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Abstract

Given a Wiener process with unknown and unobservable drift, we try to estimate this drift as
effectively but also as quickly as possible, in the presence of a quadratic penalty for the estimation
error and of a fixed, positive cost per unit of observation time. In a Bayesian framework, where the
unobservable drift is assumed to have a known “prior” distribution, this question reduces to choosing
judiciously a stopping time for an appropriate diffusion process in natural scale. We establish structural
properties of the solution for the corresponding problem of optimal stopping. In particular, we show that,
regardless of the prior distribution, the continuation region is monotonically shrinking in time. Moreover,
we provide conditions on the prior distribution that guarantee a one-sided stopping region. Lastly, some
concrete prior distributions are studied to illustrate the theoretical results.
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1. Introduction

Imagine trying to estimate a quantity about which there is considerable uncertainty, and
which cannot be observed directly. Instead, one has access to a stream of observations that
this unobservable quantity affects and, based on this stream, tries to find an estimator of the
unobservable quantity which is “optimal” in the sense of least-squares. However, access to
the stream of information is costly: one pays a fixed, positive cost per unit of time, for as
long as information is being obtained. How does one then resolve the dilemma inherent in this
situation, which calls for balancing the conflicting requirements of fidelity in estimation and
of cost minimization?

We study here an instance of this problem in a highly idealized and stylized form, and in
a Bayesian setting. Namely, we assume that the unobservable quantity is a random variable X
with known distribution, and that one observes sequentially the process

Y (t) = Xt + W (t) , 0  t < 1 . (1.1)

Here W is a standard Wiener process, independent of the random variable X . Moreover, we
assume that the known, “prior” distribution µ of X has finite second moment and is non-atomic;
that is, we exclude the trivial case where µ is a one-point distribution. We posit that, at any
given time t 2 [0, 1), we have access to the observations

� {Y (s), 0  s  t}.
The right-continuous augmentation FY = {FY (t)}0t<1 of the family of � -algebras�
� {Y (s), 0  s  t}

�
0t<1 is called the observations filtration, and we set

FY (1) := �

✓ [

0t<1
FY (t)

◆
.

We denote by T Y the collection of stopping times of this filtration FY , to wit, the collection
of random variables ⌧ : ⌦ ! [0, 1) with {⌧  t} 2 FY (t) for every t 2 [0, 1).

Based on the flow of information F Y , we construct the least-squares estimate
bX (t) = E

⇥
X |FY (t)

⇤
, 0  t < 1 (1.2)

of the unobserved variable. In this work we seek to compute the minimal expected cost

C⇤ = inf
⌧2T Y

C(⌧ ) , C(⌧ ) := E
⇥�

X � bX (⌧ )
�2 + c⌧

⇤
, (1.3)

and to determine whether it is attained by some stopping time ⌧⇤ 2 T Y . Here c > 0 is a
given real constant, representing the cost of one unit of delay in the estimation procedure. The
positivity of this constant, along with the obvious bound C⇤  C(0) = Var(X ) < 1, implies
that we may restrict attention in (1.3) to stopping times ⌧ with

E[⌧ ] < 1. (1.4)

Preview: We show in Section 2 that the least-squares estimate bX in (1.2) is an Itô diffusion
in natural scale, and describe its dynamics in detail. The question of (1.3) is cast in Section 3
as a problem of optimal stopping for this process bX , with a cost criterion that involves only
the constant c > 0 and the local variance function of bX . This piece of serendipity allows
us to obtain quite general qualitative properties of the solution, as developed in Section 5.
In particular, we show that the continuation region contracts in time for any given prior
distribution, and we provide conditions under which the continuation region and the stopping
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region are separated by a single curve. Some explicit results for the Gaussian and Bernoulli
cases are presented in Sections 3 and 4, respectively. Finally, Section 6 presents an additional
example in which the prior distribution is symmetric.

2. Preliminaries on the conditional mean and variance processes

In this section we recall a general result regarding the conditional mean and variance
processes from the theory of filtering. We build then on this result in order to unveil the structure
of our problem at hand, as well as the stochastic dynamics of the processes that are crucial for
its analysis.

2.1. Projecting onto the observations filtration

We first recall the conditional distribution of X given observations on the process Y . For a
proof we refer to [1, Proposition 3.16].

Proposition 2.1. Consider a function q : R ! R satisfying the integrability condition
Z

R
|q(u)| µ(du) < 1 .

Then, for any t � 0, we have

E
⇥
q(X )|FY (t)

⇤
=

R
R q(u) exp{uy � u2t/2} µ(du)R

R exp{uy � u2t/2} µ(du)

����
y=Y (t)

.

On the strength of Proposition 2.1, the conditional expectation of X given the observations
up to time t 2 (0, 1) is given as

bX (t) := E[X |FY (t)] = G(t, Y (t)) , (2.1)

where for each (t, y) 2 [0, 1) ⇥ R we set

G(t, y) :=
R
R u exp{uy � u2t/2} µ(du)R
R exp{uy � u2t/2} µ(du)

=
Z

R
u µt,y(du) (2.2)

and

µt,y(A) :=
R

A exp{uy � u2t/2} µ(du)R
R exp{uy � u2t/2} µ(du)

, A 2 B(R) . (2.3)

This measure µt,y is the conditional (“posterior”) distribution of X at time t , given the values
Y (s), 0  s < t , and Y (t) = y of the observation process up to that time.

