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1 | INTRODUCTION

Alisa Knizel?

Abstract

We provide the first construction of stationary measures
for the open KPZ equation on the spatial interval [0,1]
with general inhomogeneous Neumann boundary condi-
tions at 0 and 1 depending on real parameters u and v,
respectively. When u + v > 0, we uniquely characterize
the constructed stationary measures through their mul-
tipoint Laplace transform, which we prove is given in
terms of a stochastic process that we call the continu-
ous dual Hahn process. Our work relies on asymptotic
analysis of Bryc and Wesolowski’s Askey-Wilson process
formulas for the open ASEP stationary measure (which in
turn arise from Uchiyama, Sasamoto and Wadati’s Askey-
Wilson Jacobi matrix representation of Derrida et al.’s
matrix product ansatz) in conjunction with Corwin and
Shen’s proof that open ASEP converges to open KPZ under
weakly asymmetric scaling.

The open Kardar-Parisi-Zhang (KPZ) equation models stochastic interface growth on [0,1] subject
to inhomogeneous Neumann boundary conditions at 0 and 1. The equation is written as

3rH(T,X) = %GJZ(H(T,X) + %(GXH(T,X))2 + &(T,X),

where £ is space-time white noise and for all T > 0 we impose the boundary conditions

aXH(T5X)|X=0 =1u,

¢3XH(T,X)|X=1 =—v, u,veER.

This requires a careful definition that we provide here, following Corwin and Shen [21, Definition

2.5].

Let C([0, 00), C([0, 1])) denote the space of continuous functions from [0, c0) — C([0, 1]) where
C(]0,1]) is the space of continuous function from [0,1] — R. Let (Q, F,P) denote a probability
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space, which supports a space-time white noise £ and a random almost-surely strictly positive
function Z, taking values in C([0, 1]) and satisfying supy(, ,; E[Zo(X)?] < oo for all p > 0. For
t >0, let F; denote the filtration generated by Z, and (§(s, X));<; xe[o,1]- Then the mild solution
to the stochastic heat equation (SHE) inhomogeneous Robin boundary conditions is a random
function Z € C([0, o), C([0, 1])) satisfying:

* Initial data: Z(0, -) = Z,(-) almost surely (here and below f(-) denotes the function - — f(-)) as
random functions in C([0, 1]).

* Measurability: Z(¢, -) is measurable with respect to F; for all ¢t > 0.
* Duhamel form of SHE: For all T > 0 and X € [0,1]

1 1 0
2(1,X) = / Poo(T.X, Y)Zo(Y)dY + / / Poo(T = S.X, Y)Z(S, Y)E(dS, dY)
0 0 0

where the integral against £ is in the sense of Itd, and P, ,(T,X,Y)is the Gaussian heat kernel
on [0,1] with inhomogeneous Robin boundary conditions, thatis, forallT > 0and X,Y € (0,1)

0rP, (T, X,Y) = 83 P, ,(T,X,Y),
with P, ,(0,X,Y) = 8x_y and, forall T > 0and Y € [0,1],
1
OxPuu(T, X, Y)|_, = (u - 5) P,,(T,0,Y),
1
AxPy (T, X, )|y, = - (v - 5)PW(T, LY).
The existence, uniqueness, and strict positivity (i.e., provided that Z is almost surely strictly pos-
itive then almost surely (Z(t, X));>0,xe[0,1] is likewise strictly positive) for the solution of the SHE
are proved in Corwin and Shen [21, Proposition 2.7] and Parekh [44, Proposition 4.2].
The Hopf-Cole solution to the open KPZ with inhomogeneous Neumann boundary conditions
parameterized by u,v € R and initial data H, = log Z, € C([0, 1]) is then the random function
H € C(]0, ), C(]0,1])) defined on the same probability space as above by the equality

H(t,x) :=logZ(t,x), Vt>0,x€]0,1].

Owing to the strict positivity, this logarithm is well-defined.
Informally, one writes the SHE as the solution to the following stochastic PDE

1
0rZ(T,X) = Eaf(Z(T,X) + (T, X)Z(T, X)
for T > 0 and X € [0, 1] with boundary conditions that for all T > 0,

3y Z(T, X) ’ oo = (u - %) Z(T,0), 5XZ(T,X)’X:1 —_ <u - %) Z(T,0).

Justifying the above Hopf-Cole notion of solution to the KPZ equation has a long history
going back in the full-line case to Bertini and Cancrini [9]. For the above open KPZ equation,

dny woxy papeojumo( ‘¢ “pz0T ‘TIE0L60T

00" Ko

PUB-SULID)

11dde 2y £ PaUIaA0T A1E SA[IIE V() 128N JO a1 10 AIeIqI] AUIUQ AAJIAL UO (SUOUY

2SUOIT SUOWILIO)) DATIBALY) J[qEO!



STATIONARY MEASURE FOR THE OPEN KPZ | 2185

Gerencsér and Hairer [32] use regularity structures to show that this Hopf-Cole solution arises
when one smoothes the noise £ (in which case all equations make classical sense) and then renor-
malizes the solution as the smoothing is removed. Note that in going from the SHE 1 to KPZ
equation boundary condition 1, we have removed a factor of 1/2. This is simply a convention used
to match the parameterization of the KPZ boundary conditions present in Gerencsér and Hairer
[32] and Goncalves et al. [33].

Our aim in this work is to provide a characterization of stationary solutions to the above open
KPZ equation. The solution to the open KPZ equation is a Markov process in time with state space
given by C([0, 1]). This process does not have stationary probability measures in the usual sense
since there is an overall drift and diffusion of the height function (in a similar spirit to how the
SSRW does not have a stationary probability measure). However, as we will show, the open KPZ
increment Markov process (H(T,X) — H(T,0))r»0 xe[0,1] does have stationary probability mea-
sures. Precisely, we say that a probability measure u,, , on C([0, 1]) is stationary for the open KPZ
increment process if the following holds: For all time T > 0, the law of (H(T, X) — H(T',0))x¢[0,1]
equals y,, , where H(T, X) is the Hopf-Cole solution to the open KPZ with inhomogeneous Neu-
mann boundary conditions parameterized by u, v € R and initial data H, € C([0, 1]) whose law is
Uy - Rather than working directly with the stationary measure u,, ,, we will often find it easier to
think of a random function H,, , € C([0, 1]) whose law is u,, ,,, for example, the canonical process
on the probability space (C([0, 1]), F, u, ,) with F the Borel sigma-algebra for C([0, 1]).

Theorem 1.2 provides the first construction of stationary probability measures ,, ,, for the open
KPZ increment process for all choices of u and v. For u + v > 0, we completely characterize u,, ,,
via a duality—its multipoint Laplace transform is explicitly given in terms of a Markov process
that we call the continuous dual Hahn process. A simple case of these formulas shows that for
u,v > 0and c € (0,2u),

(e c . c N )
2 |F(E+u+lr)1"(—5+v+lr)|
Je |rin)|? d
[E[e—cHu’U(l)] — /4. 0 . 1)
76"’2 ) |l"(u+ir)1"(v+ir)|2
o |rin)|?

The notation on the left-hand side needs a bit of explanation. As noted above, we
are using H, ,(X;w) to denote the canonical process associated with the probability space
(c([0,1]), F, u,, ). The expectation E simply denotes integrating against the measure u, ;. In
other words, it could be written as | co.1) e‘“"(l)d,uusv(w). However, as is often the case in work-
ing with random variables versus their measures, we find it more clear to simply think of H,, ,, as
a random function with law y,, ,,. In Equation (1.1), H,, ,(1) records the net height change across
the interval [0,1]. For u,v > 0 and ¢ € (0, 2u), the integral on the right-hand side involves a con-
tinuous integrand. In the case where either u or v is negative, the formula has an extension (that
follows from our main result, Theorem 1.2, below) involving a continuous integrand plus a sum
of discrete atoms.

The Laplace transform formulas for u, , were inverted after the first version of this paper was
posted. In the mathematics literature, this came in work of Bryc et al. [14] while in the physics liter-
ature, it came in work of Barraquand and Le Doussal [8]. The inversions provide a satisfying prob-
abilistic description for the stationary measures: u, , is equal to the distribution of 2712w 4y
where W and Y are independent stochastic processes that we now briefly describe. W € C([0, 1])
is a standard Brownian motion. Y € C([0, 1]) is given by a reweighing of a Brownian motion of
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2186 | CORWIN and KNIZEL

variance 1/2 as follows. Write the law of Y as Py and the law of Brownian motion with variance

1/2 as Pg),. Then, the Radon-Nikodym derivative ddppy (B) for B € C([0, 1]) is proportional to
BM

1 —u—-v
e—zv5(1>< / e—2/3(t)dt> ,
0

This description has been proven rigorously in Bryc et al. [14, Proposition 1.7] provided u + v > 0
and min(u, v) > —1, and is conjectured in Barraquand and Le Doussal [8] to hold for all values of
u and v. For u + v = 0, Y reduces to a Brownian motion with drift and one sees that 2~ 1/2W + Y
has the law of standard Brownian motion with drift u = —v (i.e., the law of the random function
on [0,1] given by X — B(X) + uX where B is a standard variance 1 Brownian motion).

Let us also note one further development since this paper was originally posted. For the half-
space KPZ equation, Barraquand and Corwin [6] constructed what is conjectured to be the full
set of stationary measures. The approach taken therein is quite different than here and proceeds
through studying the half-space log-gamma polymer model. Interestingly, the above sort of struc-
ture for the stationary measure (as a reweighing of simple random-walk type objects) can be seen
directly already at the level of the log-gamma polymer. As such, it would be interesting to find a
more direct proof of the above open KPZ stationary measure description in which this structure
is already apparent at the level of a discretization of the process.

The aim of the rest of this introduction is to state our main result, Theorem 1.2. This requires
introducing two other Markov processes—the open ASEP on an interval and the continuous dual
Hahn process. We proceed with those first.

1.1 | The open ASEP

Fix six parameters q € [0,1), @, > 0,y,6 >0, and N € Z;. Open ASEP is a continuous-time
Markov process taking values in the state space {0, 1}V, The state at time ¢ is denoted by 7(t) =
(11(), ..., TN (t)); sites x € {1, ... N} where 7,(t) = 1 are said to be occupied by a particle, and those
where 7,.(t) = 0 are unoccupied. The process is defined via the rates of its transitions as follows:
Particles jump left or right from occupied sites to unoccupied sites within [[1, N]] atrateqor p = 1,
respectively; at the left boundary, sites become occupied (if presently unoccupied) at site 1 at rate «
and become unoccupied (if presently occupied) at rate y; at the right boundary, particles become
occupied (if unoccupied) at site N at rate § and become unoccupied (if occupied) at rate 5. All
moves are from independent exponential clocks. As it is easy to write down the generator of this
process from the above description, we do not labor this point (we also do not make use of this).

The open ASEP has a unique stationary probability measure 75> (r), with the dependence
on the other parameters g, «, 8, 7, § implicit. In other words, nj’\\,SEP uniquely satisfies EnﬁSEP =0
where L is the generator of open ASEP. Note that in this paper, we only use the term stationary to
refer to this sort of temporal statistical stationarity, not any sort of spatial shift-invariance (which
anyway does not make much sense in this context). We will denote the expectation of a function
f : {0,1}WNI - R under 7y (1) by

(Fiw:= Y, f@- 7@ (12)

R L
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STATIONARY MEASURE FOR THE OPEN KPZ 2187

I
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FIGURE 1 Open ASEP with system size N = 10 and its height function hy(t, x). Red arrows indicate some
possible moves with rates labeled.

This is in accordance with notation used in much of the physics and mathematics literature
around this model. For 7 (defined on some probability space) distributed according to nj’\\,SEP , We

write
hy(x) = ) (21— 1) 13)
i=1

for the associated random height function. Extend this to a continuous function on [0, N] by
linear interpolation.

From the occupation variable process 7(¢) defined above, we define the ASEP height function
Markov process hy(t, x). The subscript indicates the lattice size N, and the time ¢ and spatial
location x are both arguments. The dependence of hy(t, x) on the other parameters g, «, 3,7, 9
will be generally suppressed. The height function is defined for t > 0 and x € [[0,N] as

hy(t,x) 2= hy(6,0)+ D Q) = 1), hy(t,0) 1= =2Ny ()
i=1

where the net current Ny (t) equals the number of particles to enter into site 1 from the left reser-
voir minus the number of particles to exit from site 1 into the left reservoir, up to time ¢. The
height function definition is extended to x € [0, N] by linear interpolation—see Figure 1. Just as
for the open KPZ equation, the open ASEP height function process will not have a stationary mea-
sure. However, it is the increment process (which is essentially just the 7 process) will: If hy(x)
is randomly chosen as in Equation (1.3), then starting the ASEP height function process from
that initial data, we immediately get that the law of hy(t,-) — hy(t,0) as a function of - will be
t-independent.

It is convenient to work with a particular parameterization for open ASEP. Consider the
functions

1
x*(q,x,y) := E(l —g—-x+y+ \/(1 —q—x+Yy)? +4xy).
Let us define (g, A, B,C, D) in terms of (g, «, 8,7, ) as

A=x%(q,B,6), B=x(qp,6), C=x*(qgay), D=x(qay) (1.4)
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2188 | CORWIN and KNIZEL

Given ¢, Equation (1.4) provides a bijection between {(a,f,y,6) : a,5>0,y,6 >0} and
{(A,B,C,D) : A,C >0, B,D € (-1,0]}.

In order to make contact with the open KPZ equation, we have to assume that the rates vary
with N and two parameters u, v € R as follows.

Assumption 1.1. Let

q = exp <_i>5 A= qUa B = —-q, C= qu’ D= —q. (15)

VN

Solving for a, 3,7, and & in terms of q, u, and v,

(1.6)

Let hy(X) be arandom height function defined as in Equation (1.3) whose law is the push-forward
of the ASEP stationary measure 5°"" . Define a diffusive scaling of hy(X), keeping track of N in
the super-script and keeping track of the parameters u and v in the subscript: For X € [0,1] N

Z/N,let
HY(X) 1= N~1/2hy(NX) (1.7)

and then linear interpolate to all X € [0, 1]. Finally, let ,u%) denote the law of H%), that is, the
stationary measure itself.

The scaling of q in Equation (1.5) in conjunction with the height function scaling in Equation
(1.7) is called weak asymmetry scaling. The conditions on A, B,C, and D in Equation (1.5) corre-
spond to a, 8, ¥, and &, which satisfy Liggett’s condition [38,39] thata + y/g =1and B + §/q = 1.
Moreover, from Equation (1.6), we see that «, 3,7, and ¢ satisfy triple point scaling, which means
thatas N — oo,

1 1
a= §+%N—1/2+0(N—1/2), B= §+§N—1/2+0(N—1/2),
1 1
y=5- %N‘l/z +o(N7VY, 8= gN‘l/z +o(N~1/2),
1.2 | Continuous dual Hahn process

The open KPZ stationary measures that we construct can be characterized via a duality with
another stochastic process which we call the continuous dual Hahn process (denoted below by Ty).
This is a special limit of the Askey-Wilson processes constructed by Bryc and Wesotowski [18];
see Section 6. The continuous dual Hahn process depends on two parameters u, v € R, which are
assumed throughout to satisfy the relation u + v > 0. The definition of this process is simplest
(and also appears in Bryc [11]) when u, v > 0 and thus for the sake of this introduction, we will
only define it in that case here. Section 6.2 addresses the considerably more complicated general
caseofu+v > 0.
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STATIONARY MEASURE FOR THE OPEN KPZ | 2189

We will only define the continuous dual Hahn process T, for s € [0, C,,,,) (see subsequent work
of Bryc [12] for an extension to all of R) where

2 ifu<Ooru>1,
Cuv = . 1.8)
2u ifu €(0,1).

Formulas become more involved outside [0, C, ;,) and will not be needed.
For u,v > 0and s € [0,C,, ;) define a measure p; with density given by

‘r(f +v+ zi;) -r(—f +u+ i£>|2
(v+u)(v+u+1)‘ 2 2 2 2 1
8 \/; |1"(i\/;)|2 r>0-

This family of infinite measures will turn out to be preserve by our Markov process and necessary
in the statement of our main results.

Following Wilson [51], we define the orthogonality probability measure for the continuous dual
Hahn orthogonal polynomials as follows: For a € R and b = ¢ € C \ R with Re(b) = Re(c) > 0

let
: 'F(a+i\/7;>-r<b+i\/7;>.r<c+i§>

CDH(x;a,b,¢) := o - 5 Leso-
M(a+b) - T(a+c) - Tb+0)- Vx- [0(iyx)

Fors,t € [0,C,,) with s < t and m,r € (0, ), define a measure p,,(m, -) with density in r by

t s V/m i—s ﬁ)

ps(m,r) I=CDH<r;u——, +i , S S

ps(r) =

2

27 2 2 2 2

The continuous dual Hahn process (with u, v > 0) ‘ﬂrs}selO,Cu,u) is the Markov process with state-
space R, and transition probabilities given by p,,. Lemma 6.9 verifies that the p;, satisfy the
Chapman-Kolmogorov equation. That lemma also verifies that if T is started according to the
infinite distribution p, then the infinite distribution of Ty is p; for all s € [0,C,, ;).

