEMS-Based Programmable Oscillator With $\leq 0.5\text{-ppm}$ Frequency Stability and $<1\text{-ps}$ Integrated Jitter," *IEEE Journal of Solid-State Circuits*, vol. 48, no. 1, pp. 276-291, 2013.

[9] S. Z. Asl, S. Mukherjee, W. Chen, K. Joo, R. Palwai, N. Arumugam, P. Galle, M. Phadke, C. Grosjean, J. Salvia, H. Lee, S. Pamarti, T. Fiez, K. Makinwa, A. Partridge and V. Menon, "A $1.55 \times 0.85\text{mm}^2$ 3ppm $1.0\mu\text{A}$ 32.768kHz MEMS-based oscillator," in *IEEE International Solid-State Circuits Conference (ISSCC)*, San Francisco, 2014.

[10] K. Sundaresan, G. K. Ho, S. Pourkamali and F. Ayazi, "Electronically Temperature Compensated Silicon Bulk Acoustic Resonator Reference Oscillators," *IEEE Journal of Solid-State Circuits*, vol. 42, no. 6, pp. 1425-1434, 2007.

[11] M. S. McCorquodale, S. M. Pernia, J. D. O'Day, G. Carichner, E. Marsman, N. Nguyen, S. Kubba, S. Nguyen, J. Kuhn, and R. B. Brown, "A 0.5-to-480MHz Self-Referenced CMOS Clock Generator with 90ppm Total Frequency Error and Spread-Spectrum Capability," in *IEEE International Solid-State Circuits Conference (ISSCC)*, San Francisco, 2008.

[12] S. Wang, C. Ghezzi, C. Camp and A. Laville, "A 24MHz Relaxation Oscillator Using Single Current Mode Comparator with $\pm 1.67\%$ Drift from -40°C to $+175^\circ\text{C}$ for Automotive Sensor Application," in *IEEE SENSORS*, Rotterdam, 2020.

[13] D. Cherniak, R. Nonis and F. Padovan, "A precision 140MHz relaxation oscillator in 40nm CMOS with 28ppm/ $^\circ\text{C}$ frequency stability for automotive SoC applications," in *IEEE Radio Frequency Integrated Circuits Symposium (RFIC)*, Honolulu, 2017.

[14] N. Sadeghi, "A 0.007-mm^2 108-ppm/ $^\circ\text{C}$ 1-MHz Relaxation Oscillator for High-Temperature Applications up to 180°C in $0.13\text{-}\mu\text{m}$ CMOS," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 60, no. 7, pp. 1692-1701, 2013.

[15] Y. Tokunaga and S. Sakiyama, "An On-Chip CMOS Relaxation Oscillator With Voltage Averaging Feedback," *IEEE Journal of Solid-State Circuits*, vol. 45, no. 6, pp. 1150-1158, 2010.

[16] J. Wang and W. L. Goh, "A 13.5-MHz relaxation oscillator with $\pm 0.5\%$ temperature stability for RFID application," in *IEEE International Symposium on Circuits and Systems (ISCAS)*, Montreal, 2016.

[17] J. Wang, W. L. Goh, X. Liu, and J. Zhou, "A 12.77-MHz 31 ppm/ $^\circ\text{C}$ On-Chip RC Relaxation Oscillator With Digital Compensation Technique," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 63, no. 11, pp. 1816-1824, 2016.

[18] J. Wang, L. H. Koh and W. L. Goh, "A 13.8-MHz RC oscillator with self-calibration for $\pm 0.4\%$ temperature stability from -55 to 125°C ," in *International Conference on Electron Devices and Solid-State Circuits (EDSSC)*, Singapore, 2015.

[19] H. Jiang, P.-H. P. Wang, P. P. Mercier, and D. A. Hall, "A 0.4-V 0.93-nW/kHz Relaxation Oscillator Exploiting Comparator Temperature-Dependent Delay to Achieve 94-ppm/ $^\circ\text{C}$ Stability," *IEEE Journal of Solid-State Circuits*, vol. 53, no. 10, pp. 3004-3011, 2018.

[20] A. Savanth, J. Myers, A. Weddell, D. Flynn and B. Al-Hashimi, "A 0.68nW/kHz supply-independent Relaxation Oscillator with $\pm 0.49\text{/V}$ and 96ppm/ $^\circ\text{C}$ stability," in *IEEE International Solid-State Circuits Conference (ISSCC)*, San Francisco, 2017.

[21] P. M.-Y. Fan, A. Savanth, B. Labb  , P. Prabhat and J. Myers, "A 0.98-nW/kHz 33-kHz Fully Integrated Subthreshold-Region Operation RC Oscillator With Forward-Body-Biasing," *IEEE Solid-State Circuits Letters*, vol. 2, no. 9, pp. 175-178, 2019.

[22] S. Jeong, "A 5.8 nW CMOS Wake-Up Timer for Ultra-Low-Power Wireless Applications," *IEEE Journal of Solid-State Circuits*, vol. 50, no. 8, pp. 1754-1763, 2015.

