

Room temperature optically detected magnetic resonance of single spins in GaN

Jialun Luo,¹ Yifei Geng,² Farhan Rana,² and Gregory D. Fuchs^{3,4,*}

¹*Department of Physics, Cornell University, Ithaca, NY, USA*

²*School of Electrical and Computer Engineering,*

Cornell University, Ithaca, NY, USA

³*School of Applied and Engineering Physics,*

⁴*Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA*

(Dated: April 2, 2024)

Abstract

12 High contrast optically detected magnetic resonance (ODMR) is a valuable property for reading
13 out the spin of isolated defect color centers at room temperature. Spin-active single defect cen-
14 ters have been studied in wide bandgap materials including diamond, SiC, and hBN; each with
15 associated advantages for applications. We report the discovery of ODMR in two distinct species
16 of bright, isolated defect centers hosted in GaN. In one group, we find negative ODMR of a few
17 percent associated with a metastable electronic state, whereas in the other, we find positive ODMR
18 of up to 30% associated with the ground and optically excited electronic states. We examine the
19 spin symmetry axis of each defect species and we establish coherent control over a single defect's
20 ground-state spin. Given the maturity of the semiconductor host, these results are promising for
21 scalable and integrated quantum sensing applications.

* gdf9@cornell.edu

Optically detected magnetic resonance^{1,2} (ODMR) is an efficient mechanism to readout the spin of solid-state color centers at room temperature, thus enabling spin-based quantum sensors of magnetic field,³⁻⁶ electric field,⁷ and temperature^{6,8,9} with high sensitivity and broad commercial applicability. The mechanism of room temperature ODMR is based on spin-dependent relaxation between the optically excited states to the ground states, and thus it is an intrinsic property of a defect center. While the diamond nitrogen-vacancy (NV) center is the most prominent example,^{10,11} room temperature ODMR has also been discovered in silicon vacancy centers¹² and divacancy centers¹³ in SiC, and recently in boron vacancy center ensembles^{14,15} and unidentified single defects^{16,17} in hexagonal boron nitride (hBN). Of these material systems, diamond NV centers are the most technologically important owing to their large (20–30%) ODMR contrast, long spin coherence, high quantum efficiency, and high brightness.¹⁸ Unfortunately, diamond as a substrate is far from being technologically mature. For example, diamond is unavailable with high crystalline quality in large-scale wafers and lacks hetero-epitaxial integration with semiconductors for integrated sensor technologies. Likewise, boron vacancy centers in hBN have large contrast (up to 20%),^{15,19,20} however, they are available only as small flakes, have low quantum efficiency,^{21,22} and lack a visible zero-phonon line at room temperature.²³ Silicon carbide is a technologically mature substrate with recent advances in scalable monolithic integration of color-center-based quantum light sources.²⁴ A recent work demonstrates high contrast (~30%) in coherent manipulation of a PL6 divacancy defect,²⁵ however, most SiC defects exhibit low contrast room temperature ODMR (under 2%).^{12,13,26,27}

GaN has emerged as a semiconductor of choice for power electronics owing to its wide direct bandgap and high breakdown field.^{28–31} Recently, it has also been found to host bright single photon emitters with spectrally narrow photoluminescence (PL) in the visible spectrum.^{1,2} These defect centers have large room temperature saturation photon count rates on the order of 800 kCt/s in a solid-immersion lens at a saturation power of ≈ 1 mW, and they have zero phonon linewidths of a few meV at room temperature and less than 1 meV at cryogenic temperatures.^{3,35,36} In contrast to NV centers in diamond, these defect centers in GaN have large Debye-Waller factors > 0.5 . These excellent optical properties, combined with the engineerability of GaN make these single-photon emitting defects attractive for on-chip photonics and quantum technologies that require single-photon sources. The atomic structure of these defects has not yet been identified.

54 In this work, we report that bright single photon emitters in GaN possess spin $S \geq 1$
55 and exhibit magnetic field dependent PL and ODMR with up to $\sim 30\%$ contrast at room
56 temperature. Our study reveals at least two distinct groups of defects, each with a distinct
57 ODMR spectrum as well as sign of ODMR contrast. Finally, we demonstrate coherent Rabi
58 driving and extract a Rabi coherence time on the order of 100 ns. This is promising for
59 sensing applications owing to the high ODMR contrast hosted by a mature semiconductor
60 platform, and it is also promising for unraveling the atomic structure of these defect
61 types by providing critical information about the defect orientation within the crystal, spin
62 multiplicity, and sign of the ODMR response.

63 **Magneto-photoluminescence of single defects in GaN**

64 Figure 1(a-c) detail the typical room temperature optical properties of an isolated GaN
65 defect used in our study. The defects are optically separated on the scale of a few microm-
66 eters, enabling photon correlation measurements to ensure we examine single defects. A
67 solid-immersion lens aids in photon collection, with a typical rate of 80 kCounts/s into a 0.9
68 NA microscope objective when excited with a 532 nm laser with 20 μW power. Defect #2
69 emits most of its PL into a narrow linewidth centered near 667 nm. As noted previously,¹⁻³
70 not all GaN defects share the same emission energy. Additionally, while these defects are
71 mainly photo-stable, like most solid-state single photon emitters, these defects suffer some
72 instabilities, including occasional photo-bleaching. Additional information is detailed in
73 Supplementary Note 1, Supplementary Table 1 and Supplementary Figures 1 and 2.