1.3 | Statement of the main result

Ford € Z,, we will assume that

X = (Xg, .., Xg41) Where 0 = X < X; < -+ <Xy < Xgp1 = 1,
¢ =(cy,...,cq) wherecy,...,cg > 0,
§=(s; >+ > s4.1)Wheres, =c; + -+ +cqand sg,; = 0. 1.9)
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2190 | CORWIN and KNIZEL

We are now prepared to state our main theorem. Part (1) shows the existence of stationary
measures for the open KPZ increment process as limits of stationary measures for the WASEP
increment process (i.e., with parameters scaled as in Equation (1.5)). Part (2) records a coupling
between these stationary measures in which height differences are stochastically ordered relative
to a certain ordering of the boundary parameters. Part (3) records the simple Brownian case for the
stationary measure, which occurs when u + v = 0. Part (4) records a duality, which comes from
switching the roles of u and v. Part (5) provides a unique characterization of the WASEP derived
stationary measures for the open KPZ increment process provided that u +v > 0 (theu +v =0
case was already addressed in part (3)). This characterization is given by a remarkable duality
formula, which relates the Laplace transform of the KPZ stationary measure to the continuous
dual Hahn process introduced above and in greater generality in Section 6.2. This shows that
provided u + v > 0, there is a unique limit point in part (1).

Section 2 gives an outline of the key ideas and logic that go into the proof of these results.

Theorem 1.2. Assume that open ASEP satisfies Assumption 1.1 for all N.

(1) Tightness and construction of WASEP-stationary measures: For any u,v € R, the N-
indexed sequence of laws of u%) (vecall from Assumption 1.1) are tight in the space of measures
on C([0,1]) and all subsequential limits w, ,, are stationary measures for the open KPZ incre-
ment process and are almost surely Holder o for all o« < 1/2. Call any such subsequential limit
a WASEP-stationary measure for the open KPZ increment process.

(2) Coupling: For any M € Z5,, uy < --- < uy and vy > --- > Uy, assume that {;uui,vi}?il are
WASEP-stationary measures that arise in part (1) along the same subsequence as N — oo. Then
there exists a probability space, which supports M random functions {H,, ,, f\i 1 inC([0,1]) such
that marginally each H,, ,, has distribution w,, ,, and such that for all 0 <X <X <1 and
1<i<j<M,

Hu,-,vl- (X,) - Hul-,ui (X) < Huj,uj (X,) - Hu (X)

20
(3) Brownian case: Foru + v = 0, there is a unique WASEP-stationary measure i, _,, for the open
KPZ increment process that coincides with the law of standard Brownian motion of drift u = —v.

(4) Duality: For any u,v € R, let u, , and u,,, be a pair of WASEP-stationary measures for the
open KPZ equation, which arise in part (1) along the same subsequence as N — oo. Then the
corresponding stochastic processes X — H,, ,(X)andX — H, ,(1 — X) — H, ,(1) have the same
law in C([0, 1]).

(5) Explicit Laplace transform characterization: For u,v € R with u + v > 0, the measures
Mfﬁ,) converge to a unique limit u, , as N — oo (hence there is a unique WASEP-stationary
measure). This limit y,, ,, is supported on C([0, 1]) and is determined by its multipoint Laplace
transform formula: For any d € 7, X ,C, and s as in Equation (1.9), provided s; < C,, ,, see
Equation (1.8),

E [ezl_t DIHC _Tsk)(Xk_Xkl)]

d -
Ele-Zio, CkHu,u(Xw] - =: ¢, X) (1.10)

1
[E[e_ﬂo]

where on the left-hand side H,, , has law w,, , and on the right-hand side where T is the contin-
uous dual Hahn process started with T, according to the infinite distribution p (see Sections 1.2
and 6.2). In particular, this implies that Hz(f,\,])) = H,,, as stochastic processes in C([0, 1]).
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STATIONARY MEASURE FOR THE OPEN KPZ | 2191

As remarked earlier, the Laplace transform formula can be inverted. This was achieved after
the posting of this paper by Bryc et al. [14] and Barraquand and Le Doussal [8], see also Bryc and
Kuznetsov [13] where, in particular, the relationship between the results in Bryc et al. [14] and Bar-
raquand and Le Doussal [8] is discussed. The inversion relies on the spectral decomposition of the
heat kernel with an exponential potential (known as Liouville quantum mechanics in physics).
The condition u + v > 0 that we assume corresponds to the fan region for open ASEP/KPZ. While
we do not currently have formulas for u + v < 0 (the shock region), the description given in Bar-
raquand and Le Doussal [8] offers a plausible conjecture for the stationary measure with those
parameters. With our methods, it should also be possible to access the stationary measure for
the open KPZ increment process on an interval [0, M] for any M > 0. Taking the M — oo limit
should make contact with the KPZ equation in a half-space. See Refs. [7, 8] for some discussion
on this limit procedure and Barraquand and Corwin [6] for an alternative approach to construct
the half-space KPZ increment process stationary measures.

Another important remark is that while our tightness result implies existence of stationary
measures for the open KPZ increment process, it does not imply uniqueness. Even for parame-
ters where we prove that WASEP-stationary measures are unique (i.e., uniqueness of the limit
points of the scaled open WASEP stationary measures), we do not rule out the existence of other
stationary measures for the open KPZ increment process with the same boundary parameters.
However, based on related results in the literature, we conxstructed are unique for all choices
of u and v.

Conjecture 1.3. Fix any u,v € R. Consider any two random functions Hy, H, € C([0,1]), sup-
ported on the same probability space. On this probability space, define a space-time white noise &
with the time variable ranging over R and let H(T,X; —T,) and H(T,X; —T,) denote the solutions
to the open KPZ equation started at time —T,, with initial data H, and H,, respectively. Then the
following one force one solution principle holds: For any S < S', the random functions (T,X) —
H(T,X)— H(T,0) and (T,X) » H(T,X) — H(T,0) in C([S,S’],C([0,1])) converge almost surely
to the same limit as To — oo. In particular, for any fixed u,v € R, there exists a unique stationary
measure for the open KPZ increment process.

For the KPZ increment process with periodic boundary conditions, Hairer and Mattingly
[35] showed uniqueness of the Brownian bridge stationary measure while [34] constructed the
infinitesimal generator and estimated its spectral gap, establishing L? exponential ergodicity. Fur-
ther, Rosati [48] demonstrated the one force one solution principle. Let us also mention related
work of Refs. [5, 27, 28] for the stochastic Burgers equation, and work on the mixing time of open
ASEP [19, 24, 31, 37, 49].

Finally, we remark that Theorem 1.2 (2) and (3) combine to show that increments of H, , €
C([0,1]) with law w,,, (for any WASEP-stationary measure coming for Theorem 1.2 (1)) are
stochastically sandwiched between Brownian motions of different drifts. Take M = 3 and let

Uu; = —0, Uy = U, Uz = u, and v; = —u,v, = v, 3 = v. Then Theorem 1.2(3) implies that along
every subsequence of N — oo, yffi)vl converges to iy, ,,, , which is the law of a standard Brownian
motion B_, of drift —v; similarly :“sj,)vs CONVerges i, .., which is the law of a standard Brownian

)

motion By, of drift u. There is a subsequence along which 1, ,,

Theorem 1.2 (2) implies that forall0 < X < X’ <1,

converges to the limit y,,, ,,,. Thus,

B—U(X,) - B—U(X) < Hu,U(X/) - Hu,v(X) < Bu(X/) - Bu(X) (Lll)
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2192 | CORWIN and KNIZEL

with B_,,, H, ,,, B, are all random C([0, 1]) functions defined on a common probability space with
marginals given by (y, v, » Hu, v,> a0 fly, ,,, respectively. The Brownian case in Theorem 1.2 fol-
lows easily from the known fact that Bernoulli product measure is the stationary measure for
open ASEP when u + v = 0. This is the only case when the stationary measure for open ASEP
is simple and of product form. For general parameters, it is quite complicated. For ASEP on the
full line or torus, the stationary measure is product Bernoulli so for full line [30] and periodic [35]
KPZ increment processes the stationary measure is Brownian (two-sided Brownian motion with
general drift, or Brownian bridge with any fixed height shift).

1.3.1 | Outline

Section 2 reviews the key ideas in the proof of Theorem 1.2. The proofs of Theorem 1.2 (1)-(4) are
in Section 5 and rely on Section 3 (the weak asymmetry scaling under which open ASEP height
function process converges to the open KPZ equation height function process) and Section 4
(coupling results for open ASEP). The proof of Theorem 1.2 (5) is given in Section 7. The starting
point in this proof (given in Section 6) is Corollary 2.2 (see also Proposition 2.1 and Bryc and
Wesotowski [18, Theorem 1]) which relates the generating function for the open ASEP stationary
measure to the Askey-Wilson process. Section 6.2 defines the continuous dual Hahn process,
which arises as a special limit of the Askey-Wilson process. The main calculation in the proof of
Theorem 1.2 (5) is Proposition 7.1 which computes the limit of the open ASEP stationary measure
generating function. Combining this with some of the results in Theorem 1.2 (1)-(4), we show
weak convergence and that the limit of the open ASEP formula gives the open KPZ Laplace
transform formula claimed in the theorem. The proof of this limit is given in Section 8 and relies
heavily on precise asymptotics for g-Pochhammer symbols. These asymptotics are stated as
Proposition 2.3 and proven in Section 9.

1.3.2 | Notation

Lower versus upper case variables will refer to discrete versus continuous objects, respectively. For
integersa < b,let [a,b]] :={a,...,b}and Z,, = Z N [a, ) (and likewise for Z replaced by R and
> replaced by >, < or <). We will use the standard notation for the Pochhammer and g-Pochhamer
symbols: For j € Z,, and x € R, define [x]; := (x)(x +1)---(x + j — 1) with the conven-
tion that [x], := 1. For multiple arguments x;, ... x, € R, define [xy,...,x,]; :=[x1]; -+~ [x,];.
For a,q € C, with |q| <1, and j € Z( U{oo}, define (a;¢); := (1 —a)(1—aq) - (1 —ag’™")
and (aj,...,a,;9); = (a;;9); - (a;;q);. We will often omit the dependence on g and write
(a)j or (ay,...,a,);. We also use the notation T'(xy,...,x,) := I'(x;) -~ T'(x,). We will denote

i:= \/—_1
2 | KEYIDEAS IN PROVING THEOREM 1.2
2.1 | Keyideasin proving Theorem 1.2 (1)-(4)

The open ASEP height function process converges to the open KPZ equation height function pro-
cess under suitable weak asymmetry and triple point scaling. This result is basically contained in

dny woxy papeojumo( ‘¢ “pz0T ‘TIE0L60T

00 KopimA:

PUB-SULID)

11dde oy £q PAWIOA0S SIE S[OIIE () (98N JO So[I 10§ ATBIqI] AUIUQ Ad[1AL UO (Suony

2SUOIT SUOWILIO)) DATIBALY) J[qEO!



STATIONARY MEASURE FOR THE OPEN KPZ | 2193

Refs. [21, 44] (see Section 3). To apply it to the open ASEP height function stationary measure, we
need to verify Hélder bounds on the exponential of H%)(X ). These can be deduced from the fol-
lowing considerations. When u + v = 0, the open ASEP stationary measure is product Bernoulli.
This implies tightness of the height function Hl(f,v_)u and Holder bounds for it, and yields Theo-
rem 1.2 (3). To move to general u, v we use the fact that here exists an attractive coupling between
versions of open ASEP with different boundary rates (a finite N version of Theorem 1.2 (2)).
This coupling implies that the increments of the stationary height function are bounded above
and below by random walk increments (by appealing to the u + v = 0 result). This yields Holder
bounds for all u and v.

2.2 | Keyideas in proving Theorem 1.2 (5)

The starting point for our work is the matrix product ansatz, introduced by Derrida et al. [25],
which describes the stationary measure in terms of certain noncommuting operator products.
Useful (infinite) matrix representations for these operators related to Askey—Wilson polynomials
[4, 36]. Jacobi matrices were discovered by Uchiyama et al. [50]; based on a slightly more gen-
eral matrix representation, Corteel and Williams [20] developed a combinatorial description for
the open ASEP stationary measure in terms of tableaux combinatorics. So far, these formulas
for the stationary measure have not been used for the type of asymptotics we need to perform
in order to access the KPZ equation, though Uchiyama et al. [50] did perform other interesting
asymptotics.

More recently, relying on the work of Uchiyama et al. [50], Bryc and Wesotowski [18] discov-
ered a way to rewrite the Askey-Wilson Jacobi matrix solution to the matrix product ansatz in
terms of the Askey-Wilson processes. These Markov processes were introduced earlier in Bryc
and Wesotowski [17] in relation to quadratic harnesses. Askey-Wilson polynomials are orthogo-
nal martingale polynomials for these processes. The following remarkable identity is our starting
point.

Proposition 2.1 (Theorem 1 of Bryc and Wesotowski [18]). Let {-)n denote the expectation with
respect to the stationary measure n'fJSEP of open ASEP parameterized by q and (A,B,C,D) as in
Equation (1.4). Assume that AC < 1. Thenfor0 < t; <t, < --- < t,, thejoint generating function of
the stationary measure for open ASEP can be expressed as

>

N E|TT, (148 +2v2,v,,
(119) _EmL (e )

INE [(1 + vl)N]
where {Y,};> is the Askey-Wilson process with parameters (A, B, C, D, q) defined in Section 6.

An immediate corollary [16, Section 4.3] of this is the multipoint Laplace transform formula
for H (N)(X ) (defined from 7 by combining Equations (1.7) and (1.3)) under the stationary measure

u,v
ASEP
71'N .

Corollary 2.2. As in Equation (1.4), let {-)y denote the expectation with respect to the stationary
measure nﬁSEP of open ASEP parameterized by q and (A, B, C, D). Assume that AC < 1. For any
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2194 | CORWIN and KNIZEL

d € Zs, let)?, ¢, and § be as in Equation (1.9), é € R. Then,

d+1 Ny —Ng_1
el 1 (com (87 + v )™
k=1 ek

N [E[(l + vl)N]

P8 %) = (e T el ) 1)

where s =N"Y2(s; 4+ ¢) for k € [1,d + 1], X(N) N7 NXy|, ng = |[NXy] for k € [1,d],
and Y lS the Askey-Wilson process (Definition 6. 1 ) with parameters A, B,C, D, q matching those
of the ASEP we are considering, and with marginal distribution 7, (see Equation (6.8)) at all times s.
When é = 0, we will write $™)(Z, X) instead of ™), 0, X) and use sy, instead of 5. on the right-hand
side of Equation (2.1).

Note that the restriction that the ¢, are strictly positive comes from the increasing nature of the
t’s from Proposition 2.1. We do not know how to analytically continue to general c;. However, for
our purposes, it is sufficient to work with the positive ¢, and also to assume ¢ = 0. In that case,
when ¢ = 0, we write ¢V (Z, X) instead of ¢™V)(Z, 0, X).

Using this corollary, we see that the finite N Laplace transform can be written as (see also
Equation (8.9))

s X)_‘P(N)( X) M@ R) = [Nu+ug(N)(<y(N) W”)-E-)?)]
~,(£L) - ->)’ S1 Sd+1 )’ :

Here we have set (see Equation (8.2)) \?gN) = 2N(1 — Ys) and (see Equation (8.8))
d+1 N -xM)

(N) X .9~N Sk — I
¢M(F 6 X) - —lﬂeRd+1 2 H(cosh<ﬁ>+1 ZN)

k=1

It is easy to check that as a function in 7, M7, &, X ) converges point-wise to (see Equation (7.2))

) d+1
(75 ¢; X) 1=eXP< Z(S — )Xk = X 1))

The overwhelming majority of the work is, thus, left to show that in an appropriate strong sense
(N (N
N¥*t'Law <Y§l ), ...,Yngr)l) = Law(T,,,..., Ty,,,)

where T is the continuous dual Hahn process started at T according to the infinite measure py .
In fact, what is really needed is the convergence of

FNER) > §,,@X) = [E[Q((Tsl, . Y X)] 2.2)

from which the convergence ¢SX,)(E’,)? ) = ., X ) readily follows.
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STATIONARY MEASURE FOR THE OPEN KPZ | 2195

The Y™ process can be thought of as a secant process to the Askey-Wilson process. If one
conditions on its value at s;, then the distribution of its values at times s,,... are given by the
product of bona-fide transition probabilities. On the other hand, the marginal distribution that we
have assumed of the Askey-Wilson process requires rescaling by N**V to have a nontrivial limit
as N = oo. As a result, in the limit N — co, the marginal distribution of Y?¥) ends up becoming
an infinite measure. This means that in order to establish the limit (2.2), we must establish both
point-wise convergence and rather strong bounds on the marginal and transitional measures used
to define the Y) process, so as to be able to apply the dominated convergence theorem. Owing to
the fact that these measures are written in terms of g-Pochhammer functions, this analysis ends
up involving rather refined asymptotics of log(+q?; q), for ¢ = e with both x and z varying in
certain potentially unbounded ranges.

Before delving into those asymptotics, let us explain one final wrinkle in the proof of Theo-
rem 1.2 (5). The argument described above ultimately shows (see Proposition 7.1) that the Laplace
transform qS%)(E,)? ) of the finite dimensional marginals of /x,(f’\{,) converge to a limit qSu,U(E,)? )
as N — oo, provided the spectral variables ¢ € (0, Cd,u,v)d. However, this does not immediately
means that u%) converges to a limit itself. Indeed, if we knew independently that ¢,, ,, (E’,)Z' ) was
the Laplace transform (in the ¢ variables) of some probability distribution , , then this would
imply that ;13\9 = U, - This is due to a generalization (see Bryc and Wang [16, Appendix A]) of
an old result of Curtiss [22]. The work of Bryc et al. [14] (subsequent to our current paper) estab-
lished this property of gbu,v((?',)? ) provided min(u, v) > —1 (in addition to the ongoing assumption
here that u + v > 0). That, however, does not cover the full range of u and v.

