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We formulate a trajectorial version of the relative entropy dissipation identity for McKean–Vlasov diffusions,
extending recent results which apply to non-interacting diffusions. Our stochastic analysis approach is based on
time-reversal of diffusions and Lions’ differential calculus over Wasserstein space. It allows us to compute explic-
itly the rate of relative entropy dissipation along every trajectory of the underlying diffusion via the semimartingale
decomposition of the corresponding relative entropy process. As a first application, we obtain a new interpretation
of the gradient flow structure for the granular media equation, generalizing a formulation developed recently for
the linear Fokker–Planck equation. Secondly, we show how the trajectorial approach leads to a new derivation
of the HWBI inequality, which relates relative entropy (H), Wasserstein distance (W), barycenter (B) and Fisher
information (I).
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1. Introduction

We are interested in the relative entropy dissipation of McKean–Vlasov stochastic differential equations
of the form

dXt = −
(
∇V(Xt ) + ∇(W ∗ Pt )(Xt )

)
dt +

√
2 dBt , 0 ≤ t ≤ T, (1.1)

where X0 has some given initial distribution P0 on Rn. Here, the functions V,W : Rn → [0,∞) play the
roles of confinement and interaction potentials and are assumed to be suitably regular, Pt ! Law(Xt )
denotes the distribution of the random vector Xt , the symbol ∗ stands for the standard convolution
operator, and (Bt )0≤t≤T is a standard n-dimensional Brownian motion. In particular, this SDE is non-
local (or non-linear) in the sense that the drift term depends on the distribution of the state variable.
Non-local equations of this form arise in the modeling of weakly interacting diffusion equations, after
the seminal work of McKean [47].

Since the work of Carrillo–McCann–Villani [13,14], relative entropy dissipation has been known
to be an effective method for studying convergence rates to equilibrium and propagation of chaos of
McKean–Vlasov equations. Some notable examples include the works [8,11,12,16,45,54]. In a broader
context, [34,48] recently applied entropy methods to the mean-field theory of neural networks.

We denote by Pac(Rn) the set of absolutely continuous probability measures on Rn, which we will
often identify with their corresponding probability density functions with respect to Lebesgue measure.
The free energy functional

Pac(Rn) ( p )−→F (p)!U(p) +V(p) +W(p) (1.2)
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is defined as the sum of the energy functionals

U(p)!
∫
Rn

p(x) log p(x)dx, V(p)!
∫
Rn

V(x) p(x)dx, W(p)! 1
2

∫
Rn

(W ∗ p)(x) p(x)dx (1.3)

corresponding to internal (U), potential (V) and interaction (W) energy, respectively. Defining the
relative entropy dissipation functional

Pac(Rn) ( p )−→D(p)!
∫
Rn

|∇ log p(x) + ∇V(x) + ∇(W ∗ p)(x)|2 p(x)dx, (1.4)

the well-known relative entropy dissipation identity takes the form

F (pt ) −F (pt0 ) = −
∫ t

t0

D(pu)du. (1.5)

This identity is of a deterministic nature: it only depends on the curve of probability density functions
(pt )0≤t≤T , but not on the trajectories of the underlying process (Xt )0≤t≤T itself. It is then natural to ask
whether there is a process-level analogue of the relative entropy dissipation identity (1.5), depending
directly on the trajectories of the McKean–Vlasov process (Xt )0≤t≤T . The main contribution of this
paper is to give an affirmative answer to this question, by formulating a trajectorial version of the
relative entropy dissipation identity via a stochastic analysis approach.

Before going into details, let us briefly describe the main ideas. We draw inspiration from prior
literature [29,40] based on a simpler (linear) setting without interaction, i.e., W ≡ 0. In this case, the
McKean–Vlasov SDE (1.1) reduces to a Langevin–Smoluchowski diffusion equation of the form

dXt = −∇V(Xt )dt +
√

2 dBt , 0 ≤ t ≤ T . (1.6)

In particular, the drift term does not depend on the distribution of Xt . Moreover, there is an explicit
stationary distribution (also known as the Gibbs distribution [30,35,52]) with density proportional
to Rn ( x )→ q(x) ! e−V (x). Defining the likelihood ratio function (or Radon–Nikodym derivative)
!t (x)! pt (x)/q(x), the free energy at time t can be expressed as F (pt ) = E[log !t (Xt )], and the result-
ing stochastic process

log !t (Xt ) = log pt (Xt ) +V(Xt ) , 0 ≤ t ≤ T (1.7)

is called free energy or relative entropy process. As shown in [29,40], the time-reversal
(
log !T−s(XT−s)

)
0≤s≤T

of this process is a submartingale, and Itô calculus can be used to obtain its Doob–Meyer decomposition

log !T−s(XT−s) − log !T (XT ) = MT−s + FT−s . (1.8)

Here, (MT−s)0≤s≤T is a martingale and (FT−s)0≤s≤T is an increasing process of finite first variation,
both with explicit expressions. This decomposition describes exactly the rate of relative entropy dissi-
pation along every trajectory of the Langevin–Smoluchowski diffusion. Therefore, it can be viewed as
a trajectorial analogue of the (deterministic) relative entropy dissipation identity (1.5).

Let us now return to our McKean–Vlasov setting. In order to take into account the interaction poten-
tial W , it is natural to consider a generalized relative entropy process of the form

log pt (Xt ) +V(Xt ) + 1
2 (W ∗ Pt )(Xt ) , 0 ≤ t ≤ T . (1.9)
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The task is now to compute the semimartingale decomposition of this process. We will provide a de-
tailed analysis of this extension, which is subtler than might appear at first sight. The main difficulty
is that, even when it exists, the stationary distribution of the McKean–Vlasov diffusion does not have
a closed-form expression and is not even unique in general; see the works [6,20,21,33,54–57]. This
prevents us from defining the likelihood ratio function in a straightforward manner as in the setting of
Langevin–Smoluchowski diffusions, where one can rely on the invariant Gibbs distribution. An appro-
priate definition of the generalized likelihood ratio function turns out to be that (1.9) should be viewed
as a function of the form log !t (Xt,Pt ), depending explicitly on the distribution Pt of Xt itself, in addi-
tion to the state Xt . This form of generalized likelihood ratio function allows us to take the L-derivative
with respect to the probability distribution Pt . The notion of L-differentiation for functions of proba-
bility measures was introduced by Lions [43]. We refer to the monograph [10, Chapter 5] for a detailed
discussion of differential calculus and stochastic analysis over spaces of probability measures. In par-
ticular, we will use a generalized form of Itô’s formula for functions of curves of measures, to derive
the dynamics of the time-reversal of the relative entropy process (1.9), in terms of the semimartingale
decomposition

log !T−s(XT−s,PT−s) − log !T (XT ,PT ) = MT−s + FT−s , 0 ≤ s ≤ T, (1.10)

where (MT−s)0≤s≤T is a martingale and (FT−s)0≤s≤T is a process of finite first variation, both of which
will be explicitly computed. Similar to the case of Langevin–Smoluchowski dynamics, this decompo-
sition can be viewed as the trajectorial rate of relative entropy dissipation. The classical (deterministic)
identity (1.5) can then be recovered by taking expectations.

1.1. Gradient flow structure of the granular media equation

As a first application of our trajectorial approach we obtain a new interpretation of the gradient flow
structure of the granular media equation

∂t pt (x) = div
(
∇pt (x) + pt (x)∇V(x) + pt (x)∇(W ∗ pt )(x)

)
, (t, x) ∈ (0,T) ×Rn, (1.11)

which describes the evolution of the curve of probability density functions (pt )0≤t≤T corresponding to
the McKean–Vlasov diffusion (Xt )0≤t≤T of (1.1). When n = 1, this PDE appears in the modeling of the
time evolution of granular media [7,17,59]; in that context, the granular medium is modeled as system
of particles performing inelastic collisions, and pt (x) is regarded as the velocity of a representative
particle in the system at time t and position x, while V and W represent the friction and the inelastic
collision forces, respectively. Note that in the interaction-free case W ≡ 0, the equation (1.11) reduces
to a linear Fokker–Planck equation. As is well known from [13,14], this curve of probability densities
can be characterized as a gradient flow in Pac,2(Rn), the space of absolutely continuous probability
measures with finite second moments. Roughly speaking, this is an optimality property stating that the
curve (pt )0≤t≤T evolves in the direction of steepest possible descent for the free energy functional (1.2)
with respect to the quadratic Wasserstein distance

W2(µ,ν) =
(

inf
Y∼µ,Z∼ν

E|Y − Z |2
) 1/2
, µ,ν ∈ P2(Rn). (1.12)

The Wasserstein gradient flow structure of the linear Fokker–Planck equation was first discovered by
Jordan, Kinderlehrer and Otto in the seminal work [36]. In the paper [50], Otto and Villani developed
a formal Riemannian structure on the space of probability measures with finite second moments, lead-
ing to heuristic proofs of gradient flow properties as in [49], where the porous medium equation was
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studied. This pioneering approach is often referred to as “Otto calculus”. Later, a rigorous framework
based on minimizing movement schemes and curves of maximal slope was introduced in [3]. Recently,
a trajectorial approach to the gradient flow properties of Langevin–Smoluchowski diffusions [40] and
Markov chains [38] was established. We will follow this approach and adapt it to our McKean–Vlasov
setting. For gradient flows of McKean–Vlasov equations on discrete spaces we refer to [24].

Returning to the setting of this paper, our main result leads to a new formulation of the gradient flow
property of the granular media equation. To show this steepest descent property, the main idea is to
consider a perturbed McKean–Vlasov diffusion of the form

dXt = −
(
∇V(Xt ) + ∇β(Xt ) + ∇(W ∗ Pβ

t )(Xt )
)

dt +
√

2 dBβ
t , t0 ≤ t ≤ T (1.13)

which is constructed by adding a perturbation β : Rn → R to the confinement potential1 of the original
McKean–Vlasov SDE (1.1). In other words, from time t0 onward, the perturbed diffusion drifts in
a direction different from that of the original diffusion, hence the perturbed curve of time-marginal
distributions (Pβ

t )t0≤t≤T also evolves differently from the unperturbed curve (Pt )t0≤t≤T . In parallel
with the unperturbed case, we may compute the dynamics of the perturbed relative entropy process
associated with (1.13). As a consequence, we derive the rate of relative entropy dissipation for the
perturbed McKean–Vlasov diffusion. On the other hand, the rate of change of the Wasserstein distance
along the perturbed curve (Pβ

t )t0≤t≤T can be computed based on the general theory of metric derivative
of absolutely continuous curves, see [3]. Finally, comparing these two rates in both the perturbed and
unperturbed settings, allows us to establish the gradient flow property.