We have a similar computation for the conditional variance

Var
�
X |FY (t)

�
= E

⇥�
X � bX (t)

�2 ��FY (t)
⇤

= E
⇥
X2 ��FY (t)

⇤
� bX2(t) = H (t, Y (t))

of X given the observations up to time t 2 (0, 1), where

H (t, y) :=
R
R u2 exp{uy � u2t/2} µ(du)R
R exp{uy � u2t/2} µ(du)

�
 R

R u exp{uy � u2t/2} µ(du)R
R exp{uy � u2t/2} µ(du)

!2

(2.4)

=
Z

R
u2µt,y(du) �

✓Z

R
u µt,y(du)

◆2

=
Z

R

�
u � G

�
t, y

��2
µt,y(du).
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It is straightforward from (2.2);(2.4) that the quantities G(t, y), H (t, y) are, respectively, the
center of gravity and the second central moment of the measure µt,y in (2.3); to wit,

G(t, y) = E
⇥
X
�� Y (s), 0  s < t; Y (t) = y

⇤
,

H (t, y) = Var
⇥
X
�� Y (s), 0  s < t; Y (t) = y

⇤
.

The function G of (2.2) is strictly increasing in its spatial variable, has partial derivatives
of all orders on (0, 1) ⇥ R, and satisfies on this strip the Backwards Burgers equation

@G + 1
2

D2G + G · DG = 0 . (2.5)

The gradient of the function G, i.e., the function

H = DG

of (2.4), is positive on the strip (0, 1) ⇥ R and satisfies there the equation

@H + 1
2

D2 H + G · DH + H 2 = 0 . (2.6)

Here and throughout, we are denoting by @ ⌘ @/@t the partial derivative with respect to the
temporal argument t , and by Dk ⌘ @k/@yk the partial derivative of order k = 1, 2, . . . with
respect to the spatial argument, in this case y.

Remark 2.2 (Bijections). Let now Iµ denote the interior of the smallest closed interval
containing the support of the probability measure µ, i.e.,

Iµ =
�
inf(Sµ), sup(Sµ)

�
with Sµ := supp(µ) . (2.7)

Then, for any given t 2 [0, 1), the function

Gt (·) ⌘ G(t, ·) : R ! Iµ

defined in (2.2) is a strictly increasing, continuous bijection (see also [3]). The strict increase
of this function Gt (·) implies that Y (t) = G�1

t
�bX (t)

�
holds for 0  t < 1.

To wit, the observation processes Y and the least-squares estimate process bX are bijections
of each other pointwise in time, and thus generate the same filtration. In particular, G�1

t (x) is
the unique value of the observation process Y (t) at time t , that yields bX (t) = x .

Remark 2.3 (The Widder Transform). The derivation of the parabolic backwards partial
differential equations (2.5), (2.6) is facilitated by the observation that G is itself the logarithmic
gradient G = D log F of the function

F(t, y) :=
Z

R
exp

n
uy � t

2
u2

o
µ(du) , (t, y) 2 (0, 1) ⇥ R (2.8)

that appears in the denominators of (2.2), (2.4). It is checked easily that this function, the
so-called Widder Transform of the prior distribution µ, solves the backward heat equation

@F + 1
2

D2 F = 0 .

Conversely, as shown by Widder [14] and Robbins & Siegmund [10] , every positive solution
of this backward heat equation can be written in the form (2.8), in terms of an appropriate
measure µ on B(R). For a probabilistic treatment and development of the relevant theory, see
Section 3.4.B in [7].
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For technical convenience, we shall impose henceforth the following integrability condition:

Assumption 2.4. For some real number a > 0, the prior distribution µ satisfies
Z

R
exp{au2} µ(du) < 1 . (2.9)

Assumption 2.4 is a rather mild requirement in the sense that, for any t > 0, the integrability
condition (2.9) is satisfied by the posterior distribution µt,y of any prior µ. The assumption
allows us to extend the definition of µt,y in (2.3) to include points of the type (0, y); and the
resulting µ0,y coincides with the posterior distribution in a scenario with prior distribution

⇠ (A) :=
R

A exp{au2/2} µ(du)R
R exp{au2/2} µ(du)

, A 2 B(R),

conditional on observing Y (a) = y. Consequently, the points (0, y) can be regarded as interior
points for a shifted problem started instead at time �a; it is therefore clear that, for instance,
(2.5) holds then on the whole domain [0, 1) ⇥ R.

2.2. Dynamics under the observations filtration

The process

bW (t) := Y (t) �
Z t

0
bX (s) ds =

Z t

0

�
X � bX (s)

�
ds + W (t) , 0  t < 1 , (2.10)

known as the innovation process in the theory of filtering, is clearly adapted to the observations
filtration FY . It is also a Wiener process of this filtration, as it is continuous, an FY -martingale,
and has the right quadratic variation; for instance, see [1, Proposition 2.30 on p. 33].

We write F bW =
�
F bW (t)

�
0t<1 for the right-continuous augmentation of the filtration

�
�bW (s) : 0  s  t

 
, 0  t < 1, that this process generates; similarly, we shall use the

notation F bX =
�
F bX (t)

�
0t<1 for the right-continuous augmentation of the filtration generated

by the conditional expectation process bX in (2.1), and F Y =
�
F Y (t)

�
0t<1 for the right-

continuous augmentation of the filtration generated by the observation process Y . Clearly, and
in light of Remark 2.2, we have the comparisons F bW ✓ F Y = F bX .