In any case, prior to this inversion work, we developed a rather different route to show
that ¢, ,(C, X ) is the Laplace transform of some probability distribution u,, and hence that

/1,(4]\9 = Wy, »- Our approach uses some of the additional probabilistic information about the ,u(N)
)

measures provided to us by the earlier parts of Theorem 1.2. Namely, we use the tightness of w;, ;;
(from Theorem 1.2 (1) and uniform control over exponential moments ,u(N) (from Theorem 1 2
(2) and (3)) to show that ¢u’U(C,X ) coincides on an open set with the Laplace transform of some
sub(sub)sequential weak limits of u(N), . This identifies uniquely the weak limits along all
subsubsequences as being the same, and hence shows convergence of the original sequence of
measures. This combination of integrable (exact asymptotic calculation) and probabilistic (the
tightness and coupling arguments) methods is quite powerful and allowed us to proceed where
each method on its own failed to produce results.

As noted above, the proof of the Laplace transform convergence ¢%)(E’,)_f ) > ¢u,v(3,)? ) consti-
tutes the most technically demanding part of this work. The starting point for this convergence
is the fact that the Askey-Wilson process marginal distributions and transition probabilities are
written explicitly in terms of the Askey-Wilson orthogonality measure, which in turn is written
in terms of g-gamma functions (i.e., certain g-Pochhammer symbols).

Thus, one of the key technical challenges here is to develop an explicit asymptotic expansion of
g-Pochhammer symbols (really the g-gamma function) as g — 1 with precise error bounds which
can be controlled uniformly over all arguments. Recall that for a,q € C, |q| < 1, we let (a;q) j =
(1-a)1 -aq)..(1—ag/™") and write (a,, ..., a,; q); = (a1;9); - (aj;q);. We often drop the g
dependence. Let us define for z € C and x > 0 the following functions:

At[x, z] = —Z—; - <z — —> logx — log l\/(zz_)] (2.3)
V4
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2196 CORWIN and KNIZEL

A7k, z] = —2 - (z - —> log 2. 24)

Proposition 2.3. Forx € (0,1)letq=e . Forze Candm € Z,

m—

log(¢%; @) = At[x, z] Z nn(;zlf)llir " 4+ Err)[x, z], (2.5)
z. — £S n n+1( ) n K"
log(—¢%; @) = A7 [x, Z] z 2N —1)—— n(n D) + Err,[x, z]. (2.6)

where By (z) and By, denote Bernoulli polynomials and Bernoulli numbers (Section 9.1). For any a €
(0,7m), e €(0,1/2), and b € (m — 1, m), there exist C,x, > 0 such that for all x € (0,%,) and all
z € Cwith |Im(2)| < %

|Errt [, z]| < C<K(1 +1zD% + %P1 + |2)) 2.7)

1+2b+s>
The bound on Err;}[x, z] further holds with the condition |Im(z)| < % replaced by |Im(z)| < Z?a
Furthermore, for anyr > 0, ¢ € (0,1/2) and b € (m — 1, m), there exist C,x, > 0 such that for all
x € (0,%p) and all z € C with dist(Re(z), Z,) > r, Equation (2.7) continues to hold.

Observe that since e™ = —1,
log(g%; @) — log(—q%;q)se when z - z+ %i. 2.8)

Thus, the restriction that [Im(z)| < = is quite natural and not really a restriction since we can
x
extract asymptotics for log(q?; q) for general imaginary part using the above fact in conjunction
z. . . . 27 . s s : et . .
that log(q?; q), remains invariant under z — z + —i. This invariance easily 1mp11es the claims

after Equation (2.7) as corollaries of that bound w1th the restriction |Im(z)| < < in place.
We will, in fact, only make use of the m = 1 case of the proposition, though We leave the general
result since it is not much harder to prove and may be of subsequent use to others.

The g-gamma function is closely related to (¢%; q), and given by T'y(z) = (1 — q)'~* ((qzq)‘” thus
our result can be seen as an asymptotic result for the g-gamma function as well. Asymptotics of
Iy have been studied in a number of contexts previously, for example, Refs. [23, 41, 42, 52]. In all of
those works (and others) the error bounds are either for z fixed as x goes to zero, or « fixed as z goes
to infinity in some direction. To our knowledge, there has been no analysis of how these two limits
balance. This balance, however, is extremely important for us since we will deal with measures
that are defined with respect to these g-Pochhammer symbols and certain key asymptotics that
we perform in Section 8 will involve probing |z| of order x~!, with x going to zero.

The proof of Proposition 2.3 (Section 9) relies on complex analytic methods often used in
analytic number theory [43, 47] such as the Mellin transform and the use of gamma, zeta,
Hurwitz zeta, and Jacobi theta functions. The formula (2.5) can already be found in [52, Theorem
2], though the error bound stated there involves fixed z with x tending to zero. In fact, the
proof of [52, Theorem 2] relies on an incorrect result, Zhang [52, Lemma 5], which claims
that ¢(s,z) = O(]t|*N*1) as |t| = co uniformly for z in any compact subset of Re(z) > 0. Here
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¢(s, z) is the Hurwitz zeta function and s = o + it with real o > —2N for N € Z,, and t € R.
Proposition 9.5 provides a correct bound on the Hurwitz zeta function with exponential growth
elA@ 1l and important polynomial factors, which ultimately translate into our error bound
above. The analysis of (—g?; q), is similar, though it involves the Dirichlet eta function as well.

We close this discussion by comparing our proof to that of Bryc and Wang [16] who studied
the scaling limit of the ASEP stationary measure for g (and the boundary parameters) fixed, as
opposed to scaling with N. There they also utilized the Askey-Wilson processes, but there were
two major simplifications. The first was that the g-Pochhammer symbols that come up there
are easily controlled since q is not varying. This renders the asymptotics of the Laplace trans-
form considerably simpler. The second is that the limiting Laplace transform was recognizable
as the Laplace transform of a probability distribution due to their work in Bryc and Wang [15].
This avoided the need for the additional twist described above. Another difference with Bryc and
Wang [16] is that they were only concerned with taking a limit of the stationary measure—they
do not show that this limit measure is stationary for some limiting Markov process. In our case,
additional probabilistic/stochastic analytic work is needed to show that the limiting measures are
stationary measures for the open KPZ equation height function increment process. These remarks
are not meant to diminish the work of Bryc and Wang [16] but rather indicate how it serves a key
starting point for this current paper, which has to confront a number of additional conceptual and
technical challenges.

3 | WEAK ASYMMETRY LIMIT TO THE OPEN KPZ EQUATION

The open ASEP height function process (recall from Section 1.1) converges to the Hopf-Cole solu-
tion to the open KPZ equation under the following assumptions on parameters. Here we will not
necessarily assume that ASEP is started from its stationary measure, but rather allow for a very
general class of initial data that satisfy some Hélder bounds.

Assumption 3.1.

ino: g = _2
(1) Weak asymmetry scaling: q = exp( \/ﬁ)'

(2) Liggett’s condition:a+y/q=1and B+ 5/q = 1.
(3) Triple point scaling: For some u,v € R,as N — o

a= 24 EN-12 4 o(N12), B=1LyON-12 4 ov112),
2 2 2 2
_1 u ~1/2 _1 v p ~1/2
v =5 = 5N"/2+oNT), §=35—NT/2+o(N"1/2).

(4) 4 : 2 : 1 height function scaling: For T > 0 and X € [0,1] define

HN(T,X) 1= N—1/2hN(%eN’” *N2T,NX) + (%N + 2—14)T,

(N)
Zi(AN)(T,X) = eHu,u (T,X)’

,U

where hy is the ASEP height function process.
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2198 | CORWIN and KNIZEL

(5) Holder bounds on initial data: The N-indexed sequence of open ASEP initial data hy(0,-)
satisfies that for all 6 € (0, %) and n € Z4, there exist positive C(n), C(6, n) such that for

every X,X' €[0,1]and N € Z,

1Z80,%)0, < C(n), and  [1Z80,%) - z8)©0, X)), < €O, mIX - X'|°.

Here || - ||, := (E[] - I"])l/n where E is expectation over hy(0,-) (recall that we are not

currently assuming that the law of this initial data is stationary).

Proposition 3.2. Consider any N-indexed sequence of open ASEPs with parameters and initial
datum satisfying all Assumption 3.1. Then the law of Z,S{\L)(-, -) € D([0, Ty, C([0,1])) (the Skoro-
hod space) is tight as T — oo for any fixed T, > 0 and all limit points are in C([0, Ty], C([0,1])).
If there exists a (possibly random) non-negative-valued function Z, € C([0,1]) such that, as N —
00, Z%)(O,X) = Zy(X) in the space of continuous processes of X € [0,1]), then Zl%)(T,X) =
Z,,(T,X)in D([0,Ty], C([0,1])) forany Ty > 0as N — oo, where Z,, ,(T,X) in C([0, T], C([0,1]))
is the unique mild solution to the SHE with boundary parameters u and v, and initial data Zy(X)
(recall the definition from the beginning of Section 1).

The Skorohod space is used above since ASEP takes discrete jumps in time.

Proof. This result is essentially contained in Corwin and Shen [21] for u,v > 1/2 and Parekh [44]
for general u, v € R. The tightness is from Corwin and Shen [21, Proposition 4.17] and Parekh [44,
Proposition 5.4] while the convergence result is from Corwin and Shen [21, Theorem 2.18] and
Parekh [44, Theorem 1.1]. The only difference from those works is that we have used a different
parametrization. For the tightness, the boundary parameters play no role and hence our result fol-
lows immediately from that of Refs. [21, 44]. For the convergence result, our parametrization can
relatively easily be matched to that used in Refs. [21, 44] and their parameters A and B correspond
tou—1/2+0(1) and v — 1/2 + o(1), respectively. The o(1) terms go to zero as N go to infinity
and thus do not affect the limiting equation (as can be justified either by a coupling argument or
by tracing through the proof in Refs. [21, 44]). O

4 | ATTRACTIVE COUPLING OF DIFFERENT BOUNDARY
PARAMETERS

This prepares us for the proof of Theorem 1.2 (1)-(4) in Section 5.

4.1 | Coupling via multispecies open ASEP

We prove an attractive coupling of open ASEPs with different boundary conditions. This means
that if the occupation variables start ordered between different ASEPs, then they will remain
ordered. As is standard in proving attractive couplings (e.g., Andjel and Vares [1]), we appeal to
a multispecies version of the model. For M = 2, part (1) below coincides with Gantert et al. [31,
Lemma 2.1].

dny woxy papeojumo( ‘¢ “pz0T ‘TIE0L60T

00 KopimA:

PUB-SULID)

11dde oy £q PAWIOA0S SIE S[OIIE () (98N JO So[I 10§ ATBIqI] AUIUQ Ad[1AL UO (Suony

2SUOIT SUOWILIO)) DATIBALY) J[qEO!



STATIONARY MEASURE FOR THE OPEN KPZ | 2199

Lemma 4.1. Fixq > 0, any M > 2 and any non-negative real numbers {oci}f\il, {51'}1;11, {)/i}?il, and
{5i}1i\i1 such that foralli < j,

a<al,  B=p,  yzy, <ol

For each i € {1,...,M} fix any initial data ' = (t})ye 1N € {0, 13N such that forall 1 <i < j <
M, tt < 7J (ie, i < Tl for all x € [1,N])). Let 7'(-) denote the N site open ASEP with parameter
(g, al, BL,yL, 8% started with t/(0) = 7'. Then,

(1) There exists a single probability space supporting M processes t'(-),...,7™(-) and has the
property that forallt > 0and 1 <i < j <M, ti(t) < 7/(¢).

(2) Let #' denote an occupation vector distributed according to the stationary measure for the N site
open ASEP with parameters (q, ', B!,y, 8%). Then, there exists a coupling of all M stationary
measures such that forall1 <i < j <M, ' < #/.

Proof. The second claim follows immediately from the first by taking time to infinity and using the
uniqueness of the stationary measure. The first claim can be shown by appealing to a multispecies
open ASEP. Consider an M species version of open ASEP where sites can be occupied by a single
particle of species 1 through M. This process has the following transition rates (as a convention
let a° = ﬁM+1 — 7/M+1 =80 = 0)

(1) For x € [[1,N — 1], if sites x and x + 1 are occupied by AB (i.e., there is a species A particle
at site x and a species B particle at site x + 1), then this becomes BA with rate 1 if A < B and
rate g if A > B.

(2) Ifsite1is occupied by A, then this becomes B at rate a? — a®~1if A > Band atrate y? — y
of A < B.

(3) Ifsite N is occupied by A, then this becomes B at rate 32 — gB+1if A < B and at rate §% — 551
if A> B.

B+1

Denote the occupation variables for this process by %.(t) € {0, 1}wherei € 1, M]],x € [[1,N] and
t > 0.In other words, 7\.(t) = 1if there is a species i particle at position x at time ¢, and 0 otherwise.
From these multispecies occupation variables, we define 7’.(t) = 2321 7%(t). From the 7’ in the
statement of the lemma, we define initial data for the multispecies ASEP by 7.(0) = 7, — /7!
(with the convention that 79 = 0). It is evident that 7.(0) = .. and that marginally, for each i €
[1, M]], 7'(¢) evolves as a process in ¢ precisely as open ASEP with parameters (g, o', B, ¥', 6*). This
implies the desired attractive coupling since for any 1 < i < j < N, the difference 7..(t) — 7.(t) =

]k:l. “ nﬁ(t) is positive, hence 7..(t) < rf;(t) as desired. O

4.2 | Height function coupling and its implications
Armed with the attractive coupling of Lemma 4.1, we may now prove the following results.
Proposition 4.2. Fix u,v € R and consider the stationary measure for N site open ASEP param-

eterized as in Equation (1.5) of Assumption 1.1 by u and v. As in Equation (1.7), define the diffusive
scaled stationary height function H%)(X ) € C([0,1]), and then define its exponential transform
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2200 | CORWIN and KNIZEL

(N)(X ) exp(Hff’\L) (X)). Then the following holds (in points Equations 4 and 5) below we use the

notation || - ||, := (] - I")N)l/n where (-)y is the expectation from Equation (1.2) with respect to the
open ASEP stationary measure nﬁSEP ):

(1) As processes in C([0,1]) as N > o HELN)M(X) = B,(X) where B, is a standard Brownian
motion with drift u (i.e., B,,(X) = B(X) + uX for B a standard variance 1 Brownian motion and
X €[0,1)).

(2) Foranyu,v € R, H(N)( -) and H(N)(l X)— H(N)(l) have the same law as random functions
in C([0,1]).

(3) Forall u and v such that u + v > 0, there exists a coupling ofH( ) with H,
that forall X, X' € [0,1] with X < X/,

(N) (N)

Zv. such

w and H

HY x") - HY),x0) < HY o) - BN ) < B, ) - B, 0.

-0,

H™, and B,

For all u and v such that u + v < 0, there exists a coupling ofH( ) with and such

that forall X, X' € [0,1] with X < X',
HY, ) - HY, ) > HYx) - HY ) = HY,x) - B, (0.

(4) Forallu,v € R, we have the following Holder bound. For all 8 € (0, %) andeveryn € Z, there
exists a constant C(6, n,u,v) > 0 such that for every X, X' € [0,1] and every N € Z,,

]
200 0O = B GO, < €Om i 0)]x = X'| @1

(5) Forallu,v € R, we have the following Holder bounds. For all n € Z, there exists C(n,u,v) > 0
such that forallN € Z-1 and all X € [0,1]

1ZN O, < Cr,u,v), 4.2)
and for all 6 € (0, é) and every n € Z,, there exists a constant C(6, n,u,v) > 0 such that for
every X, X' € [0,1] and every N € Z,,

1ZNx) - 2N xn)||, < c@,nuv)x -x'|°. (4.3)

Proof. Part (1) follows from that fact that when v = —u, AC = 1 (recall A and C from Equation
(1.5)), which implies (see Bryc and Wang [16, Remark 2.4], Enaud and Derrida [29], or Goncalves
et al. [33]) that the open ASEP stationary measure is product Bernoulli with particle density
p =(1+A)"'. As in Equation (1.3), for x € [0, N] define hy., ,(x) = Zle(%i — 1) where t
has this stationary Bernoulli product measure. This means that hy., _,(-) is a random walk with
i.id. 1 increments, increasing by 1 with probability p(u) = (1 + q“)_1 and decreasing by 1 with
probability 1 — p(u). Since p = p(u) = %(1 —uN~1/2 4 O(N1)), the mean of the jump distribu-
tion for hy., _,(x) is uN~'/2 + O(N~!) and the variance is 1 + O(N~'/2). It then follows from
Donsker’s invariant theorem that under diffusive scaling, H (N)(X )y=N"12H fi\’_)u(NX ) converges
as a process in C([0,1]) to B, a standard Brownian motion with drift u, as claimed. Part (2) fol-
lows immediately from the particle/hole duality for open ASEP. Part (3) follows immediately by
applying Lemma 4.1 with M = 3 to sandwich the u, v height function by the u, —u and —v, v one.
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STATIONARY MEASURE FOR THE OPEN KPZ | 2201

Part (4) makes use of results we have already demonstrated in parts (1) and (3) above. By part
1),H (_I\L]))U and H. l(fv_)u are both diffusively rescaled random walks and by part (3), the increments of

H,%) are bounded below and above in our coupled probability space by the increments of H (_I\fj)v

and HSV_)M (depending on the sign of u + v, the ordering is switched). Taking the nth power of
these inequalities and then expectations yields

(N

n
|1 00 = HY O < 2max (||, 000 - B0 L|HE0e) - HED,00)) ).

n
5
n

(Here we have used the following argument. Given two non-negative numbers a and b, note that
max(a,b) < a + b < 2max(a, b). Now, consider two non-negative random variables A and B. The
first inequality gives E[max(A, B)] < E[A] + E[B] and using the second inequality, we find that
E[A] + E[B] < 2max(E[A], E[B])). Thus, in order to prove the Holder bound (4.1) for HI%), it

suffices to show it for both H (_1\;)11 and H, le_)u These bounds, however, follow readily since H (_NU)U and

H 1(4N—)u are diffusively rescaled simple random walks, which converge to drifted Brownian motions.

