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Abstract: Surface topography, or height profile, is a critical property for various micro- and nano-

structured materials, devices, as well as biological systems. At the nanoscale, atomic force 

microscopy (AFM) is the tool of choice for surface profiling, due to its capability to noninvasively 

map the topography of almost all types of samples. However, this method suffers from one 

drawback: the convolution of the nanoprobe’s shape in the height profile of the samples, which is 

especially severe for sharp protrusion features. Here, we report a deep learning (DL) approach to 

overcome this limit. Adopting an image-to-image translation methodology, we use datasets of tip-

convoluted and deconvoluted image pairs to train an encoder-decoder based deep convolutional 

neural network. The trained network successfully removes the tip convolution from AFM 

topographic images of various nano-corrugated surfaces and recovers the true, precise 3D height 

profiles of these samples. 

Keywords: Surface profiling, atomic force microscopy, deep learning, machine learning, tip-

convolution, nanoscale imaging. 

 

Surface height profile is a key feature for monitoring and understanding the functions of various 

natural and engineered systems,1 such as the processing and integration of nano-electronic 

devices,2,3 the hydrophilicity/hydrophobicity of microstructured films/surfaces,4,5 and the signal 

transduction of cell membranes.6 The past few decades has seen significant progress in imaging 

technologies, as various optical,7–10 electron,11–14 and scanning probe-based15–18 microscopies 

enable routine imaging with nanometer and atomic-scale resolution. However, while the in-plane 

image contrast from these measurements is usually related to height variations, it is oftentimes 

challenging to obtain the quantitative height maps from these results, especially at the nanoscale.2,3 

Although cross-sectional imaging can directly provide surface height profiles, it requires 

destructive cutting that can perturb the intrinsic topography of soft samples.19,20 Moreover, it is not 

compatible with in situ or dynamic processes and does not provide the full 3D surface profiles. 

Another method to obtain quantitative surface profile is nano-tomography, which reconstructs 3D 

morphologies by collecting signal from a series of different angles.20–22 However, this approach 

requires a small 3D volume of the samples. As a result, it is incompatible with macroscopic 
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systems where the interior cannot be accessed, such as integrated circuit boards, pipeline coatings, 

and skin biopsies.  

To nondestructively quantify surface profiles of arbitrary samples, two types of approaches have 

been employed, the noncontact and (pseudo-)contact methods.4,5,23 The former is mainly based on 

optical imaging and interferometry, which can achieve nanometer z-resolution but is limited to the 

diffraction limit (micron scale) along the in-plane directions.24,25 Contact and pseudo-contact 

methods include stylus profilometer, scanning tunneling microscopy (STM), and AFM, all of 

which require the use of a mechanical probe to scan across the sample surface. These scanning 

probe-based methods, especially AFM, have found widespread applications in topographic 

mapping of various nanostructures.18 However, due to the finite size and tip radius of the probe, 

the measured surface profiles tend to be broadened.23,26–28 Such tip-convolution effects become a 

serious problem when the curvature or sharpness of the surface structure is comparable to or higher 

than that of the probe.  

In the past few decades, various efforts have been made on removing tip-convolution in AFM 

images to recover the intrinsic surface profiles of the sample, as can be classified into three 

categories. One is analytical reconstruction, where the shape of the probe is determined from the 

measured images, and then subtracted to obtain more accurate height profiles.26,29–32 Despite the 

mathematical rigor, these analytical methods have found limited applications due to their inability 

to deconvolute the inevitable experimental noises and imperfections in tip-sample contact such as 

feedback errors, lateral force variations, and inhomogeneous electrostatic interactions.30,33–35 

Another method is localization AFM (LAFM),28 which adopts strategies used in super-resolution 

optical imaging, and improves the AFM resolution by localizing and statistically averaging 

features of interest. While LAFM is powerful in overcoming the resolution limit of traditional 

AFM, it selectively enhances local features and cannot provide quantitative overall height profiles 

of the imaged areas; in addition, the requirement of statistical averaging of identical 

molecules/particles prevents its application in imaging dynamic processes. The third type of tip-

deconvolution approach is machine learning or deep learning. In the past decade, DL has been 

used in almost all types of imaging methods,36–40 with the goal of resolution enhancement41–44 

and/or pattern recognition.44–46 Surprisingly, the application of DL in quantitative height profiling 

is rare, leaving a large gap in this important field.44,47 

In contrast to resolution enhancement and pattern recognition problems where DL outputs are non-

physical contrast/intensity values, surface profiling requires continuum outputs of physical height 

values, which makes DL a challenging task.48,49 In this work, we overcome this problem by using 

a supervised learning methodology with an encoder-decoder based neural network and achieve 

precise nanoscale surface profiling by combining AFM with DL. We demonstrate the capability 

of our approach by profiling various virtual and experimental surface structures with a large range 

of morphology and roughness levels. In our protocol, once the neural network is trained with a 

sufficient set of elementary nanostructures, it can be directly deployed for height profiling of other 

types of surface morphologies. The results set the stage for precise, automatic surface profiling of 

a large range of materials and biological systems with multiscale heterogeneities by combining 