74 A simple method of screening a particular defect for spin-dependent optical proper-
75 ties is measuring its magnetic field dependent PL (magneto-PL).^{37,38} Although the specific
76 magneto-PL response depends on the angle of the magnetic field with respect to the defect
77 spin quantization axis, we select the GaN *c*-axis as a potential direction of high symmetry.
78 The result for seven individual defects is shown in Fig. 1(d). We immediately notice that
79 the defects fall into two groups of behavior. In the first group, there is a $\sim 7\%$ dip in PL at
80 low magnetic fields, followed by an increase of PL to saturation (#1 and #5, which we label
81 group I). In the second group, the PL falls monotonically with magnetic field, showing up
82 to a 30% change in PL (#2 – #4, which we label group II).

83 We proceed under the initial assumption that these GaN defect groups have a spin-

dependent PL mechanism similar to that of the diamond nitrogen-vacancy center, in which a spin-state-dependent intersystem crossing can occur from the excited states to a metastable state (Fig. 1(e)), which ultimately creates spin-dependent PL contrast.³⁷ It is also possible to obtain spin-dependent PL even if the ground and excited states are spin singlets or doublets if there is spin-dependent relaxation from a $S \geq 1$ metastable states (Fig. 1(f)).^{38,39} In both cases, the precise spin contrast results from a competition between radiative and non-radiative relaxation rates, branching ratios, and optical pumping rates. While the full characterization of the GaN defect optical cycle is beyond the scope of this work, we re-examine some details of the spin-dependent optical cycle below.

Regardless of the specific mechanism of spin-dependent PL contrast, magneto-PL originates from Zeeman-induced spin state mixing between spin states with different average PL rates. This mechanism is relevant to systems with electronic spin $S \geq 1$. The ground state Hamiltonian of a spin system with $S \geq 1$ in a magnetic field B is given by

$$\mathcal{H} = DS_z^2 + E(S_x^2 - S_y^2) + g\mu_B \vec{S} \cdot \vec{B}, \quad (1)$$

where S is the electronic spin operator, g the electronic g -factor, μ_B the Bohr magneton, D and E together the zero-field interaction parameters. Here we ignore coupling to nuclear spins for simplicity. An angle between the external field \vec{B} and the spin quantization axis introduces off-diagonal large matrix elements between the spin eigenstates, mixing them. The spin eigenstates can also mix at low fields if $E \neq 0$.

Returning to the magneto-PL measurements of Fig. 1(d), the group-I magneto-PL response suggests a Zeeman-induced spin degeneracy at low magnetic fields, hinting $S \geq 1$ with a value of D under a few hundred megahertz for an electron spin with $g = 2$, depending somewhat on the alignment of the magnetic field to the spin quantization axis. Additionally, it suggests that optical pumping puts defects in this group into a state with higher PL, while spin mixing reduces the overall PL; a situation similar to diamond NV centers. While group-II defects also must have $S \geq 1$, in contrast to group-I defects, the magneto-PL is monotonically decreasing. This could be explained by two possibilities. The first is that the magnetic field is severely misaligned with respect to the defect symmetry axis, the transverse magnetic field mixes the spin states, and thus spin-mixing occurs for such a large range of magnetic fields. In this case, spin mixing would lower the PL. The second scenario is that the spin states are already mixed at low magnetic field and the magnetic field is reducing

114 their mixing. Here, optical pumping would be initializing the system into a state that emits
115 less PL than the other states, and thus the PL would become lower at higher fields as the
116 initialization state becomes less mixed. More inputs are required to distinguish between
117 these two cases, which we will discuss below and further in Supplementary Note 2.

118 **Spin quantization axes**

119 Having confirmed that both groups of individual defects have spins with $S \geq 1$ and a
120 spin-dependent optical cycle, we study the spin-resonant transitions and spin Hamiltonian
121 by measuring continuous wave (cw-) ODMR. To study the spin resonance, we continuously
122 drive a microwave magnetic field, optically pump the defect optical transition, and count the
123 emitted PL. Figure 2 shows the resulting cw-ODMR traces at $B = 1$ kG for a group-I (#1)
124 and a group-II (#2) defect. We immediately notice that the two groups have an opposite
125 sign of ODMR contrast, as suggested by the magneto-PL, with group-I defects showing
126 negative cw-ODMR contrast and group-II defects showing positive cw-ODMR contrast. We
127 also notice that the group-I defect has a modest contrast of $\sim 2\%$ at this driving power,
128 while the group-II defect has a $\sim 30\%$ contrast for one of the three resonance features, with
129 smaller contrast for two other features.

130 A key input for establishing the identity of a new defect is its spin quantization axis.
131 Having discovered a reliable cw-ODMR signal on multiple GaN single defects, we now make
132 the assumption that the cw-ODMR contrast will be largest when we align the external
133 magnetic field along the z -axis defined by Eqn. 1. A misaligned static field will mix the spin
134 eigenstates, which will reduce the cw-ODMR contrast if the fluorescence contrast mechanism
135 is tied to $|m_s|$ as it is for the diamond NV center. To test this we systematically vary the
136 polar angle θ with respect to the c -axis of the crystal, and then the azimuthal angle ϕ , which
137 is measured with respect to the a -lattice vector of GaN. Fig. 2(c) and (d) show the ODMR
138 contrast for defect #1 and #2, respectively, as a function of θ , while the corresponding
139 data as a function of ϕ is shown in Supplementary Figure 3 in Supplementary Note 3. We
140 find that the spin quantization axis for the group-I defect #1 forms a ~ 27 -degree angle
141 with the GaN crystal c -axis, with an in-plane component points along the a -axis. For the
142 group-II defect #2 we find a spin quantization axis approximately 10 degrees away from the
143 c -axis, and an in-plane component along the a -axis. Neither spin quantization axis matches

¹⁴⁴ a vector between a lattice site and its nearest few neighbors, suggesting the involvement of
¹⁴⁵ interstitial atoms (Fig. 2(e)-(f)).