Turning to part (5), we first show Equation (4.2). As in the part (4) proof, we may use the
coupling in part (3) to show that

200, < 2max (220,00l 122,601 ). (44)

So, it is sufficient to show Equation (4.2) with ZSX?(X ) replaced by both Z(_NU?U(X ) and Zfiv_)u(X ).
Each of these expressions involves the exponential of a diffusively scaled i.i.d. simple random
walks. As we did not include the analogous calculation in part (4), we include this.

Let yy,...,yy be i.i.d. random variables with P(y; = 1) =p :=(1 + q“)_1 and P(y; = -1) =
1 — p. Then we claim that for all n € Z,, there exists C(n,u) > 0 such that

E [(eN‘l/Z(y1+---+yM)>n] <C(n,u) “

forall M < N € Z,. It is clear that Equation (4.2) immediately follows by combining this with
Equation (4.4) and the random walk description of both Z(_]Z?U(X )and Zfiv_)u (X). So, we now focus
on proving Equation (4.5).

By independence of the y;, we can rewrite the left-hand side of Equation (4.5) as

n M
[E[(eNl/Z(y1+-~-+ym) ] - (pe”N’“2 +(1—p)e—"N’“2> . (4.6)

Taylor expanding yields the asymptotics that pe"™ /> + (1 — p)e™™N * = 1 + (n2/2 + un)N~" +
o(N~1). Raising this to the Mth power yields a bound on the right-hand side of Equation (4.6) like
e(n?/24unX where X = M /N € [0,1]. The maximum occurs at either X = 0 or X = 1 depending
on the sign of n?/2 + un, and thus letting C(n, u) = max(1, e"’/>+41) seems to work. To make the
above argument rigorous, we just need to control the Taylor expansion error. If pe™ Rt a-
p)e "N "2 <1 then the right-hand side in Equation (4.6) is maximized when M = 0, otherwise
it is maximized when M = N. In the first case when M = 0, the right-hand side of Equation (4.6)
is obviously bounded by 1. So, it suffices to bound the right-hand side of Equation (4.6) when
M = N.

We recall a few elementary inequalities which control the Taylor expansion and provide bounds
which hold for all n,N € Z5, and u € R. Below, C will denote a positive constant. Recall that
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2202 | CORWIN and KNIZEL

g =e2N"? We can bound |p — (é - EN_l/z)l < Clu|>N~3/2, With this we can show that

dny woxy papeojumo( ‘¢ “pz0T ‘TIE0L60T

‘,oe”N*l/2 +(1— p)e™™ " — (cosh(nN~1/?) + sinh(nN‘l/Z)uN‘l/z)‘ < Ccosh(nN—Y/2)|u|?N3/2,

Bounding

n?
cosh(nN~1/2) — <1 + ?N‘1>

< Cn*N~2, |sinh(nN—1/2) - nN—1/2| < Cn3N-3/2,

and cosh(nN~'/2) < cosh(n) for N € Z5,, we deduce that

2
‘pe"N_]/2 +(1—p)e N <1 + (% + un)N‘1>

Here and below C(u, n) > 0 depends on u and n (though may vary between lines). From this, it

< C(u,n)N-3/2,

follows that (pe™ "> + (1 — p)e~"N " )N < C(u, n) as needed to show Equation (4.2).

We now turn to showing Equation (4.3). This bound follows by combining the result of
part (4) with the already showed inequality (4.2) in part (5). First note that for all a,b €
R, |e® — eb| < max(e?,eP)|a — b|. Substituting a = S\Q(X )and b = (N)(X "), taking expecta-
tions and using Cauchy-Schwarz yields ||Z(N)(X ) — Z(N)(X M <l max(Z(N)(X) Z(N)(X’ DIEE
|H,; (N)(X) - %)(X 2n- The result of part (4) provides us with control over the second term
on the right-hand side thus it suffices to prove that there exists C’'(n,u, v) > 0 such that for all
X, X' €[0,1]

”max Z(N)(X) Z(N)(x’)> < C'(n,u,0). (4.7)

2n

We already know how to control the n-norms of the individual terms inside of the
max in the left-hand side of Equation (4.7) by the already proved bound (4.2). We need
to control to the n-norm of the max. For positive random variables A and B, using the
binomial expansion and Cauchy-Schwarz, we show that for any m € Z,, E[max(A, B)"] <
2™ maxye o m) E[AZF]Y/2E[BXm=F]Y/2 Substituting m = 2n, A = (N)(X) B= Z%)(X’) and
using the bound proved in Equation (4.2), it follows that E[A%K]'/2 < C(2k, u,v)¥ and likewise
E[BXm-R]1/2 < C(2(m — k), u,v)" ", Thus,

00" Ko
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| max(ZM(x), ZM (XNl < 2 g{)lax CQk,u,v):nC212n —k),u,v) 21

.....

which we can take to be C’(n, u, v). This proves Equation (4.7) and completes the proof of Equation
(4.3). O
5 | PROOF OF THEOREM 1.2 (1)-(4)

Proof of Theorem 1.2 (1). That the law ,u(N) of H (N)( ) € C([0,1]) is tight as N - o follows from
Proposition 4.2 (4) and the fact that H, (N)(O) = 0 by applying the Kolmogorov continuity theorem.

11dde 2y £ PaUIaA0T A1E SA[IIE V() 128N JO a1 10 AIeIqI] AUIUQ AAJIAL UO (SUOUY

That theorem further implies that all subsequential limits y,, ,, of ,uu,u are supported on the space
of Holder « functions for all « < 1/2.
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Now, consider any subsequence {N};? along which ,u( Ni)

(N)( ) € C([0,1]) be distributed according to the law u,,. We claim that all of the condi-
tions of Assumption 3.1 are satisfied. Weak asymmetry, Liggitt’s condition, and the triple point
scaling assumptions all follow from the choice of parameters we have made in Assumption
1.1 and the Holder bounds on the initial data are shown in Proposition 4.2 (5). Finally, since
we have assumed that the subsequence {N,} is such that H%")(-) = H,, ,(-) as random func-
tions in C([0,1]), it follows likewise that Z;]X,k)(X) = Z,,(X) = eM«v®) . Thus Proposition 3.2
implies that Z,(ffj‘)(T,X) = Z,,(T,X) in D([0,T,],C([0,1])) for any T > 0 where Z, ,(T,X) €
C([0,Ty], C([0,1])) the unique mild solution to the SHE with boundary parameters u and v and
initial data Z,(X) = e!uv@)_ Since the initial data for the open ASEP height process were chosen
to be stationary (in terms of the height function increment process), it follows immediately that
the law of X — ZS’V")(T X) /Z(N")(T, 0) € C([0,1]) is independent of T. By the convergence to the
SHE, the same is true for X — Z, (T, X)/Z, ,(T,0) € C([0,1]) and taking the logarithm of this
implies that the law of X — H,, ,(T,X) — H,, U(T 0) € C([0, 1]) is likewise independent of T. This
implies that the law y,, ,, of any limit point of ,u ) will be a stationary measure for the open KPZ
equation height function increment process. O

converges to a limit u, ,. Let

Proof of Theorem 1.2 (2). Proposition 4.2 (3) implies that the coupling holds along any subsequence
{Ni};—, such that all of the {u( ") M —, converge to the limit points {x,,, ,, }l 1> hence it passes to the
limit. O

Proof of Theorem 1.2 (3). This follows from Proposition 4.2 (1) in conjunction with the result in
part (1) of this theorem. O

Proof of Theorem 1.2 (4). Proposition 4.2 (2) implies that the desired equality holds along any
subsequence {N; }} | such that ,u(N") and u( k) converges to their limit points u, , and u, ,,; hence
it passes to the limit. O

6 | ASKEY-WILSON AND CONTINUOUS DUAL HAHN PROCESSES

6.1 | Definition of the Askey-Wilson process

Fixq € (-1,1)and a, b, c,d € C be such that
ac,ad, be, bd, qac, qad, gbc, gbd, abcd, qabed € C\ [1, ), (6.1)

and such that either all a, b, c, d are real, or two of them are real and two form a complex conjugate
pair (e.g., a,b € R and ¢ = d), or they form two complex conjugate pairs (e.g., a = ¢ and b = d).
We will not need the Askey-Wilson polynomials, but rather just their orthogonality measure.

6.1.1 | Askey-Wilson probability measure

Fix parameters (a, b, ¢, d, q). Under Assumption (6.1), the corresponding Askey-Wilson polyno-
mials are orthogonal with respect to a unique compactly supported probability measure. This
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2204 | CORWIN and KNIZEL

Askey-Wilson probability measure on R is defined by the values it takes on Borel sets V C R,
which we write as AW (V;a, b, c,d, q). As shown in Bryc and Wesotowski [17, Theorem A.1] or
Askey and Wilson [4, Theorem 2.5], the Askey-Wilson probability measure can be decomposed
into an absolutely continuous part and a discrete finitely supported atomic part. The density, rel-
ative to the Lebesgue measure, of the absolutely continuous part will be denoted by AW* and the
discrete part, which is a sum of weighted Dirac delta functions, will be denoted by AWY. Thus,

AW (V;a,b,c,d,q) = /AWC(x; a,b,c,d,q)dx + AW4(V;a,b,c,d, q)-
v
The density AW¢ is supported on x € S :=[-1,1] and given by

(eZiex) 2

(aei®x, beix, ceifx, deifx) | ’

(q,ab,ac,ad, bc,bd, cd)

27t(abed) o, V1 — x2

with x = cos,. (We have dropped the g in the g-Pochhammer symbols.) The discrete part AW¢
is given by

AW¢(x;a,b,c,d,q) = (6.2)

AW4(V;a,b,c,d,q) = Y AWd(sa,b,c.d,qg), (6.3)
yeVNnSd(a,b,c,d,q)

a sum of delta functions with masses AW4(y;a, b, c,d, q) at points y eS4(a, b, c, d,q) The set
S4(a,b,c,d,q) and masses AW¢ are given as follows. If |a|, |b|, |c|, |d| < 1, the set S4(a, b,c,d, q)
is empty. By Equation (6.1), if y € {a, b, c,d} has | y| > 1 then it must be real. Each y € {a, b, c, d}
with | y| > 1 generate its own set of atoms, the union of which constitutes S¢(a, b, ¢, d, ). By Equa-
tion (6.1), any element y € {a, b, ¢, d} with | y| > 1 must be distinct from all other elements in that
set. There are finitely many atoms generated by such y and they are at locations

yj=%<)(qj+$>, for j € Z-( such that |yq/| > 1. (6.4)

Each atom has a different mass. When y = a, these are given as (here y; are as above with y = a)

(a=2,bc, bd, cd)00

AWd ;’bs ’dy = ’
(03 a,b,¢,d, q) (b/a,c/a,d/a,abcd)

AW4(y;;a,b,c,d,q)  (ahab,acad) (1-dq¥) o
( ) , (6.5)

AWd(ya.b,c.d.q)  (¢.9a/b,qa/c,qa/d),(1 - a?) \abed
where, in the second line, we assume that j € Z..; such that [yq/| > 1. For other values of y, the
masses are as above except with a and y swapped.

6.1.2 | Askey-Wilson process
Following Bryc and Wesotowski [17], we define the Askey-Wilson process, a time-

inhomogeneous Markov process that depends on parameters A,B,C,D,q. We assume that
A, B,C, D correspond to the ASEP parameters a, 3, y, § via Equation (1.4), in which case A,C > 0
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STATIONARY MEASURE FOR THE OPEN KPZ | 2205

and B, D € (—1,0]. Additionally, we will assume that AC < 1, as is necessary for the existence of
the Askey-Wilson processes. This puts us in the fan region of the open ASEP phase diagram.

Definition 6.1. Under the above assumptions on A, B,C, D, the Askey-Wilson process is the
time-inhomogeneous Markov process {Y (o) Whose time-inhomogeneous state-space and
transitional probability distributions are given as follows. Define the continuous and discrete
atomic part of the time s state-space as

(6.6)

S¢ =8¢ = [-1,1], —Sd<A\/—B\/— 7 \/_ )

where Sd(a, b,c,d,q) is defined as in Section 6.1. Let S; :=S{ U S‘f represent the time s state-
space for the Askey-Wilson process. For any s < ¢, the transitional probability distribution 7,
from x € S; to any Borel V C R is

ﬂs’t(x,V)::AW(V;A\/;,B\/E,\/§<x+\/x2—1>, §<x— x2—1>>, (6.7)

where, for x € S¢, we define x + Vx2 -1 = e*i0x with 6, defined through x = cos6,. From the
definitions of the Askey-Wilson probability measure, for x € Sy, the support of 77y ((x, ) is S;. This
defines the Askey-Wilson process.

‘We will also make use of a family of probability distributions 7, with support S; defined such
that for any Borel V C R,

(6.3)

(V) : —AW(V AVs, B\/_ v \/_)

As explained below, the Askey-Wilson process started with distribution 7 at time s will have the
property that it marginally has the distribution 7, at any later ¢ > s.

Both 77y and 7, have absolutely continuous and discrete atomic parts. For x € S¢, we denote
the density of 7 by 75(x) and for x € S we denote that the mass 7,(-) assigns to x by 715 d(x).
Likewise for the transitional probability distribution, if x € S¢ and y € S¢, then we write ns,t °(x,y)
for the density in y; if x € S and y S Sd then we write ﬂc’d(x y) for the mass assigned to y; if
X € Sd and y € S then we write 7r (x y) for the density in y; and if x € Sd and y € S¢, then we

write 71 (x y) for the mass as51gned to y. For all other values of x and y, we declare that these
functlons are zero.

The existence and uniqueness of the Askey-Wilson process defined above are shown in Bryc
and Wesotowski [17, Section 3] as is the property that it preserves the 77y marginals. In particular,
Bryc and Wesotowski [17, Proposition 3.4] shows that for all Borel sets V' C R (and in the second
equation, for all x € S;)

/ m(dx)7 (x,V) = m,(V), and / s (X, dY)7 0, (¥, V) = 75,4 (X, V).
R R
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2206 | CORWIN and KNIZEL

The first identity implies that the Askey-Wilson process started under 7z, at time s has marginal
distribution 7, at time ¢, while the second is the Chapman-Kolmogorov identity necessary to
define the Markov process.

6.2 | The continuous dual Hahn process

The open KPZ stationary measures that we construct in Theorem 1.2 (5) is characterized by
a duality with the continuous dual Hahn process that we define here (the special case of this
when u,v > 0 was already defined in Section 1.2). This time-inhomoeneous Markov process is
a certain limit of the Askey-Wilson processes [18] (see Section 6.1). We will use the standard nota-
tion for the Pochhamer symbol: For j € Z, and x € R, define [x]; := (x)(x +1)---(x +j — 1)
with the convention that [x], := 1. For multiple arguments x;, ... x, € R, define [x;, ..., X,]; :=
[x1]j --- [x,];. Likewise, define I'(xy, ..., x,,) = T'(x;) -+ T(x,,).

We will define the time-inhomogeneous state-spaces S; and transitional probability distribu-
tions p; , for the continuous dual Hahn process, and show their consistency. We will also define a
family {p,}, of infinite measures supported on the state-spaces for this process that are preserved
by the transitional probability distributions. All of these distributions are all related to general-
ized beta integrals [3, 51]. We will only define the continuous dual Hahn process for times in
s €[0,C,,) where we recall from Equation (1.8) that [0,C,, ) always has a nonempty interior.
Bryc [12] has subsequently extended this definition to all times in R, though we do not need to
rely on that.

We start by defining the family {p,}; of infinite measures along with their supports S, that will
also serve as the support for the continuous dual Hahn process. We emphasize that the p are not
probability distributions but rather positive distributions of infinite mass. For the remainder of
the definitions below, we will assume that u + v > 0. We will also adopt the following notation.
For u,v,s € R and j € Z define

ul(s) 1= —4(u+ j - s/2)°  and Vi(s) = 4+ j + s/2)°. (6.9)
Similarly, if u — s/2 < 0 or v + /2 < 0 we define (respectively)

|—u+s/2] |—v—s/2]
suiti= | i sviti= e
Jj=0 j=0
Here d indicates that this will be the support for a discrete atomic measure.

Definition 6.2. Assume that u,v € R with u +v > 0 and s € [0,C,,;,). For any Borel V C R,
define the infinite measure

p) = [ Edre 3 o

d
vnse resgnv
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STATIONARY MEASURE FOR THE OPEN KPZ | 2207

where the support of the absolutely continuous part is S{ := (0, o) and its density is defined as

’1‘<5+v+iﬁ,—E +u+iﬁ>‘2
(v+u)(v+u+1) 2 2 2 2

1 >
o Vr[rypP

and the support SS and masses p‘si(r) of the discrete part are as follows: If u — s/2 < 0, then Sf =
S U‘f’” and for j € [0, |—u + s/2]]), the masses at the points of the support are given by

ps(r) 1=

d( u( )>= F(U—u+s,v+u+2).(u+j—s/2).[2u—s,v+u]j.
I'(—2u + s) (u—S/2)-[1,1—v+u_s]j

If v+5/2 <0, then S¢ = SV?’U and for j € [0, |[—v — s/2]]], the masses at the points of the
support are given by

d< o( )) _Tu-v=-s2+v+u) (v+j+s/2)-[2v+s,v+u]j‘
I['(=2v —5s) W+s/2)-[L1-u+v+s];

If neither of these conditions hold, then Sf = @ and there is no discrete part. Since u + v > 0, it
is not possible that both conditions hold. Define the total support of p, to be

S, =S¢ usd (6.10)
This will also serve as the support for the continuous dual Hahn process. Since S5 N Sf =@, in
the proof of Lemma 6.9, we will find it convenient to overload notation and write p,(x) for the

density function p,(x) when x € S¢ and for the mass function p,(x) when x € S

To define the transition probability distributions, we first define the orthogonality measure for
the continuous dual Hahn orthogonal polynomials.