1.2. The HWBI inequality

The second application of our trajectorial approach deals with the HWBI inequality [2, Theorem 4.2],
which is an extension of the HWI inequality [50]. It relates not only relative entropy (H), Wasserstein
distance (W), and relative Fisher information (I), but also barycenter (B). These quantities are defined
as follows: for two probability measures ν, µ ∈ P(Rn), the relative entropy of ν with respect to µ is
defined by

H(ν | µ)!



∫
Rn

dν
dµ

log
(

dν
dµ

)
dµ, if ν. µ

+∞, otherwise,
(1.14)

the relative Fisher information of ν with respect to µ is given by

I(ν | µ)!



∫
Rn

,,,,∇ log
(

dν
dµ

) ,,,,
2

dµ, if ν. µ

+∞, otherwise,
(1.15)

and the barycenter of a probability measure ν ∈ P2(Rn) is defined as b(ν)!
∫
Rn

x dν(x) ∈ Rn, where
the integral is understood as a Bochner integral. Informally, the HWBI inequality then states that any
two probability measures ν0,ν1 ∈ P2(Rn) satisfy

H(ν0 | µ0) − H(ν1 | µ1) ≤
√

I(ν0 | µ↑0)W2(ν0,ν1) − κV+κW
2 W2

2 (ν0,ν1) +
κW
2 |b(ν0) − b(ν1)|2, (1.16)

1As we will see, the steepest descent property is already visible by perturbing the confinement potential from V to V + β, thus
we avoid complicating the setup further by adding another perturbation to the interaction potential W .
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where µ0, µ1, µ↑0 are some appropriate σ-finite reference measures depending on the potentials V , W
(see Subsection 3.3 for the details), and κV , κW ∈ R are the moduli of uniform convexity for V , W .
This inequality describes the evolution of the relative entropy along the displacement interpolation
(νt )0≤t≤1 between ν0 and ν1. Compared with the HWI inequality, there are two additional terms on the
right-hand side of (1.16) contributed by the interaction energy functional W of (1.3). Intuitively, the
κW -uniform convexity of W leads to the first additional term − κW

2 W2
2 (ν0,ν1), which alone would cor-

respond to the κW -uniform displacement convexity of W along (νt )0≤t≤1. But since W(p) is invariant
under any translation of p, the functional W might fail to be uniformly displacement convex when the
barycenter shifts. This suggests that the barycentric shift along (νt )0≤t≤1 should be factored out of the
consideration of the displacement convexity of W, which is intuitively why the second additional term
κW
2 |b(ν0) − b(ν1)|2 in (1.16) appears.
Coming back to our second application, we illustrate how our approach yields a trajectorial proof of

the inequality (1.16), in the slightly strengthened form of [18, Theorem 4.1] and [25, Theorem D.50].
Much of this consists of arguments similar in spirit to our main result (1.10), but with one key differ-
ence: instead of the time-marginals of the McKean–Vlasov diffusion, we apply the trajectorial approach
to the displacement interpolation (νt )0≤t≤1. In this regard, our derivation can be seen as a generaliza-
tion of the trajectorial proof of the HWI inequality in [40, Section 4.2]; see also [38, Section 9.4], where
the same idea was used to derive a discrete version of the HWI inequality in a Riemannian-geometric
framework. Let us also point out that for the proof of the HWBI inequality we shall impose convexity
assumptions (see Assumptions 3.18) on the potentials V , W . We do not require these assumptions in
the rest of the paper.

In the literature, similar trajectorial approaches have also been applied in the context of martingale
inequalities [1,5], functional inequalities [4,15,31,41], and their stability estimates [22,23]. In particular,
we refer to [4, Corollary 1.4] for a related HWI inequality derived from the entropic interpolation of
the mean-field Schrödinger problem.

1.3. Organization of the paper

We set up the probabilistic framework and discuss some regularity assumptions in Section 2. In Section
3 we state our main trajectorial results, Theorem 3.1 and Theorem 3.9, and develop two explicit exam-
ples for illustration. As immediate consequences, we derive the classical relative entropy dissipation
identities in Corollary 3.4 and Corollary 3.10. Building on these results, we formulate the gradient flow
property of the granular media equation in Theorem 3.15. The HWBI inequality is then stated in Theo-
rem 3.19. The proofs of the trajectorial results and of the HWBI inequality are developed in Section 4.
Some proofs of auxiliary results postponed in previous sections are contained in Section 5.

2. The probabilistic framework

2.1. The setting

We fix a terminal time T ∈ (0,∞) and let Ω! C([0,T];Rn) be the path space of Rn-valued continuous
functions defined on [0,T]. We denote by (Xt )0≤t≤T the canonical process defined by Xt (ω)! ω(t) for
ω ∈ Ω, and fix a probability distribution P0 ∈ Pac,2(Rn).

As will be shown in Lemma 2.2, under the Assumptions 2.1 below, the SDE (1.1) with initial distri-
bution P0 has a unique strong solution, when it is posed on an arbitrary filtered probability space. This
implies that there exists a probability measure P on Ω and a P-Brownian motion (Bt )0≤t≤T such that
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the SDE (1.1) holds. We write F = (Ft )0≤t≤T for the right-continuous augmentation of the canonical
filtration.

For each time t ∈ [0,T], we denote by Pt ! P ◦ X−1
t the distribution of Xt under P, and by pt the cor-

responding probability density function on Rn. The density functions (pt )0≤t≤T then solve the granular
media equation (1.11).

2.2. Regularity assumptions

Assumptions 2.1. The following regularity assumptions will be used frequently.

(i) The functions V,W : Rn → [0,∞) are smooth and have Lipschitz continuous gradients with
Lipschitz constants ‖∇V ‖Lip, ‖∇W ‖Lip. All derivatives of V and W grow at most exponentially
as |x | tends to infinity, and the first derivatives are of linear growth. The latter condition means
that there exists a constant C > 0 such that

∀ x ∈ Rn : |∇V(x)| ≤ C(1 + |x |) , |∇W(x)| ≤ C(1 + |x |). (2.1)

Furthermore, the function W is even (in other words, symmetric), i.e., W(x) =W(−x) for all
x ∈ Rn.

(ii) The probability distribution P0 is an element of the space Pac,2(Rn) and the corresponding
probability density function Rn ( x )→ p0(x) is strictly positive. Moreover, the initial free en-
ergy F (p0) is finite.

These assumptions ensure that the equation (1.1) belongs to a broad class of strongly solvable
McKean–Vlasov SDEs. We relegate the proof of the following result to Subsection 5.1.

Lemma 2.2. Suppose Assumptions 2.1 hold. Then on an arbitrary filtered probability space, the
McKean–Vlasov SDE (1.1) has a pathwise unique, strong solution (Xt )0≤t≤T satisfying

E

[
sup

0≤t≤T
|Xt |2

]
<∞. (2.2)

Moreover, its marginal distributions (Pt )0≤t≤T belong to Pac,2(Rn), and the corresponding curve of
probability density functions (pt )0≤t≤T is a classical solution of the granular media equation (1.11).

2.3. Probabilistic representations of gradient flow functionals

To set up our framework, the first step is to express the free energy as well as the relative en-
tropy dissipation functional in probabilistic terms. To this end, we introduce the generalized potential
Ψ : Rn ×P2(Rn)→ [0,∞) and its close relative Ψ↑ given by

Ψ(x, µ)! V(x) + 1
2 (W ∗ µ)(x) , Ψ↑(x, µ)! V(x) + (W ∗ µ)(x) (2.3)

for (x, µ) ∈ Rn ×P2(Rn). Furthermore, we define the density functions

q(x, µ)! e−Ψ(x,µ) , q↑(x, µ)! e−Ψ
↑(x,µ) , q↓(x)! e−V (x) (2.4)
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and the corresponding generalized likelihood ratio functions

!t (x, µ)!
pt (x)

q(x, µ) , !↑t (x, µ)!
pt (x)

q↑(x, µ)
, !↓t (x)!

pt (x)
q↓(x)

(2.5)

for t ∈ [0,T]. Note that if W ≡ 0, these three likelihood ratio functions coincide.
For each time t ∈ [0,T], we introduce σ-finite measures on the Borel sets of Rn, given by

Qt (A)!
∫
A

q(x,Pt )dx , Q↑
t (A)!

∫
A

q↑(x,Pt )dx , A ∈ B(Rn). (2.6)

Intuitively, these measures are (unnormalized) time-dependent Gibbs distributions. If W ≡ 0, they co-
incide with the true Gibbs distribution of the Langevin–Smoluchowski equation (1.6), which is also its
stationary distribution (when normalized to a probability measure).

With these definitions, we can now write the gradient flow functionals F and D , introduced in (1.2)
and (1.4), in probabilistic terms: the relative entropy (defined in (1.14)) of Pt with respect to Qt and the
relative Fisher information (defined in (1.15)) of Pt with respect to Q↑

t can be expressed respectively as

H(Pt |Qt ) = EP
[

log !t (Xt,Pt )
]
, I(Pt |Q↑

t ) = EP
[
|∇ log !↑t (Xt,Pt )|2

]
; (2.7)

and we have the relations H(Pt |Qt ) =F (Pt ) as well as I(Pt |Q↑
t ) = D(Pt ). In particular, the relative

entropy H(Pt |Qt ) can be written as the P-expectation of the relative entropy process

log !t (Xt,Pt ) = log pt (Xt ) +V(Xt ) + 1
2 (W ∗ Pt )(Xt ) , 0 ≤ t ≤ T . (2.8)

The dynamics of this stochastic process, together with its perturbed counterpart to be introduced in
Subsection 3.2 below, will be our main objects of interest.

Remark 2.3. If the reference measure Qt in (2.6) is a probability measure, then the expression (2.7)
matches the classical definition of relative entropy given in (1.14). In the general case when Qt is a σ-
finite measure, the definition (1.14) is also valid under the condition that Pt has finite second moment,
with the only difference that the range of the function t )→ H(Pt |Qt ) is extended from [0,∞] to (−∞,∞];
we refer to [39, Appendix C] or [19, Section 3] for the details.

3. Main results

3.1. Trajectorial dissipation of relative entropy for McKean–Vlasov diffusions

Our first main result is the semimartingale decomposition of the relative entropy process (2.8). It de-
scribes the dissipation of relative entropy along every trajectory of a particle undergoing the McKean–
Vlasov dynamics (1.1). In the same spirit as the trajectorial approaches of [29] and [40], we shall study
the dynamics of the relative entropy process in the backward direction of time. Concretely, we consider
for arbitrary, fixed T ∈ (0,∞) the time-reversed canonical process

Xs ! XT−s , 0 ≤ s ≤ T (3.1)

on the filtered probability space (Ω,G,P), whereG = (Gs)0≤s≤T is the P-augmented filtration generated
by (Xs)0≤s≤T .
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In order to formulate Theorem 3.1 below, we introduce the time-reversed Fisher information process

Is !
(,,∇ log !↓s

,,2 + 1
2
,,∇(W ∗ Ps)

,,2 + 〈 1
2∇(W ∗ Ps) , 2∇ log !↓s + ∇V

〉)
(Xs)

− EP̃
[〈

1
2∇W(Xs −Ys) ,

(
2∇ log !↓s − ∇V + ∇(W ∗ Ps)

)
(Ys)

〉] (3.2)

for 0 ≤ s ≤ T . Here, the process (Ys)0≤s≤T is defined on another probability space (Ω̃,G̃, P̃) such that
the tuple (Ω̃,G̃, P̃,(Ys)0≤s≤T ) is an exact copy of (Ω,G,P,(Xs)0≤s≤T ). A bar over a letter means that
time is reversed as in (3.1).