¹⁴⁶ **Optically detected magnetic resonance spectra**

¹⁴⁷ Now we study the Zeeman effect on the spin levels. First, we align our set-up so that \vec{B}
¹⁴⁸ is parallel to the direction of the largest ODMR contrast discussed above and record ODMR
¹⁴⁹ as a function of B . Under these conditions we assume $B = B_z$ from Eqn. 1. Figure 3 shows
¹⁵⁰ the resulting cw-ODMR data from defect #1 (group I) and defect #2 (group II) from 100 G
¹⁵¹ to 1500 G. The most visible spin resonances disperse with a g -factor $g = 2$, confirming that
¹⁵² we study electronic spins.

¹⁵³ First focusing on defect #1, we see two transitions of unequal contrast that appear
¹⁵⁴ at $B \gtrsim 250$ G. The lack of cw-ODMR contrast at low magnetic fields suggests a mixing
¹⁵⁵ between the spin eigenstates that leads to the suppression of spin contrast. If we assume
¹⁵⁶ a minimum spin multiplicity to explain the two transitions, $S = 1$, then this data can be
¹⁵⁷ described by Eqn. 1 with $D \approx E \approx 389$ MHz. An overlay of the fitted spin transitions
¹⁵⁸ is shown in Supplementary Figure 4(a) in Supplementary Note 4. Under these conditions
¹⁵⁹ at low magnetic fields, the zero-field spin eigenstates would indeed be strongly mixed, thus
¹⁶⁰ suppressing spin-dependent optical contrast. We note, however, that this scenario does not
¹⁶¹ explain why the two transitions have unequal contrast, which may relate to dynamics of the
¹⁶² optical cycle that have not been revealed by these measurements. Additionally, we find that
¹⁶³ the model deviates from the data at the lowest magnetic fields, which may point to other
¹⁶⁴ physics not contained in a toy model of a single electronic spin-1. For example, the Ga and
¹⁶⁵ N atoms that surround the defect all have a nonzero nuclear spin, which may interact very
¹⁶⁶ strongly with this defect and thus potentially explain a deviation from a simple electronic
¹⁶⁷ model. Additionally, we note that group-I defects are rare compared to those in group II.
¹⁶⁸ While we observed magneto-PL for two defects in this group, one of those stopped being
¹⁶⁹ optically active, and thus defect #1 is the only group-I defect that we have been able to
¹⁷⁰ record ODMR (See more in Supplementary Note 1).

¹⁷¹ Next, we examine the field-dependent cw-ODMR of defect #2, which has the same cw-
¹⁷² ODMR spectrum as all of the group-II defects that we studied. Data for other defects can
¹⁷³ be found in Supplementary Figure 4. This defect shows three spin transitions that disperse

174 with $g = 2$, making spin $S = 3/2$ a minimal model assuming that there is an ODMR
175 contrast mechanism for all $\Delta m_s = 1$ transitions. Again we note that the three transitions
176 have unequal contrast. The strongest cw-ODMR feature extrapolates to zero frequency at
177 zero field within experimental uncertainty, suggesting that it is due to a transition between
178 $|m_s = -\frac{1}{2}\rangle$ and $|m_s = +\frac{1}{2}\rangle$ in the minimal model. In addition to the $g = 2$ resonance, we also
179 see a 4th resonance that disperses with $g = 4$. This feature has a zero-frequency intercept
180 at $B = 0$ and it appears to have an avoided-crossing with the highest frequency $g = 2$ spin
181 resonance at $B \sim 300$ G and $f_{\text{mw}} = 1.5$ GHz. Although a $g = 4$ resonance can be explained
182 by a $\Delta m_s = 2$ spin transition, that scenario does not give rise to an avoided-crossing or
183 a zero intercept, suggesting that a toy electronic model based on Eqn. 1 is insufficient to
184 describe this spin system if the magnetic field is aligned along the symmetry axis. If we
185 ignore the $g = 4$ resonant line, these transitions are well-described for $B > 0.5$ kG by a
186 $S = 3/2$ model with $D = 368$ MHz and $E = 0$ as shown in Supplementary Figure 4(b)
187 (see further discussion in Supplementary Note 4). Lastly, this picture is consistent with the
188 magneto-PL data shown in Fig. 1(d), because optical pumping initializes the system into a
189 state emitting less PL when the magnetic field is large enough.

190 **Identifying the electronic states associated with ODMR**

191 We now return to the question of whether the spins associated with these defects are
192 in the ground-state and excited-state manifold as in the case of the diamond NV center
193 (Fig. 1(e)), or whether they are associated with a metastable state (Fig. 1(f)) as in the
194 case of the diamond ST1 defect.³⁹ To clarify that assignment, we perform both pulsed
195 ODMR and time-resolved single photon counting experiments with separate microwave spin
196 manipulation and optical excitation. The pulse timings are detailed in Supplementary Figure
197 5. If we manipulate a ground-state spin, then we expect the pulsed ODMR scheme shown
198 in Fig. 4(a) to result in a visible spin resonance. However, if there is no contrast, then we
199 can assign the cw-ODMR response to a metastable spin state.

200 We start with pulsed ODMR of defect #1 from group I, shown in Fig. 4(b). We observe
201 no spin resonance response, with the noise floor of our integration at the level of 0.2%.
202 Comparing this figure to the $\sim 2\%$ contrast that we observed for cw-ODMR, we conclude
203 that this defect likely has a ground-state/excited-state singlet or a ground-state doublet with

204 no ODMR contrast. Thus, the $S \geq 1$ spin state that gives rise to cw-ODMR must reside in
205 a metastable state. We confirm our conclusion that ground-state microwave preparation has
206 no impact on the PL using direct time-resolved single photon counting (Fig. 4(c)). We see
207 that after turning on the laser, defect #1 has a microsecond-timescale reduction in PL as a
208 function of time, however, we note no difference between the curves generated by a laser pulse
209 alone and a microwave pulse followed by a laser pulse. These data, along with measurements
210 of $g^{(2)}$ of this defect that shows photon bunching (see Supplementary Figure 2), support the
211 existence of a metastable state, and are consistent with the picture of a $S \geq 1$ metastable
212 state. Further work will be necessary to pin down all the rates in the optical cycle; however,
213 these measurements all point to an optical cycle like that schematically shown in Fig. 1(f).