Definition 6.3. Assume that a,b,c € Rwitha+b,a+c>0ora € Randb=¢ e C\ R with
Re(b) = Re(c) > 0. For such a, b, ¢, define

1 \<a+l£b+l£c+l£)

CDH(x;a,b,c) := e 10

r(ivx)

Definition 6.4. Assume that a < 0 and that F is a finite subset of R with size |F| = |—a] + 1
and elements x; < x; < --- < X|_q. Assume that b, ¢, and j satisfy one of the three conditions:

* b=ceC\Rwith Re(b),Re(c) > 0,and j € [0, |[—a]];
* b,ceRwitha+b,a+c>0,and j € [0, |—a]];
* b,ceRandb,b+c,c—a>0,witha+b=—-keZ,andje [0,k].
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2208 | CORWIN and KNIZEL

For a,b, c, F, and j as above, define

[2a,a+b,a+c]j-(a+j) -T(b—a,c—a)

d
CDH"(x;;a,b,c;F) = .
() ) [La-b+1l,a—c+1];-a-T(-2a,b+c)

(=1).

For all other first arguments, define CDHd(-; a,b,c;F)=0.

Definition 6.5. We will define the measure CDH(V; a, b, c; F) (for Borel subsets V' of R) under
three possible sets of conditions on parameters:

P: Fora > 0; F = @; and either b = ¢ € C \ R with Re(b), Re(c) > 0 or b,c € R, define

CDH(V;a,b,c;F) :=/CDHC(x;a,b,c)dx.
v

N1: For a < 0; F a finite subset of R with size |F| = |—a]| + 1 and elements x, < x; < --- <
X|—q); and either b =¢ € C\ R with Re(b),Re(c) >0, or b,c € R with a +b,a+¢ >0,
define

CDH(V;a,b,c;F) :=/CDHC(x;a,b,c)dx+ 2 CDH%(x;a, b, c; F)
1% xXeFNV

N2: For a < 0; F a finite subset of R with size |F| = |—a| + 1 and elements x; < x; < --+ <
xL_aJ;and b,ce Rwithb,b+c,c—a>0anda+b=—k € Z, define

CDH(V:a,b,c;F) := ) CDH(x;a,b,c;F).

xeFnV

Lemma 6.6. In all three cases of Definition 6.5, CDH(-; a, b, c; F) is a probability measure on R.

Proof. This follows from Equations (3.1), (3.3), and (3.4) in Wilson [51] as a limit when Wilson poly-
nomials degenerate to dual continuous Hahn polynomials. In particular, this limit corresponds
to taking one of the parameters of the Wilson polynomials to infinity. The case when a = 0 does
not seem to be covered therein, but can be recovered by taking the limit as a — 0. ]

We now define what will be the transition probability distribution of the continuous dual Hahn
process.

Definition 6.7. Assume thatu,v € Rwithu + v > 0ands,t € [0, Cyp) with s < t. For any Borel
set V C R, we define the transition probability p; ; as follows. For m € S¢ = (0, o)

g )

> i >3 i 2 (6.11)

ps(m, V) 1= CDH(V;u
Ifu—s/2 <0,sothat S¢ = SUM, then for j € [0, [—u + s/2]]

ps,t(usf(s), V)= CDH(V;u - %, —u+ % —j,u+ % —s+ j;Sl/’?’”). (6.12)
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STATIONARY MEASURE FOR THE OPEN KPZ 2209

Ifv +5/2 < 0, so that S¢ = SV, then for j € [0, [-v — s/2]]]

ps,t(v}’(s), V)= CDH<V;U +j+ %,% —sS—v—j,u— %;SV?’U). (6.13)

For all other first arguments besides those described above, we define p;, = 0.

As in Definition 6.2, we introduce the following notation: If x € S¢ and y € S¢, then we write
p;’f(x, ) for the density in y of the absolutely continuous part of the measure p;,(x, -); if x € S
and y € S¢, then we write pgf(x, y) for the mass assigned to y of the discrete atomic part of
the measure p;,(x,-); if x € Slandy e S;, then we write pi’f(x, y) for the density in y of the
absolutely continuous part of the measure p; ,(x, -);if x € Sdandy e Std, then we write p‘i’td (x,y)
for the mass assigned to y of the discrete atomic part of the measure p; ,(x;, ).

In the proof of Lemma 6.9, we will find it convenient to overload notation and write p;,(x, y)
to denote the corresponding density or mass function dictated by whether x and y are in their
discrete or continuous supports (for example, when x € S5 and y € Std, Ps(x,y) = pst x, y)).

The following lemma verifies that p,, is, indeed, a probability distribution and provides
conditions under which the density or mass function is nonzero.

Lemma 6.8. Assume thatu,v € Rwithu+v > 0ands,t € [0,C,,) withs < t. Forany x € S,
Ps.:(x, ) in Definition 6.7 defines a probability distribution whose support is contained in S;. For
allx € Sgand y € S, ps(x,y) > 0 (we are using the overloaded notation from the end ofDefini-

tion 6.7) and the only choices of x and y for which p,;(x,y) = Oare: (1) x € Sgandy € Sd SV
(Z)xESd—SV andyeSd—SU' (3)x€8d—51/' andyeSC,(4)xeSd—SUS
yesi=sv"()x= ui(s) € sd=sytt y= ul(s) e S = SU withk > .

Proof. There are three cases to consider: Equations (6.11)-(6.13).
In Equation (6.11): If u — ¢t /2 > 0, then case P of Definition 6.5 applies with

a=u—t/2, F=SUM™ b= +it—, c= —i

since a > 0, F = @, and b = ¢ with Re(b) = T > 0; if u —t/2 <0, then case N1 of Defini-
tion 6.5 apphes w1th the same choices of parameters since a <0, |F|=|—-a|+1and b=¢
with Re(b) = T > 0. We see from above that for x € S, the measure p;,(x, -) is supported
and everywhere non-zero (in terms of its density or mass function) on S; U SU‘?’”. In partic-
ular, when u — t /2>0and v +t/2 <0, the mass function p,,(x,y) is zero on the discrete set
yesd=svh

In Equatlon (6.12): Since u — §/2 < 0, so does u —t/2 < 0. In that case, N2 of Definition 6.5
applies with

t t
a=u-1t/2, F=SU‘?’“, b=—u+§—j, c=u+5—s+j

:sdny) suonIpuo)) pue suud 1, 3y 39S “[Hz0z/40/20] uo A1eiqry aunuQ Aip ‘saureiqr Ausiaatup) eiqunjo)) Aq £ 17z 8do/z001°01/10p/wod: Kd[1m: Kresqijaurjuoy/:sdny woiy papeojumod v “+70T ‘T10L601

00" Ko

PUB-SULID)

11dde 2y £ PaUIaA0T A1E SA[IIE V() 128N JO a1 10 AIeIqI] AUIUQ AAJIAL UO (SUOUY

2SUOIT SUOWILIO)) DATIBALY) J[qEO!



2210 | CORWIN and KNIZEL

t—s
2 d
—j for j € Z-,. We see from this that for x = u}‘(s) € SUT", the measure Pps(x,y) is nonzero

only when y = u(t) € SUT" with k € [0, j].
In Equation (6.13): If v + j + /2 > 0, then case P of Definition 6.5 applies with

sincea <0, |F|=|—-al+1,b> >0,b+c=t—s>0,c—a=t—s+j>0,anda+b=

t t
a=v+j+t/2, F=SV™, b= F3=S—v—j, c=u—3
. t—s . . .
sincea >0, F =@, b > 5 > 0 (since j € [[0, |—v —s/2]]}), and ¢ > 0 (since when v + 5/2 <
0 it follows that u > 0 and hence ¢t € [0,C,, ) implies that ¢ < 2u); if v + j 4+ t/2 < 0, then case
N1 of Definition 6.5 applies with the same choices of parameters since a <0, |F| = |—a] + 1,
a+b=t—s>0,anda+c=v+u+j>0. Weseefrom above that for x € SV?’U, the measure
s (x,-) is supported and everywhere nonzero (in terms of its density or mass function) on S; U
S Vf’”. In particular, ifu — £ /2 < 0, the mass function p ,(x, y) is zero on the discrete set y € Std =
d,u
SUt. O
The next lemma is key to defining the continuous dual Hahn process and to showing that it
preserves the class of marginal measures p;.

Lemma 6.9. Letu,v € Rwithu+v>0and0<s<t<w<C,,. Forany Borel V C R,

/ po(dm)p,(m,V) = p(V),  and / P, dP)Py w( V) = Do (m, V).
R R

We prove this after defining the continuous dual Hahn process.

Definition 6.10 (Continuous dual Hahn process). Let u,v € R with u + v > 0. The continuous
dual Hahn process is the Markov process {Ts}se[o,cu,v) with time-inhomogeneous state space S;
from Equation (6.10) and transition probability given by p;,. This process is well-defined since
Lemma 6.9 shows that Chapman-Kolmogorov is satisfied. Lemma 6.9 also proves that if the con-
tinuous dual Hahn process is started at time 0 according to the infinite measure p, then at time
s € [0,C,, ;) the marginal infinite measure for the process will be given by p.

The preservation of the family p; should be thought of as similar to the fact that Brownian
motion preserves Lebesgue measure.

The rest of this section is devoted to the proof of Lemma 6.9. We start by recalling the
orthogonality probability measure for the Wilson orthogonal polynomials from Wilson [51].

Definition 6.11. Let a,b,c,d € C either form two conjugate pairs such that a = b, c =d, one
conjugate pair (either a = b or ¢ = d) and one pair of real numbers, or four real numbers; in all
cases, assume that Re(b), Re(c), Re(d) > 0. For such a, b, c, d, define

2
F(a+b+c+d)‘1‘<a+i\/7},b+ig,c+ig,d+i‘/7;>|
W¢(x;a,b,c,d) :=

2
87r-F(a+b,a+c,b+c,a+d,b+d,c+d)\/}- ‘F(l\/})
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STATIONARY MEASURE FOR THE OPEN KPZ | 2211

Definition 6.12. Assume that a < 0 and that F is a finite subset of R with size |F| = |—a] + 1
with elements xy < x; < -+ < x|_4). Assume that b, ¢, d, and j satisfy one of the three conditions:

* be R, c=deC)\RwithRe(c),Re(d) > 0,and j € [0, |—a]];
* b,c,de Ry, witha+d,a+c>0,j€|[0,|—al];
* b,c,deRwithb,b+c,c—a>0,a+b=—kfork € Z,y,and j € [0, |[—a]].

For a,b,c,d, F, and j as above, define

[2a,a+b,a+c,a+d]j-(a+j)

Wd(x;;a,b,c,d;F) :=
x; ) [La-b+l,a-c+la—-d+1];-a

><1“(a+b+c+d,b—a,c—a,d—a)
I'(—=2a,b+c,c+d,b+d)

For all other first arguments, define wd(x j;a,b,c,d; F)=0.

Definition 6.13. We will define the measure W(V; a, b, ¢, d; F) (for Borel subsets V of R) under
four possible sets of conditions on parameters:

P1: Fora>0; F = @; b € R.; and either c = d € C \ R with Re(c),Re(d) > 0 or ¢,d € R,
define

W({V;a,b,c,d;F) :=/Wc(x;a,b,c,d)dx.
1%

P2: For a=be C\R with Re(a),Re(b)>0; F=¢; and either c=de C\ R with
Re(c),Re(d) > 0orc,d € R, define

W(V;a,b,c,d;F) :=/Wc(x;a,b,c,d)dx.
1%

N1: For a < 0; F a finite subset of R with size |F| = |—a] + 1 and elements x5 < x; < -+- <
X|—q); b € R; and either ¢ = d € C\ R with Re(c),Re(d) > 0 orc,d € R witha +¢,a +
d > 0, define

W({V;a,b,c,d;F) :=/Wc(x;a,b,c,d)dx+ 2 Wi(x;a,b,c,d;F)
v xEFNV

N2: For a < 0; F a finite subset of R with size |F| = |—a] + 1 and elements xy < x; < --- <
x[—aJ;b € R,owitha+b = —kfork € Z,g;andc,d € Rwithb+c¢,b+d,c—a,d—a >0,
define

W(V:a,b,c,d;F) := Z Wi(x;a,b,c,d;F).

xeFnV

Lemma 6.14. In all cases of Definition 6.13, W(-; a, b, ¢, d; F) is a probability measure on R.

Proof. This follows directly from the identities (3.1), (3.3), and (3.4) in Wilson [51]. The case when
a = 0 does not seem to be covered therein, but can be recovered by taking the limitasa — 0. []
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2212 | CORWIN and KNIZEL

‘We can now give the proof of Lemma 6.9.

Proof of Lemma 6.9. The idea is to rewrite the relations in Lemma 6.9 in terms of the
CDH(:;a,b,c; F) and W(-;a, b, c,d; F) measures, and then use the fact that they integrate to 1
to demonstrate the desired identities.

Proving the first identity in Lemma 6.9. It suffices to prove that

/ po(dm)ps(m, ) = py(r) (6.14)
R

for all r € R. Here we have overloaded the p, and p;, notation (as density and mass functions)
as explained at the end of Definitions 6.2 and 6.7. For r ¢ S;, p;(r) = 0. Likewise, for such r, it is
easy to see from the five cases in Lemma 6.8 that the left-hand side in Equation (6.14) is also zero.
Thus, we assume now that r € S;. We can now divide and rewrite Equation (6.14) as

/ P(dmpy (m, 1) _
R p:(r)

To show this identity, we identify the integrand above with the continuous dual Hahn probability
measure (hence its integral is 1). There are three cases, which we address below.

Casel. Forr € Sy,

ps(dm)ps,t(m: r)

s e
p:(r) 2

T — i Svf’“) (6.15)

s
= CDH|{ dm; - —_
C <d U+ > , 2 >

To prove this, observe that for m € S¢, we may rewrite

ps(m)p, (m,r) =CDHC<m;v+%'t_S AT t—s \/;>

() AN (6.16)

The computation here is obtained by regrouping the terms and using the identity I'(x + 1) =
xT'(x). Similarly, for m = v”(s) S Sd sv

w = CDHd<m;v +

() (6.17)

t=s ﬁ L=s_ iﬂ-sv‘”’)

) 2778 )
From Lemma 6.8, we have that for m = u%(s) € S¢ = SU“;’", ps(m,r) = 0. Depending on the
value of v, we see that the parameters in Equations (6.16) and (6.17) either satisfy P or N1 in
Definition 6.5 and either way we arrive at Equation (6.15) and verify that the right-hand side is a
probability measure.

Case2. Forr = “(t)eSd SU’

ps(dm)ps,(m, 1)

— . _E E du
o _CDH(dm,u+k Sv s U=kl 3. s ) (6.18)
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STATIONARY MEASURE FOR THE OPEN KPZ 2213

To prove this, observe that for m € S¢, we may rewrite

ps(dm)p; (m,r)

- (- _5 S, _5
() = CDH (m,u+k U+ =, —u—k+t 2). (6.19)

2 2
Similarly, for m = u;.‘(t) € Sf = Svg’v,

Ps (dm)‘ps,t (m,r)

0 () =CDHd<m;u+k—%,U+§,—u—k+t—§;51f‘sj’”). (6.20)
t

2

From Lemma 6.8, we have that for m = vY(s) € 3;1 = SV?’U, ps.(m,r) = 0. Depending on the
value of u, the parameters in Equations (6.19) and (6.20) either satisfy P or N1 in Definition 6.5 and
either way we arrive at Equation (6.18) and verify that the right-hand side is a probability measure.

_ d _ d,v
Case3. Forr =v/(t) € S{ = SV,",

=CDH<dm;U%,—v—%—k,v+t—%+k;5v5’v>. (6.21)

ps(dm)p; (m,r)
pi(r)

To prove this, observe that for m = v}.’(s) S Sg =S V?’U, we may rewrite

ps(m)ps,t(m: r)

d S S S d,v
= CDH (m;v+—,—v———k,v+t——+k;SV’). (6.22)
pi(r) 2 2 :

2

From Lemma 6.8, we have that for m = uj’f(s) esd= SU‘?’“, ps(m,r) = 0 and likewise for m €
Ss, Ps.:(m,r) = 0. The parameters in Equation (6.22) satisfy N2 in Definition 6.5 and thus we arrive
at Equation (6.21) and verify that the right-hand side is a probability measure.

Proving the second identity in Lemma 6.9. It suffices to prove that

/ P (1, dPPy (s X) = Py (m, X) (6.23)
R

for all m,x € R. As in the proof of the first identity, we are overloading the p,, notation (as
density and mass functions) as explained at the end of Definition 6.7. If m ¢ S or x € S;, then
Psw(m,x) = 0. It is likewise easy to see that in this case, the right-hand side of Equation (6.23)
is also zero. The five cases in Lemma 6.8 identify the choices of m € S; and x € S; for which we
still have p; ,,(m, x) = 0. It is easy to check from that list that for these choices of m and x, the
right-hand side of Equation (6.23) is also zero. Thus, we may now assume that m and x are such

that pg,,(m, x) > 0.
In that case, we may divide and rewrite Equation (6.23) as fR W
5,0 (11,X
identity, we identify the integrand above with the Wilson probability measure (hence its integral
is 1). There are five cases, which we address below. In light of the five cases in Lemma 6.8, we see
that these are the only cases in which p,,(m, x) > 0. Since the proofs here are similar to those

used to show the first identity in Lemma 6.9, we simply record the five cases. To shorten notation,

write (%) 1= Pru(mdnprw(r) Then,
Ps,w(m,x)

= 1. To show this
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Casel. Form € S5 and x € S,

_W(dr;w—t+.£’w—t_.£’t—s+.\/% t—s ﬁ)

dny woxy papeojumo( ‘¢ “pz0T ‘TIE0L60T

2 Ty Tl Ty T

P2 in Definition 6.13 applies.