We also define the time-reversed cumulative Fisher information process as the time integral

Fs !
∫ s

0
Iu du , 0 ≤ s ≤ T . (3.3)

This process will act as the compensator in the semimartingale decomposition of the relative entropy
process (2.8). Its relation with the relative Fisher information (2.7) will be given in (3.7) below.

Theorem 3.1. Suppose Assumptions 2.1 hold. On (Ω,G,P), the time-reversed relative entropy process

log !s(Xs,Ps) = log !T−s(XT−s,PT−s) , 0 ≤ s ≤ T (3.4)

admits the semimartingale decomposition

log !s(Xs,Ps) − log !0(X0,P0) = Ms + Fs . (3.5)

Here (Ms)0≤s≤T is the L2(P)-bounded martingale

Ms !
∫ s

0

〈
∇ log !u(Xu,Pu) ,

√
2 dBu

〉
, (3.6)

with (Bs)0≤s≤T a P-Brownian motion of the backward filtration G, and the compensator (Fs)0≤s≤T
satisfies

EP
[
Fs
]
=

∫ s

0
I
(
Pu

,,Q↑
u
)

du = EP
[ ∫ s

0

,,∇ log !↑u(Xu,Pu)
,,2 du

]
<∞. (3.7)

3.1.1. Examples

We give two concrete examples to illustrate Theorem 3.1.

Example 3.2. We set n = 1 and specialize Theorem 3.1 to the case of quadratic confinement potential
V(x) = x2

2 and no interaction potential W ≡ 0. The initial position X0 is chosen to be independent of
(Bt )0≤t≤T and to be normally distributed with mean 0 and variance σ2

0 > 0. In this case, the SDE of
(1.1) becomes

dXt = −Xt dt +
√

2 dBt , 0 ≤ t ≤ T (3.8)

and its solution is given by the Ornstein–Uhlenbeck process

Xt = e−t X0 +
√

2
∫ t

0
eu−t dBu , 0 ≤ t ≤ T (3.9)
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Figure 1. Simulations of the cumulative Fisher information process (3.11) for the Ornstein–Uhlenbeck diffusion
(3.8).

with probability density function

pt (x) = 1√
2πσ2

t

exp
(
− x2

2σ2
t

)
, σ2

t ! 1 + e−2t (σ2
0 − 1). (3.10)

Recalling (2.3) – (2.5) and using (3.10), we see that in this setting the cumulative Fisher information
process of (3.3) is explicitly given by

FOU
s =

∫ s

0

(
∇ log !↓u(Xu)

) 2
du =

∫ s

0

(
∇ log pu(Xu) + Xu

) 2
du =

∫ s

0

(
1 − 1

σ2
u

) 2 X2
u du (3.11)

for 0 ≤ s ≤ T . In particular, the non-negativity of the integrand in (3.11) implies that the relative entropy
decreases along almost every trajectory.

Now we set T = 1 and σ2
0 = 0.1. The blue lines in Figure 1 represent ten simulated trajectories

s )→ FOU
s (ωi), for i = 1, . . . ,10. The thick black line plots the expected path s )→ EP[FOU

s ] of all possible
trajectories.

Example 3.3. We set again n = 1 and now consider the case of no confinement potential V ≡ 0,
quadratic interaction potential W(x) = x2

2 , and a centered Gaussian initial position X0 with variance
σ2

0 > 0, which is independent of the Brownian motion (Bt )t≥0. In this case, for any t ≥ 0, the drift term
of the SDE of (1.1) is

− ∇(W ∗ Pt )(Xt ) = −
∫
Rn

∇W(Xt − y)pt (y)dy = −
(
Xt − E[Xt ]

)
. (3.12)
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In particular, the drift term depends on the distribution Pt only through its mean. Substituting it into
(1.1), this SDE reduces to

dXt = −
(
Xt − E[Xt ]

)
dt +

√
2 dBt , 0 ≤ t ≤ T . (3.13)

This type of nonlinear, self-interacting SDE has been studied since [6], where it was shown that its
solution is also given by the Ornstein–Uhlenbeck process of (3.9). Therefore, similar computations as
in Example 3.2 show that in this setting the cumulative Fisher information process is given by

FNL
s =

∫ s

0

( ( 1
σ4

u
+ 1

2 − 1
σ2

u

)
X2
u + EP̃

[
1
2 (Xu −Yu)

( 2
σ2

u
Yu −Yu

) ] )
du (3.14)

for 0 ≤ s ≤ T . Using the fact that (Xu)#(P̃) = (Yu)#(P̃) =N(0,σ2
u), which we have from (3.10), we can

compute the expectation appearing in (3.14) and obtain

FNL
s =

∫ s

0

( ( 1
σ4

u
+ 1

2 − 1
σ2

u

)
X2
u +

σ2
u

2 − 1
)

du. (3.15)

Clearly, FOU
s " FNL

s . In particular, the integrand in (3.15) is non-negative if and only if

X2
u ≥

( 1
σ4

u
+ 1

2 − 1
σ2

u

) −1 (1 − σ2
u

2
)
.

In other words, as opposed to Example 3.2, relative entropy only decreases along a trajectory if Xu is
far from its mean. However, after taking expectations in (3.11) and (3.15), we see that the expected rate
of relative entropy dissipation in both cases is equal to

EP
[
FOU
s

]
= EP

[
FNL
s

]
=

∫ s

0

(
σu − 1

σu

) 2 du , 0 ≤ s ≤ T . (3.16)

Now we set again T = 1 and σ2
0 = 0.1. In the same vein as in Figure 1, we plot in Figure 2 the

paths of ten simulated trajectories s )→ FNL
s (ωi), for i = 1, . . . ,10. We observe that some of the red lines

describing the paths of these trajectories indeed take negative values. In other words, the cumulative
Fisher information process of (3.15), and hence its integrand, can both be negative. Finally, the thick
black line in Figure 2 follows the expected path s )→ EP[FNL

s ] of all possible trajectories. According to
(3.16), this is the same black line as in Figure 1.

3.1.2. Consequences of Theorem 3.1

We now return to the general statement of Theorem 3.1 and deduce some direct consequences. By
averaging the trajectorial result of Theorem 3.1 according to the path measure P, we derive the well-
known relative entropy identity (3.17) and the dissipation of relative entropy (3.18) below. A sketch of
proof for the latter result was first given in [13, Proposition 2.1].

Corollary 3.4. Suppose Assumptions 2.1 hold. For all t, t0 ∈ [0,T], we have the relative entropy identity

H(Pt |Qt ) − H(Pt0 |Qt0) = −
∫ t

t0

I(Pu |Q↑
u)du. (3.17)
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Figure 2. Simulations of the cumulative Fisher information process (3.15) for the nonlinear, self-interacting diffu-
sion (3.13).

In particular, the relative entropy function t )→ H(Pt |Qt ) is monotonically decreasing. Furthermore,
for Lebesgue-a.e. t ∈ [0,T], the relative Fisher information I(Pt |Q↑

t ) is finite, and the rate of relative
entropy dissipation is given by

d
dt H(Pt |Qt ) = −I(Pt |Q↑

t ). (3.18)

Proof. The identity (3.17) follows by taking expectations with respect to the probability measure P
in (3.5), recalling the definitions of (2.7), using (3.7), and invoking the fact that the P-expectation of
the martingale (3.6) vanishes. Finally, applying the Lebesgue differentiation theorem to the monotone
function t )→ H(Pt |Qt ) gives (3.18).

Remark 3.5. The relation (3.18) describes the temporal dissipation of relative entropy at the ensemble
level. It asserts that the rate of decay of the relative entropy t )→ H(Pt |Qt ) is given by the relative Fisher
information I(Pt |Q↑

t ).

Finally, let us place ourselves again on the filtered probability space (Ω,G,P) as in Theorem 3.1 and
emphasize that this trajectorial result is valid along almost every trajectory s )→ Xs(ω) of the underlying
McKean–Vlasov process. As a consequence, by taking conditional expectations, we can generalize
(3.18) and deduce the following trajectorial rate of relative entropy dissipation.

Corollary 3.6. Suppose Assumptions 2.1 hold and
∫ T

0 EP[|Iu |]du <∞. For P-a.e. ω ∈ Ω there exists a
Lebesgue null set Nω ⊆ [0,T] such that for any s0 ∈ [0,T] \ Nω we have

lim
s↓s0

EP
[

log !s(Xs,Ps) | Gs0

]
(ω) − log !s0

(
Xs0(ω),Ps0

)
s − s0

= Is0(ω). (3.19)
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Remark 3.7. Recalling (3.7), we observe that EP[Is0 ] = I(Ps0 |Q
↑
s0). Therefore the limiting assertion

(3.19) can indeed be viewed as a trajectorial version of the deterministic relative entropy dissipation
identity (3.18).

Proof. We let 0 ≤ s0 ≤ s ≤ T . By (3.5), (3.3) and Fubini’s theorem, we have for P-a.e. ω ∈ Ω

EP
[

log !s(Xs,Ps) | Gs0

]
(ω) − log !s0

(
Xs0(ω),Ps0

)
=

∫ s

s0

EP
[
Iu | Gs0

]
(ω)du. (3.20)

Furthermore, Jensen’s inequality gives

EP

[ ∫ s

s0

,,EP [Iu | Gs0

] ,,du
]
≤
∫ s

s0

EP
[
|Iu |

]
du <∞, (3.21)

which implies ∫ s

s0

,,EP [Iu | Gs0

]
(ω)

,,du <∞ for P-a.e. ω ∈ Ω. (3.22)

By the Lebesgue differentiation theorem, for every such ω there exists a Lebesgue null set Nω ⊆ [0,T]
so that the limiting assertion

lim
s↓s0

∫ s

s0
EP

[
Iu | Gs0

]
(ω)du

s − s0
= EP

[
Is0 | Gs0

]
(ω) = Is0(ω) (3.23)

holds for every s0 ∈ [0,T] \ Nω . Finally, combining (3.20) and (3.23) proves (3.19).

