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In many-particle diffusions, particles that move the furthest and fastest can play an outsized role in physical
phenomena. A theoretical understanding of the behavior of such extreme particles is nascent. A classical
model, in the spirit of Einstein’s treatment of single-particle diffusion, has each particle taking independent
homogeneous random walks. This, however, neglects the fact that all particles diffuse in a common and often
inhomogeneous environment that can affect their motion. A more sophisticated model treats this common
environment as a space-time random biasing field which influences each particle’s independent motion. While
the bulk (or typical particle) behavior of these two models has been found to match to high degree, recent
theoretical work of G. Barraquand and I. Corwin, Probab. Theory Relat. Fields 167, 1057 (2017) and G.
Barraquand and P. Le Doussal, J. Phys. A: Math. Theor. 53, 215002 (2020) on a one-dimensional exactly solvable
version of this random environment model suggests that the extreme behavior is quite different between the two
models. We transform these asymptotic (in system size and time) results into physically applicable predictions.
Using high-precision numerical simulations we reconcile different asymptotic phases in a manner that matches
numerics down to realistic system sizes, amenable to experimental confirmation. We characterize the behavior of
extreme diffusion in the random environment model by the presence of a new phase with anomalous fluctuations
related to the Kardar-Parisi-Zhang universality class and equation.
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Introduction. Our world is fueled by outliers. Information
in signals is carried by the leading edge [1–8]. A viral or
bacterial infection is spread by the first few pathogens to enter
a host and the first host to enter a new region [9,10]. A species
is evolved by the fittest mutations [11–13]. Scientific revolu-
tion is sparked by the first new idea. In all of these contexts
the precipitating action is driven by the extremes among a
great number of agents (varying from N ∼ 102 to N ∼ 1060

depending on the context) evolving in a complex but shared
environment. How does the nature of the shared environment
affect these outlier behaviors? Conversely, can we infer the
nature of the shared environment from the behavior of these
outliers? Despite their obvious importance, these overarching
questions are still unanswered.

The classical model for many-particle diffusion as in-
dependent homogeneous random walks provides an easily
calculable solution, but entirely neglects the effects of the
shared and likely inhomogeneous environment. This model is
the basis for diffusion coefficients [14–16], which succinctly
describe the behavior of typical particles in a many-particle
diffusion. A more sophisticated model treats the shared envi-
ronment as a space-time random biasing field with short-range
space-time correlations. Each particle thus articulates inde-
pendent random walks subject to forcing by the common
biasing field. While this refined model does not affect typ-
ical particle diffusion behavior [17], it drastically impacts
the behavior of extreme particles. In this work, we provide
predictions for the behavior of extreme particles moving in
a random and inhomogenous environment. We find that the

variance in the position of the extreme particle is a robust and
sensitive measurement of the nature of the environment and
show how this variance can be understood as the sum of two
contributions: the randomness present in the environment, and
the sampling of random walks in that environment. We show
that by subtracting out the variance due to sampling we can
produce direct measurements of the environment, inaccessible
from measurements of the motion of a typical particle or of the
bulk. This residual environmental variance is characterized by
a power law that we demonstrate holds even when the number
of particles is as small as a few hundred.

Background. Building on observations by Brown [18,19]
from 1827, Einstein [14–16] (along with Langevin [20],
Sutherland [21,22], and Smoluchowski [23,24]) proposed a
theory of diffusion based on modeling particles by indepen-
dent random walks with variance controlled by a diffusion
coefficient intrinsic to the particle and environment pair. Soon
after, Perrin experimentally verified Einstein’s statistical pre-
dictions [25,26].