[23] S. Dai and J. K. Rosenstein, "A 14.4nW 122KHz dual-phase current-mode relaxation oscillator for near-zero-power sensors," in *IEEE Custom Integrated Circuits Conference (CICC)*, San Jose, 2015.

[24] M. Choi, T. Jang, S. Bang, Y. Shi, D. Blaauw and D. Sylvester, "A 110 nW Resistive Frequency Locked On-Chip Oscillator with 34.3 ppm/ $^\circ\text{C}$ Temperature Stability for System-on-Chip Designs," *IEEE Journal of Solid-State Circuits*, vol. 51, no. 9, pp. 2106-2118, 2016.

[25] A. Paidimarri, D. Griffith, A. Wang, A. P. Chandrakasan and G. Burra, "A 120nW 18.5kHz RC oscillator with comparator offset cancellation for $\pm 0.25\%$ temperature stability," in *IEEE International Solid-State Circuits Conference (ISSCC)*, San Francisco, 2013.

[26] D. Griffith and P. T. R  ine, "A 190nW 33kHz RC oscillator with $\pm 0.21\%$ temperature stability and 4ppm long-term stability," in *IEEE International Solid-State Circuits Conference (ISSCC)*, San Francisco, 2014.

[27] T. Tokairin, K. Nose, K. Takeda, K. Noguchi, T. Maeda, K. Kawai, and M. Mizuno, "A 280nW, 100kHz, 1-cycle start-up time, on-chip CMOS relaxation oscillator employing a feedforward period control scheme," in *Symposium on VLSI Circuits (VLSIC)*, Honolulu, 2012.

[28] Y.-H. Chiang and S.-I. Liu, "A Submicrowatt 1.1-MHz CMOS Relaxation Oscillator With Temperature Compensation," *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 60, no. 12, pp. 837-841, 2013.

[29] A. Savanth, A. S. Weddell, J. Myers, D. Flynn, and B. M. Al-Hashimi, "A Sub-nW/kHz Relaxation Oscillator With Ratioed Reference and Sub-Clock Power Gated Comparator," *IEEE Journal of Solid-State Circuits*, vol. 54, no. 11, pp. 3097-3106, 2019.

[30] U. Denier, "Analysis and Design of an Ultralow-Power CMOS Relaxation Oscillator," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 57, no. 8, pp. 1973-1982, 2010.

[31] H. Wang and P. P. Mercier, "A 1.6/V 124.2 pW 9.3 Hz relaxation oscillator featuring a 49.7 pW voltage and current reference generator," in *IEEE European Solid-State Circuits Conference*, Leuven, 2017.

[32] P. M. Nadeau, A. Paidimarri and A. P. Chandrakasan, "Ultra Low-Energy Relaxation Oscillator With 230 fJ/cycle Efficiency," *IEEE Journal of Solid-State Circuits*, vol. 51, no. 4, pp. 789-799, 2016.

[33] M. O'Halloran and R. Sarapeshkar, "A 10-nW 12-bit accurate analog storage cell with 10-aA leakage," *IEEE Journal of Solid-State Circuits*, vol. 39, no. 11, pp. 1985-1996, 2004.

[34] Y.-P. Chen, M. Fojtik, D. Blaauw, and D. Sylvester, "A 2.98nW bandgap voltage reference using a self-tuning low leakage sample and hold," in *Symposium on VLSI Circuits (VLSIC)*, Honolulu, 2012.

[35] A. Wang, B. H. Calhoun, and A. P. Chandrakasan, *Sub-threshold Design for Ultra Low-Power Systems*, New York: Springer, 2006.

[36] S. Jeong, Z. Foo, Y. Lee, J.-Y. Sim and D. Blaauw, "A Fully-Integrated 71 nW CMOS Temperature Sensor for Low Power Wireless Sensor Nodes," *IEEE Journal of Solid-State Circuits*, vol. 49, no. 8, pp. 1682-1693, 2014.

[37] Y.-S. Lin, D. M. Sylvester, and D. T. Blaauw, "A 150pW program-and-hold timer for ultra-low-power sensor platforms," in *IEEE International Solid-State Circuits Conference*, San Francisco, 2009.

[38] J. Lim, T. Jang, M. Saligane, M. Yasuda, S. Miyoshi, M. Kawaminami, D. Blaauw, and D. Sylvester, "A 224 PW 260 PPM/ $^\circ\text{C}$ Gate-Leakage-Based Timer for Ultra-Low Power Sensor Nodes with Second-Order Temperature Dependency Cancellation," in *IEEE Symposium on VLSI Circuits*, Honolulu, 2018.

[39] O. Aiello, P. Crovetti, L. Lin and M. Alioto, "A pW-Power Hz-Range Oscillator Operating With a 0.3-1.8-V Unregulated Supply," *IEEE Journal of Solid-State Circuits*, vol. 54, no. 5, pp. 1487-1496, 2019.

[40] Y. Lee, B. Giridhar, Z. Foo, D. Sylvester, and D. B. Blaauw, "A Sub-nW Multi-stage Temperature Compensated Timer for Ultra-Low-Power Sensor Nodes," *IEEE Journal of Solid-State Circuits*, vol. 48, no. 10, pp. 2511-2521, 2013.