DL with mechanical probes. 
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To enable supervised learning, we first prepare datasets of input-output pairs of tip-convoluted and 

deconvoluted (ground truth) images (Figure 1a, d).50,51 These datasets can be created either from 

simulation or from AFM experiments, as discussed in detail in the following sections. Once a 

dataset is obtained, we split it in two, one for training the model and the other for testing the trained 

model. For the DL process, we choose an encoder-decoder type neural network model (also known 

as an auto-encoder, Figure 1b), which has been shown to be powerful for image-to-image 

translation.52 To retain the true height values for precise surface profiling, no preprocessing steps 

such as normalization or standardization53 are applied to the training datasets.  

We then pass a batch of n tip-convoluted images through the model to obtain the predictions 

(Figure 1c), which initially are typically random before the training process. To start the training, 

we first calculate the error between the output images and corresponding ground truths using a loss 

function 𝐸𝑖 (Figure 1e). In this study, we choose to primarily work with mean squared error (MSE) 

and mean absolute error (MAE) losses. The calculated error is then passed on to an optimizer 

which updates the network parameters. After a finite number of iterations (or epochs), when the 

error plateaus to a small value, the training is stopped (Supporting Information, Figure S1). 

Additional details of the neural network and hyperparameters used for training are provided in 

Methods and Tables S1 and S3 (Supporting Information). The trained DL model is then tested 

using the test dataset to verify the accuracy of the height profile deconvolution process. 

To obtain surface corrugation features, we begin by creating virtual ground truth topographic 

images with randomly distributed nanostructures, including nanodomes, nanocuboids, 

nanoprisms, and nanocylinders. These geometries can be viewed as the “primary shapes” from 

which more complex corrugation features can be built. The lateral sizes of these nanostructures 

are chosen from a continuous uniform distribution (from 16 to 20 nm). The variety in feature sizes 

and shapes facilitates efficient DL deconvolution of different surface corrugation profiles. To 

produce the “tip-convoluted” images of these virtual nanostructures, we define a cone-shaped 

probe with size and curvature close to the ones widely used in AFM experiments (Figure S2). The 

simulated ground truth images are then dilated using this model tip shape, to obtain virtual AFM 

images (Figure S3). We then use such convoluted AFM image – ground truth pairs to train our 

neural network model following the established protocols (as shown in Figure 1).  

The trained model’s performance on a series of simple surface corrugations from the test dataset 

is shown in Figure 2. From the comparison of images and representative cross section profiles 

(Figure 2a–d), we already observe an effective removal of tip convolution effects and the nearly 

perfect recovery of the quantitative height profiles in the DL outputs. For these isolated protrusion 

features, tip convolution effects are mainly manifested as the broadening of the projected in-plane 

surface area. Therefore, to thoroughly quantify the accuracy of the DL model, we calculate the 

surface area of each protrusion from the tip-convoluted, DL output, and ground truth images in the 

entire test dataset, and plot the histograms for each type of protrusion features (Figure 2e–g). Due 

to the significant tip convolution of these nanoscale corrugations, the surface area of the original 

virtual AFM profiles strongly deviates from the ground truth, reaching 284.3%, 434.2%, and 318.6% 

for the domes, cuboids, and miscellaneous shapes, respectively. In contrast, the DL output only 

exhibits a small deviation of 8.15%, 6.41%, and 14.85% for these three types of shapes. This 
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demonstrates the capability of our trained model in highly accurate spatial height profiling of 

simple surface nano-corrugation features. 

Now that our DL model has successfully deconvoluted isolated features, we further examine its 

capability in profiling random, continuous surface corrugations. Many realistic rough surfaces in 

nature are fractal with corrugations at multiple length scales.54 Utilizing concepts from fractal 

geometry, we create virtual isotropically-distributed rough surfaces with an RMS (root mean 

squared) roughness of 5 nm. This roughness is chosen to reflect common materials in nanoscience 

such as thin films55,56 and many biological components such as cell membranes.57,58 Detailed 

procedures for dataset preparation are provided in Methods. Following similar protocols and using 

the same tip geometry as earlier (Figure S2), we prepare convoluted AFM image – ground truth 

pairs, and train the neural network. 