We deduce now from (2.1), (2.10) the representation for the observations process

dY (t) = bX (t) dt + dbW (t) = G
�
t, Y (t)

�
dt + dbW (t) (2.11)

as the solution of a stochastic differential equation driven by the innovations process bW , with
initial condition Y (0) = 0. Because of the smoothness of the function G, this equation admits
a pathwise unique, strong solution, so we deduce the filtration identities

F bW = F Y = F bX . (2.12)

On the other hand, with the notation Gt (·) = G(t, ·) already introduced in Remark 2.2, we set

 (t, x) := DG
�
t, G�1

t (x)
�

= H
�
t, G�1

t (x)
�
. (2.13)

An application of Itô’s formula to (2.1) yields, in conjunction with (2.5) and (2.11), a stochastic
differential equation for the conditional mean process bX of (2.1), namely,

dbX (t) =  
�
t, bX (t)

�
dbW (t) , bX (0) = E(X ) =

Z

R
u µ(du) . (2.14)
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The function  of (2.13), the dispersion function of the stochastic differential equation right
above, can be expressed as

 (t, x) = H
�
t, G�1

t (x)
�

= Var
⇥
X
�� bX (s), 0  s < t ; bX (t) = x

⇤
,

and a bit more generally as

 
�
t, bX (t)

�
= H

�
t, G�1

t (bX (t))
�

= H
�
t, Y (t)

�
= Var

⇥
X
��FY (t)

⇤
. (2.15)

Furthermore, it is checked with the help of (2.5), (2.6) that the function  > 0 of (2.13)
satisfies on the strip (0, 1) ⇥ Iµ the fully nonlinear, backwards parabolic equation

@ + 2
✓

1
2

D2 + 1
◆

= 0 . (2.16)

Once again, we denote differentiation with respect to the temporal argument t by @ , and
differentiation with respect to the spatial argument (in this case x) by D.

Finally, we recall from [3, Proposition 3.6] the following result about the function  .

Proposition 2.5 (Properties of the Dispersion Function  ).

1. @  0 ; consequently, by (2.16), we have D2 � �2 .
2. If µ is compactly supported, then the function  is bounded.

3. Optimal stopping

The above considerations show that the optimal stopping problem (1.3) can be cast in the
form

inf
⌧2T

E
h
 
�
⌧, bX (⌧ )

�
+ c⌧

i
. (3.1)

Here  is the function of (2.13), the process bX satisfies the dynamics of (2.14), and T stands
for the collection of stopping times of the filtration F bX = F bW = F Y , as in (2.12).

It is a noteworthy feature of this problem, that the same function  of (2.13) appears both
as the dispersion of the diffusion bX in (2.14), and as the cost function for the new formulation
of the optimal stopping problem in (3.1). This feature makes the problem rather special, and
aids considerably its analysis in Sections 4, 5.

Proposition 3.1. For every stopping time ⌧ 2 T we have

E
⇥
 
�
⌧, bX (⌧ )

�⇤
= Var(X ) � E

Z ⌧

0
 2�s, bX (s)

�
ds

�
. (3.2)

Proof. From (1.1) and the strong law of large numbers for the Wiener process, we have
limt!1

�
Y (t)/t

�
= X , a.e.; in other words, the random variable X is FY (1)-measurable.

As a result, the P. Lévy martingale convergence theorem gives limt!1 E
�
Xk |FY (t)

�
=

E
�
Xk |FY (1)

�
= Xk a.e., for k = 1, 2; therefore also

lim
t!1

 
�
t, bX (t)

�
= lim

t!1

✓
E
�
X2 |FY (t)

�
�

⇣
E
�
X |FY (t)

�⌘2
◆

= 0

on the strength of (2.15). Now it follows from the dynamics in (2.14), the partial differential
equation in (2.16), and elementary stochastic calculus, that the positive process

M(t) :=  
�
t, bX (t)

�
+

Z t

0
 2�s, bX (s)

�
ds
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= Var(X ) +
Z t

0
 
�
s, bX (s)

�
D 

�
s, bX (s)

�
dbW (s), 0  t < 1

is a local martingale. It is thus also a supermartingale, and consequently

E
✓
 
�
⌧, bX (⌧ )

�
+

Z ⌧

0
 2�s, bX (s)

�
ds

◆
 Var(X ) < 1 (3.3)

holds by the optional sampling theorem for every stopping time ⌧ 2 T ; this includes ⌧ = 1,
so we have also

E
✓Z 1

0
 2(s, bX (s)) ds

◆
 Var(X ) < 1 . (3.4)

We shall show presently that, as claimed in (3.2), the first inequalities in (3.3) and (3.4) hold
actually as equalities.

In order to see these things, let us start from the observation that the representation

bX (⌧ ) = E(X ) +
Z ⌧

0
 
�
s, bX (s)

�
dbW (s) (3.5)

from (2.14) holds for every stopping time ⌧ 2 T , including ⌧ = 1 : the martingale bX and the
submartingale bX2 are both uniformly integrable. Thus, the representation

X � bX (⌧ ) =
Z 1

⌧

 
�
s, bX (s)

�
dbW (s)

holds, as does the analogue

Var
�
X
��FY (⌧ )

�
= E

h�
X � bX (⌧ )

�2 ��FY (⌧ )
i

= E
✓Z 1

⌧

 2�s, bX (s)
�

ds
���FY (⌧ )

◆

=  
�
⌧, bX (⌧ )

�

of (2.15); for the second equality we have used the finite upper bound of (3.4). This, in turn,
leads to

E
h
Var

�
X
��FY (⌧ )

�i
= E

�
X � bX (⌧ )

�2 = E 
�
⌧, bX (⌧ )

�
= E

Z 1

⌧

 2�s, bX (s)
�

ds

upon taking expectations. In addition, (3.5) gives

Var
⇣
E
�
X
��FY (⌧ )

�⌘
= Var

�bX (⌧ )
�

= E
Z ⌧

0
 2�s, bX (s)

�
ds ,

once again using the finite upper bound in (3.4). From these computations, and from a classical
identity about variances, we deduce

Var
�
X
�

= E
h
Var

�
X
��FY (⌧ )