Case2. Form € S¢ and x = ul(w) € S§ = s,

t t—s .\/ﬁt—sﬂx/ﬁsvdﬂ)'

(*)=w<dr;u+k—5,w———u—k, +iY"

2 2 2 2
Depending on the value of u, either P1 or N1 in Definition 6.13 applies.

Case 3. Form =v/(s) € sS4 =5V and x € S,

_ ] ot t w—t VX w—t \/; do
(*)—W<d7,0+]+E,—U+§—S—],T+IT,T—IT,Svt .
Depending on the value of v, either P1 or N1 in Definition 6.13 applies.

Case 4. Form =v'(s) € s9 = sV* and x = vi(s) € S = sy,
- : Lol i ol k—so—Lyivw dav)
(*)_W(dr,v+k+2, S B k—s,v 2+]+w,5vt .
N2 in Definition 6.13 applies.

Case 5. Form = ulj?(s) IS Sf = SU‘f’” and x = u(w) € Sl‘f) = SU“Z,’“ with k € [0, j],

00" Ko

PUB-SULID)

(*):W(dr;u—%+k,—u+%—j,—u—%—k+w,u+%+j—s;57ff’“).

N2 in Definition 6.13 applies.

7 | ASYMPTOTICS OF THE ASEP GENERATING FUNCTION AND
PROOF OF THEOREM 1.2 (5)

The main technical ingredient to proving Theorem 1.2 (5) is provided by Proposition 7.1, which
is stated below and proved in Section 8. Before stating the proposition, we rewrite the function
¢.,.,(¢, X) in Equation (1.10) as in Section 2 as
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where T is the continuous dual Hahn process started with T, distributed according to the infinite
measure p,. Explicitly, this means that

d
qsu,v(g’)z) = /9(7, E’)?) H psH_l,sl- (ri+1’ dri) : psd+1(drd+1)

i=1

where p; and p;; (recall Definitions 6.2 and 6.7) are the marginal and transition measures for
the continuous dual Hahn process with this initial distribution (recall Definition 6.10), and the
function ¢ is defined as

d+1

C(F:&:X) 1= exp <% Z (sf —ric) (X —Xk_1)>. (7.2)

k=1

Recall that § = (s; > -+ > s441) is related to ¢ = (cy, ..., ¢4) as in Equation (1.9) by s, = ¢ + - +
¢q for k € [1,d] and s;z,; = 0. In Equation (7.1), we are considering transition from r;,; to r;
between times s;,; and s; (recall s;,; < s;). This slightly odd labeling of time (and hence of the r
variables) comes from a time reversal in the Askey-Wilson process, which produces the contin-
uous dual Hahn process. For d € Z5,, define Cy,, ,, := ECu,U where C, , is defined in Equation
(1.8). The following result is proved in Section 8.

Proposition 7.1. Assume that q, A, B, C, and D satisfy Assumption 1.1 and are parameterized by
N and u,v € R with u+v > 0; let HS\;) be the random function in C([0, 1]) defined in Equation
(1.7) whose law /x%) is that of the diffusively scaled open ASEP height function stationary measure
with the above specified parameters. For d € Z,, let X,¢, and § be as in Equation (1.9) and let

““(8,)2 ) denote the Laplace transform of HS’\{,) defined in Equation (2.1) with ¢ = 0. Then, for all

u,v

ce (o, Cd,u,v)d, we have the point-wise convergence of the open ASEP Laplace transform

Jim ¢VEX) = ¢, @X). (7.3)

Remark 7.2. The point-wise convergence in Equation (7.3) is only stated for ¢ € (0, Cd’u’u)d.
Here we explain why. The Askey-Wilson process marginal and transition probability distribu-
tion involves a mixture of an absolutely continuous and discrete atomic part. The nature of the
atomic part depends on the number of parameters whose norm exceeds 1. By limiting the range of
the ¢, we limit which atoms can arise. If we permitted the c; to be larger, we would need to keep
track of additional groups of atoms as well as transition probabilities between them which would
increase the complexity of notation and require additional care. For our purposes, it is sufficient
that we have convergence on some open interval.

There is an alternative approach to minimize the contribution of atoms. (This possible approach
came out in discussions with Yizao Wang, after communicating a draft of our paper to him.) We
could utilize the more general formula in Corollary 2.2 for c;b(N )(E, E,)? ) and choose ¢ and ¢ so
that —2v < s, + € < 2u (the interval (—2v, 2u) is nonempty since u + v > 0). This avoids atoms
coming from the a and c terms in Equation (8.16) but may introduce atoms coming from the b
and d terms in that equation. These atoms are located near —1 and it seems that their contribution
will disappear in our scaling limit. We do not pursue it here.

Let us briefly compare our proof below to the style of proof used in Bryc and Wesotowski
[18]. Therein, the authors used the fact that their limiting Laplace transform formula could
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be identified as the Laplace transform for a bona fide probability measure (this identification
is made in Bryc and Wang [15]). On account of this, the authors are able to apply a result
which generalizes [22] and shows that convergence of the Laplace transform on any open set
to a Laplace transform of some other probability measure implies weak convergence of the
underlying probability measures to that limiting measure. If we wanted to apply this exact
approach in our current situation, we would need to know a priori that ¢u,v(3,)? ) is the Laplace
transform for some probability measure. When we first posted this paper, such an identification
was an open problem, hence we came up with another approach. Since first posting this paper,
this fact has been established in Bryc et al. [14] when min(u, v) > —1 (see also Barraquand and Le
Doussal [8]). Since the restriction on min(u, v) > —1 does not cover the full range of u + v > 0,
we still provide our approach, which does not rely on the identification of the limit as the Laplace
transform of a probability measure. Our approach uses some probabilistic information about
the WASEP process, namely tightness and uniform control over exponential moments (both of
which follow from a nice coupling of the stationary measure with random walks) to show that
gbu’v(a)_() ) coincides on an open set with the Laplace transform of some sub(sub)sequential weak
limits. This identifies uniquely the weak limits along all subsubsequences as being the same, and
hence shows convergence of the original sequence of measures.

Using Proposition 7.1, we may now give the proof of Theorem 1.2 (5).

Proof of Theorem 1.2 (5). There are two things to show here. The first is that when u + v > 0, the
tight sequence of measures ufff (i.e., the laws of HSP(-) € C([0,1])) from Theorem 1.2 (1) has a
unique limit point. To show this, it suffices to show that the finite dimensional distributions of
HSX))(-) converge weakly. The second is to show is that the Laplace transform of the limiting finite
dimensional distributions are given by qSu,U(B,)Z' ) as claimed in Equation (1.10).

Fixanyd € Z,; and 0 < X; < --- < X4 <1, and let XN = N~1|NX|. We will consider the
sequence of random vectors Hfﬁ))()? )= (H%)(Xim), ,HSX)(X;N))) and use P®YY) to denote the

law of the corresponding random vector. For ¢ € C4, we let LM(C) := Jra e“*PMN)(d¥) denote

Vo _yd ) (5 ()
the Laplace transform of P("), Note that LN)(¢) = qb% (@, X) = (e Zk= ety Xy
Theorem 1.2 (1) shows that {P(M)} is a tight sequence as N — oo. In particular, for any subse-

quence Ny, this implies that there exists a further subsubsequence N k; along which the p®e)

converge weakly to a limit which we will denote by P(®). A priori, P(*) may depend on the
choice of subsequence and subsubsequence. We will show that it does not. This will imply that
the original sequence P®") converges weakly to P(*) as well.

Proposition 7.1 shows that there exists an open interval I C R (e.g., I =(0,C,,) works)
so that limy_ ¢%)(E,)? ) = limy_, e LN(@) = ¢,,,(¢,X) for all ¢ € I%. This convergence, of
course, extends to the subsubsequence Nkj. We claim that the Laplace transform L(*)(C) : =
/Rd e“XP)(dx) of P(*) is finite for all ¢ € C9 and that for & € I9, it agrees with ¢ so that L(®)(7) =
gbuyv(a)_() ). Let us assume this claim for the moment. Then by analyticity of L(°)(¢), we see that
the knowledge of ¢,, ,, (E’,)_f ) for ¢ € I uniquely (by uniqueness of analytic continuations) charac-
terizes the Laplace transform elsewhere, including on the imaginary axis. On account of this and
the Cramer-Wold device, we can uniquely characterize the law of P(*) from ¢u,v(8,)_() ). Since the
same ¢ arises for any choice of subsubsequence N, ki this implies that P() does not depend on the

choice of subsubsequence and hence that PN converges weakly to [P, which has Laplace trans-
form L(*) which coincides with ¢y X)forcelr d, Finally, note that we have been dealing above

:sd1y) SUONIPUOD) PUE WD, 31 295 “[pZ07/40/70] U0 ATRIQIT SUIUQ K91 AN “SOHEIQT ANISIPAIU() BIQUINOD) AQ $172°8d9/Z00101/10P/w09 K[ AIBIqIauIU//:5nY WOy POpro[umod 4 bT0Z ‘Z1€0L601

00 KopimA:

PUB-SULID)

11dde oy £q PAWIOA0S SIE S[OIIE () (98N JO So[I 10§ ATBIqI] AUIUQ Ad[1AL UO (Suony

2SUOIT SUOWILIO)) DATIBALY) J[qEO!



STATIONARY MEASURE FOR THE OPEN KPZ | 2217

with convergence of (H,, (N)(X (N)) (N) v (X, (N))) This also implies that (H,; (N)(X s e (N) o (Xa)

converges weakly to the same limit since |H,, (N)(X Ny — HSI)(X ) < N~1/2,

What remains from above is to prove the claim that L(*)(C) is finite for all ¢ € C? and that
L)(@) = ¢, (¢, X) for ¢ € I%. To prove the first part of this claim, we appeal to Equation (1.11)
(which follows from Theorem 1.2 (2) and (3)) which implies that if (H,, ,(X;), ..., H;, ,(X)) has
distribution P(®), then there exists a coupling of that random vector w with B_,, a standard
Brownian motions of drift —v, and with B,,, a standard Brownian motion of drift u, such that
B_,(Xy) < H, ,(X}) < B,(X)forallk € [1,d]. Owing to this and the Gaussian tails of Brownian
motion, it follows easily that the Laplace transform L(*)(¢) is finite for all ¢ € C¢.

Finally, we claim that limy_, o, L™(€) = L(®)(¢) for all ¢ € C4. From this, it will immediately
follow that L(®)(C) = ¢u’U(E,)? ) for ¢ € I%. To show the claim it suffices to show the following: For
all € > 0, there exists M > 0 such that forall N € Z,; U {o0},

/ 1{[|X]| > M}e* PN(dR) <, (7.4)
Rd
where ||X|| = max(|x,], ..., |x4]). By convergence of P™Y) to (),

lim / LRI < M}ef pOV(dR) = / WIIR]] < M}l Pe(z)
N—oo Rd Rd

for all M > 0. Combining this with the error bound claimed in Equation (7.4) proves that
limN—»oo L(N)(a = L(m)(g)
To prove Equation (7.4), we use Cauchy-Schwarz to show that

/ 1]|%|| > M}eS* PM(dX) < \/ PM(||X|| > M) / 26X PIN)(dX).
Rd Rd

By tightness, we know that for any € > 0, there is some M > 0 so that for all N € Z,; U {0},
PM(||X|| > M) < €. So, it suffices to show that the other term on the right-hand side stays
uniformly bounded in N. Notice that by repeated use of Holder’s inequality, we can bound

d 1/d
/ e PMER) < < / 2k [P’(N)(dxk)> ;
Rd k=1 \/R

where we are writing PN)(dx;,) for the marginal of P™Y) in the x; coordinate. The integrals

on the right-hand side above can be rewritten in terms of the notation of Proposition 4.2
as [E[Z(N)(Xk)ZdC"] For ¢, > 0, we can bound [E[Z(N)(Xk)chk] < [E[Z(N)(Xk)n] + 1 where n is
any integer, which is larger than 2dc;; for ¢, < 0, we can similarly bound [E[Z(N)(Xk)Zde] <
E[Z (N)(Xk) ]+ 1 where n is any integer, which is smaller than 2dc,. In either case, we can

uniformly bound [E[Z(N)(X )] via the bound (4.2) in Proposition 4.2 (5). This proves Equation
(7.4). O

We close this section by recording one of the results proved above that generalizes Equation
(7.3)toall ¢ e CC.

Lemma 7.3. Forall¢ € C% limy_, ¢(N)(c X) = ¢ (@ X).
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8 | PROOF OF PROPOSITION 7.1

We start, in Section 8.1, with a heuristic explanation for the convergence in Proposition 7.1.
In Section 8.2, we introduce scalings of our Askey-Wilson process formulas in a manner fit-
ting for asymptotics. Section 8.3 contains precise bounds and asymptotic results involving these
scaled Askey-Wilson process formulas (these are proved later in Section 8.5). Section 8.4 puts
these bounds and asymptotics together to prove the convergence in Equation (7.3)—thus prov-
ing Proposition 7.1. The key technical input to the asymptotics performed in this section is the
g-Pochhammer asymptotics from Proposition 2.3 (which are proved in Section 9).

8.1 | Heuristic for the convergence (7.3)

Corollary 2.2 provides a formula, (2.1), for ¢%)(E’,)? ) in terms of a ratio of expectations over the
Askey-Wilson process. In the numerator of this ratio, there is a product over d + 1 terms, which
take the form (assume X, € Z/N for the moment)

)N(Xk—Xk—l)

(cosh (sk/\/lv> + Ye*ZSk/W (8.1)

As N — oo, we are taking the s; to be fixed and positive, and likewise for the difference X}, — X._;.

2
As N — oo, we have that cosh(s,/ \/ﬁ )r 1+ 2% The question is how does Ye—ZSk /N behave.
Recall that from Section 6.1, there are two parts to the support of the Askey—Wilson process Y,
an absolutely continuous part of support S{ = [—1, 1] and a discrete atomic part sg? support above
1. In our scaling, the atomic part lives in a N~! window above 1. Thus, writing Y, oy =1-

\?ﬁN) /(2N) and assuming that \A(gN) is of order one, Equation (8.1) behaves (for N large enough)

1,2 o) _
like 2Vk—Xi1) times e3* s Y&kXk-1) Thjg s the origin of the G function in Equation (7.1).

There are a few issues complicating the above heuristic. Recall that in Equation (2.1), we are
considering the Askey-Wilson process Y with marginal distribution 7. Under our scalings, while
the discrete part of VefZSk /v~ does convergetoalimitina N ~! window above 1, the absolutely con-
tinuous part does not stay in that window. In fact, it remains of full support in S = [—1,1] even
though the window is of order N —1 around 1. However, the ¢ function has strong decay as the
LN variable drops below a N~! window of 1. Thus, we need to justify that the contribution
to the expectation coming from VefZSk ,y~ below this window is negligible in the large N limit.
Furthermore, we need to determine what happens to Ye*ZSk ,y~ When we only consider it in this
window. This leads to the continuous dual Hahn process that we have introduced in Section 6.2.
(The continuous dual Hahn process can be thought of as a tangent process to the Askey-Wilson
process.) We will see that the marginal distribution in this N~! window has a limit when compen-
sated by a suitable power of N. The limit is no longer a probability measure, but rather of infinite
mass. However, the transition probabilities of the Askey-Wilson process converge to bona fide
transition probabilities.

8.2 | Rewriting formulas to take asymptotics

Recall that g, A, B, C, and D satisfy Assumption 1.1 and are parameterized by N (through q =
e2/ \/ﬁ) and u,v € R with u + v > 0. In what follows, we will assume that our Askey-Wilson
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processes Y depend N, u, and v through these parameters q, A, B, C, D. As N changes, the law of
the process changes. Though this dependence will be implicit at times, it should not be forgotten.

‘We will assume here and below that the Askey-Wilson process Y is always taken with marginal
distribution 7 for all 5. Define the centered and scaled Askey-Wilson process

VIV = 2N (1 - V). (8.2)

Due to the factor ¢° = e2s/ \/N, the process YEN) involves a time reversal of Y. Thus, its transition
probabilities involve a conjugation by the marginal distribution. In writing down the marginal
distribution and transition probabilities of YN, we distinguish the absolutely continuous and
discrete atomic part of the support and measure. This is important since there is a Jacobian factor,
which is present when the measure is absolutely continuous, though not when it is discrete.

Remark 8.1. This time reversal, which was also used in Bryc and Wang [16], is convenient
conceptually since it allows us to write out limiting formulas in terms of a process that moves
forward in time. It is not strictly necessary, though. We have opted to include it since it more
closely matches [16].