214 Next we repeat this series of measurements on a member of group II, defect #2, and find
215 the opposite result in Fig. 4(d). Here we find visible pulsed ODMR contrast, confirming
216 that the cw-ODMR measurements are the result of a ground-state spin. Interestingly, while
217 the pulsed ODMR contrast is lower than the cw-ODMR owing to different details of the
218 measurement protocol, we see that the same ratio of contrast between the three $\Delta m_s = 1$
219 transitions is preserved (See Supplementary Note 5 for further discussion). This suggests
220 that there are non-trivial spin-dependent intersystem crossing rates, and in particular they
221 are not proportional to $|m_s|$ as in the case of diamond NV centers. We perform the time-
222 resolved PL measurement of defect #2 as before, with the microwave pulse tuned to the
223 largest-contrast resonance. As expected, we see a noticeably larger initial PL response when
224 we manipulate the ground-state spin before the laser pulse than when we do not, with
225 a contrast lasting for $\sim 2 \mu\text{s}$. While this experiment does not establish all the details of
226 the optical cycle and spin, it is consistent with a level diagram and dynamics as shown in
227 Fig. 1(e).

228 **Coherent control of a group II single spin**

229 Finally, we demonstrate coherent Rabi oscillations of a group-II defect (#6). We follow
230 a common pulsed timing scheme for Rabi measurements, shown in Fig. 5(a). We work at a
231 magnetic field in which the spin transitions are well separated such that we probe each of the
232 $g = 2$ transitions independently. Figures 5(b-d) show the resulting Rabi oscillations of the
233 lower-, intermediate-, and higher-frequency spin transitions respectively. We attribute the

²³⁴ difference between the Rabi frequencies on each transition to the frequency dependence of
²³⁵ the antenna's power coupling. The lower- and higher-frequency transitions have a Rabi spin
²³⁶ coherence time of $T_{2,R} = 108 \pm 4$ ns and 113 ± 5 ns, respectively, whereas the intermediate-
²³⁷ frequency resonance has $T_{2,R} = 41 \pm 4$ ns (see Supplementary Figure 6, Supplementary Table
²³⁸ 2, and Supplementary Note 6 for additional details). These coherence times are comparable
²³⁹ to those measured from single spins in h-BN, which also has a large abundance of nuclear
²⁴⁰ spins in the lattice.⁴⁰

²⁴¹ The measured trend in Rabi coherence times is also roughly consistent with the cw-ODMR
²⁴² linewidths we observed in Fig. 2(b), which are 82, 234, and 60 MHz, respectively, for the
²⁴³ lowest- to the highest-frequency spin resonances. The origin of this disparity in spin coher-
²⁴⁴ ence is unclear based on the current experimental work. One potential explanation is that
²⁴⁵ the intermediate-frequency spin transition, which corresponds to $|m_s = -\frac{1}{2}\rangle \leftrightarrow |m_s = +\frac{1}{2}\rangle$
²⁴⁶ for a spin-3/2 model, is resonant at all fields with the bath of $S = 1/2$ spins due to elec-
²⁴⁷ tron charge traps that are presumably abundant in the environment of the defect. This
²⁴⁸ situation would enable energy-conserving spin flip-flops and thus increase the rate of spin
²⁴⁹ relaxation out of these states relative to the other spin states. On the other hand, the
²⁵⁰ transitions corresponding to $|m_s = -\frac{3}{2}\rangle \leftrightarrow |m_s = -\frac{1}{2}\rangle$ (the lower-frequency resonance) and
²⁵¹ $|m_s = \frac{1}{2}\rangle \leftrightarrow |m_s = \frac{3}{2}\rangle$ (the higher-frequency resonance) are not resonant with a $S = 1/2$
²⁵² spin bath. Meanwhile, the naturally abundant isotopes of Ga and N have nuclear spins of
²⁵³ $I = 3/2$ and $I = 1$, respectively. We speculate that hyperfine interactions with the nuclear
²⁵⁴ spin bath dominate the coherence time of these transitions.

²⁵⁵ In conclusion, we report high-contrast optically detected spin resonance of GaN single
²⁵⁶ defect spins at room temperature. We find two distinct defect groups that we categorize
²⁵⁷ based on their magneto-PL and ODMR spectra. They display complex optical cycles and
²⁵⁸ spin resonance behavior that will require further investigation to understand fully; however,
²⁵⁹ this work establishes key facts about these defect groups. The first group has a small
²⁶⁰ negative ODMR contrast, with spin at least $S = 1$ in its metastable state to explain the
²⁶¹ experimental results. The second group has a large (up to 30%) positive ODMR contrast,
²⁶² with a complicated ground-state spin Hamiltonian including at least $S = 3/2$. Additionally,
²⁶³ through angle-dependent cw-ODMR measurements, we establish a spin quantization axis in
²⁶⁴ terms of the magnetic field angle with the largest ODMR contrast. The spin quantization
²⁶⁵ axes of both groups do not connect neighboring GaN lattice sites, suggesting the involvement

266 of interstitials. Finally, we show coherent spin manipulation in this system, enabling a new
267 tool to study the properties of this system and its environment. Beyond providing critical
268 new clues to help identify these high-performance single photon emitters, our findings are
269 promising as the basis for magnetic sensing technologies using defect fluorescence based on
270 a mature optoelectronic semiconductor platform.