�i
+ Var

⇣
E
�
X
��FY (⌧ )

�⌘

= E
✓
 
�
⌧, bX (⌧ )

�
+

Z ⌧

0
 2�s, bX (s)

�
ds

◆
,

that is, our claim (3.2). With the choice ⌧ = 1, these considerations give the identity
E
R 1

0  2(s, bX (s)) ds = Var(X ), as claimed. ⇤
The identity (3.2) allows us now to cast the optimal stopping problem of (1.3)/(3.1) in the

equivalent form

v := inf
⌧2T

E
Z ⌧

0

⇣
c � 2(s, bX (s))

⌘
ds

�
. (3.6)
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3.1. Markovian framework

To study the optimal stopping problem in its new form (3.6), we first embed it into a
Markovian framework, by allowing the diffusion bX of (2.14) to start at any given point
(t, x) 2 [0, 1) ⇥ Iµ. More precisely, we define the function v : [0, 1) ⇥ Iµ ! (�1, 0]
via

v(t, x) := inf
⌧2T

E
Z ⌧

0

⇣
c � 2�t + s, bXt,x (t + s)

�⌘
ds

�
, (3.7)

where the dynamics of the process bX = bX (t,x) are given by
⇢

dbX (t + s) =  
�
t + s, bX (t + s)

�
dbW (s)

bX (t) = x

and bW is again standard scalar Brownian motion. Since ⌧ = 0 is an admissible stopping time,
the value function v in (3.7) is non-positive: v  0. On the other hand, it is clear from (3.1),
(3.2) that v(t, x) � �Var(X ) > �1, so v is also real-valued, as indicated.

In accordance with standard optimal stopping theory for Markov processes with continuous
paths, we introduce the so-called continuation region

C := {(t, x) 2 [0, 1) ⇥ Iµ : v(t, x) < 0}
and its complement, the stopping region

D := {(t, x) 2 [0, 1) ⇥ Iµ : v(t, x) = 0}.
Moreover, for any given starting point (t, x), we denote by

⌧ (t,x) := inf
�
s � 0 :

�
t + s, bX (t,x)(t + s)

�
2 D

 

the first hitting time of the stopping region. Then we know (for instance, [4,5,12,13]) that the
function v : [0, 1) ⇥ Iµ ! [�Var(X ), 0] of (3.7) is upper-semicontinuous, and that for each
(t, x) 2 [0, 1) ⇥ Iµ the stopping time ⌧ (t,x) attains the infimum there, i.e.,

v(t, x) = E
"Z ⌧ (t,x)

0

⇣
c � 2�t + s, bX (t,x)(t + s)

�⌘
ds

#

.

Remark 3.2. It is clear from the formulation (3.7) that immediate stopping (⌧ (t,x) = 0) is
optimal if the inequality

c � sup
(t,x)2[0,1)⇥Iµ

 2(t, x) = sup
x2Iµ

 2(0, x) (3.8)

holds; here, the equality follows from Proposition 2.5. A bit more generally, if

c � sup
x2Iµ

 2(Tc, x)

holds for some Tc 2 (0, 1), then the strip [Tc, 1) ⇥ Iµ belongs to the stopping region D.

3.2. A very simple special case: The Gaussian distribution

As the simplest illustration, let us consider the Gaussian prior distribution µ with mean
m 2 R and variance � 2 2 (0, 1), i.e.,

µ(du) = 1p
2⇡� 2

exp
⇢
� (u � m)2

2� 2

�
du ,
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a special case of the Kalman–Bucy filter. Here we have Iµ = R, and the functions F , G, H
and  take the respective forms

F(t, y) = 1p
1 + � 2t

exp
⇢

� 1
2� 2

✓
(m + � 2 y)2

1 + � 2t
� m2

◆�
,

G(t, y) = m + � 2 y
1 + � 2t

, H (t, y) =  (t, x) = � 2

1 + � 2t
= : ⇠ (t) .

Now, the function t 7! c � ⇠ 2(t) is negative for t 2
⇥
0, 1p

c � 1
� 2

�
if

p
c < � 2, and it is

everywhere non-negative if
p

c � � 2. With

⌧⇤ :=
✓

1p
c

� 1
� 2

◆+
,

it follows from Remark 3.2 that the above constant ⌧⇤ is an optimal (albeit trivial!) stopping
time in (3.6).

In [2], a similar result is obtained in the case when W is a fractional Brownian motion.

4. A time-homogeneous case: the Bernoulli distribution

As our second example, let us consider now the Bernoulli prior distribution

µ = (1 � p)��� + p��

with symmetric support, where p 2 (0, 1) and � 2 (0, 1). In this case we have Iµ = (��,�),
as well as

G(t, y) = �
p e�y � (1 � p) e��y

p e�y + (1 � p) e��y , thus H (t, y) = �2 � G2(t, y)

and

 (t, x) = �2 � x2 = :  (x) .

We note that we are here at the opposite extreme of the example in Section 3.2: All these
are functions of only the spatial variable; and the last of them does not even depend on the
parameter p 2 (0, 1).

The stopping problem (3.6) thus takes the form

v(x) = inf
⌧2T

E
Z ⌧

0

⇣
c �  2�bX (t)

�⌘
dt
�

(4.1)

where bX is a diffusion in natural scale, with state-space Iµ = (��,�) and initial condition
x 2 Iµ:

⇢
dbX (t) =  

�bX (t)
�

dbW (t),
bX (0) = �(2p � 1) =: x 2 Iµ .

(4.2)

We note that for �4  c, the integrand in (4.1) is non-negative, and hence the trivial stopping
time ⌧⇤ ⌘ 0 is optimal.