Probing the effectiveness and limitations of Einstein’s dif-
fusion model has remained a challenge. On short timescales,
particle motion is ballistic, dominated by inertia [27–32].
Many physically relevant situations require the addition of
new concepts to accurately model them. Certain diffusive
processes are better modeled by Levy flights [33] or other
types of anomalous diffusions [34,35] instead of simple ran-
dom walks. Other work has focused on active particles which
inject energy into their environment [36,37]. Further, in en-
vironments which are slowly mixing, Einstein’s theory may

2470-0045/2023/107(2)/L022101(7) L022101-1 ©2023 American Physical Society



HASS, CARROLL-GODFREY, CORWIN, AND CORWIN PHYSICAL REVIEW E 107, L022101 (2023)

also break down due to the presence of quenched disorder
[33,38]. Unlike the above deviations from the classical model,
our approach is intended to describe generic many-particle
diffusions.

The random walk in random environment (RWRE) model
goes back to Refs. [39,40] (see also Refs. [41–45]) and
comes in two types—long-range [34,46–50] and short-range
[51–57] temporally correlated environments. We focus here
on the latter. In this context, typical RWRE particles behave
like Brownian motion, matching the behavior from Einstein’s
model [58,59]. The motion of atypical particles is controlled
by large deviations of the RWRE’s transition probability as
first studied in Ref. [60].

Barraquand and Corwin [61] discovered the exactly solv-
able Beta RWRE discussed extensively below and uncovered
a remarkable connection between its large deviations for times
of order ln(N ) and the statistics of the Kardar-Parisi-Zhang
(KPZ) universality class [62,63], namely, the Gaussian uni-
tary ensemble (GUE) Tracy-Widom distribution [64]. Soon
after Le Doussal and Thimothée [65] recognized that a phase
transition should occur in the [ln(N )]2 time frame while Bar-
raquand and Le Doussal [66] discovered that in this frame
the GUE Tracy-Widom distribution is replaced by the KPZ
equation one-point distribution [67–71]. See Refs. [72–78] for
further developments. The recursion relation (3) for RWRE
transition probabilities solves a discrete version of the multi-
plicative noise stochastic heat equation (mSHE)

∂t Z (x, t ) =
1

2
∂2

x Z (x, t ) + ξ (x, t )Z (x, t ) (1)

with ξ space-time white noise. The logarithm of the mSHE,
h(x, t ) = ln Z (x, t ), solves the KPZ equation

∂t h(x, t ) =
1

2
∂2

x h(x, t ) +
1

2
[∂xh(x, t )]2 + ξ (x, t ). (2)

Hence, large deviations for RWREs, in particular beyond the
solvable model and even in experimental settings, may relate
to the KPZ equation and its universality class—especially
in light of the rich canon of work on KPZ universality in
various contexts using theoretical [62,79], numerical [80,81],
and experimental [82] methods. The KPZ connection is quite
useful since its statistics and power laws are well studied.

Models for diffusion. Although physical diffusion is con-
tinuous in time and (typically) occurs in three-dimensional
space, here we work with discrete models in one spatial di-
mension. The principal reason for this choice is that it is the
setting for the exactly solvable Beta RWRE [61] (a continuous
sticky Brownian motion limit of this model exists [74]) that
will enable us to compare numerical results to exact the-
oretical predictions. Beyond that, discretization is common
for numerical simulations and higher dimensions are more
challenging numerically due to anisotropy issues arising from
the choice of lattice and due to the lack of exactly solvable
models (cf. Ref. [65]). In real diffusion in a common environ-
ment, there will be length scales and timescales on which the
environment decorrelates. Our discrete model can be thought
of as coarse-graining the environment in space and time onto
a lattice and thus we do not expect discrete and continuous
models to differ greatly for long times and large scales. Our
model ignores any higher-order interactions as we expect

FIG. 1. A system of N = 105 particles evolving in a given ran-
dom environment. The heat map records the site occupancy density.
We also plot in green the asymptotic theory mean location for the
maximum particle location. Around this is a shaded region with a
width of 2 standard deviations based on the asymptotic theory vari-
ance. This region generally contains the extreme-most particle over
time. The zoomed-in inset shows the spatial locations of N = 102

particles over time. Color indicates the bias (red is biased down and
blue is biased up) and is chosen independently at each space-time
box. The location of particles within each box is chosen for ease of
visualization.

them to be less present in the behavior of extreme particles,
for which the local density is necessarily low. Additionally,
there are physical settings where particles take discrete states
[83,84] or evolve in quasi-one-dimensional spaces [85,86].