271 **ACKNOWLEDGEMENTS**

272 We thank Len van Deurzen, Debdeep Jena, and Huili Grace Xing for useful discus-
273 sions and for supplying the GaN substrates. We thank Brendan McCullian, Nikhil Mathur,
274 Anthony D'Addario, and Johnathon Kuan for helpful discussions on the physics and mi-
275 crowave experiments. This work was supported by the Cornell Center for Materials Research
276 (CCMR), an NSF Materials Research Science and Engineering Center (DMR-1719875, J.
277 L., Y. G., F. R., and G. F.). We also acknowledge support through the Cornell Engineer-
278 ing Sprout program (J. L.). Preliminary work was supported by the NSF TAQS program
279 (ECCS-1839196, J. L., Y. G., F. R., and G. F.). This work was performed in part at the
280 Cornell NanoScale Science & Technology Facility (CNF), a member of the National Nan-
281 otechnology Coordinated Infrastructure (NNCI), which is supported by the NSF (Grant
282 NNCI-2025233).

283 **AUTHOR CONTRIBUTIONS**

284 All authors conceived the experiment. J. L. and G. F. developed the experimental ap-
285 proach. J. L. and Y. G. prepared samples. J. L. made measurements. J. L. and G. F.
286 analyzed the experiment. J. L. and G. F. wrote the manuscript text. All authors reviewed
287 the manuscript.

288 **COMPETING INTERESTS STATEMENT**

289 The authors declare no competing interests.

FIG. 1. Optical properties of GaN defects. (a) Photoluminescence image of an isolated defect (#2) and its surroundings. The scale bar is $2\ \mu\text{m}$. (b) Optical spectrum of defect #2. Inset: scanning electron microscope image of a solid-immersion lens carved around the defect. The scale bar is $4\ \mu\text{m}$. (c) Second-order photon auto-correlation $g^{(2)}(\tau)$ of defect #2. The zero-delay autocorrelation $g^{(2)}(0) = 0.3 < 0.5$, which is consistent with a single photon emitter. (d) Magnetic field dependent PL measured with the magnetic field roughly aligned to the c -axis of the GaN crystal showing two groups of behavior, as discussed in the text. (e) Minimal level diagram that is consistent with a $S \geq 1$ ground/excited-state spin. The non-radiative intersystem crossing (ISC) rate $\gamma_{\text{ISC}}(m_s)$ into a meta-stable state (M) is spin-dependent. (f) Minimal level diagram that is consistent with a $S \geq 1$ metastable state. The non-radiative intersystem crossing rate $\gamma_{\text{ISC},\ g}(m_s)$ from a metastable state $|\text{M}, m_s\rangle$ to the ground state $|\text{g}\rangle$ depends on the metastable state spin m_s whereas the radiative relaxation rate γ_{eg} is spin-independent.

FIG. 2. Optically detected magnetic resonance. (a) and (b) show ODMR signals of defects #1 and #2 at $B = 1\ \text{kG}$ respectively. (c) and (d) show the dependence of the ODMR peak contrasts of defects #1 and #2 on the alignment between the magnetic field and the crystal c -axis ($\theta = 0$). The dashed lines are guides for the eye. The error bars in (c) and (d) represent the standard error from least-squared fitting. No error bar is given when no above-noise-floor ODMR signal can be seen. (e) and (f) visualize the spin quantization axes with respect to the lattice. The white and black spheres represent Ga and N atoms, respectively. The solid blue arrow represents defect #1 and the dashed red arrow represents defect #2. The green circles highlight a hypothetical starting point of the spin quantization axes to help visualize the relationship between the lattice and the spins.

FIG. 3. **cw-ODMR spectrum as a function of magnetic field.** The magnetic-field-dependent ODMR signals for defects (a) #1 and (b) #2. Two spin resonances can be seen on the group-I defect #1 and four can be seen on the group-II defect #2. Note that the three faint lines dispersing with $g = 1$ indicated by the arrows are harmonic replica artifacts due to the microwave power amplifier nonlinearity.

FIG. 4. **Spin-dependent optical dynamics** (a) Timing diagram of a single measurement cycle of the pulsed ODMR and time-resolved PL schemes. The microwave pulse (blue) is applied before turning on the laser (green). After the optical readout, the laser is turned off to relax all population out of the metastable state before the microwave pulse turns back on in the next cycle. The optical detection is via either integrated counting during the signal and normalization windows (red and orange, respectively), or time-resolved single photon counting. (b) Pulsed ODMR measurement of defect #1. (c) Time-resolved PL of defect #1, with and without a microwave pulse applied prior to the laser pulse. Note the two data sets sit right on top of each other. (d) Pulsed ODMR measurement of defect #2. (e) Time-resolved PL of defect #2, with and without a microwave pulse applied prior to the laser pulse. The solid and dashed arrows in (a, c, e) represent the times when the laser turns on and off, respectively.

290 [1] J. Köhler, J. a. J. M. Disselhorst, M. C. J. M. Donckers, E. J. J. Groenen, J. Schmidt, and
 291 W. E. Moerner, Magnetic resonance of a single molecular spin, *Nature* **363**, 242 (1993).

FIG. 5. **Rabi oscillation of a group-II defect.** (a) Timing diagram of a single measurement cycle of Rabi oscillation. A long green laser pulse ($30 \mu\text{s}$) initializes the system into a spin-polarized state. A short readout window ($5 \mu\text{s}$) reads the PL intensity of this spin state. Then a microwave tuned to an individual spin resonance is turned on for a varying pulse duration τ_{mw} . Lastly, a short readout laser pulse is turned on to read the final state PL intensity. The signal is obtained by normalizing the integrated PL intensity during the signal readout window to that during the norm readout window. (b), (c), and (d) show the Rabi oscillations when the microwave is tuned to the lower-, middle-, and higher-frequency resonances respectively.

