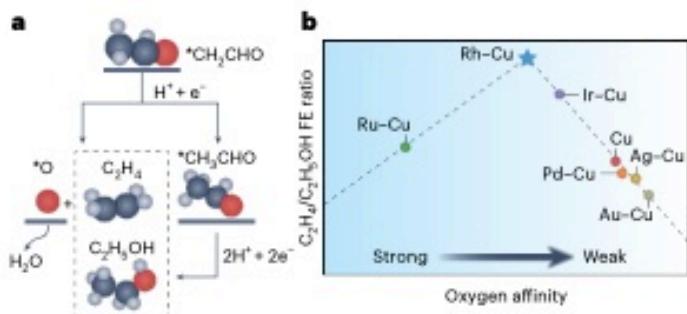


Beyond C–C coupling in CO₂ reduction

Yuting Xu & Fanglin Che


Directing CO₂ electroreduction toward a single C₂ product poses challenges because the reaction mechanism is unclear. Now, oxygen affinity is identified as a potential key descriptor to manipulate the selectivity of ethylene versus ethanol.

Reducing carbon emissions by electrochemically converting CO₂ to a value-added product(s) supports the world's transition to clean energy¹. Cu-based catalysts in electrochemical CO₂ reduction reactions (CO₂RR) have received the most attention because they are cost effective and can afford valuable multi-carbon products (C₂), such as ethylene (C₂H₄) and ethanol (C₂H₅OH), via C–C coupling². However, the mechanism to control the post-C–C coupling pathway remains unclear, inhibiting the selectivity toward a specific C₂ product. Such challenges arise from the high computational costs associated with predicting the complex reaction networks of CO₂RR to a single C₂ product over structure-sensitive catalysts under electrochemical operating conditions³, and the inability to probe the key C₂ intermediates during the post-C–C coupling steps using state-of-the-art *operando* technologies⁴.

Now, writing in *Nature Chemical Engineering*, Shize Yang, Thomas Senftle, Jingjie Wu and colleagues introduce a generalizable concept – tuning oxygen affinity – to direct post-C–C coupling selectivity toward C₂H₄ or C₂H₅OH (ref. 5). To support this concept, the work closely integrates atomic-scale calculations with *in situ* experiments. For this work, the authors assume that the selectivity-determining step of post-C–C coupling is the C–O bond cleavage in the key selectivity-determining intermediate of *CH₂CHO (Fig. 1a). They then dope the noble-metal single site into Cu (that is, M–Cu, M = Rh, Ir, Ru, Pd, Au and Ag) to tune the favorability of the C–O bond scission in the selectivity-determining intermediate and manipulate the C₂ selectivity⁶.

Compared with the pristine Cu, the stronger oxygen binding strength on the M–Cu (M = Rh, Ir and Ru) surface favors the cleavage of the C–O bond in the *CH₂CHO intermediate, producing C₂H₄ and leaving *O. When the *O binding strength is too strong, such as Ru–Cu, the high oxygen affinity leads to catalyst poisoning by *O. By contrast, the weaker oxygen binding strength on the M–Cu (M = Pd, Ag and Au) preserves the C–O bond in *CH₂CHO, preferentially forming C₂H₅OH. Thus, the oxygen affinity tunes the ratio of C₂H₄ to C₂H₅OH productivity. Taken together, the atomic simulation predicts that the Rh dopant presents the best selectivity of CO₂RR to C₂H₄.

The performance of a series of M–Cu catalysts for CO₂RR was evaluated in a flow cell. Experimental results agree with the theoretical prediction, revealing a volcano-like relationship between the C₂H₄/C₂H₅OH Faradaic efficiency (FE) ratios and the oxygen affinity across various M–Cu catalysts (Fig. 1b). The Rh–Cu catalyst exhibits the highest C₂H₄/C₂H₅OHFE ratio of approximately 4.50 at –0.66 V versus reversible hydrogen electrode (RHE) and maintains an C₂H₄ FE of approximately 61% for at least 35 h under a total current density of approximately 1 A cm^{–2}.

Fig. 1 | Oxygen affinity as a descriptor for ethylene versus ethanol selectivity. a, Schematic illustration of branching pathways to C₂H₄/C₂H₅OH from the *CH₂CHO intermediate as the selectivity-determining intermediate. b, A volcano-shaped correlation between experimentally measured C₂H₄/C₂H₅OH FE ratios and theoretically calculated relative adsorption energy of *O (referring to the pristine Cu as 0 eV). Figure adapted with permission from ref. 5, Springer Nature America, Inc.

Furthermore, through collectively promoting both initial and post-C–C coupling steps, a ZnO/Rh–Cu tandem electrode in a membrane electrode assembly (MEA) cell reaches a C₂H₄ FE of 85.4% and C₂H₅OH FE of 68.8% with a C₂H₄ partial current density of >1 A cm^{–2}. *In situ* Raman spectroscopy and ethylene oxide reduction reaction measurements validate that the oxygen affinity of M–Cu catalysts indeed modulates the adsorption of key selectivity-determining intermediates and *O intermediates, steering the reaction pathway to a specific C₂ product at the post-CO₂RR stages.

In recent years, many papers have been published on catalyst design for boosting C–C coupling to form C₂ products from CO₂RR. However, the post-C–C coupling process to tune a single C₂ product has remained relatively unexplored; this is what makes this approach so intriguing. The authors further envision that engineering oxygen affinity can benefit other reactions that involve the oxygen-bound intermediates, such as CO₂RR to formate and methanol, and ethylene oxide reduction to ethylene.

Despite the advances from this study and others in the field, there is still much to learn about CO₂RR. For example, it is not feasible to screen structure-sensitive catalysts in a vast chemical space for complex reaction networks, such as CO₂RR to C₂., under real operating conditions using atomic-scale simulations (for example, considering electrolyte, solvation and applied potential). Physics-informed, interpretable machine learning opens a path toward developing new, disruptive computational technologies to accelerate and thoroughly explore large complex reaction networks over chemical spaces for an effective identification of promising material candidates⁷. In addition, understanding the transport processes coupled with chemical reaction kinetics is important for scaling up CO₂RR. Future investigations on multi-physics modeling combined with multi-scale simulations can guide the rational design of catalysts, reactors and operating conditions via potentially providing physically correct representations.

such as product current densities at different cell voltages, local pH and CO_2/CO partial pressure⁸. Nevertheless, the work of Yang, Seftle, Wu and colleagues provides a general descriptor, oxygen affinity, to manipulate ethylene versus ethanol selectivity during the post-C–C coupling process in CO_2RR .

Yuting Xu & Fanglin Che

Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA.

 e-mail: fanglin_che@uml.edu

Published online: 8 February 2024

References

1. Sah, Z. W. et al. *Science* **355**, eaad4998 (2017).
2. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jarillo, T. F. *Energy Environ. Sci.* **5**, 7050–7059 (2012).
3. Goodpaster, J. D., Bell, A. T. & Head-Gordon, M. *J. Phys. Chem. Lett.* **7**, 1471–1477 (2016).
4. Birdja, Y. Y. et al. *Nat. Energy* **4**, 732–745 (2019).
5. Li, Z. et al. *Nat. Chem. Eng.* <https://doi.org/10.1038/s44286-023-00018-w> (2024).
6. Calle-Vallejo, F. & Koper, M. T. M. *Angew. Chem. Int. Ed.* **52**, 7282–7285 (2013).
7. Mou, T. et al. *Nat. Catal.* **6**, 122–136 (2023).
8. Heenan, H. H. et al. *Energy Environ. Sci.* **15**, 3978–3990 (2022).

Competing interests

The authors declare no competing interests.