We study the Beta RWRE introduced in Ref. [61] (see
Fig. 1). We model the environment by a collection, B =
{B(x, t ) : x ∈ Z, t ∈ Z�0}, of independent identically dis-
tributed random variables all drawn from the uniform
distribution on [0,1]. At time t = 0 we start with N particles
all at site 0. Given an instance of the environment B the parti-
cles proceed as follows. Each particle at x and t independently
flips the same weighted coin which has probability B(x, t ) of
heads (moving the particle to site x + 1 at time t + 1) and
1 − B(x, t ) of tails (moving to x − 1 instead). Thus, while
particles do not interact with each other, those at the same
place and time are all influenced by the common environment.

This model is exactly solvable when B(x, t ) are distributed
according to the Beta distribution, Beta(α, β ) [61]. For sim-
plicity, we focus on the special case α = β = 1 corresponding
to the uniform distribution. The classical simple symmetric
random walk (SSRW) model arises in the limit α = β → ∞,
where all B(x, t ) ≡ 1/2 and the environment is deterministic.

We focus on the behavior of the right-most particle at time
t . We denote this by MaxN

t , with N being the number of
particles in the system. Two types of randomness affect MaxN

t :
that of the environment and that of sampling the random walks
in that environment. The effect of the environment is via the
transition probability pB(x, t ), the probability that a single
random walker initially at 0 will end up at x at time t for a
given environment B. This satisfies the recursion relationship

pB(x, t ) =pB(x − 1, t − 1)B(x − 1, t − 1)

+ pB(x + 1, t − 1)[1 − B(x + 1, t − 1)],
(3)
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with initial condition pB(0, 0) = 1 and pB(x �= 0, 0) = 0.
Since each random walker is independent, conditional on the
environment, the distribution of the ensemble of N walks is
determined by pB(x, t ). Given the environment B, the proba-
bility that a single random walker is at or above x at time t

is given by the tail probability, PB(x, t ) =
∑

y�x pB(y, t ). This
and the independence of random walkers, conditional on the
environment, imply

ProbB

(

MaxN
t � x

)

= [1 − PB(x, t )]N , (4)

where the left-hand side is the probability, given the environ-
ment B, that MaxN

t � x.
We study how MaxN

t varies upon sampling a new envi-
ronment and random walkers therein. Equation (4) suggests
that a good proxy for MaxN

t is the location EnvN
t of the

1/N quantile of PB(x, t ), i.e., EnvN
t equals the maximal x

such that PB(x, t ) > 1/N . Notice that EnvN
t only accounts for

the variation due to the environment. The variation due to
sampling in that environment is denoted SamN

t and defined
by MaxN

t = EnvN
t + SamN

t . We use the notation Mean(•) and
Var(•) for the mean and variance of a quantity • (e.g., MaxN

t ,
EnvN

t , SamN
t ) averaged over both the environment and the

sampling of random walkers in that environment.
Numerical methods. We numerically simulate our models

for system sizes varying from N = 102 to N = 10300. We
consider such large and physically unrealistic system sizes
like 10300 in order to see how asymptotic theory applies
for as wide a range as possible of finite system sizes. We
evolve the system for times from t = 0 to t = 5000 ln(N ).
As explained below, ln(N ) and [ln(N )]2 set key timescales
and our range of times ensure that, for all choices of N , we
encompass these scales. We simulate such large systems by
tracking occupation variables instead of individual particle
trajectories. In particular, if there are N (x, t ) particles at site x