The trained network’s performance on a representative test image is shown in Figure 3. While the 

DL output does not recover all the fine details of the ground truth image, it effectively reproduces 

the contour profiles for features larger than ~10 nm, with an accuracy of 2-3 nm. A few 

representative examples of such contours are highlighted by the black dashed lines in Figure 3d–

f, where we observe mismatch between the virtual AFM image and ground truth in the scale of 5-

10 nm (close to the 10 nm tip radius), in contrast to the close match between DL output and ground 

truth within ~2 nm. Additional examples of the test results, shown in Figures S4 and S5, reveal 

similar accuracy of the DL outputs. To further quantify the precision of the DL model, we calculate 

the average surface roughness for each of the 400 test images, and plot the histogram for all the 

images (Figure 3g). The ground truth images have an average roughness Ra of 4.01 ± 0.10 nm 

(note that Ra is different from RMS roughness by definition), which is reduced to 3.75 ± 0.17 nm 

in the virtual AFM images due to tip convolution effects. After DL, the roughness is recovered to 

3.90 ± 0.12 nm, close to that of the ground truth. Such improvements will be important for the 

further quantification of various structure-function relationships of rough surfaces.59,60  

The high accuracy of the DL model is remarkable considering the randomness of the corrugation 

features. Note that the ultimate precision of the DL model for the virtual datasets will be limited 

by the simplified image dilation process used to produce virtual AFM images (Figure S3), which 

leads to complete removal of small concave features. In realistic experiments, while such features 

may not be directly accessible to the AFM probe, it can still affect the image through long-range 

tip-sample interactions. Therefore, although the training process will likely be more complicated 

for experimental images, the ultimate accuracy of a fully developed, well-trained DL model is 

expected to be higher for experimental results than the simplified virtual images shown above. 

So far we have only considered dilation effects as a source of AFM image convolution. Realistic 

AFM images are typically more complicated with the presence of various other artifacts, such as 

line-like artifacts and edge elevation.61,62 To examine the effectiveness of our DL model in 

deconvoluting these extra convolutions, we have further created virtual AFM images with the 

additional artifacts included and tested the DL model. As shown in Figures S6–S8, we find that 

the DL remains highly successful in precise surface profiling even in the co-existence of multiple 

types of artifacts. 
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We now move on to test the effectiveness of our DL model on experimental data. For this purpose, 

ideal experimental samples should both represent the heterogeneous morphology and composition 

that are typical in realistic systems, and are simple enough to enable benchmarking of the DL 

model. We choose submonolayer, ligand-covered nanoparticles coated on flat silicon substrates, 

which fulfil both requirements. We synthesize two sets of nanoparticles, Au nanospheres and Pd 

nanoparticles with miscellaneous shapes (cuboids, triangular prisms, etc.). From the transmission 

electron microscopy (TEM) images (Figure 4a, b), we confirm the nearly perfect spherical shape 

of the Au nanospheres, and the irregular surface morphology of Pd nanoparticles. Note that the 

loosely packed organic ligands on the Au or Pd particle surface, if present, should be invisible in 

the TEM images.63–65 The small clusters observed on the Pd particle surfaces likely correspond to 

either dense aggregates of ligands or other contamination/impurity species.  

We use a Tap150Al-G AFM probe (NanoAndMore), with a nominal tip radius of ~10 nm, to image 

all the nanoparticle samples via AC mode (amplitude modulation). Considering that the Au 

nanospheres have well-defined height profiles, we use part of these imaging data to train the DL 

model. Compared to the model used for the virtual datasets, the DL model layer sizes and the 

network depth are modified to optimize the training of experimental datasets (Tables S2 and S3). 

After the training is completed, we then use the DL network to produce deconvoluted height 

profiles of both the Au nanosphere and irregular Pd nanoparticle samples. As shown in Figure 4c–

h, the DL model effectively removes the broadening effect due to tip convolution and retains the 

accurate maximum height. For the Au nanospheres, we further calculate the aspect ratio (ratio of 

in-plane diameter to height) of all the original AFM profiles and the corresponding DL outputs in 

the test dataset (Figure 4i). We observe an original aspect ratio of 1.82±0.23 nm, which is reduced 

to 0.93±0.16 nm in the DL output, consistent with the observed spherical profiles. This near-unity 

aspect ratio proves the successful, precise height profiling capabilities of the DL model for 

experimental AFM images. 