Thus, we assume from now onwards that

�4 > c ;
then c �  2(x) is negative for |x | < � with

� :=
q
�2 � p

c ,
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zero for |x | = � , and positive for � < |x | < � . Conjecturing that an optimal stopping rule is
of the type

⌧ ⇤
a := inf

�
t � 0 : |bX (t)| � a

 
(4.3)

for some constant a 2 (� ,�), general optimal stopping theory leads to the following
free-boundary problem:

To find a constant a 2 (� ,�) and an evenly symmetric function u : (��,�) ! (�1, 0] of
class C1�(��,�)

�
\ C2�(��,�) \ {�a, a}

�
, such that

⇢
u(x) < 0 ,

�
 2(x)/2

�
u00(x) + c �  2(x) = 0 ; x 2 [0, a),

u(x) = 0 , c �  2(x) > 0 ; x 2 [a,�); (4.4)

and then to argue that the function u coincides with the minimum expected cost v in (4.1).
In the two paragraphs that follow we shall show that this problem admits a unique solution,

which coincides with the value function v of (4.1) and can be computed explicitly.

4.1. Verification

Indeed, if such a function u with the above properties exists, the process

N := u
�bX

�
� u(x) �

Z ·

0

1
2
�
 2u00��bX (t)

�
dt =

Z ·

0

�
 u0��bX (t)

�
dbW (t)

is a local martingale. The function  u0 is continuous, and supported on the compact interval
[�a, a], thus bounded. Therefore, for any stopping time ⌧ 2 T with E(⌧ ) < 1 as in (1.4),
we have

E
�
N 2(⌧ )

�
= E

Z ⌧

0

�
 u0�2�bX (t)

�
dt  k u0k2

1 E(⌧ ) < 1 .

As a consequence, N (·^ ⌧ ) is a square-integrable martingale, and E
�
N (⌧ )

�
= 0 holds, leading

to

u(x) = E
⇥
u
�bX (⌧ )

�⇤
� E

Z ⌧

0

1
2
�
 2u00��bX (t)

�
dt  E

Z ⌧

0

⇣
c �  2�bX (t)

�⌘
dt (4.5)

on account of the inequalities u  0 ,
�
 2/2

�
u00 + c �  2 � 0 from (4.4).

We repeat now the above reasoning for the stopping time ⌧ ⇤
a defined in (4.3). This satisfies

the property E(⌧ ⇤
a ) < 1 , as is checked by considering the diffusion process bX of (4.2) on the

interval [�a, a] as its state-space, and recalling Proposition 5.5.32 (i) in [7]. For this stopping
time, both inequalities summoned to justify the last comparison in (4.5) hold as equalities, and
thus so does (4.5) itself:

u(x) = E
Z ⌧⇤

a

0

⇣
c �  2�bX (t)

�⌘
dt . (4.6)

Now (4.5) and (4.6) show that the stopping time ⌧ ⇤
a is optimal for the problem of (4.1), among

all stopping times with finite expectation. As we argued in the discussion following (1.3), these
are the only relevant times for the stopping problem under consideration, and we are done:
u(x) = v(x) holds for every x 2 Iµ.

In particular, there can exist at most one solution to the free-boundary problem.
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4.2. Construction

For a given constant a 2 (0, 1), the recipe

u(x) := 2
Z a

x

✓Z a

y

 2(⇠ ) � c
 2(⇠ )

d⇠
◆

dy , 0  x  a, (4.7)

defines a function that satisfies the equation
�
 2(x)/2

�
u00(x) + c � 2(x) = 0 in (4.4), as well

as the “smooth-fit” conditions” u(a) = u0(a�) = 0.
We extend this function by even symmetry to all of [�a, a]. For the resulting extension to

have the claimed smoothness, we need the condition u0(0+) = 0, namely
Z a

0

d⇠
 2(⇠ )

= a
c

. (4.8)

Now, the function Q(x) :=
R x

0  
�2(y)

�
c� 2(y)

�
dy , 0 < x < �, satisfies Q(0) = 0, decreases

strictly on (0, � ), and increases strictly to infinity on (� ,�). It attains its overall minimum at
x = � , namely,

Q(� ) =
Z �

0

c �  2(⇠ )
 2(⇠ )

d⇠ < 0 .

Therefore, there exists a unique number a 2 (� ,�) that satisfies Q(a) = 0, i.e., (4.8).
With the constant a thus chosen, c �  2(x) > 0 holds for every x 2 [a,�); setting

u(x) := 0 , x 2 (a,�) (4.9)

and extending again by even symmetry, we obtain a function u defined via (4.7), (4.9) on all
of Iµ = (��,�); this function satisfies all the requirements of the free-boundary problem in
(4.4). From what we have proved so far, the function u emerges as the unique solution of this
problem, as well as the minimum expected cost in (4.1); that is, v ⌘ u.

5. Structural properties

In contrast to the two examples just discussed, the typical situation is that the stopping and
continuation regions cannot be described so easily. Thus, general methods to determine their
structural properties are of considerable interest.

For this purpose, the following monotonicity result will prove useful. It is based on the
observation that the term  2 appearing in the integrand in (3.7) coincides with the instantaneous
quadratic variation rate of the underlying process bX (we extend the function  to be equal to
zero outside [0, 1) ⇥ Iµ). This suggests a time-change of the martingale bX in the manner
of Dambis–Dubins–Schwarz (e.g., Theorem 3.4.6 and Problem 3.4.7 in [7]). We follow the
construction given by Janson and Tysk in [6], where two diffusion processes in natural scale
with the same starting point, but with different dynamics, are constructed as time-changes of
the same Brownian motion.