at time t , then the number that move to site x + 1 are binomi-
ally distributed with N (x, t ) samples and success probability
B(x, t ) (the remainder move to site x − 1). We sample these
binomial distributions utilizing quadruple-precision floating
point numbers and making approximations to the binomial
distribution when dealing with sizes beyond our precision
limits, as described in Ref. [87]. The right-most particle lo-
cation [identified by the maximal x with N (x, t ) � 1] at each
time represents a sample of MaxN

t . By repeatedly sampling
new environments along with random walk occupation vari-
ables N (x, t ) therein we numerically measure Var(MaxN

t ). To
distinguish from the true value we denote this numerically
measured variance by Varnum(MaxN

t ) and plot it in Fig. 2.
In like fashion, we measure Varnum(EnvN

t ) for each sampled
environment by using Eq. (3) to compute pB(x, t ). Figure 3
shows Varnum(EnvN

t ) as a function of time [see Ref. [87] for
Meannum(MaxN

t ) and Meannum(EnvN
t )]. The data presented in

Figs. 2 and 3 took approximately three weeks to run in parallel
on 500 cores of the University of Oregon’s high performance
computing cluster, Talapas.

Asymptotic theory results. We describe asymptotic results
on the behavior of MaxN

t , EnvN
t , and SamN

t as both N and t

tend to infinity in different limits. Given a fixed relationship
between t and ln(N ) such as t/ ln(N ) = t̂ or t/ ln(N )2 =
ˆ̂t for t̂ or ˆ̂t fixed, we write f (N, t ) � g(N, t ) if f (N, t ) −
/g(N, t ) tends to infinity as N and t do subject to their relation-
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FIG. 2. Plots of Varnum(MaxN
t ) (solid lines) computed over

10 000, 5000, 1000, 500, and 500 environments (respectively) and
Varasy(MaxN

t ) (dashed lines) for N = 102, 107, 1024, 1085, and 10300.

ship. We use the notation Varasy(•) to denote the asymptotic
theory formula for the variance of •, interpolated back to finite
N and t . SSRW theory follows from Stirling’s formula while
asymptotic results for the RWRE rely on tools from quantum
integrable systems [61,66,78] and are derived first for EnvN

t

and then for MaxN
t and SamN

t .
SSRW MaxN

t . For t/ ln(N ) = t̂ with fixed t̂ < (ln 2)−1,
we have N � 2t and hence with very high probability ev-
ery reachable site in the lattice at time t is occupied, hence
Var(MaxN

t ) ≈ 0. When t̂ > (ln 2)−1, we show in Ref. [87]
that MaxN

t is asymptotically a Gumbel random variable. For

t̂ large, Varasy(MaxN
t ) ≈ π2

12
t

ln(N ) .

RWRE EnvN
t . For t/ ln(N ) = t̂ with fixed t̂ < 1,

Var(EnvN
t ) ≈ 0. To see this, note that PB(t, t ) =
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FIG. 3. Plots of Varnum(EnvN
t ) (transparent solid) computed

over 500 environments, Varasy(EnvN
t ) (dashed lines), and

Varnum(MaxN
t ) − Varasy(SamN

t ) (dark solid lines) smoothed in
each 1/25th of a decade for N = 102, 107, 1024, 1085, and 10300. The
three curves agree as shown in the zoomed-in inset.
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B0,0 · · · Bt−1,t−1. Taking logs and applying the central
limit theorem shows that ln[PB(t, t )] ≈ −t + t1/2G for G

a standard Gaussian. This implies that PB(t, t ) ≈ e−t � 1/N .
Thus the RWRE stops saturating the lattice when t = ln(N )
plus an order [ln(N )]1/2 Gaussian fluctuation. For the SSRW
this happens at time log2(N ) plus order one fluctuations.