292 [2] J. Wrachtrup, C. von Borczyskowski, J. Bernard, M. Orrit, and R. Brown, Optical detection
293 of magnetic resonance in a single molecule, *Nature* **363**, 244 (1993).

294 [3] C. L. Degen, Scanning magnetic field microscope with a diamond single-spin sensor, *Applied*
295 *Physics Letters* **92**, 243111 (2008).

296 [4] J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby,
297 R. Walsworth, and M. D. Lukin, High-sensitivity diamond magnetometer with nanoscale reso-
298 lution, *Nature Physics* **4**, 810 (2008).

299 [5] L. Rondin, J. P. P. Tetienne, T. Hingant, J. F. F. Roch, P. Maletinsky, and V. Jacques,
300 Magnetometry with nitrogen-vacancy defects in diamond, *Rep Prog Phys* **77**, 56503 (2014).

301 [6] A. Gottscholl, M. Diez, V. Soltamov, C. Kasper, D. Krauße, A. Sperlich, M. Kianinia,
302 C. Bradac, I. Aharonovich, and V. Dyakonov, Spin defects in hBN as promising temperature,
303 pressure and magnetic field quantum sensors, *Nature Communications* **12**, 4480 (2021).

304 [7] F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf,
305 F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, Electric-field sensing using
306 single diamond spins, *Nature Physics* **7**, 459 (2011).

307 [8] V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, Temper-
308 ature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond, *Physical Review*
309 *Letters* **104**, 070801 (2010).

310 [9] D. M. Toyli, D. J. Christle, A. Alkauskas, B. B. Buckley, C. G. Van de Walle, and D. D.
311 Awschalom, Measurement and control of single nitrogen-vacancy center spins above 600 k,
312 *Physical Review X* **2**, 031001 (2012).

313 [10] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg,
314 The nitrogen-vacancy colour centre in diamond, *Physics Reports* **528**, 1 (2013).

315 [11] F. Jelezko and J. Wrachtrup, Single defect centres in diamond: A review, *physica status solidi*
316 (a) **203**, 3207 (2006).

317 [12] M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao,
318 S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima,
319 A. Gali, E. Janzén, and J. Wrachtrup, Coherent control of single spins in silicon carbide at
320 room temperature, *Nature Materials* **14**, 164 (2015).

321 [13] W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, Room
322 temperature coherent control of defect spin qubits in silicon carbide, *Nature* **479**, 84 (2011).

323 [14] A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper,
324 K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, Initialization and read-
325 out of intrinsic spin defects in a van der waals crystal at room temperature, *Nature Materials*
326 **19**, 540 (2020).

327 [15] X. Gao, B. Jiang, A. E. Llacsahuanga Allcca, K. Shen, M. A. Sadi, A. B. Solanki, P. Ju,
328 Z. Xu, P. Upadhyaya, Y. P. Chen, S. A. Bhave, and T. Li, High-Contrast Plasmonic-Enhanced
329 Shallow Spin Defects in Hexagonal Boron Nitride for Quantum Sensing, *Nano Letters* **21**, 7708
330 (2021).

331 [16] N. Chejanovsky, A. Mukherjee, J. Geng, Y.-C. Chen, Y. Kim, A. Denisenko, A. Fin-
332 kler, T. Taniguchi, K. Watanabe, D. B. R. Dasari, P. Auburger, A. Gali, J. H. Smet, and
333 J. Wrachtrup, Single-spin resonance in a van der Waals embedded paramagnetic defect, *Nature*
334 *Materials* **20**, 1079 (2021).

335 [17] H. L. Stern, Q. Gu, J. Jarman, S. Eizagirre Barker, N. Mendelson, D. Chugh, S. Schott, H. H.
336 Tan, H. Siringhaus, I. Aharonovich, and M. Atatüre, Room-temperature optically detected
337 magnetic resonance of single defects in hexagonal boron nitride, *Nature Communications* **13**,
338 618 (2022).

339 [18] L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, Magne-
340 tometry with nitrogen-vacancy defects in diamond, *Reports on Progress in Physics* **77**, 056503
341 (2014).

342 [19] N. Mathur, A. Mukherjee, X. Gao, J. Luo, B. A. McCullian, T. Li, A. N. Vamivakas, and
343 G. D. Fuchs, Excited-state spin-resonance spectroscopy of V_B^- defect centers in hexagonal boron
344 nitride, *Nature Communications* **13**, 3233 (2022).

345 [20] Z. Mu, H. Cai, D. Chen, J. Kenny, Z. Jiang, S. Ru, X. Lyu, T. S. Koh, X. Liu, I. Aharonovich,
346 and W. Gao, Excited-State Optically Detected Magnetic Resonance of Spin Defects in Hexag-
347 onal Boron Nitride, *Physical Review Letters* **128**, 216402 (2022).

348 [21] J. R. Reimers, J. Shen, M. Kianinia, C. Bradac, I. Aharonovich, M. J. Ford, and P. Piecuch,
349 Photoluminescence, photophysics, and photochemistry of the V_B^- defect in hexagonal boron
350 nitride, *Physical Review B* **102**, 144105 (2020).

351 [22] X. Xu, A. B. Solanki, D. Sychev, X. Gao, S. Peana, A. S. Baburin, K. Pagadala, Z. O. Martin,
352 S. N. Chowdhury, Y. P. Chen, T. Taniguchi, K. Watanabe, I. A. Rodionov, A. V. Kildishev,
353 T. Li, P. Upadhyaya, A. Boltasseva, and V. M. Shalaev, Greatly Enhanced Emission from

354 Spin Defects in Hexagonal Boron Nitride Enabled by a Low-Loss Plasmonic Nanocavity, Nano
355 Letters **23**, 25 (2023).