3.2. Gradient flow structure of the granular media equation

In this subsection we apply the trajectorial approach of Subsection 3.1 in order to formulate the gradient
flow property of the granular media equation (1.11). To this end, we consider a function β : Rn → R,
which will be treated as a perturbation potential. We denote by Vβ ! V + β the perturbed confinement
potential and invoke the following regularity assumptions.

Assumptions 3.8. The function β : Rn → R is smooth and compactly supported, and we require that
Assumptions 2.1 are still satisfied if we replace V by Vβ .

Note that Assumptions 3.8 allow us to apply Lemma 2.2 to the “perturbed” McKean–Vlasov SDE

dXt = −
(
∇Vβ(Xt ) + ∇(W ∗ Pβ

t )(Xt )
)

dt +
√

2 dBβ
t , t0 ≤ t ≤ T (3.24)

starting at time t0 ≥ 0, with Xt0 having initial distribution Pβ
t0
= Pt0 . Therefore, by analogy with Subsec-

tion 2.1, we can construct a probability measure Pβ on Ω ! C([t0,T];Rn), under which the canonical
process (Xt )t0≤t≤T satisfies the SDE (3.24), with (Bβ

t )t0≤t≤T being a Pβ-Brownian motion.
For each time t ∈ [t0,T], we denote by Pβ

t ! P
β ◦ X−1

t the probability distribution and by pβt the
probability density function of Xt under Pβ . The “perturbed” curve of density functions (pβt )t0≤t≤T
then satisfies the perturbed granular media equation



∂t p

β
t (x) = div

(
∇pβt (x) + pβt (x)∇Vβ(x) + pβt (x)∇(W ∗ pβt )(x)

)
, (t, x) ∈ (t0,T) ×Rn,

pβt0(x) = pt0(x) , x ∈ Rn.
(3.25)
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By analogy with (2.3), we define the perturbed potentials

Ψβ(x, µ)! Vβ(x) + 1
2 (W ∗ µ)(x) , Ψβ↑(x, µ)! Vβ(x) + (W ∗ µ)(x) , Ψβ↓ ! Vβ (3.26)

for (x, µ) ∈ Rn ×P2(Rn). In parallel to (2.5), we introduce the perturbed likelihood ratio functions

!βt (x, µ)!
pβt (x)
q(x, µ) , !β↑t (x, µ)!

pβt (x)
q↑(x, µ)

, !β↓t (x)!
pβt (x)
q↓(x)

(3.27)

for t ∈ [t0,T]. Finally, we define the σ-finite measures

Qβ
t (A)!

∫
A

q(x,Pβ
t )dx , Qβ↑

t (A)!
∫
A

q↑(x,Pβ
t )dx , A ∈ B(Rn). (3.28)

They are the perturbed versions of the measures Qt and Q↑
t defined in (2.6). The relative entropy of Pβ

t

with respect to Qβ
t is then given by

H
(
Pβ
t

,,Qβ
t

)
= EPβ

[
log !βt (Xt,P

β
t )

]
=F (Pβ

t ) (3.29)

and the relative Fisher information of Pβ
t with respect to Qβ↑

t equals

I
(
Pβ
t

,,Qβ↑
t

)
= EPβ

[,,∇ log !β↑t (Xt,P
β
t )

,,2] =D(Pβ
t ). (3.30)

The following trajectorial result, Theorem 3.9 below, provides the semimartingale decomposition of
the perturbed relative entropy process

log !βt (Xt,P
β
t ) = log pβt (Xt ) +V(Xt ) + 1

2 (W ∗ Pβ
t )(Xt ) , t0 ≤ t ≤ T . (3.31)

In line with its unperturbed counterpart, Theorem 3.1, we shall formulate this result in the reverse direc-
tion of time. We first introduce the perturbed analogues of (3.2) and (3.3): the time-reversed perturbed
Fisher information process is defined as

Iβs !
(,,∇ log !β↓s

,,2 + 1
2
,,∇(W ∗ Pβ

s )
,,2 + 〈 1

2∇(W ∗ Pβ
s ) , 2∇ log !β↓s + ∇Vβ

〉)
(Xs) (3.32)

− EP̃β
[〈

1
2∇W(Xs −Ys) ,

(
2∇ log !β↓s − ∇V + ∇(W ∗ Pβ

s ) + ∇β
)
(Ys)

〉]
(3.33)

+
(
〈∇V ,∇β〉 − ∆β

)
(Xs) (3.34)

for all 0 ≤ s ≤ T − t0, where (Ys)0≤s≤T−t0 is a copy of the process (Xs)0≤s≤T−t0 on a copy (Ω̃,G̃, P̃β)
of the original probability space (Ω,G,Pβ); the perturbed cumulative Fisher information process is
defined as

Fβ
s !

∫ s

0
Iβu du , 0 ≤ s ≤ T − t0. (3.35)

Theorem 3.9. Suppose Assumptions 3.8 hold. On (Ω,G,Pβ), the time-reversed perturbed relative en-
tropy process

log !βs (Xs,P
β
s ) = log !βT−s(XT−s,P

β
T−s) , 0 ≤ s ≤ T − t0 (3.36)
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admits the semimartingale decomposition

log !βs (Xs,P
β
s ) − log !β0 (X0,P

β
0 ) = Mβ

s + Fβ
s . (3.37)

Here (Mβ
s )0≤s≤T−t0 is the L2(Pβ)-bounded martingale

Mβ
s !

∫ s

0

〈
∇ log !βu (Xu,P

β
u ) ,

√
2 dBβ

u

〉
, (3.38)

with (Bβ
s )0≤s≤T−t0 a Pβ-Brownian motion of the backward filtration G, and the compensator (3.35)

satisfies

EPβ
[
Fβ
s

]
=

∫ s

0

(
I
(
Pβ
u

,,Qβ↑
u
)
+ EPβ

[ (〈
∇V + ∇(W ∗ Pβ

u ) ,∇β
〉
− ∆β

)
(Xu)

] )
du <∞. (3.39)

With the dynamics of the time-reversed perturbed relative entropy process at hand, we repeat the
same procedure which was carried out for the unperturbed case. Taking expectations with respect to
the probability measure Pβ , we arrive at the perturbed relative entropy identity (3.40), and applying the
Lebesgue differentiation theorem gives the perturbed relative entropy production identity (3.41).

Corollary 3.10. Suppose Assumptions 3.8 hold. For all 0 ≤ t0 ≤ t ≤ T, we have the perturbed relative
entropy identity

H
(
Pβ
t

,,Qβ
t

)
− H

(
Pβ
t0

,,Qβ
t0

)

= −
∫ t

t0

(
I
(
Pβ
u

,,Qβ↑
u
)
+ EPβ

[ (〈
∇V + ∇(W ∗ Pβ

u ) ,∇β
〉
− ∆β

)
(Xu)

] )
du.

(3.40)

For Lebesgue-a.e. t0 ∈ [0,T], the perturbed rate of relative entropy dissipation is given by

d
dt

,,,+
t=t0

H
(
Pβ
t

,,Qβ
t

)
= −

(
I
(
Pt0

,,Qt0

)
+ EP

[ (〈
∇V + ∇(W ∗ Pt0) ,∇β

〉
− ∆β

)
(Xt0 )

] )
. (3.41)

Similarly, we have the following trajectorial rate of relative entropy dissipation for the perturbed
diffusion.

Corollary 3.11. Suppose Assumptions 3.8 hold and
∫ T−t0

0 EPβ [|I
β
u |]du <∞. For Pβ-a.e. ω ∈ Ω there

exists a Lebesgue null set Nβ
ω ⊆ [0,T − t0] such that for any s0 ∈ [0,T − t0] \ Nβ

ω we have

lim
s↓s0

EPβ
[

log !βs (Xs,P
β
s ) | Gs0

]
(ω) − log !βs0

(
Xs0 (ω),P

β
s0

)
s − s0

= Iβs0(ω). (3.42)

Proof. The proof proceeds almost verbatim as the proof of Corollary 3.6. The only difference is that
we now use the semimartingale decomposition (3.37) and the Pβ-martingale property of the process
(3.38) in Theorem 3.9.

We now turn to the computation of the rate of change of the Wasserstein distance along the curve of
probability distributions (Pβ

t )t0≤t≤T . To this end, we set

v
β
t (x)! −

(
∇ log pβt + ∇Vβ + ∇(W ∗ pβt )

)
(x) , (t, x) ∈ [t0,T] ×Rn, (3.43)
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so that the perturbed granular media equation (3.25) can be viewed as a continuity equation

∂tp
β
t (x) + div

(
vβt (x) pβt (x)

)
= 0 , (t, x) ∈ (t0,T) ×Rn, (3.44)

with vβt ( · ) as the corresponding velocity field. We recall the definition of the tangent space (see Defi-
nition 8.4.1 in [3])

Tanµ P2(Rn)! {∇ϕ : ϕ ∈ C∞
c (Rn;R)}L

2(µ)
(3.45)

of P2(Rn) at the point µ ∈ P2(Rn), and impose the following additional assumptions.

Assumptions 3.12. In addition to Assumptions 3.8, we suppose that

vt ( · ) ∈ TanPt P2(Rn) for Lebesgue-a.e. t ∈ [0,T], (3.46)

where vt ( · ) is obtained by taking β ≡ 0 and t0 = 0 in (3.43).

Remark 3.13. For example, we know from [3, Theorem 10.4.13] that the condition (3.46) is satisfied
if, in addition to Assumptions 3.8, V is uniformly convex, i.e., Hess(V) ≥ κV In for some real constant
κV , and W is a convex function satisfying the doubling condition

∃CW > 0 such that ∀ x, y ∈ Rn : W(x + y) ≤ CW
(
1 +W(x) +W(y)

)
. (3.47)

The proof of the following result is based on the general theory of Wasserstein metric derivatives of
absolutely continuous curves in Pac,2(Rn); for a thorough discussion, we refer to Chapter 8 in [3].

Lemma 3.14. Suppose Assumptions 3.12 hold. For Lebesgue-a.e. t0 ∈ [0,T], the Wasserstein metric
derivative of the perturbed curve (Pβ

t )t0≤t≤T is equal to

lim
t↓t0

W2
(
Pβ
t ,P

β
t0

)
t − t0

=
77vβt0(Xt0 )

77
L2(P) =

77∇ log !↑t0(Xt0,Pt0) + ∇β(Xt0 )
77
L2(P). (3.48)

Proof. Without loss of generality we can set β ≡ 0. Note that from (3.7) we have
∫ T

0

∫
Rn

|vt (x)|2 dpt (x)dt = EP
[ ∫ T

0

,,∇ log !↑t (Xt,Pt )
,,2 dt

]
<∞, (3.49)

which implies that vt ( · ) ∈ L2(Pt ) for Lebesgue-a.e. t ∈ [0,T]. Therefore we can apply Theorem 8.3.1
and Proposition 8.4.5 of [3] to the absolutely continuous curve (Pt )0≤t≤T , which yields (3.48).