For any Borel V' C R, denote the marginal probability that \?gN) €V by fth)(V). This probabil-
ity measure can be written as the sum of an absolutely continuous part and a discrete atomic part.
We denote the density of the absolutely continuous part by ﬁEN)’C(y) and the probability mass of
the discrete atomic part by 7#"(y). The support of 20V is §")¢ = §™¢ : = [0,4N] and does
not depend on s. The support of the discrete atomic part is SEN)’d ={yeR:1- % € Sgs}where

d , is defined via Equation (6.6) with A, B,C, D, and q scaled dependent on N and u and v as in

the statement of Proposition 7.1. We will use 71'( )¢ and 71'(N) 4 to denote 7¢ and ¢ from Equation

(6.8) where A, B,C, D, and q are scaled dependent on N and u and v as noted above. Similarly, we
introduce a superscript (N) for the transition probabilities defined in Equation (6.7).
For any s, the marginal distribution of YgN) is specified by (y € S™)¢ in the first formula and

y € SEN)’d in the second)
A(N)c (N)c( _L) A(N)d _ (N)d< v )
W =5my (1= ) =m 1-—). (8.3)
Using the same convention as described below (6.7), for x € S we write 71'( )cc(x, y) for

the transition probability density supported on y € S™N)¢ while 7 A(N) “ d(x, y) is the mass function
fory € S(N)’d Similarly, for x € S(N) , We write ﬁ(N) d. “(x,y) for the transition probability density
. (N)

supported on y € SNV while # (x, y) is the mass function for y € SEN)’d. For all other values
of x or y, we declare these functlons to be zero. With this notation, we have

7T(N)’C<1 - L)
(N)ee 1 Meefq_ v ,_x\. ¢ 2N
Ay (x,y) = o~ gt (1 2N’1 2N> (N)’C< X ) 84)
7T\ 1= —
q 2N
d, d ﬂt(zjf\]),c(l B %)
AN (e y) = LD (1 _Y i i) : (8.5)
2N ¢4 2N 2N n(N),d(l _ i)
q° 2N
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n(N)’d<1 _ L)
~(N).c.d _ . (Ndef, _ v . x) _4 2N
Ao () = Tt gs (1 2N’1 ZN) (N),c< x ) (8.6)
T 1—-—
q 2N
(N)dd (N).d.d nEJJ’V)’d(l B %)
4 ddfy ¥y q_x). & \ 2N/
(x,y) =70 (1 =1 2N> o ( - ) (8.7)
T 1——
a 2N

We need one last piece of notation. For X, ¢, and § as in Equation (1.9) and 7 = (r1, ..., Fg41)
define

d+1 NN -x™)
GV EX) 1= Liggan 27N I1 <cosh <%> +1- ;-;) : (8.8)
- k=1

Recall that X)) = N~1|NX |. Now, we can rewrite Equation (2.1) as in Equation (7.1):

N P @X) N o
PET) = o FNER) = E|Nereg® (Y, VY ke 69)
o (0,)
or more explicitly,
d
FNEx) = / GNEEX) [] 20 i dry) - N2 (drga). (8.10)

i=1

The inclusion of the factor N**¥ will be seen below as necessary to have ¢(N)(c X) converge to
a limit as N — oo (in particular, it is required in Lemma 8.3 for the convergence of the marginal
distribution to a nontrivial limit). Since ¢,(AIX,)(E,)Z' ) is aratio of such terms, its inclusion in both the
numerator and denominator does not change the ratio.

8.3 | Lemmas for asymptotics and bounds

We provide the key technical results necessary to prove the point-wise convergence in Equa-
tion (7.3). The proofs of these lemmas are postponed until Section 8.5. We assume the scalings
in Proposition 7.1 and the notation introduced in Section 8.2.

Equation (8.10) is our starting point for asymptotics. In order to take N — oo therein, we must
control the convergence of G™) (in terms of a point-wise limit and dominating function) and the
convergence of the Y process. We start with the ") function.

Lemma 8.2. For every compact interval I C R, there exists a constant C > 0 such that forall ¢ € I¢
and all ¥ € R4+,

d+1
(X _ Tk | Ik\
¢, X) < CH Xk—=Xi1)7 (8.11)
k=1
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STATIONARY MEASURE FOR THE OPEN KPZ 2221

where X and € are as in Equation (1.9). For all F™) € R iflimy_ o 7™ =7,

lim ¢MFM;&X) = 6 & X). (8.12)
— 00

The next four lemmas provide limits with quantified error bounds for the marginal and tran-
sition measures of V. These limits are written in terms of the continuous dual Hahn process
transition measures and family of marginal distributions from Definitions 6.7 and 6.2. The first
lemma deals with the continuous part ﬁt(N)’C of the distribution of V,, and the second with the

discrete part.

Lemma 8.3. Forallt € R and all > 1, there exists Ny € Z5, and C, y € R, such that for all

N > Nyandr € [0,4N],
_(N),c
Nutv /1 _ %ﬁEN)’C(V) — Pf(”) . eEme (r), (8.13)

where the error term satisfies

’E/r\rEN)’C(r)‘ <CNI(1+P). (8.14)

For each fixed r € Ry, we have the point-wise convergence

lim N 24 = i), (8.15)
The next lemma deals with the atomic part ﬁ'[(N)’d of Y,. We show that the locations and masses

of the finitely many atoms have limits as N — oo and that those match with pf from Definition 6.2.

Recall from Section 8.2 that we write ﬂfN)’d to denote the atomic measure nf from Equation

(6.8). In light ofEquations (6.8) and (6.3), for any Borel set V C R

2™y = Z AW%(y;a,b,c,d,q)
yevnsd(a,b,c,d,q)

where q = e~2/ VN and
a= qv+t/2’ b= _q1+t/2’ c = qu—t/Z, d= _ql—t/2. (8.16)

If t € (—2,2), then |b|, |d| < 1. Since ac = g** < 1, it follows that at most one of |a| or |c| can
exceed 1.
When u —t/2 <0, |c| > 1 and the set of atoms in M

. are given by

uEN)’u(t) = %(q’“’j_‘/z +q D) e o, [—u+t/2]].

Similarly, when v + t/2 < 0, |a| > 1 and thus based on the discussion prior to Equation (6.4),
(N).d

we conclude that the set of atoms in v

are given by

v;N),v(t) = (qu+j+t/2 + q—(u+j+t/2)), for j € [0, |—v —t/2]].

1
2
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These account for all of the atoms in Sd(a, b,c,d, q). Finally, let us denote
a(0) <= —2N(u§.N)’u(t) - 1), RORE —2N(v§N)’U(t) - 1). (8.17)

The support, SgN) 4 of n(N) ¢ is the union of these atoms. At most one type of atoms, either from

u or v, will appear for a given t. As g varies with N, the number and type of atoms remains fixed.

Lemma 8.4. Assumet € (—2,2). The location and masses of the (finitely many) atoms of 7T(N) d

converge to those of pt (recall Equation (6.9)). Explicitly, when v + t /2 < 0, the atoms of 7T(N) d are

atO(N)U(t)for] e [0,...|-v—t/2]] and

lim ¥\"(6) = v0(0) 1= —4(v + j +1/2)" (8.18)

N-

(N),d

Similarly, when u — t/2 < 0, the atoms of &, " are at ﬁ(N) () for j € [0,... lu—t/2]] and

lim a™V%(t) = ut(t) 1= —4(u + j +1/2)". (8.19)
Nooo J J

There exists C, y € Ry such that forall N € Z; and all atoms

Nu+v7%§N)’d(‘A,§N),U(t)) — ptd(vjv(t)) . Errt (V ([))
Nu+u7i'EN)’d(ﬁS.N)’u(t)) — p;i(uzt(t)) . E”z (11 (®)

where the error terms satisfy

vy o)), [ | < enx. (20)

In particular,
lim N 0) = plev ),

lim N4 @l 0) = p o). (821)

The next two lemmas deal with the transition probabilities for Y. The first of these lemmas deals
with the continuous part of the transition probability while the second deals with the discrete part.

Lemma 8.5. Forall real s <t and n > 1, there exists Ny € Z5, and C, y € Ry such that for all
N > N, the following bounds hold:

(1) Forallm,r € S™)< =[0,4N]

A(N)CC Err;\t] “myr)
1- m (m, r)—p“(m r) - ,

dny woxy papeojumo( ‘¢ “pz0T ‘TIE0L60T
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STATIONARY MEASURE FOR THE OPEN KPZ 2223

where the error term satisfies

E/r\rg\:) (m,r)| <CN—X(1 + \/_) +CN~X(1+ \/—) (8.22)

For each fixed m,r € R, we have the point-wise convergence

]\}1_1}1 Ag\])”(m r)=yp;(m,r). (8.23)
) Ifs,t € (=2,2)and v +s/2 < 0, so that S(N) s entirely composed of v atoms ¥ e Y(s) forj e

[0, |—v — s/2]], see Equation (8.17), then for each j € [0, |—v —s/2]], and all r € SN =
[0,4N]

A (00(5) 1) = (Vi) r) - o OHO)

where the error term satisfies

|E/\rr§1\t]) (Vo). 9| < CNF+ V). (8.24)

In particular, for each fixed j € [0, |—v —s/2]]] and r € Ry,

lim 2005, 1) = i (viCs) 7). (825)

3) Ifs,t € (-2,2)and u — 5/2 < 0, so that S§N>’d is entirely composed of u atoms ﬁgN)’”(s) forje
[0, |—u + s/2]]|, see Equation (8.17), then for each j € [0, |—u + s/2]]] and all r € SN =
[0,4N]

A (W 0r) = (s00r) -

Lemma 8.6. The locations and masses of the (finitely many) atoms of the transition probability
distributions 7t A(N) 44 and ﬁ'g)’c’d converge to those of pg 4 and 71' 4 Foralls,t € [0,C,, ) withs < t
(D) Ifv+s/2 <0, thenforall j € [0, |—v — s/2]], the discrete support of
A(N) d. d(vEN) “(s), -) coincides with the set of points ¥ (N) (1)
for ke [0, |—v—t/2]] (ifv+t/2> 0 then there are no atoms) and the masses satisfy the
following bound: There exists C, y € Ry such that for all N € Z, all j € [0, |-v —s/2]],
andallk € [0, |—v —t/2]]

L(N)dd (N (N dd g
gt) < o )v( ), ( )U(t)> =P <V;(S)’V;(t)) . eEMss (8.26)
where the error term satisfies

_~(N),d,d

M <CN~7, (8.27)

In particular,

tim 70099, 970)) = 1 (v, ;0.

N—-oo
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2224 | CORWIN and KNIZEL

2) Ifu—5/2 <0, then forall j € [0, |—u + s/2]]], the discrete support of
A(N) d. d( ), Y(s), ) is the set of points @, alv )"(t) for k € [0, j| and the masses satisfy the fol-
lowmg bound: There exists C, y € Ry such thatforallN € Z5y, all j € [0, |—u —s/2][], and
allk € [o, j]

~(N),d.d
A0 (V" (9,000 0) = v (wis), ul)) - e (828)

S,t

where the error term satisfies

__(N),dd
Errg,t) ‘ <CN7Z, (8.29)

In particular,

lim 20044 (6 (5), 00" (0)) = p (wis) wl().

N—-oo

3) Ifv+s/2 < 0and m € SN = [0,4N), then the measure ﬁ'(N)’C’d

part. If u—5/2 <0 and m € SM4 = [0,4N), then the measure #

support equal to the set of points & al )"(t) for k € [0, |—u + s5/2]|| and the masses satisfy the
following bound: There exists C, x E R such that for all N € Z5y, all m € SMd = [0,4N]
andallk € [0, |—u +s/2]],

(m, ) has no discrete atomic

A(N)Cd(m -) has discrete

_~cd
gVed () v d Errer (mau(e)
71'5,!)C <m’u(k M(t)) _ ‘P;[ (m,uz(t)) o [<muk )

where the error term satisfies

_c,d
Erry, (m,uz(t))‘ <CN7Z,

Remark 8.7. Lemmas 8.5 and 8.6 prove convergence of the transition probabilities for YO to those
of T, and Lemmas 8.3 and 8.4 prove the convergence of the their state spaces (in addition to the
convergence of a family of marginal distributions). This implies that as Markov processes on the
time interval [0,C,, ), \?EN) converges in finite-dimensional distributions to T,. Of course, our
results prove precise error bounds on the convergence of the transition probabilities too.

8.4 | Proof of Proposition 7.1

Recall ¢, (¢, X) from Equation (7.1).

Lemma 8.8. For¢ € (0,Cy,.)", $u0(@X), .0, %) € (0, 0).

Proof. We show that ¢,, (¢, X) € (0, oo) for ¢ € (0, Cy)? since ¢, ,(0,X) € (0, o0) follows sim-

ilarly. For ¢ € (0, Cd,u,v)d, S i=cg+ - +cq €[0,C,,) forall k € [[1,d + 1]. The support of the

integrand defining J’u,u (3,)? )is S5 X --- X S | (see Definition 6.2). For fixed u and v, there exists

aconstant L < O such thatforall s € [0, Cy.v), the support S; is lower bounded by L. This follows
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STATIONARY MEASURE FOR THE OPEN KPZ | 2225

immediately from the definition of S, as the union of S¢ = (0, c0) with Sf, a finite number of neg-
ative discrete atoms, whose locations vary continuously with s. Owing to this lower bound and
the ordering of the X, variables, there exists a constant C > 0 such that for all ¢ € (0, Cd,u,u)d

(1-Xq)

r

$uo@X)<C / e+ poldn). (8.30)

R

a-Xg)

—r

We used G(F;¢:X) < Ce” + '™ forFe Sy X o X S, s
the variables rq, ..., 74.

We claim that the integral on the right-hand side of Equation (8.30) is finite. The atoms in p,
have a finite contribution to the integral on the right-hand side of Equation (8.30), so it remains
to control the integral on (0, c0). In that case, the measure p,(dr) can be written as p;(r)dr where
the density function p((r) is given in Definition 6.2. Using the asymptotic behavior of the gamma
function for small (9.1) and large (9.2) imaginary parts, we see that for any fixed u, v with u + v >
0, there exists a constant C > 0 such that

and then Lemma 6.9 to integrate out

ri/2 r>1
Clf(r) < po(r) < Cf(r) where f(r) := { - (8.31)

o=l e (0,1)

Substituting this into the right-hand side of Equation (8.30) and using the integrability of r~1/2

_a-=xq)
at 0, and the decay coming frome~ 4 ' at infinity, we find that the right-hand side of Equation

(8.30) is finite.
Turning to the positivity of ¢, (¢, X) for ¢ € (0, Cd,u,v)d,

d
$u0@.X) 2 6(2:E:X) / T %58, s Crivnrdrs - 95, (rasn)dras. (832)
[1,2]d+1 i=1
The inequality follows from the definition of qgu,v (3,)? ) and the positivity of the integrand therein
in conjunction with the lower bound G(; &:X) > ¢(2;¢X) for F € [1,2]%*! and the fact that on
[1, 2], the transition and marginal distributions are absolutely continuous. There exists C > 0, so
that ¢(2;&; X) > C for ¢ € (0, Cd,u,v)d.

It remains to show that the integral in the final line of Equation (8.32) over [1, 2]4+1 is strictly
positive forany ¢ € (0, Cd’u’v)d. Our assumptionon¢ € (0, Cd,u,v)d implies thats; — sp41 = ¢, > 0.
Using this and the explicit formulas for the marginal and transition density functions (see Def-
initions 6.2 and 6.7), we see that for all ¢ € (0, Cd,u,u)d, there exists a constant C > 0 such that
Vs (TioTie1) 95, (raq1) = C forall 7 € [1, 2]+, O

Turning to the proof of Proposition 7.1, by Lemma 8.8, we see that in order to prove ¢,%)(E, X ) -
$u.o(E X), it suffices to show that §) (@, X) — §,.,(@,X) for & € (0,Cy,)" forall k € [1,d], and

u,v
for & = 0. We will just deal with the first case, since the second case where ¢ = 0 follows similarly.
The idea in the proofis to use the convergence lemmas in Section 8.3 to show point-wise and dom-
inated convergence of the integrand in ¢%)(3, X ) to that of ¢,, ,(C, X ). There is a bit of bookkeeping
since the measures we consider have mixed discrete and absolutely continuous support.
. el 7 > 3 . . qs . 1
In the definition of %)(C,X ), we can insert a multiplicative factor 1 as H?:l (1,0 + 1,,<0)-

Expanding leads to 2¢*! terms, each one corresponding to a choice of whether we integrate over
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2226 | CORWIN and KNIZEL

the continuous part of #0N) when r; > 0 or the atomic part when r; < 0. Explicitly,

N ~(N),ai11,a; (N
@ x) = / N, X)|| A (1) X NHAD Y (). (8.33)
Ic[\l d+1] 1 71y

Here J is the complement of I in [[1,d + 1]|; the sum over r; is an |I|-fold summation over r; €
S(N) 4 fori €I the integral over r; is really a |J|-fold integral as the r variables with indices in
J vary in V)¢ = [0,4N] (note, we have suppressed the Hj <y drj symbols); and the variables q;
take values in the set of symbols {c, d} with a; = d when i € I and a@; = c wheni € J.

As N varies, the number of atoms in the atomic parts of #") does not change (i.e., S;
pendent of N). Therefore, the form of the decomposition (8.33) remains stable with N. Moreover,
d?u’v(a)_f ) admits the same form of decomposition. Thus, in order to show the convergence of $?V)
to @, it suffices to show that for any choice of I, the corresponding sum over the r; and integral
in the remaining r; variables in Equation (8.33) converges to its proposed limit. The sum over r;
can be indexed in terms of the labels of the elements chosen from each S(N)’d By labels, we mean

that for each i € I, we may identify r; € S(N) d by a label ¢; such that r; = x} (s )orr; =x; (Sl)
(depending on whether we are dealing with u or v atoms). For each choice of I, there are a f1n1te
number of choices of labels {¢;};c;. If for every choice of I and every choice of labels, we can prove
convergence of the remaining integral in the r; variables, then we will have achieved our goal of
proving the point-wise limit in Equation (7.3).

Lemmas 8.4 and 8.6 show that the locations and masses of the atoms of the #Y) measures
converge as N — oo to those of the p measures and Lemmas 8.3 and 8.5 show the point-wise
convergence of the densities of the absolute continuous parts of the #(N) measures to those of the
p measures. Equation (8.12) in Lemma 8.2 shows how ¢™V) converges point-wise to C. In light of
these results, it follows that for each choice of I and labels {¢;};c;, the integrand in Equation (8.33)
converges point-wise to its proposed limit. To show convergence of the integral itself, it suffices to
demonstrate a dominating function and then use the Lebesgue dominated convergence theorem.