356 [23] C. Qian, V. Villaña, M. Schalk, G. V. Astakhov, U. Kentsch, M. Helm, P. Soubelet, N. P.
357 Wilson, R. Rizzato, S. Mohr, A. W. Holleitner, D. B. Bucher, A. V. Stier, and J. J. Finley,
358 Unveiling the Zero-Phonon Line of the Boron Vacancy Center by Cavity-Enhanced Emission,
359 Nano Letters **22**, 5137 (2022).

360 [24] D. M. Lukin, C. Dory, M. A. Gildry, K. Y. Yang, S. D. Mishra, R. Trivedi, M. Radulaski,
361 S. Sun, D. Vercruyse, G. H. Ahn, and J. Vučković, 4H-silicon-carbide-on-insulator for inte-
362 grated quantum and nonlinear photonics, Nature Photonics **14**, 330 (2020).

363 [25] Q. Li, J.-F. Wang, F.-F. Yan, J.-Y. Zhou, H.-F. Wang, H. Liu, L.-P. Guo, X. Zhou, A. Gali,
364 Z.-H. Liu, Z.-Q. Wang, K. Sun, G.-P. Guo, J.-S. Tang, H. Li, L.-X. You, J.-S. Xu, C.-F. Li, and
365 G.-C. Guo, Room-temperature coherent manipulation of single-spin qubits in silicon carbide
366 with a high readout contrast, National Science Review **9** (2022).

367 [26] J. Wang, Y. Zhou, X. Zhang, F. Liu, Y. Li, K. Li, Z. Liu, G. Wang, and W. Gao, Efficient
368 Generation of an Array of Single Silicon-Vacancy Defects in Silicon Carbide, Physical Review
369 Applied **7**, 064021 (2017).

370 [27] J.-F. Wang, F.-F. Yan, Q. Li, Z.-H. Liu, H. Liu, G.-P. Guo, L.-P. Guo, X. Zhou, J.-M.
371 Cui, J. Wang, Z.-Q. Zhou, X.-Y. Xu, J.-S. Xu, C.-F. Li, and G.-C. Guo, Coherent Control
372 of Nitrogen-Vacancy Center Spins in Silicon Carbide at Room Temperature, Physical Review
373 Letters **124**, 223601 (2020).

374 [28] A. A. Burk, M. J. O'Loughlin, R. R. Siergiej, A. K. Agarwal, S. Sriram, R. C. Clarke, M. F.
375 MacMillan, V. Balakrishna, and C. D. Brandt, SiC and GaN wide bandgap semiconductor
376 materials and devices, Solid-State Electronics **43**, 1459 (1999).

377 [29] J. W. Milligan, S. Sheppard, W. Pribble, Y.-F. Wu, G. Muller, and J. W. Palmour, SiC and
378 GaN Wide Bandgap Device Technology Overview, in *2007 IEEE Radar Conference* (2007) pp.
379 960–964.

380 [30] K. J. Chen, O. Häberlen, A. Lidow, C. I. Tsai, T. Ueda, Y. Uemoto, and Y. Wu, GaN-on-Si
381 Power Technology: Devices and Applications, IEEE Transactions on Electron Devices **64**, 779
382 (2017).

383 [31] U. Mishra, P. Parikh, and Y.-F. Wu, AlGaN/GaN HEMTs—an overview of device operation
384 and applications, Proceedings of the IEEE **90**, 1022 (2002).

385 [1] A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios,
386 A. Gali, M. Toth, D. Englund, and I. Aharonovich, Bright Room-Temperature Single-Photon
387 Emission from Defects in Gallium Nitride, *Advanced Materials* **29**, 1605092 (2017).

388 [2] A. M. Berhane, K.-Y. Jeong, C. Bradac, M. Walsh, D. Englund, M. Toth, and I. Aharonovich,
389 Photophysics of GaN single-photon emitters in the visible spectral range, *Physical Review B*
390 **97**, 165202 (2018).

391 [3] Y. Geng, J. Luo, L. Van Deurzen, H. Xing, D. Jena, G. D. Fuchs, and F. Rana, Dephasing by
392 optical phonons in GaN defect single-photon emitters, *Scientific Reports* **13**, 8678 (2023).

393 [35] Y. Geng, D. Jena, G. D. Fuchs, W. R. Zipfel, and F. Rana, Optical dipole structure and
394 orientation of gan defect single-photon emitters, *ACS Photonics* **10**, 3723 (2023).

395 [36] Y. Geng and K. Nomoto, Ultrafast spectral diffusion of GaN defect single photon emitters,
396 *Applied Physics Letters* **123**, 174002 (2023).

397 [37] R. J. Epstein, F. M. Mendoza, Y. K. Kato, and D. D. Awschalom, Anisotropic interactions of
398 a single spin and dark-spin spectroscopy in diamond, *Nature Physics* **1**, 94 (2005).

399 [38] A. L. Exarhos, D. A. Hopper, R. N. Patel, M. W. Doherty, and L. C. Bassett, Magnetic-
400 field-dependent quantum emission in hexagonal boron nitride at room temperature, *Nature
401 Communications* **10**, 222 (2019).

402 [39] S.-Y. Lee, M. Widmann, T. Rendler, M. W. Doherty, T. M. Babinec, S. Yang, M. Eyer,
403 P. Siyushev, B. J. M. Hausmann, M. Loncar, Z. Bodrog, A. Gali, N. B. Manson, H. Fedder,
404 and J. Wrachtrup, Readout and control of a single nuclear spin with a metastable electron spin
405 ancilla, *Nature Nanotechnology* **8**, 487 (2013).