Var(EnvN
t ) displays two asymptotic regimes. For fixed

t/ ln(N ) = t̂ > 1, Var(EnvN
t ) takes the asymptotic form

V1(N, t ) :=
(

ln(N )

t

)2/3

σ 2
χ

22/3
(

1 − ln(N )
t

)4/3

1 −
(

1 − ln(N )
t

)2
, (5)

where σ 2
χ ≈ 0.813 is the variance of the GUE Tracy-Widom

distribution [64,88]. As shown in Ref. [87], this follows from
the result of Ref. [61]: For v ∈ (0, 1), ln PB(vt, t ) = −t I (v) +
t1/3σ (v)χt , where I (v) = 1 −

√
1 − v

2, σ (v) = {2I (v)2/[1 −
I (v)]}1/3, and χt is random converging to the GUE Tracy-
Widom distribution as t goes to infinity.

For t/[ln(N )]2 = ˆ̂t , Var(EnvN
t ) takes the asymptotic form

V2(N, t ) :=
t

2 ln(N )
· Var

[

h

(

0,
4[ln(N )]2

t

)]

, (6)

where h(0, s) is the height at 0 and time s of the narrow wedge

solution to the KPZ equation (2). As shown in Ref. [87],
this follows from Ref. [66]: For v ∈ (0,∞), ln PB(vt3/4, t ) ≈
− v

2t1/2

2 − ln(t )/4 + ln(v) − v
4/12 + h(0, v4).

Interpolating between these regimes and extrapolating past
[ln(N )]2 (see also Ref. [78]), we find two power laws:

Varasy
(

EnvN
t

)

≈

{

σ 2
χ

( ln(N )
2

)

1
3 t

1
3 , 1 � t

ln(N ) � ln(N ),
1
2π

1
2 t

1
2 , t

ln(N ) � ln(N ).

(7)

For finite N and t these regimes have a gentle crossover
that we capture by setting Varasy(EnvN

t ) := I (N, t )V1(N, t ) +
[1 − I (N, t )]V2(N, t ), where I (N, t ) := 1

2 [1 − erf( t−[ln(N )]3/2

[ln(N )]4/3 )]

(with erf(x) = 2/
√

π
∫ x

0 e−t2
dt being the error function) inter-

polates from 1 to 0 over an interval of width [ln(N )]4/3 around
[ln(N )]3/2.

RWRE SamN

t
and MaxN

t
. We identify the additional con-

tribution from sampling the many-particle diffusion given an
environment. Using Eq. (4) and Taylor expansion of the re-
sults of Refs. [61] and [66] quoted above, Ref. [87] shows
that for t/ ln(N ) = t̂ > 1 the sample fluctuation SamN

t is of
the Gumbel type with variance

Varasy
(

SamN
t

)

=
π2

6

(

t
ln(N ) − 1

)2

2 t
ln(N ) − 1

≈
π2

12

t

ln(N )
(8)

as t̂ grows. This limit matches the behavior of the SSRW
model. In Ref. [87] we also show that SamN

t is asymptotically
independent of EnvN

t , and thus

Var
(

MaxN
t

)

≈ Var
(

EnvN
t

)

+ Var
(

SamN
t

)

. (9)

Comparison of numerical and theoretical results.

Figures 2 and 3 show that the asymptotic theoretical
predictions for Var(MaxN

t ) and Var(EnvN
t ) are in excellent

agreement with the numerical measurements. Figure 3
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FIG. 4. Variance of the maximal particle Var(MaxN
t ) (red line),

environment Var(EnvN
t ) (blue line), and sampling Var(SamN

t ) (green
line) for RWRE, and variance of the maximal particle Var(MaxN

t )
(purple line) for SSRW, all for N = 107. Dashed lines are Varasy(•),
while solid lines are Varnum(•). Varnum(MaxN

t ) − Varasy(SamN
t )

(orange line; smoothed as in Fig. 3) closely matches the environment
curve (blue line).