We now have all the ingredients to formulate the gradient flow property of the granular media equa-
tion. The Wasserstein metric slope of the free energy functional F along the McKean–Vlasov curve
(Pt )t0≤t≤T is defined as

,,∂F ,,
W2

(Pt0)! lim
t↓t0

H(Pt |Qt ) − H(Pt0 |Qt0)
W2(Pt,Pt0)

. (3.50)

In order to show that this is the slope of steepest descent, we will compare it with the slope

,,∂F β
,,
W2

(
Pβ
t0

)
! lim

t↓t0

H
(
Pβ
t

,,Qβ
t

)
− H

(
Pβ
t0

,,Qβ
t0

)
W2

(
Pβ
t ,P

β
t0

) (3.51)
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along the perturbed curve (Pβ
t )t0≤t≤T .

Theorem 3.15. Suppose Assumptions 3.12 hold. Then the following assertions hold for Lebesgue-a.e.
t0 ∈ [0,T]: the random variables

L↑
t0
! ∇ log !↑t0 (Xt0,Pt0) and Bt0 ! ∇β(Xt0 ) (3.52)

are elements of L2(P), and the Wasserstein metric slope of the free energy functional F along the
McKean–Vlasov curve (Pt )t0≤t≤T is given by

,,∂F ,,
W2

(Pt0) = −
77L↑

t0

77
L2(P). (3.53)

If L↑
t0
+Bt0 " 0, the metric slope along the perturbed curve (Pβ

t )t0≤t≤T is equal to

,,∂F β
,,
W2

(
Pβ
t0

)
= −

〈
L↑

t0
,

L↑
t0
+Bt077L↑

t0
+Bt0

77
L2(P)

〉
L2(P)
. (3.54)

In particular, ,,∂F ,,
W2

(Pt0) ≤
,,∂F β

,,
W2

(
Pβ
t0

)
(3.55)

with equality if and only if L↑
t0
+Bt0 is a positive multiple of L↑

t0
.

Proof. The equality (3.53) follows from (3.18) and by taking β ≡ 0 in (3.48). For the proof of (3.54),
we first observe that from (3.41) and (3.48) we obtain the equality

,,∂F β
,,
W2

(
Pβ
t0

)
= −

77L↑
t0

772
L2(P) + EP

[ (〈
∇V + ∇(W ∗ Pt0) ,∇β

〉
− ∆β

)
(Xt0 )

]
77L↑

t0
+Bt0

77
L2(P)

(3.56)

for Lebesgue-a.e. t0 ∈ [0,T]. Integrating by parts and recalling the notations in (2.3) – (2.5), we find
that the expectation in the numerator of (3.56) is equal to∫

Rn

〈
log∇!↑t0(x) ,∇β(x)

〉
pt0 (x)dx =

〈
L↑

t0
, Bt0

〉
L2(P)
. (3.57)

Now (3.55) follows by the Cauchy–Schwarz inequality.

3.3. A trajectorial proof of the HWBI inequality

In this subsection, we show how our trajectorial approach can be adapted to give a simple proof of
the HWBI inequality. While the techniques that will be used are similar, the setting of this section is
independent from the rest of the paper. In particular, we shall impose convexity assumptions on the
potentials V , W .

We fix two probability measures ν0 and ν1 in Pac,2(Rn). By Brenier’s theorem [9], there exists a
convex function ϕ : Rn → R such that

W2
2 (ν0,ν1) =

∫
Rn

|x − ∇ϕ(x)|2 dν0(x). (3.58)
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The displacement interpolation of McCann [46] between ν0 and ν1 is given by

νt ! (Tt )#ν0 , Tt (x)! (1 − t)x + t∇ϕ(x) , 0 ≤ t ≤ 1. (3.59)

In particular, since the endpoints ν0 and ν1 belong to Pac,2(Rn), each νt has a probability density
function ρt ; see, e.g., [58, Remarks 5.13 (i)].

As before, we consider a confinement potential V and an interaction potential W . For each t ∈ [0,1],
we then define by analogy with (2.6), the σ-finite measures

µt (A)!
∫
A

q(x,νt )dx , µ↑t (A)!
∫
A

q↑(x,νt )dx , A ∈ B(Rn), (3.60)

where we recall the definitions of the density functions q and q↑ in (2.4). In parallel to the likelihood
ratio functions in (2.5), we define

rt (x,ν)!
ρt (x)

q(x,ν) , r↑t (x,ν)!
ρt (x)

q↑(x,ν)
, (t, x,ν) ∈ [0,1] ×Rn ×P2(Rn). (3.61)

Then the relative entropy of νt with respect to µt is given by

H(νt | µt ) =
∫
Rn
ρt (x) log rt (x,νt )dx (3.62)

and the relative Fisher information of νt with respect to µ↑t is equal to

I
(
νt | µ↑t

)
=

∫
Rn

|∇ log r↑t (x,νt )|2 ρt (x)dx. (3.63)

We impose the following regularity conditions for Proposition 3.17, noting that the strong assump-
tions placed on ρ0 and ρ1 are only temporary and will be removed in Assumptions 3.18 of Theorem
3.19.

Assumptions 3.16. The functions V,W : Rn → [0,∞) are smooth and W is symmetric. The probability
density functions ρ0 and ρ1 are smooth, compactly supported and strictly positive in the interior of
their respective supports.

Proposition 3.17. Suppose Assumptions 3.16 hold. Along the displacement interpolation (νt )0≤t≤1,
the rate of relative entropy dissipation at time t = 0, with respect to the “reference curve of probability
measures” (µt )0≤t≤1, is given by

d
dt

,,,+
t=0

H(νt | µt ) =
∫
Rn

〈
∇ log r↑0 (x,ν0) ,∇ϕ(x) − x

〉
ρ0(x)dx. (3.64)

Combining Proposition 3.17 with the displacement convexity results of McCann [46], we obtain the
following generalization of the HWBI inequality. Equivalent versions of this inequality can be found
in [18, Theorem 4.1] and [25, Theorem D.50].

Assumptions 3.18. The functions V,W : Rn → [0,∞) are smooth and W is symmetric. Furthermore,
V and W are uniformly convex, i.e., there exist real constants κV and κW such that

Hess(V) ≥ κV In , Hess(W) ≥ κW In. (3.65)
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Theorem 3.19. Suppose Assumptions 3.18 hold and the relative entropy H(ν1 | µ1) is finite. Then

H(ν0 | µ0) − H(ν1 | µ1) ≤ −
∫
Rn

〈
∇ log r↑0 (x,ν0) ,∇ϕ(x) − x

〉
ρ0(x)dx (3.66)

− κV+κW
2 W2

2 (ν0,ν1) +
κW
2 |b(ν0) − b(ν1)|2. (3.67)

Remark 3.20. By the Cauchy–Schwarz inequality, the right-hand side of (3.66) can be bounded from
above by

√∫
Rn

,,∇ log r↑0 (x,ν0)
,,2 ρ0(x)dx

√∫
Rn

|∇ϕ(x) − x |2 ρ0(x)dx =
√

I(ν0 | µ↑0) W2(ν0,ν1), (3.68)

and we obtain the usual form of the HWBI inequality (1.16); see also [2, Theorem 4.2].

4. Proofs of the main results

This section is devoted to the proofs of the results stated in Section 3. We shall first prove the main
trajectorial results: Theorem 3.1 and its “perturbed” counterpart, Theorem 3.9.

4.1. The proofs of Theorem 3.1 and Theorem 3.9

Since Theorem 3.1 follows immediately from Theorem 3.9 by setting the perturbation β : Rn → R to
be the zero function, we start with the general setting of Theorem 3.9. We first recall a classical result
concerning the time reversal of diffusions.

Lemma 4.1 ([32, Theorem 2.1], [39, Theorems G.2, G.5]). Suppose Assumptions 3.8 hold. On the
probability space (Ω,G,Pβ), the process

Bβ
s ! Bβ

T−s − Bβ
T −

√
2
∫ s

0
∇ log pβu (Xβ

u )du , 0 ≤ s ≤ T − t0 (4.1)

is a Brownian motion. Moreover, the time-reversed canonical process (Xs)0≤s≤T−t0 satisfies

dXs =
(
2∇ log !β↓s − ∇V + ∇(W ∗ Pβ

s ) + ∇β
)
(Xs)ds +

√
2 dBβ

s . (4.2)

By means of Lemma 4.1, the first step in the proof of Theorem 3.9 is to compute the dynamics of
the time-reversed perturbed relative entropy process (3.36). For the reader’s convenience, we recall the
following characterization of the L-derivative in [10, pp. 383].

Definition 4.2. Let f : P2(Rn)→ R and µ0 ∈ P2(Rn). On a probability space (Ω,F,P), let X0 be a
random variable with distribution µ0. We define ∂µ f (µ0) : Rn → Rn as the L-derivative of f at µ0, if
for any µ ∈ P2(Rn) and any random variable X with distribution µ,

f (µ) = f (µ0) + EP
[〈
∂µ f (µ0)(X0) , X − X0

〉]
+ o

(
‖X − X0‖L2(P)

)
.
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Remark 4.3. The above characterization of the L-derivative depends neither on the choice of the prob-
ability space (Ω,F,P), nor of the random variables X and X0 used to represent µ and µ0, respectively.
Moreover, if the L-derivative exists, it is uniquely defined up to µ0-equivalence. We refer to Proposition
5.25 and Remark 5.26 in [10] for the details.

Proposition 4.4. Suppose Assumptions 3.8 hold. On (Ω,G,Pβ), the time-reversed perturbed relative
entropy process (3.36) satisfies

d log !βs (Xs,P
β
s ) =

〈
∇ log !βs (Xs,P

β
s ) ,

√
2 dBβ

s

〉
+
(,,∇ log !β↓s

,,2 + 1
2
,,∇(W ∗ Pβ

s )
,,2) (Xs)ds (4.3)

+
(〈

1
2∇(W ∗ Pβ

s ) , 2∇ log !β↓s + ∇Vβ
〉
+ 〈∇V ,∇β〉 − ∆β

)
(Xs)ds (4.4)

− EP̃β
[〈

1
2∇W(Xs −Ys) ,

(
2∇ log !β↓s − ∇V + ∇(W ∗ Pβ

s ) + ∇β
)
(Ys)

〉]
ds, (4.5)

where (Ys)0≤s≤T−t0 is a copy of the process (Xs)0≤s≤T−t0 on a copy (Ω̃,G̃, P̃β) of the original probabil-
ity space (Ω,G,Pβ).