406 [40] N.-J. Guo, S. Li, W. Liu, Y.-Z. Yang, X.-D. Zeng, S. Yu, Y. Meng, Z.-P. Li, Z.-A. Wang, L.-K.
407 Xie, R.-C. Ge, J.-F. Wang, Q. Li, J.-S. Xu, Y.-T. Wang, J.-S. Tang, A. Gali, C.-F. Li, and
408 G.-C. Guo, Coherent control of an ultrabright single spin in hexagonal boron nitride at room
409 temperature, *Nature Communications* **14**, 2893 (2023).

410 **METHODS**

411 **Sample preparation.** We study a GaN sample commercially available from the Xiamen
412 Powerway Advanced Material Co., Limited, China. A 4 μm -thick layer of GaN is grown on a
413 430 μm -thick sapphire wafer by hydride vapor phase epitaxy (HVPE). The GaN is Fe-doped
414 to make it semi-insulating. We pre-select GaN defects using our home-built scanning laser
415 confocal microscope. We check that the PL spectra of the defects are consistent with the
416 ones previously reported¹⁻³ and verify that they are single photon emitters by measuring
417 the photon auto-correlation $g^{(2)}$. GaN is a high-index material with $n \sim 2.4$, which leads to
418 a low fraction of PL leaving the material. To enhance photon collection, we use focused-ion-
419 beam milling to carve out a 4 μm -diameter hemisphere-shaped solid-immersion lens (SIL)
420 on the pre-selected defects. We conduct all measurements at room temperature.

421 **Magneto-PL.** We use a 50.4 mm-diameter 50.4 mm-long cylindrical neodymium iron
422 boron permanent magnet to apply magnetic fields to the sample. To adjust the magnetic
423 field amplitude and direction, we move the magnet on a motorized translation stage, having
424 calibrated the magnetic field against magnet position. The details of the magnet setup are
425 described in Supplementary Figures 8 and 9, and Supplementary Note 9.

426 **Continuous-wave ODMR (cw-ODMR).** To drive spin resonance, a copper microwire
427 is lithographically patterned near the SILs containing the defects of interest. The details of
428 the microwave set-up are described in Supplementary Figure 8(b) and Supplementary Note
429 9. We drive about 20 dBm of microwave power to induce the spin resonances and excite the
430 defects with an optical power of 15–20 μW .

431 **Pulsed measurements.** Figure 4(a) shows the pulse scheme in a measurement cycle for
432 pulsed ODMR and time-resolved PL measurements. The details of the timing can be found
433 in Supplementary Figure 5. In both schemes, we apply microwaves before we excite the
434 defects for optical readouts, and we turn off the laser for a sufficient time before we apply
435 microwaves again in the next cycle to allow relaxation from all populations to the ground
436 state.

437 Supplementary Figure 5(a) shows the timings of a cycle of pulsed ODMR measurement.
438 After the optical pulse has been off for 3 μs , the microwave pulse in the next cycle is turned
439 on for 2 μs and off 65 ns before the laser excitation. We read the PL for 2 μs after the
440 microwave turns off and normalize it to the PL registered after the laser has repolarized

441 the system for $8 \mu\text{s}$. This sequence is designed to distinguish between a ground-state and a
442 meta-stable state spin.

443 To measure time-resolved PL, we apply a microwave pulse tuned to the largest contrast
444 resonance frequency for $1 \mu\text{s}$ before the laser turns on as depicted in Supplementary Figure
445 5(b), and we allow the system to relax for $1.5 \mu\text{s}$ before applying a microwave pulse again
446 in the next cycle. The optical detection is done by a time-correlated single-photon-counting
447 (TCSPC) module that is triggered by a synchronization pulse when the laser turns on at
448 $t_{L,\text{on}}$ in each pulse cycle. This way, we record the photon arrival times relative to the laser
449 excitation time. The histogram of photon arrival times gives the time-resolved PL.

450 Supplementary Figure 5(c) shows the timing of a cycle of the Rabi oscillation measure-
451 ment. A long-duration laser pulse ($40 \mu\text{s}$) initializes the system, a microwave, with duration
452 τ_{mw} , tuned to a spin resonance frequency rotates the spin, and a short readout laser pulse
453 ($5 \mu\text{s}$) is applied after the spin manipulation. We count the PL intensity for the same read-
454 out duration ($5 \mu\text{s}$) at the end of the optical initialization pulse before the microwave turns
455 on to normalize the signal readout.

456 **DATA AVAILABILITY**

457 All data are available on eCommons: Digital Repository at Cornell (URL available soon).

458 **CODE AVAILABILITY**

459 All analysis codes are available on eCommons: Digital Repository at Cornell (URL avail-
460 able soon).

461 [1] A. M. Berhane, K.-Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N. V. Triviño, T. Palacios,
462 A. Gali, M. Toth, D. Englund, and I. Aharonovich, Bright Room-Temperature Single-Photon
463 Emission from Defects in Gallium Nitride, *Advanced Materials* **29**, 1605092 (2017).

464 [2] A. M. Berhane, K.-Y. Jeong, C. Bradac, M. Walsh, D. Englund, M. Toth, and I. Aharonovich,
465 Photophysics of GaN single-photon emitters in the visible spectral range, *Physical Review B*
466 **97**, 165202 (2018).

⁴⁶⁷ [3] Y. Geng, J. Luo, L. Van Deurzen, H. Xing, D. Jena, G. D. Fuchs, and F. Rana, Dephasing by
⁴⁶⁸ optical phonons in GaN defect single-photon emitters, *Scientific Reports* **13**, 8678 (2023).