further shows that we reliably recover Var(EnvN
t ) using

Varnum(MaxN
t ) − Varasy(SamN

t ), as expected from Eq. (9).
Notably, while these results were derived for asymptotically
large ln(N ) and t , they hold nearly perfectly down to N = 102.
Figure 3 reveals that, while we readily see the long-time t1/2

power law for Var(EnvN
t ) from Eq. (7), the t1/3 power law is

elusive. Although the full characterization of the short-time
regime is in excellent agreement with the numerical results,
the t1/3 power law is difficult to capture since the transitional
window of ln(N ) to [ln(N )]2 is too narrow for realistic sizes
of N , even up to N = 10300. By measuring the long-time t1/2

power law, we measure the short-time scaling behavior of
the KPZ equation up to a prefactor using Eq. (6). Figure 4
shows the tight matching of the asymptotic theory curves
and numerically measured values for the variance of MaxN

t ,
EnvN

t , and SamN
t for a given value of N = 107. Notice that

for t ≈ ln(N ) the asymptotic theory and numerical values
for the variance of SamN

t do not fit as well as for large t .
This is likely a result of finite-size effects and quickly goes
away at larger values of t or when N increases. The fit for
N = 10300 in Figs. 2 and 3 remains tight over the entire
range of t .

Conclusion. The link between RWREs and KPZ universal-
ity with its wealth of theoretical, numerical, and experimental
evidence strongly suggests that aspects of the picture pre-
sented here will persist beyond discrete and solvable models,
even to experiments. When t is of order ln(N ), variances
should be nonuniversal, depending in a difficult to deter-
mine way on the nature of the environment. By contrast,
when t � ln(N ), we anticipate that the scaling exponents
and functional forms we have identified for the variances of
EnvN

t , SamN
t , and MaxN

t will be universal, as will the relation
(9). The leading coefficients in Eq. (7) should be nonuniver-
sal and hold within them all of the accessible information
about the correlation structure of the environment—we call
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these extreme diffusion coefficients. Further theoretical study,
such as for the general α, β Beta RWRE model, should
provide a natural first test of this universal picture and an
understanding of how the extreme diffusion coefficients relate
to the microscopic environment. A continuum model that
should provide an even wider testing ground amenable to
numerics involves particles xi(t ) for i = 1, 2, . . ., satisfying
dxi(t ) = F [xi(t ), t]dt + D[xi(t ), t]dBi(t ), where F (x, t ) and
D(x, t ) are random forcing (as in Ref. [65]) and diffusiv-
ity (generalizing diffusing diffusivity, cf. Ref. [89]) fields
common to all particles, while Bi are Brownian motions
independent between different i. Changing the correlation
structures of F and D will probe the transition between tem-
porally mixing versus quenched environments, which should
have very different behavior (cf. Refs. [90,91]) and warrants
further study. Considering higher dimensions as in Ref. [65]
may lead to further theories that better model real physical
systems. A study of higher-order cumulants may reveal other
ways to probe the hidden environment, although they may be
harder to observe numerically or experimentally.

In physical systems it is impossible to directly measure the
environmental variance. However, an indirect measurement
can be performed via the approach presented here by using
Var(EnvN

t ) ≈ Var(MaxN
t ) − Var(SamN

t ). The sample variance

Var(SamN
t ) is now computed using Var(SamN

t ) = π2D
6

t
ln(N ) ,

where D is the diffusion coefficient. One could repeatedly
track the motion of the leading edge of diffusing particles
in a system of colloids confined to a quasi-one-dimensional
channel, thereby directly measuring Var(MaxN

t ) for system
sizes ranging from N = 102 to N = 1010. Further, one can

also perform complementary measurements on the time of
first passage of diffusing objects, which opens the door to
experiments done on all manner of diffusing objects, includ-
ing light or sound diffusing through a scattering medium,
dye molecules in a fluid, or any other object whose first
passage can be measured. By measuring the environmental
variance and extreme diffusion coefficient we will gain a new
microscope through which to probe the hidden nature of the
underlying environment in which the diffusion occurs. Our
work should serve as a guide in the development and analysis
of experimental measurements of the extreme behavior of
many-particle diffusion.
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