Proof. Applying a generalized version of Itô’s formula for McKean–Vlasov diffusions [10, Proposition
5.102] and using the backward dynamics in (4.2), we obtain

d log !βs (Xs,P
β
s ) =

〈
∇ log !βs (Xs,P

β
s ) ,

√
2 dBβ

s

〉
+
(
∂s log !βs + ∆ log !βs

)
(Xs,P

β
s )ds (4.6)

+
〈
∇ log !βs (Xs,P

β
s ) ,

(
2∇ log !β↓s − ∇V + ∇(W ∗ Pβ

s ) + ∇β
)
(Xs)

〉
ds (4.7)

+ EP̃β
[〈 (
∂µ log !βs (Xs,P

β
s )

)
,
(
2∇ log !β↓s − ∇V + ∇(W ∗ Pβ

s ) + ∇β
) 〉

(Ys)
]

ds (4.8)

+ EP̃β
[
trace

(
∂y∂µ log !βs (Xs,P

β
s )(Ys)

) ]
ds, (4.9)

where (Ys)0≤s≤T−t0 is a copy of the process (Xs)0≤s≤T−t0 on a copy (Ω̃,G̃, P̃β) of the original probability
space (Ω,G,Pβ). The L-derivative appearing in (4.8) and (4.9) is calculated to be

(
∂µ log !βs (x, µ)

)
(y) = 1

2
(
∂µ (W ∗ µ) (x)

)
(y) = − 1

2∇W(x − y) (4.10)

for (x, µ, y) ∈ Rn × P2(Rn) × Rn, see [10, Section 5.2.2, Example 1] for the computation of the L-
derivative of a function which is linear in the distribution variable. Consequently, we have

trace
(
∂y∂µ log !βs (x, µ)(y)

)
= − 1

2 trace
(
∂y∇W(x − y)

)
= 1

2∆W(x − y). (4.11)

Putting (4.10) and (4.11) into (4.8) and (4.9), respectively, as well as using the identities

∂s log !βs (x, µ) = ∂s log !β↓s (x), (4.12)

∇ log !βs (x, µ) = ∇ log !β↓s (x) + 1
2∇(W ∗ µ)(x), (4.13)

∆ log !βs (x, µ) = ∆ log !β↓s (x) + 1
2∆(W ∗ µ)(x), (4.14)
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we obtain

d log !βs (Xs,P
β
s ) =

〈
∇ log !βs (Xs,P

β
s ) ,

√
2 dBβ

s

〉
+
(
∂s log !β↓s + ∆ log !β↓s

)
(Xs)ds (4.15)

+
〈 (
∇ log !β↓s +

1
2∇(W ∗ Pβ

s )
)
,
(
2∇ log !β↓s − ∇V + ∇(W ∗ Pβ

s ) + ∇β
) 〉

(Xs)ds (4.16)

− EP̃β
[〈

1
2∇W(Xs −Ys) ,

(
2∇ log !β↓s − ∇V + ∇(W ∗ Pβ

s ) + ∇β
)
(Ys)

〉]
ds (4.17)

+ 1
2

(
∆(W ∗ Pβ

s )(Xs) + EP̃β
[
∆W(Xs −Ys)

] )
ds. (4.18)

Regarding the expression of (4.18), we observe that ∆(W ∗ Pβ
s )(Xs) = EP̃β [∆W(Xs − Ys)]. Finally, el-

ementary computations based on (2.4), (3.25) and (3.27) show that the perturbed log-likelihood ratio
function (s, x) )→ log !β↓s (x) of (3.27) satisfies

∂s log !β↓s =
〈
∇ log !β↓s ,∇V − ∇(W ∗ Pβ

s ) − ∇β
〉
−
,,∇ log !β↓s

,,2 − ∆ log !β↓s

+
〈
∇V ,∇(W ∗ Pβ

s ) + ∇β
〉
− ∆(W ∗ Pβ

s ) − ∆β
(4.19)

on (0,T − t0) ×Rn, with terminal condition log !β↓T−t0 = log !↓T−t0 . Inserting (4.19) into (4.15), we obtain
(4.3) – (4.5).

Setting the perturbation β to be the zero function, we obtain the following result.

Corollary 4.5. Suppose Assumptions 2.1 hold. On (Ω,G,P), the time-reversed relative entropy process
(3.4) satisfies

d log !s(Xs,Ps) =
〈
∇ log !s(Xs,Ps) ,

√
2 dBs

〉
(4.20)

+
(,,∇ log !↓s

,,2 + 1
2
,,∇(W ∗ Ps)

,,2 + 〈 1
2∇(W ∗ Ps) , 2∇ log !↓s + ∇V

〉)
(Xs)ds (4.21)

− EP̃
[〈

1
2∇W(Xs −Ys) ,

(
2∇ log !↓s − ∇V + ∇(W ∗ Ps)

)
(Ys)

〉]
ds. (4.22)

Here, the process

Bs ! BT−s − BT −
√

2
∫ s

0
∇ log pu(Xu)du , 0 ≤ s ≤ T (4.23)

is a P-Brownian motion with respect to the backward filtrationG, and (Ys)0≤s≤T is a copy of the process
(Xs)0≤s≤T on a copy (Ω̃,G̃, P̃) of the original probability space (Ω,G,P).

Before turning to the final part of the proof of Theorem 3.1, we state a classical result based on
the general theory of the Cameron–Martin–Maruyama–Girsanov transformation [44]. The connection
between relative entropy (the left-hand side of (4.25) below) and energy (the right-hand side of (4.25))
is the foundation of Föllmer’s entropy approach to the time reversal of diffusion processes on Wiener
space [26–28]. We denote byWx the Wiener measure on Ω = C([0,T];Rn) with starting point x ∈ Rn,
and define by

Wx,2(A)!Wx

(
ω ∈ Ω : (

√
2X)(ω) ∈ A

)
, A ∈ B(Ω) (4.24)



Trajectorial entropy dissipation of McKean–Vlasov diffusions 745

the Wiener measure with starting point x and variance 2.

Lemma 4.6. The relative entropy of P with respect toWP0,2 !
∫
Rn
Wx,2 dP0(x) is given by

H
(
P |WP0 ,2

)
= EP

[ ∫ T

0

,,∇V(Xt ) + ∇(W ∗ Pt )(Xt )
,,2 dt

]
<∞. (4.25)

Proof. Recalling (2.3), the drift of the McKean–Vlasov dynamics (1.1) can be expressed as

− ∇Ψ↑(x,Pt ) = −
(
∇V(x) + ∇(W ∗ Pt )(x)

)
, (t, x) ∈ [0,T] ×Rn. (4.26)

For any t ∈ [0,T], using the elementary inequality (a + b)2 ≤ 2a2 + 2b2, we have

EP
[
|∇Ψ↑(Xt,Pt )|2

]
≤ 2EP

[
|∇V(Xt )|2

]
+ 2EP

[
|∇(W ∗ Pt )(Xt )|2

]
. (4.27)

Using the linear growth condition (2.1) from Assumptions 2.1 (i), we find

EP
[
|∇V(Xt )|2

]
≤ 2C2

(
1 + EP

[
|Xt |2

] )
≤ 2C2

(
1 + EP

[
sup

0≤t≤T
|Xt |2

] )
. (4.28)

Similarly, by Jensen’s inequality and (2.1), we obtain

EP
[
|∇(W ∗ Pt )(Xt )|2

]
≤
∫
Rn×Rn

|∇W(x − y)|2 pt (y) pt (x)dy dx (4.29)

≤ 2C2
(
1 +

∫
Rn×Rn

|x − y |2 pt (y) pt (x)dy dx
)

(4.30)

≤ 2C2
(
1 + 2

∫
Rn×Rn

(|x |2 + |y |2) pt (y) pt (x)dy dx
)

(4.31)

= 2C2
(
1 + 4EP

[
|Xt |2

] )
≤ 8C2

(
1 + EP

[
sup

0≤t≤T
|Xt |2

] )
. (4.32)

Altogether, we get

EP

[ ∫ T

0
|∇Ψ↑(Xt,Pt )|2 dt

]
≤ 20T

(
1 + EP

[
sup

0≤t≤T
|Xt |2

] )
<∞, (4.33)

where the finiteness of this expression follows from the uniform second moment property (2.2) of
Lemma 2.2. From [44, Section 7.6.4] we now conclude that P is absolutely continuous with respect to
WP0 ,2, and the Radon–Nikodym derivatives are given by

dP
dWP0,2

,,,,
Ft

= exp
(
− 2

∫ t

0

〈
∇Ψ↑(Xu,Pu) ,

√
2 dBu

〉
+

∫ t

0
|∇Ψ↑(Xu,Pu)|2 du

)
, 0 ≤ t ≤ T . (4.34)

The integrability property (4.33) implies that the P-expectation of the stochastic integral in (4.34)
vanishes, and we obtain

H
(
P |WP0 ,2

)
= EP

[
log

(
dP

dWP0 ,2

) ]
= EP

[ ∫ T

0
|∇Ψ↑(Xt,Pt )|2 dt

]
<∞, (4.35)

which shows (4.25).
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Denoting n-dimensional Lebesgue measure by λ, we consider on Ω =C([0,T];Rn) the σ-finite mea-
sureWλ,2 !

∫
Rn
Wx,2 dλ(x), which is known as the law of the reversible Brownian motion on Rn with

variance 2; see [19,42]. The fundamental property of reversible Brownian motion is that it is invariant
under time reversal. This property can be formalized as follows. Let R : Ω→ Ω be the pathwise time
reversal operator on Ω, given by Xs ◦ R = XT−s for s ∈ [0,T]. For any measure µ on Ω, we denote its
time reversal by µ! R#µ. Then we have the invariance propertyWλ,2 =Wλ,2. Let us also consider the
probability measureWPT ,2 !

∫
Rn
Wx,2 dPT (x) and its time reversal given byWPT ,2 =

∫
Rn
Wx,2 dPT (x).

Then, as already noted in [26, Remarks 3.7], we have the following result.

Lemma 4.7. We have the relative entropy relations

H
(
P |Wλ,2

)
= H

(
P0 | λ

)
+ H

(
P |WP0 ,2

)
(4.36)

and

H
(
P |Wλ,2

)
= H

(
PT | λ

)
+ H

(
P |WPT ,2

)
. (4.37)

Furthermore, all these relative entropies are finite.

Proof. For any x ∈ Rn, we let Px( · ) ! P( · | X0 = x) denote (a version of) the conditional probability
measure P given X0 = x. By the chain rule for relative entropy [19, Theorem 2] we have

H
(
P |Wλ,2

)
= H

(
P0 | λ

)
+

∫
Rn

H
(
Px |Wx,2

)
dP0(x) (4.38)

and at the same time

H
(
P |WP0 ,2

)
= H

(
P0 | P0

)
+

∫
Rn

H
(
Px |Wx,2

)
dP0(x) =

∫
Rn

H
(
Px |Wx,2

)
dP0(x), (4.39)

implying the first identity (4.36). Regarding the finite entropy assertions, we recall (1.2), (1.3) and
observe that

H
(
P0 | λ

)
=

∫
Rn

p0(x) log p0(x)dx =U(P0) ≤ F (P0) <∞, (4.40)

where the finiteness follows from Assumptions 2.1 (ii). Furthermore, from Lemma 4.6 we know that
H(P |WP0 ,2) <∞.