Theorem 5.1. Assume that two distributions µi , i = 1, 2, are given and that the corresponding
variance functions  i in (2.13) satisfy  1(t, x) �  2(t, x) for all (t, x) 2 [0, 1) ⇥ R. Then
the corresponding value functions vi , i = 1, 2, of (3.7) satisfy v1(t, x)  v2(t, x) for all
(t, x) 2 [0, 1) ⇥ R.
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Proof. It suffices to show that v2(0, x) � v1(0, x); the case of a general time variable is similar.
For x 2 R, let B be a one-dimensional Brownian motion with B(0) = x . For each i = 1, 2,
let ⌧i (·), i = 1, 2, be the unique stopping time solution of the integral equation

⌧i (t) =
Z t

0
 2

i
�
✓, B(⌧i (✓ ))

�
d✓, 0  t < 1 ,

with the terminology and construction developed by Janson and Tysk in [6]. Then the process
Xi (t) := B(⌧i (t)), 0  t < 1, satisfies the stochastic integral equation

Xi (s) = x +
Z s

0
 i

�
u, Xi (u)

�
dBi (u) , 0  s < 1,

for some Brownian motion Bi . Consequently, the distribution of {Xi (s), s � 0} coincides with
the distribution of {bX (0,x)

i (s), s � 0}, for i = 1, 2.
Furthermore, it follows from [6, Lemma 10] that

⌧1(t) � ⌧2(t) (5.1)

holds for all t � 0. Now, let �2 be a stopping time (of the right-continuous augmentation of
the filtration generated by the process X2) which minimizes

E


c� �
Z �

0
 2

2
�
s, X2(s)

�
ds

�
= E

⇥
c� � ⌧2(� )

⇤

over all stopping times � . Define

�1 := inf
�
s � 0 : ⌧1(s) > ⌧2(�2)

 

so that ⌧1(�1) = ⌧2(�2), and note that (5.1) implies that �1  �2. Then �1 is a stopping time
for the process X1, though not necessarily an optimal one for the stopping problem under
consideration. Consequently,

v2(0, x) = E


c�2 �
Z �2

0
 2

2
�
s, X2(s)

�
ds

�
= E [c�2 � ⌧2(�2)]

� E [c�1 � ⌧1(�1)] = E


c�1 �
Z �1

0
 2

1
�
s, X1(s)

�
ds

�
� v1(0, x),

which completes the proof. ⇤
As we have seen in the Gaussian and Bernoulli cases, the structure of the stopping region

D depends crucially on the prior distribution µ; however, we note the following consequence
of Theorem 5.1, which provides a very general structural result with respect to the temporal
parameter.

Corollary 5.2 (Contracting Continuation Region). The function t 7! v(t, x) is non-decreasing,
for every fixed x 2 Iµ. Consequently, the t-section of the stopping region, namely,

Dt :=
�

x 2 Iµ : (t, x) 2 D
 
,

is increasing in time: Dt1 ✓ Dt2 for 0  t1  t2.

Proof. Consider two time points ti , i = 1, 2, with t1 < t2, and define  i (t, x) =  (ti + t, x)
for (t, x) 2 [0, 1) ⇥ Iµ. Since, on the strength of Proposition 2.5, the function  (·, x) is
decreasing, we have  1(t, x) �  2(t, x) for each (t, x) 2 [0, 1) ⇥ Iµ. It then follows
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from Theorem 5.1 that the corresponding value functions satisfy v1(0, x)  v2(0, x), which
is equivalent to v(t1, x)  v(t2, x).

Thus x 2 Dt1 (i.e., v(t1, x) = 0) leads to v(t2, x) = 0, i.e., to x 2 Dt2 . ⇤

Corollary 5.3 (Comparison with the Bernoulli Distribution). For � > 0, let a = a(�) > 0
be the optimal stopping boundary-point for the Bernoulli distribution with support {��,�} as
determined in Section 4. For a “prior” distribution µ, recall the notation of (2.7):

(i) Assume that Sµ ✓ [��,�]. Then C ✓ [0, 1) ⇥ (�a, a).
(ii) Assume that Sµ ✓ (�1, ��] [ [�, 1), with Sµ \ (�1, ��] 6= ; and Sµ \ [�, 1) 6= ;.

Then C ◆ [0, 1) ⇥ (�a, a).

Proof. It is straightforward to check that among all distributions with support contained in
[��,�] and expected value x 2 [��,�], the Bernoulli distribution

� � x
2�

��� + � + x
2�

�� (5.2)

is the one with the largest variance. Consequently, if Sµ ✓ [��,�], then  (0, x)  �2 �x2 =
 (x). Thus, by Proposition 2.5 we have  (t, x)   (0, x)   (x), and (i) follows from
Theorem 5.1.

Similarly, among all distributions µ with Sµ \ (��,�) = ; and with expected value x 2
(��,�), the one with the smallest variance is the Bernoulli distribution in (5.2). Consequently,
 (t, x) � �2 � x2 for all x 2 Iµ, and (ii) follows as above, on account of Theorem 5.1. ⇤

We restrict now attention to sub-classes of prior distributions, for which further structural
properties can be derived. We first recall the following well-known result from optimal stopping
theory (see, for instance, [8, Remark, page 217]).

Lemma 5.4. Assume that  2(t, x) > c at some point (t, x) 2 [0, 1) ⇥ Iµ. Then (t, x) 2 C.