In addition, we have quantified the in-plane radius of the Au nanospheres, and find it to reduce 

from 19.88±6.32 nm to 10.55±4.44 nm after DL (Figure 4j). In contrast, the mean radius obtained 

from TEM is 6.06 ± 0.67 nm (Figures S9 and 4j). Considering the weak sensitivity of TEM to 

organic ligands, the ~4.5 nm difference between AFM DL outputs and TEM can be attributed to 

the thickness of the ligand layer on the Au nanospheres. Note that this difference cannot be 

ascribed to possible inaccuracies of the DL model, as a ~4.5 nm broadening in in-plane radius 

would have induced significant distortion of the aspect ratio of the DL output profiles. Similarly, 

for Pd nanoparticles, we observe a decrease of the in-plane area from 1137±225 nm2 to 241±97 

nm2 after DL in the AFM images, compared to 166±36 nm2 in TEM (Figure 4k). We also attribute 

the excess area of ~75 nm2 in AFM DL profiles to the additional ligand molecules not observed in 

TEM. These results demonstrate the capability of our combined AFM and DL approach to quantify 

morphologies that are otherwise invisible in other imaging methods. 

In summary, we have developed a deep learning method which, combined with AFM imaging, 

enables precise nanoscale surface height profiling. We have used this method to successfully 

profile a large range of elementary nanoscale shapes as well as random, continuous surface 

corrugations. Future developments may aim at directly integrating this method to AFM 
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instruments to enable automatic, real-time determination of precise surface profiles during the 

imaging process. 

 

 

Figure 1. Schematic of our DL training process for precise surface profiling. After providing 

the raw AFM image as input (a), the DL model goes through reiterative training process (b–e), 

until the loss becomes negligible or converges to a constant small value. 
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Figure 2. DL-assisted surface profiling of virtual elementary nanoscale morphologies. Virtual 

AFM images, DL model predictions and ground truth images of (a) nanodomes, (b) nanocuboids, 

and (c) miscellaneous nano-objects. (d) The cross-sectional height profiles of the corresponding 

images (shown on the left). GT: ground truth. (e–g) Histograms of the projected in-plane area of 

particles extracted from the entire test dataset. 
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Figure 3. DL-assisted surface profiling of a random, continuous rough surface. (a) Virtual 

AFM image, (b) DL output, and (c) corresponding ground truth surface. (d), (e) and (f) are contour 

plots corresponding to (a), (b) and (c), respectively. (g) Histograms of the average roughness 

extracted from all the images in the test dataset. 
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Figure 4. DL-assisted surface profiling of experimental nano-corrugations. (a) and (b) are 

TEM images of Au nanospheres and irregular Pd nanoparticles, respectively. The color-framed 

individual particle images are extracted from the large area images at locations marked by boxes 

of the same color. (c) and (d) are original AFM images of Au nanospheres and Pd nanoparticles 

coated on Si, respectively. The corresponding DL-predicted accurate profiles are shown in (e) and 

(f), respectively, with representative line profiles specified in (g) and (h). (i–k) are histograms 

extracted from original AFM images and DL outputs showing the aspect ratio (in-plane diameter 

vs height) of Au nanospheres (i), radius of Au nanospheres (j), and projected in-plane area of Pd 

nanoparticles (k). In (j) and (k) the histograms are also compared to those extracted from the 

corresponding TEM images.  
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Associated Content 

Supporting Information 

The supporting information is available online free of charge. 

Methods: neural network preparation and training, creation of virtual AFM images, nanoparticle 

synthesis, nanoparticle imaging, nanoparticle size analysis from TEM, DL process using 

experimental AFM images. Supporting Figures S1–S9: loss vs epoch curves, schematic of the 

generated virtual AFM probe, schematic depicting the dilation of a surface by the virtual AFM 

probe, additional examples of DL-assisted height profiling of random, continuous virtual surface 

corrugations (3D view and contour view), DL-assisted tip deconvolution of virtual morphologies 

with line-like and edge-lift artifacts, TEM image analysis. Supporting Tables S1–S3: details of the 

encoder-decoder networks used for virtual and experimental datasets, fine-tuned hyperparameters 

used for training the neural network model.  

Supporting Code and Data: IPython notebook for preparing virtual AFM datasets and initializing 

and training the neural network model (original and PDF versions) and data matrix for the 

generated virtual AFM probe. 
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