By the same arguments as above, (4.37) follows again by the chain rule for relative entropy. Using
the invariance property Wλ,2 =Wλ,2, and as we already know that H(P |Wλ,2) < ∞, it follows that
H(P |Wλ,2) <∞. Let us recall now that PT ∈ Pac,2(Rn) by Lemma 2.2. On the one hand, since PT has
finite second moment, H(PT | λ) cannot take the value −∞ as noted in Remark 2.3. On the other hand,
the absolute continuity of PT implies that H(PT | λ) cannot take the value +∞. Therefore, we conclude
that H(P |WPT ,2) <∞.

We have assembled now all the ingredients needed for the proof of Theorem 3.1.

Proof of Theorem 3.1. Recalling the definition of the stochastic integral process (Ms)0≤s≤T in (3.6)
and of the cumulative Fisher information process (Fs)0≤s≤T in (3.3), we see that the stochastic differ-
ential of (4.20) – (4.22) can be expressed as claimed in (3.5).
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Since (Ms)0≤s≤T is a stochastic integral process, it is a continuous local martingale. In order to show
that it is an L2(P)-bounded martingale, it suffices to show the integrability condition

EP
[〈

M,M
〉
T

]
= EP

[
2
∫ T

0

,,∇ log !u(Xu,Pu)
,,2 du

]
<∞; (4.41)

see, e.g. [51, Corollary IV.1.25]. On (Ω,G,P), the time-reversed canonical process (Xs)0≤s≤T has back-
ward dynamics

dXs = ϑs(Xs)ds +
√

2 dBs , 0 ≤ s ≤ T (4.42)

with initial distribution PT , where the drift term is given by

ϑs(x)!
(
2∇ log !↓s − ∇V + ∇(W ∗ Ps)

)
(x) = 2∇ log !s(x,Ps) − ∇V(x) ∈ Rn (4.43)

for (s, x) ∈ [0,T] × Rn. Therefore, in order to prove (4.41), it suffices to show the two integrability
conditions

EP

[ ∫ T

0
|∇V(Xu)|2 du

]
<∞ and EP

[ ∫ T

0
|ϑu(Xu)|2 du

]
<∞. (4.44)

The first condition is a direct consequence of (4.28). From [26, Lemma 2.6] we conclude that the
expectation of the second condition is bounded by the relative entropy H(P |WPT ,2), which is finite on
account of Lemma 4.7.

In order to complete the proof of Theorem 3.1, it remains to show (3.7). To begin with, we take expec-
tation with respect to P in (3.3) and invoke Fubini’s theorem to interchange the P-expectation and the
time integral. Applying once more Fubini’s theorem, we swap the P-expectation with the P̃-expectation
appearing in (3.2). Next, we recall Assumptions 2.1 (i) and use the symmetry of the interaction poten-
tial, which implies that ∇W(−x) = −∇W(x) for all x ∈ Rn. Furthermore, as the distribution of Yu under
P̃ is the same as the distribution of Xu under P, we deduce that

EP
[
Fs
]
=

∫ s

0
EP

[ (,,∇ log !↓u
,,2 + 1

2
,,∇(W ∗ Pu)

,,2 + 〈 1
2∇(W ∗ Pu) , 2∇ log !↓u + ∇V

〉)
(Xu)

]
du (4.45)

+

∫ s

0
EP

[〈
1
2∇(W ∗ Pu) ,

(
2∇ log !↓u − ∇V + ∇(W ∗ Pu)

)
(Xu)

〉]
du (4.46)

for 0 ≤ s ≤ T . Recalling the definitions in (2.3) – (2.5), we obtain

EP
[
Fs
]
=

∫ s

0
EP

[,,∇ log !↑u(Xu,Pu)
,,2] du =

∫ s

0
I
(
Pu

,,Q↑
u
)

du <∞ , 0 ≤ s ≤ T, (4.47)

where the second equality is immediate from (2.7), and the finiteness of the expression in (4.47) is
justified as follows. Again, from (2.3) – (2.5) we find

,,∇ log !↑s (Xs,Ps)
,,2 = ,,∇ log !s(Xs,Ps) + 1

2∇(W ∗ Ps)(Xs)
,,2 (4.48)

≤ 2
,,∇ log !s(Xs,Ps)

,,2 + 1
2
,,∇(W ∗ Ps)(Xs)

,,2. (4.49)

In light of (4.41) and (4.29) – (4.32), we see that the expression in (4.47) is finite, which in turn justifies
a posteriori the former applications of Fubini’s theorem.
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Remark 4.8. In the above proofs of Lemmas 4.6, 4.7 and Theorem 3.1, the linear growth condition
(2.1) from Assumptions 2.1 (i) was crucial. For a different proof in the (linear) setting without interac-
tion (i.e., W ≡ 0), we refer to [40], where the confinement potential V (which is called Ψ in [40]) is not
necessarily of linear growth, but instead satisfies a weaker coercivity condition. The key in that setting
is to apply Lemma 2.48 in [37].

The proof of Theorem 3.9 is now an easy consequence.

Proof of Theorem 3.9. Recalling the definition of the process (Mβ
s )0≤s≤T in (3.38) and of the per-

turbed cumulative Fisher information process (Fβ
s )0≤s≤T in (3.35), we see that the stochastic differen-

tial of (4.3) – (4.5) can be expressed as claimed in (3.37).
As in the proof of Theorem 3.1 we will now argue that

EPβ
[〈

Mβ,Mβ〉
T−t0

]
= EPβ

[
2
∫ T−t0

0

,,∇ log !βu (Xu,P
β
u )

,,2 du
]
<∞, (4.50)

which will then imply that the stochastic integral process (Mβ
s )0≤s≤T−t0 is an L2(Pβ)-bounded martin-

gale. To this end, we define the density qβ(x, µ) ! e−Ψ
β (x,µ) for (x, µ) ∈ Rn × P2(Rn), and consider

the “doubly perturbed” likelihood ratio function

!β,βt (x, µ)!
pβt (x)

qβ(x, µ)
, (t, x) ∈ [t0,T] ×Rn. (4.51)

As the Assumptions 2.1 are invariant under the passage from the potential V to Vβ = V + β, we can
apply Theorem 3.1 to the potential Vβ and obtain

EPβ

[
2
∫ T−t0

0

,,∇ log !β,βu (Xu,P
β
u )

,,2 du
]
<∞. (4.52)

Now, since !βt (x, µ)/!
β,β
t (x, µ) = eβ(x), we observe that the difference

∇ log !βt (x, µ) − ∇ log !β,βt (x, µ) = ∇β(x) (4.53)

is a bounded function. Together with (4.52), this implies (4.50).
It remains to check (3.39). A similar calculation as in the proof of Theorem 3.1 leads to the identity

EPβ
[
Fβ
s

]
=

∫ s

0
EPβ

[,,∇ log !β↑u (Xu,P
β
u )

,,2 + (〈
∇V + ∇(W ∗ Pβ

u ) ,∇β
〉
− ∆β

)
(Xu)

]
du (4.54)

for 0 ≤ s ≤ T − t0. Repeating the reasoning of the previous paragraph for the function !β↑t instead of
!βt , we find that

EPβ

[ ∫ T−t0

0

,,∇ log !β↑u (Xβ
u ,P

β
u )

,,2 du
]
<∞. (4.55)

Since the function

[0,T − t0] ×Rn ( (t, x) )−→
〈
∇V + ∇(W ∗ Pβ

t ) ,∇β
〉
(x) − ∆β(x) (4.56)

is bounded, we conclude that the quantity of (4.54) is finite. Finally, recalling the definition (3.30), we
arrive at (3.39).
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4.2. The proofs of Proposition 3.17 and Theorem 3.19

Proof of Proposition 3.17. The first step is to view the probability density functions (ρt )0≤t≤1, cor-
responding to the displacement interpolation (νt )0≤t≤1 of (3.59), as a solution to a continuity equa-
tion. Recalling the convex function ϕ : Rn → R of (3.58), we define a function u0 : Rn → R by
u0(x)! ϕ(x) − |x |2/2; and for each t ∈ (0,1], we let the function ut : Rn → R be defined by the Hopf–
Lax formula

ut (x)! inf
y∈Rn

(
u0(y) +

|x − y |2
2t

)
. (4.57)

For all t ∈ [0,1), we denote the gradient of ut by vt ! ∇ut . For t = 0, it is clear that v0 = ∇ϕ − Id is
well-defined. For t ∈ (0,1), the gradient vt is defined Lebesgue-a.e. by [58, Theorem 5.51 (i)], and

vt (x) = ∇u0 ◦ (Tt )−1(x) , for all x ∈ Tt (Rn), (4.58)

where Tt is defined in (3.59). Note that the inverse of Tt is well-defined because Tt is injective; see [58,
Section 5.4.8]. From (4.58) we see that (vt )0≤t<1 is the velocity field associated with the trajectories
(Tt )0≤t<1, i.e.,

Tt (x) = x +
∫ t

0
vs(Ts(x))ds , 0 ≤ t < 1. (4.59)

By [58, Theorem 5.51 (ii)], the curve of probability density functions (ρt )0<t<1 satisfies the continuity
equation

∂t ρt (x) + div
(
ρt (x) vt (x)

)
= 0 , (t, x) ∈ (0,1) ×Rn. (4.60)

On a sufficiently rich probability space (S,S,P), we let Z0 : S → Rn be a random variable with
probability distribution ν0. For each 0 < t ≤ 1, we let Zt ! Tt (Z0). From (3.59) we see that the random
variable Zt has distribution νt , and (4.59) yields the representation

Zt = Z0 +

∫ t

0
vs(Zs)ds , 0 ≤ t < 1. (4.61)

In conjunction with (4.60), we deduce

dρt (Zt ) = ∂t ρt (Zt ) +
〈
∇ρt (Zt ) , dZt

〉
= −ρt (Zt )div

(
vt (Zt )

)
dt, (4.62)

and thus

d log ρt (Zt ) = −div
(
vt (Zt )

)
dt . (4.63)

Recalling the definition of the density function q in (2.4), a similar argument as in (4.10) shows that
(
∂ν log q(x,ν)

)
(y) = 1

2
(
∂ν (W ∗ ν) (x)

)
(y) = − 1

2∇W(x − y) (4.64)

for (x,ν, y) ∈ Rn ×P2(Rn) ×Rn. Applying a generalized version of Itô’s formula for McKean–Vlasov
diffusions [10, Proposition 5.102], and using the dynamics (4.61) as well as the L-derivative (4.64), we
obtain

d log q(Zt,νt ) = −
〈
∇V + 1

2∇(W ∗ νt ) , vt
〉
(Zt )dt + 1

2EP̃

[〈
∇W(Zt − Z̃t ) , vt (Z̃t )