Proof. By the continuity of the function  2, there exist a real number " > 0 and a rectangle
R = [t1, t2) ⇥ (a, b) ✓ [0, 1) ⇥ Iµ with (t, x) 2 R , and  2 � c > " on R. Denoting by

⌧R := inf
�
s � 0 :

�
t + s, bX (t + s)

�
/2 R

 
,

we have

v(t, x)  E
Z ⌧R

0

�
c � 2(t + s, bX (t + s))

�
ds

�
 �"E[⌧R] < 0,

which shows that (t, x) 2 C. ⇤
Our next task is to provide conditions under which the stopping region is one-sided. We

shall use the notation Iµ = Iµ [ {a, b} , where a = inf(Sµ) and b = sup(Sµ) are the (possibly
infinite) boundary points of Iµ , as in (2.7).

Proposition 5.5 (One-sided Stopping Region). Assume that, for every fixed time t � 0, the
function x 7!  (t, x) (equivalently, the function y 7! H (t, y)) is non-decreasing. Then the
following statements hold:

(i) There exists a non-decreasing function b : [0, 1) ! Iµ such that the optimal
continuation region is of the form

C =
�
(t, x) 2 [0, 1) ⇥ Iµ : x > b(t)

 
.
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(ii) With  (t, 1) := limx!1 (t, x), let

T := inf
�
t � 0 :  2(t, 1)  c

 
.

Then b(t) 2 Iµ for all t < T , and b(t) = sup(Sµ) for t � T , as in (2.7).
(iii) If x 7!  (t, x) is strictly increasing for all t � 0, then the function b : [0, 1) ! Iµ is

continuous.

Proof. (i). Without loss of generality, we consider the initial time t = 0. We consider
two points (0, x1) and (0, x2) with x1, x2 2 Iµ and x1 < x2. By comparison results for
solutions of stochastic integral equations (see, for instance, [9, Theorem IX.3.7]), we obtain
bX0,x1 (s)  bX0,x2 (s) for all times s � 0. Therefore,

E
Z ⌧

0

⇣
c � 2(s, bX0,x1 (s))

⌘
ds

�
� E

Z ⌧

0

⇣
c � 2(s, bX0,x2 (s))

⌘
ds

�

holds for any stopping time ⌧ . Taking the infimum over all stopping times ⌧ yields v(0, x1) �
v(0, x2). In particular, if v(0, x1) < 0, then also v(0, x2) < 0, which shows that C has the
claimed form. The monotonicity of b is immediate from Corollary 5.2.

(ii). With t � T , we have  2(t + s, ·)  c for all s � 0 by Proposition 2.5 1, and the
claim follows from Remark 3.2. For t < T , on the other hand, there are points x 2 Iµ with
 2(t, x) > c, so the respective claim follows from Lemma 5.4.

(iii). The upper semi-continuity of v and the monotonicity of b imply b(t) = b(t+) for all
t � 0.

Next assume that x 7!  (t, x) is strictly increasing, and that b(t1�) < b(t1) for some t1 > 0.
Since (t1, b(t1)) 2 D, it follows from Lemma 5.4 that  2(t1, b(t1))  c. Consequently, there
exist an " > 0 and a rectangle R = (t0, t1)⇥ (x1, x2) with t0 < t1 and b(t1�)  x1 < x2  b(t1)
such that R ✓ C and  2  c �" on R. Moreover, v(t0, x1)  v < 0 on R. For a starting point
(t, x) 2 R, define

⌧ t,x
R := inf

�
s � 0 : (t + s, bXt,x (t + s)) /2 R

 

to be the first exit time from R. Since R ✓ C, the process

v
�
t +

�
s ^ ⌧ t,x

R
�
, bXt,x�t +

�
s ^ ⌧ t,x

R
���

+
Z s^⌧ t,x

R

0

�
c � 2�t + ✓, bXt,x (t + ✓ )

��
d✓ , s � 0,

is a martingale by optimal stopping theory, and

v(t, x) = E
"

v
�
t + ⌧ t,x

R , bXt,x (t + ⌧ t,x
R )

�
+

Z ⌧
t,x
R

0

�
c � 2�t + s, bXt,x (t + s)

��
ds

#

� E


1{⌧ t,x
R �t1�t}

Z t1�t

0

�
c � 2�t + s, bXt,x (t + s)

��
ds

�

+ v(t0, x1)P
�
⌧ t,x
R < t1 � t

�

� "(t1 � t)P
�
⌧ t,x
R � t1 � t

�
+ v(t0, x1)P

�
⌧ t,x
R < t1 � t

�
.

Here the first term is of size "(t1 � t) for t close to t1, whereas the probability P(⌧ t,x
R < t1 � t)

is of order o(t1 � t) as t ! t1. Consequently, for each x 2 (x1, x2) there exists t close to
t1 such that v(t, x) > 0, which is a contradiction. This proves that b(t1�) = b(t1), so b is
continuous. ⇤
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Remark 5.6. There is an analogue of Proposition 5.5 for problems in which the function
x 7!  (t, x) is non-increasing for every fixed t � 0. Arguing exactly as above, this condition
implies the existence of a non-increasing boundary b such that

C =
�
(t, x) : x < b(t)

 
.

5.1. A case with a one-sided stopping region: the absolute value of a normal distribution

Let us consider a case where the prior belief is represented by the absolute value of a
normally distributed random variable with mean 0 and variance � 2, i.e.,

µ(du) =
r

2
⇡� 2 exp

⇢
� u2

2� 2

�
du, u � 0.

Then I = (0, 1), and determined computation gives

H (t, y) = � 2

1 + � 2t

✓
1 � z

'(z)
�(z)

� '2(z)
�2(z)

◆ ����
z=Z (t,y)

, for Z (t, y) := � yp
1 + � 2t

and

'(b) = 1p
2⇡

exp{�b2/2}, �(a) =
Z a

�1
'(b) db

for the function of (2.4). Note that this function satisfies

lim
y!1

H (t, y) = � 2

1 + � 2 t
for t � 0, very much in accordance with Section 3.2. Furthermore,  (t, ·) is increasing if and
only if H (t, ·) is increasing, and

DH (t, y) = � 3'(z)
(1 + � 2t)3/2 �(z)

⇣
z2 � 1 + 3z

'(z)
�(z)

+ 2
'2(z)
�2(z)

⌘����
z=Z (t,y)

.

To see that DH � 0, we follow an argument from [11]. It suffices to check that

f (z) := z2 + 3z
'(z)
�(z)

+ 2
'2(z)
�2(z)

=
✓

z + 2
'(z)
�(z)

◆✓
z + '(z)

�(z)

◆
� 1.

Straightforward calculations give

f 0(z) = 2
✓
'(z)
�(z)

+ z
◆✓

1 � z
'(z)
�(z)

� '2(z)
�2(z)

◆
+ '(z)
�(z)

(1 � f (z)) (5.3)

>
'(z)
�(z)

(1 � f (z))

at all points z. However, it is clear that limz!1 f (z) = 1, and using the expansion

�(z) = '(z)
�z

✓
1 � 1

z2 + o
�
1/z2�

◆

for z < 0 yields limz!�1 f (z) = 1. Therefore, if there is a finite root of the equation f (z) = 1,
then there exists a finite z0 with f (z0)  1 and f 0(z0) = 0, which contradicts (5.3). Therefore,
f � 1, so DH � 0.

It now follows from Proposition 5.5 that the continuation region is one-sided and given by

C =
�
(t, x) 2 [0, T ) ⇥ (0, 1) : x > b(t)
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for some continuous, non-decreasing function b : [0, T ) ! [0, 1) with b(T ) := limt"T b(t) =
1, where T =

⇣
1p
c � 1

� 2

⌘+
.

6. Symmetric prior distributions

In this section we consider the special case when µ is symmetric around the origin with
Iµ = (�a, a) in (2.7), for some a 2 (0, 1]. Then the functions  and v are also symmetric
around the origin, in the sense that  (t, x) =  (t, �x) and v(t, x) = v(t, �x). Consequently,
the optimal stopping problem can be re-written in terms of the reflected diffusion Z = Zt,x =
|bXt,x | as

v(t, x) = inf
⌧2T

E
Z ⌧

0

⇣
c � 2�t + s, Zt,x (t + s)

�⌘
ds

�
, (t, x) 2 [0, 1) ⇥ [0, a). (6.1)

Proposition 6.1. Assume that µ is symmetric around the origin.

(i) Assume that, for every fixed time t � 0, the function  (t, ·) : [0, a) ! [0, 1)
is non-decreasing. Then there exist a point t0 � 0 and a non-decreasing boundary
b : [t0, 1) ! [0, a] such that

C = ([0, t0) ⇥ Iµ) [ {(t, x) 2 [t0, 1) ⇥ Iµ : |x | > b(t)}.
(ii) Assume that, for every fixed time t � 0, the function  (t, ·) : [0, a) ! [0, 1) is

non-increasing. Then there exists a non-increasing boundary b : [0, 1) ! [0, a] such
that

C =
�
(t, x) 2 [0, 1) ⇥ Iµ : |x | < b(t)

 
.

Proof. Without loss of generality, we consider the initial time t = 0. For x � 0, let (eZ , L) be
the unique continuous process such that L(0) = 0, L is non-decreasing, Z (0) = x , Z (s) � 0
and

⇢
deZ (s) =  (s, eZ (s)) d bW (s) + d L(s),R t

0 1{eZ (s)=0}d L(s) = L(t).

Then eZ is the reflected version of bX , and the processes {Z (s), s � 0} and {eZ (s), s � 0} coincide
in law. Moreover, by comparison we have that x1  x2 implies that eZ x1 (t)  eZ x2 (t) for all t .
The proof then follows the proof of Proposition 5.5. ⇤

6.1. Symmetric Gaussian mixtures

We end the article with a study of the case when the prior is given by a symmetric Gaussian
mixture. More precisely, let µ be given by

µ(du) = 1
2�

p
2⇡

✓
exp

⇢�(u � m)2

2� 2

�
+ exp

⇢�(u + m)2

2� 2

�◆
du

with m 2 (0, 1) and � > 0, i.e., a mixture of the two Gaussians N (m, � ) and N (�m, � ).
Then

F(t, y) = 1p
1 + � 2t

✓
exp

⇢
� 1

2� 2

✓
(m + � 2 y)2

1 + � 2t
� m2

◆�
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+ exp
⇢

� 1
2� 2

✓
(�m + � 2 y)2

1 + � 2t
� m2

◆�◆
,

and straightforward calculations yield

H (t, y) = � 2

1 + � 2t
+ 4m2

(1 + � 2t)2

✓
exp

⇢
my

1 + � 2t

�
+ exp

⇢ �my
1 + � 2t

�◆�2

.

It follows that  (t, ·) is decreasing on [0, 1) and satisfies

 (t, 0) = � 2

1 + � 2t
+ m2

(1 + � 2t)2 ,  (t, 1) = � 2

1 + � 2t
.

Consequently, by (ii) of Proposition 6.1, there exists a non-increasing boundary b : [0, 1) !
[0, 1] such that

C =
�
(t, x) 2 [0, 1) ⇥ Iµ : |x | < b(t)

 
.

Furthermore, b(t) = 1 for t 2
⇥
0, (c�1/2 � ��2)+

�
and b(t) = 0 for

t � 1
2
p

c

⇣
1 � 2��2pc +

p
1 + 4m2��4c1/2

⌘+
.
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