〉]
dt (4.65)
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for 0 < t < 1. Here, the process (Z̃t )0<t<1 is defined on another probability space (S̃,S̃, P̃) such that
the tuple (S,S,P,(Zt )0<t<1) is an exact copy of (S̃,S̃, P̃,(Z̃t )0<t<1). Now taking the difference between
(4.63) and (4.65) gives the dynamics

log rt (Zt,νt ) − log r0(Z0,ν0) =
∫ t

0

(〈
∇V + 1

2∇(W ∗ νs) , vs
〉
(Zs) − div

(
vs(Zs)

) )
ds (4.66)

− 1
2

∫ t

0
EP̃

[〈
∇W(Zs − Z̃s) , vs(Z̃s)

〉]
ds (4.67)

of the relative entropy process (log rt (Zt,νt ))0<t<1. Next, let us make two observations. Firstly, integra-
tion by parts yields

EP

[
div

(
vt (Zt )

) ]
= −EP

[〈
∇ log ρt (Zt ) , vt (Zt )

〉]
. (4.68)

Secondly, by applying Fubini’s theorem, and using that W is an even function as well as (Z̃t )#P̃ = νt ,
we obtain the identity

EP

[
EP̃

[〈
∇W(Zt − Z̃t ) , vt (Z̃t )

〉] ]
= −EP

[〈
∇(W ∗ νt )(Zt ) , vt (Zt )

〉]
. (4.69)

Returning to (4.66), (4.67), we take P-expectations and use (4.68), (4.69) to obtain

H(νt | µt ) − H(ν0 | µ0) =
∫ t

0
EP

[〈
∇ log ρs + ∇V + ∇(W ∗ νs) , vs

〉
(Zs)

]
ds (4.70)

=

∫ t

0
EP

[〈
∇ log r↑s (Zs,νs) , vs(Zs)

〉]
ds, (4.71)

where for the second equality we recall the notations in (3.61) and (2.4). Finally, letting t ↓ 0, we get

d
dt

,,,+
t=0

H(νt | µt ) =
∫
Rn

〈
∇ log r↑0 (x,ν0) , v0(x)

〉
ρ0(x)dx; (4.72)

and since v0 = ∇ϕ − Id, we arrive at (3.64).

Proof of Theorem 3.19. Without loss of generality, we assume that the probability density functions
ρ0 and ρ1 satisfy the strong regularity Assumptions 3.16. The general case then follows by a density
argument. We will not provide the details here, but refer to [58, Chapter 9.4], where this regularization
is carried out in the simpler setting of the HWI inequality.

Let us recall the energy functionals U, V, W defined in (1.3), and introduce the functions

f (t)!U(ρt ) , g(t)!V(ρt ) , h(t)!W(ρt ) , 0 ≤ t ≤ 1, (4.73)

where (ρt )0≤t≤1 is the curve of probability density functions corresponding to the displacement in-
terpolation (νt )0≤t≤1 of (3.59). Then the sum F ! f + g + h of these functions satisfies the relation
F(t) = H(νt | µt ). In light of [58, Theorem 5.15 (i)], the internal energy functional U is displacement
convex, i.e.,

f ′′(t) ≥ 0 , 0 ≤ t ≤ 1. (4.74)
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By Assumptions 3.18, the confinement potential V : Rn → [0,∞) is κV -uniformly convex. Therefore,
[58, Theorem 5.15 (ii)] implies that the potential energy functional V is κV -uniformly displacement
convex. In other words,

g′′(t) ≥ κV W2
2 (ν0,ν1) , 0 ≤ t ≤ 1. (4.75)

Again from Assumptions 3.18, the interaction potential W : Rn → [0,∞) is assumed to be symmetric
and κW -uniformly convex. Therefore, a similar argument as in the proof of [58, Theorem 5.15 (iii)]
leads to the κW (W2

2 (ν0,ν1) − |b(ν0) − b(ν1)|2)-uniform convexity of h, so

h′′(t) ≥ κW
(
W2

2 (ν0,ν1) − |b(ν0) − b(ν1)|2
)
, 0 ≤ t ≤ 1. (4.76)

The details of the proof of (4.76) are postponed to Subsection 5.2. By combining the estimates (4.74) –
(4.76), we deduce that the relative entropy function [0,1] ( t )→ F(t) = H(νt | µt ) satisfies

F ′′(t) ≥ (κV + κW )W2
2 (ν0,ν1) − κW |b(ν0) − b(ν1)|2. (4.77)

Furthermore, from Proposition 3.17 we have

F ′(0+) =
∫
Rn

〈
∇ log r↑0 (x,ν0) ,∇ϕ(x) − x

〉
ρ0(x)dx. (4.78)

In conjunction with (4.77) and (4.78), the Taylor formula F(1) = F(0)+F ′(0+)+
∫ 1

0 (1− t)F ′′(t)dt now
yields the inequality (3.66) – (3.67).

5. Proofs of auxiliary results

5.1. Proof of Lemma 2.2

The generalized potential Ψ↑ of (2.3) allows us to cast the McKean–Vlasov dynamics of (1.1) in the
more compact form

dXt = −∇Ψ↑(Xt,Pt )dt +
√

2 dBt , 0 ≤ t ≤ T . (5.1)

Then, for any two pairs (x, µ),(x′, µ′) ∈ Rn ×P2(Rn), using the Lipschitz continuity of ∇V in Assump-
tions 2.1 (i) yields

|∇Ψ↑(x, µ) − ∇Ψ↑(x′, µ′)| ≤ ‖∇V ‖Lip |x − x′ | + |∇(W ∗ µ)(x) − ∇(W ∗ µ′)(x′)|. (5.2)

For the convolution term, using Jensen’s inequality and the Lipschitz continuity of ∇W in Assumptions
2.1 (i) leads to

|∇(W ∗ µ)(x) − ∇(W ∗ µ′)(x′)| ≤ ‖∇W ‖Lip |x − x′ | + |∇(W ∗ µ)(x′) − ∇(W ∗ µ′)(x′)|. (5.3)

For the last term above, by the Kantorovich–Rubinstein theorem [58, Theorem 1.14], we have
,,,,
∫
Rn

∇W(x′ − · )d(µ− µ′)
,,,, ≤ ‖∇W ‖Lip sup

{ ∫
Rn
ϕ d(µ− µ′) : ϕ ∈ L1(|µ− µ′ |), ‖ϕ‖Lip ≤ 1

}

= ‖∇W ‖Lip W1(µ, µ′) ≤ ‖∇W ‖Lip W2(µ, µ′), (5.4)
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where

W1(µ, µ′) = inf
Y∼µ,Z∼µ′

E|Y − Z | , µ, µ′ ∈ P1(Rn) (5.5)

denotes the 1-Wasserstein-distance, and the inequality in (5.4) follows from Jensen’s inequality. Alto-
gether, we obtain

|∇Ψ↑(x, µ) − ∇Ψ↑(x′, µ′)| ≤ (‖∇V ‖Lip + ‖∇W ‖Lip) |x − x′ | + ‖∇W ‖Lip W2(µ, µ′). (5.6)

In particular, this shows that the function −∇Ψ↑ is Lipschitz continuous on the product metric space
(Rn, | · |) × (P2(Rn),W2). In conjunction with Assumptions 2.1 (ii), [10, Theorem 4.21] implies that
the McKean–Vlasov SDE (5.1) has a pathwise unique, strong solution satisfying the uniform second
moment condition (2.2). Now we can linearize (5.1) by fixing the time-marginals (Pt )0≤t≤T , so that the
drift term can be viewed as a function (t, x) )→ ∇Ψ↑(x,Pt ), and (5.1) becomes an ordinary SDE with a
time-inhomogeneous drift coefficient.

The absolute continuity of the time-marginals (Pt )0≤t≤T is immediate from Lemma 4.6. A stan-
dard argument using the classical Itô’s formula shows that the curve of probability density functions
(pt )0≤t≤T is a weak solution of the granular media equation (1.11). Finally, we turn to the regular-
ity of this solution. From (5.6), we see that the drift x )→ ∇Ψ↑(x,Pt ) is Lipschitz continuous for every
t ∈ [0,T], and Assumptions 2.1 (i) implies that the drift is also of linear growth. The desired smoothness
of (pt )0≤t≤T now follows from a straightforward adaptation of the theorem in [53], see also Remarks
(i) – (ii) therein.

5.2. Proof of (4.76)

We first rewrite the interaction energy functional W along the displacement interpolation (νt )0≤t≤1.
Using (3.59), for any t ∈ [0,1], we have

h(t) = 1
2

∫
Rn×Rn

W(x − y) νt (dx) νt (dy) (5.7)

= 1
2

∫
Rn×Rn

W
(
Tt (x) −Tt (y)

)
ν0(dx) ν0(dy) (5.8)

= 1
2

∫
Rn×Rn

W
(
x − y − t

(
θ(x) − θ(y)

) )
ν0(dx) ν0(dy), (5.9)

where θ : Rn → Rn is defined as θ(x) ! x − ∇ϕ(x). Now, for any t1, t2,σ ∈ [0,1], by the κW -uniform
convexity of W in Assumptions 3.18, we obtain

σh(t1) + (1 − σ)h(t2) − h
(
σt1 + (1 − σ)t2

)
(5.10)

= 1
2

∫
Rn×Rn

(
σW

(
x − y − t1

(
θ(x) − θ(y)

) )
+ (1 − σ)W

(
x − y − t2

(
θ(x) − θ(y)

) )
(5.11)

−W
(
x − y −

(
σt1 + (1 − σ)t2

) (
θ(x) − θ(y)

) ) )
ν0(dx) ν0(dy) (5.12)

≥ 1
4 κWσ(1 − σ)(t1 − t2)2

∫
Rn×Rn

|θ(x) − θ(y)|2 ν0(dx) ν0(dy). (5.13)
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Next, we express the integral in (5.13) as

1
2

∫
Rn×Rn

|θ(x) − θ(y)|2 ν0(dx) ν0(dy)

=

∫
Rn

|θ(x)|2 ν0(dx) −
,,,,
∫
Rn
θ(x) ν0(dx)

,,,,
2

=

∫
Rn

|x − ∇ϕ(x)|2 ν0(dx) −
,,,,
∫
Rn

x ν0(dx) −
∫
Rn

x ν1(dx)
,,,,
2

=W2
2 (ν0,ν1) − |b(ν0) − b(ν1)|2.

Putting this back into (5.13), we deduce that h is uniformly convex, with constant

κW
(
W2

2 (ν0,ν1) − |b(ν0) − b(ν1)|2
)
. (5.14)
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