We will assume below that X; < 1. When X, = 1, the functions G™¥) and G do not depend
on ry,, and thus we can integrate out the r4,, variable. Since / ﬁgi\?l,s o Tds drd)ﬁg?l (drgyq) =

ﬁgiv) (dry), the formula for gﬁ reduces to a similar one but with one fewer variable, which can be
bounded in the same manner as below.

Since SEN)’d has a uniform lower bound as s varies, and
(8.11) of Lemma 8.2 to show that there exist ¢, C > 0 such that

8¢ = [0,4N, we can use Equation

g(N)(;.’; E”)_(’) < Ce—c(r+ras1) (8.34)

as the r; vary over the Sg{v) for k € [[1,d + 1]). Using this bound along with Lemmas 8.3-8.6, we
arrive at the following bound: Fix n = 3/2, then there exists Ny € Z, and ¢,c¢/,C,C’, y € Ry

such that for all N > N, allr; € Sg\])’d withi € Iandallr; € SN)e = [0,4NT] for j € J, we have

CN(#EX) H R g 1) - N AL (g )

Sl+1 Si Sd+1

—c(ry+-- CNX(1+,/r})" Aj 41,0 ad+1
<Ce eritran) H e \/_ ps,irl,sil(rHla ri) : psdﬂ (rd+1)

JjeJ

< Clednt rd+1)Hng11,§l("i+1,Vi) P (1) (8.35)
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STATIONARY MEASURE FOR THE OPEN KPZ | 2227

For the first inequality, we used Equation (8.34) along with the bounds from Lemmas 8.3 and

8.5; the second inequality uses e~"eN g < C’e~°" for a large enough C’ > 0 and a small
enough ¢’ > 0.

The point of Equation (8.35) is that it now provides us with an N-independent dominating
function. If we can show that for each I C [1,d + 1],

d
—c Ajt1,0; ag
> / Clemutras) TTpgitt iy, r) - Wi (ras) < oo (8.36)
rr ry i=1

we will be done owing to the point-wise convergence we have already shown.
Let us first consider Equation (8.36) with I such that d + 1 € I. In that case, the r;,; variable
is summed over the finite number of atoms in Sg, each of which has a finite mass. Thus, for such

terms in Equation (8.36), we can bound p?l(d“)(rdH) < C. All of the other terms p‘sliijll”s‘ji (rip1,11)

d+1
are either densities or masses of probability measures. Owing to this and the fact that eTis upper

bounded by a constant for r € S;, it immediately follows that the sum over r; and integral over r;
is likewise bounded by a constant.

For I suchthatd + 1 ¢ I, the ry,; variable is integrated over S¢ = (0, o). The term p?::ll(rd +1)
now represents the density of that infinite measure. As in the previous paragraph, we may inte-
grate/sum out all of the other variables ry, ..., 1y at the cost of a constant factor. Thus, we are
left to bound fooo e po(r)dr < oo, which is done precisely as in the proof of Lemma 8.8. This
shows that the right-hand side of Equation (8.35) is a dominating function, completing the proof
of Proposition 7.1.

8.5 | Proof of lemmas in Section 8.3
8.51 | Proofof Lemma 8.2

To prove Equation (8.11), we show that

d+1 N -xM)
N7 2 %) = 1. . inh2 [ Sk ) _ Tk
GWN(r; e X) lreRdSL]] E<1+smh (2\/ﬁ> 4N>
d+1 N)_ ()
NX; =X, ) )
<|lex k__k=1" | 4N sinh —> —-r >>
[Tew (5572 (oot (35) =1
d+1
(N) _ 5 (N)\ 7 e Ikl
< CHe_(Xk —inl)jk <C e_(Xk_Xk_1)7+_
k=1 k=1

The first equality is by the definition of C™M)(¥;¢; X ) and the hyperbolic trigonometric identity

% =1+ sinhz(g). The next inequality uses that (1 + x)* <e%* fora € Z,pand x € R,_;.
In particular, we take a = N (X]({N) — X]({Ij)l) and x = sinhz(s—" — % The sinh® is always non-

2N’ 4N

negative and due to the indicator function 1;_p4+1 wWe may assume that 4% < 1. After applying the
<4N

inequality, we drop the indicator function. The next inequality relies on the fact that N sinhz(s—")

2VN
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can be bounded above by a constant provided that the s; vary in a compact set (which follows from
the assumption on the ¢ € I¢). The constant C will depend on the set I. The final inequality uses
the fact that | X I((N) — Xi| < N~!, which means that we can replace the X I({N) by their limiting values
X at the cost of introducing the factor |r|/2N in the exponential.

Owing to the triangle inequality, to prove Equation (8.12), it suffices to show that

lim ¢VFEX) = 6 EX),  lim |¢VEV:EX) ~dVFEEX)| =0 (837)
— 00 — 0

The first limit in Equation (8.37) follows immediately from Taylor expansion of the sinh function
and the convergence of (1 + x/N )N toe* and X ](CN) to Xj.
The second limit in Equation (8.37), will make use of two elementary inequali-

ties. The first is that for all ay,...,a441,b1,...,b441 € R bounded in absolute value by

M e R, |Hz:i ap — Hi:i bi| < M? EZ: |a, — bi|. We apply this inequality with a,({N) =

) _5 (V)
2 Sk F) N(XkN _Xkl\—jl) (N) 2 Sk o N (XIEN)_X}(CIX)l)
i Sk ) ke _ . e
<1+smh <2\/ﬁ> 4N> and b, <1+smh <_2\/ﬁ> 4N> _ For

X, fixed, it is easy to see that we can find some M large enough so that |al(€N)|, |bl(€N)| < M for

all k € [1,d +1] and all N € Z,. Thus, it suffices to show that limy_, [a" —b"| = 0.

Notice that al({N) can be written in the form (1 + d(kN) /L)L where L = N(X}, — Xj_;). There
exists some compact interval I such that dl({N) €1 for all N € Z5;. Likewise bl({N) can be
written in the same form in terms of 5]({N) and we can find some compact interval I so
that E]({N) €1 for all N € Z,; as well. The convergence limy_,, [F¥™) —¢| = 0 implies that

limp_, o |d,(€N) — EI(CN) | = 0. To finish the proof, we use the following elementary inequality: For

any compact interval I C R, there exists a constant C > 0 such that for all L large enough and
abel |1+ d/L)L -1+ B/L)Ll < C|a — b|. This implies the second limit in Equation (8.37)
and completes the proof.

8.5.2 | Notation for asymptotics

Recall A*[x; z] from Equations (2.3) and (2.4). For k,N € Z, and zq, ..., z; € C, define
< 2
+ — T .
Aylz1 2] = izzl A+[\/N,zl]. (8.38)

Here we have fixed that x = ﬁ in which case g = e™".
Setting m = 1 in Proposition 2.3 shows that forq = e ™ and z € C,

log(+4%; @) = A*[x; 2] + Erry[x; z] (8.39)

where Errli[x;z] satisfies Equation (2.7). For k,N € Z, and zy, ..., zx € C, define

k
Eflzy, ..,z ] = ¥ Errf[—=,z]. (8.40)
N L4155 4k 1L =040
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8.5.3 | Proof of Lemma 8.3

For r € Ry, limy_, Err[ (r) = 0, so Equation (8.15) follows from Equation (8.14). It remains
to prove Equation (8.14). We proceed in three steps. In step 1, we write down 77.'5 e “(r). In step 2,

we further rewrite frgN)’c(r) in terms of a limiting term and error terms as in Section 8.5. In step 3,
we control the error terms using the bounds in Proposition 2.3.
Step 1. For r € S™)¢ = [0,4N], in light of Equations (6.2), (6.8), and (8.3), we have

A(N) c(r) _ ﬁ.(N),C 1(}’) (8.41)

t;v,1,u,
where we define
~(N), .
AN () 1=

! X
t;v,0,u,i :
87N/ —+/1— —
4N 4N

(q’ —qUrOH qUA _quHit _qutD g0+ _qu+a—t)oo| <qi\/ﬁ9r> ’2
(o]

(8.42)
(qoro+utiy |<qv+t/2+i\/ﬁ% _qﬁ+t/2+i\/ﬁe7r qu—t/2+i\/ﬁ% _qa—t/2+i\/ﬁ%r > |2
00 b ’ b b
and where we have used the notation (suppressing the N dependence above)
N) . r
6, = Gf ) - = arccos (1 - W) (8.43)
r 6r
Observe that if we send r — 4N —r, then 6, —» 7 — 6, and thus also g NS 2 > —q \/NT and

z\/_e, - q’\/_er These transformations imply that AEIZ)U wil

Varlables by swapping the tilde and nontilde variables:

-(r) transforms under this change of

AN.e (4N — 1) = #N.e ). (8.44)

tvvuu tvvuu

In light of this transformation, we will now consider the asymptotics behavior of ﬂflz)fu 2(r)

forr € [0,2N]. We will show (generalizing Equation 8.13) that, provided u + v > 0 and @i + 0 > 0,

r € [0,2N]
Nutv 1 - ﬁ.(N)C =pc (r)- oETe: U)vuu(r)
4N t;0,0,u,i to,u

where the error term satisfies the bound

|Errt 0,0,U u(r)| <CN*(1+ \/_) (8.45)

as in Equation (8.14) and where p, = p; is given in Definition 6.2 (and does not depend on 0 or

i1). By combining this bound, the transformation (8.44) and the growth bound (8.31) on p{ we can

easily deduce that Equation (8.13) also holds for r € [2N,4N] with the claimed error bound (8.14).

Thus, we focus the rest of this proof on demonstrating (8.45) under the restriction r € [0, 2N].
Step 2. By Taylor expanding around r = 0, we can write

VNEWY = \r + ES (), (8.46)
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where Ei,(r) is the remainder. With this and Equation (8.39), we rewrite Equation (8.42) as

/ L(N), [ T
log l 1— m [chuu(r)] = —log lSnN N

In the above formula, for a € R, we have defined

+ ANV +EL() +ES().  (8.47)

An(a) :=AL[1, v+ u, 0+ d,ia,—ia] + Ay[v+ 0+ t, 0+ @, u+0,u+id—t]

—A+[v+u+6+a,v+£+ig,u+£—ig,u—£+ig,u—f—ig]
N 2 2 2 2 2 2 2 2
—A;,[15+%+i%,ﬁ+%—i%,a—%+i%,ﬂ—%—i%]. (8.48)
Here Ef\} (r) comes from the Taylor expansion (8.46) and is given by
A 1= AN<\/? + E?V(r)) - AN(\/?). (8.49)

Define the function &y (a) exactly as in Equation (8.48), except with the .4 symbol replaced by Ey,
as in Equation (8.40). Ef,(r) comes from Proposition 2.3 and is

B (r) = EN(\/? + Eg(r)> = eN(\/ﬁeﬁm). (8.50)

The first two terms on the right-hand side of Equation (8.47) can be simplified considerably
using the explicit expressions for .4*[x;z] from Equations (2.3) and (2.4). In particular, when
.AN(\/;) is expanded, all of the terms that have a prefactor 72 coming from Equations (2.3) and
(2.4) end up canceling out. Combining the remaining terms, we find that

—log lsmf] + Ay(V/r) =

F<u—§+iﬁ,v+£+iﬁ>

2

2 2 2

F(v+u+0+1)
I'(v + u)I'(0 + @)

> — (v + u)log(N).

87/F - ’r(i\/?)

T(v+u+2)
T(v+u) -

Recalling Equation (8.41), it follows by taking 0 = ii = 1in the above formula and using
(v +u)(v + u + 1) that (recall also the formula in Definition 6.2 for pf)

u+v _
log lN 1 4N

A0 C(r)] = log [pS(r)] + EL() + ES (). (8.51)

Similarly, using Equation (8.44), we see that

log lNZ, /1- m NN — )] = log [pS(r)] + EiA () + EX () (8.52)
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where E;\f(r) and E;\f (r) are defined exactly as Ef\}(r) and Ef](r) are above but with (v, u) and
(0, 1) swapped.

Step 3. It remains to bound for r € [0,2N] the two error terms Eﬁ(r) and Ef,(r) in Equation
(8.51) and E};“(r) and E;\f (r) in Equation (8.52). The analysis is exactly the same in both cases so
we will just focus on the first set of error terms. To be precise, in this step, we will show that for
all » > 1, there exists Ny € Z-; and C, y > 0 such that for all N > Ny and r € [0, 2N]

0], eS| < ena+ V. (8.53)

From this and Equation (8.51), the desired bound in Equation (8.14) immediately follows. Thus
we will show Equation (8.53). In demonstrating those bounds, we will also need to control E?\,(r),
so we start with that.

Bounding |E]9V(r)|. For r € [0,2N],

[ -2
\/N 9£N) < %r and EeN(r) > 0. (8.54)

The first inequality in Equation (8.54) is equivalent to the inequality

(2
arccos(l — x/2) < %x for x € [0, 2] (8.55)

which can easily be shown by matching the values at x = 0 and x = 2 of both sides and then
showing that the derivative of the difference strictly decreases (hence the difference is strictly
concave). The second inequality in Equation (8.54) is equivalent to arccos(1 — x/2) — \/E > 0 for
x € [0,2] and is also shown by taking derivatives.

Now we claim that for all 7 > 1, there exists Ny € Z5; and C, y > 0 such that for all N > N,
and r € S™M-¢ = [0,2N],

ES () log(N) < CN~X(1 + /7). (8.56)

Note that by Equation (8.54), E?V(r) > 0. Changing variables x = r /N, Equation (8.56) reduces this
to

c1 + vNx)
arccos (1 - E) - \/; < — for x €[0,2]. (8.57)

2 Nx+1/2]og(N)

n—1
We split the demonstration of Equation (8.57) into two cases. Let x5 be such that (1;%— "II\DCZ\)]) =1
og
n—1
Then, since M > 1 for x € [xy,2], we have on that interval that

NX log(N)

-1
arccos<1_§>_\/;SC\/J—CSC1+\/JW(1+\/Nx)n _ Ca+ Ny

VN Nxlog(N) ~ Nx+1/2]og(N)

where in the first inequality, we can take C = /72/8 — 1 owing to Equation (8.55). We do not
require anything on the value of y. This shows Equation (8.57) for x € [xy, 2].
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Tuning to the case of x €[0,xy], observe that xy goes to zero as N grows and xy <
2x 2

=4 = —
N7t " log(N)»-1.Provided that y < s (so xy goes to zero as a power law in N), for x € [0, xy],
we can use Taylor expansion with remainder to show that there exists Ny € Z,; and C € R, such
that for all N > N, and x € [0, xy], arccos(1 — f) — /X < Cx*/2. From this, we see that all that
A+V/Nxy
<C————
)(+1/21 (N)
x = 0 (where both sides are zero). If we can show that the derivatives are likewise ordered on
X € [0, xy], then the above inequality will immediately follow. Calculating those derivatives, we

(1+y/Nx)!

NZXlog(N)
from Taylor expansion with remainder on (1 + \/]ﬁ)’)_l. Thus, we have shown Equation (8.56).

Bounding | Ef\,(r) |. Recall that &y (r) is defined in Equation (8.50) (the function Ey(a) is defined
exactly as in Equation (8.48), except with the .4 symbol replaced by Ey;, as in Equation (8.40)) as
a sum of many terms of the form ErrI—"[K, z] for x = % and for various choices of the variable

is left is to show that on the interval x € [0, xy], x3/2 . Clearly, this is true when

find that showing their ordering reduces to showing that x <

, which easily follows

z. Some of the assignments of the variable z depend on r while others do not (though may still
depend on other variables like u, v, t). We refer to the former terms as Type (1) and the later as
Type (2). For Type (2) terms, we see from Equation (2.7) in Proposition 2.3 that for any z fixed
and b € (0,1), we can find a xy > 0 and a C > 0 so that for all ¥ < x, (or equivalently we can find
Ny € Z5, so that for all N > Ny),

|Erri[x, z]| < C(x + k) < C'N~b/2.
From this, we see that the contribution of Type (2) terms to |Ef\,(r)| satisfies the bound in Equation

(8.53).
Now, let us consider how Type (1) terms contributes to |Ef](r)|. These terms take the form

+ . @(N) . . t
Erry[x, z] for either z = z.(r) = c + i\/_ ’2 with some fixed real ¢ (e.g. ¢ =0o0rc=u— 5) or
z= ii\/ﬁ 6§N). Call the first type of term Type (1a) and the second Type (1b). Observe that for
r € [0,2N], eﬁN) € [0, 7/2]. This means that \/ﬁ 6§N) € [0, %]. For Type (1a) terms, this range is
further divided by 2 and hence |Im(z)| < % for « = 7 /2. Since this a < 7, we can apply equation*
(2.7) from Proposition 2.3 to show that for any b € (0,1) and ¢ € (0, 1/2), there exists C,xy, > 0
such that for all ¥ < ¥, and r € [0,2N]

(8.58)

|Err x, z]| <K(1 + |z|) +xP(1+ |z|)1+2b+€)

+ i cna in EE
that arises in E(r).
Recalling from Proposition 2.3 that the bound (2.7) on Err},[«, z] holds with |Im(z)| < = (for
X
a € (0, 7)) we see that Equation (8.58) holds when =+ is restricted to + and z = ¢ + i\/ﬁ GﬁN).
It just remains to massage the bound in Equation (8.58) into the claimed form. To do this, note
that for Type (1) choices of z = z(r), with r € [0,2N], we have that |z(r)| < c + C\/7 for some

choices of ¢,C > 0. This implies that for any b € (0,1) and ¢ € (0,1/2), there exists C > 0 such
that for all r € [0, 2N],

Errylx, zc(r)]‘ < C(N_1/2(1 +V/P)r+ N2 + \/;)“Zbﬂ).
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The second term on the right-hand side above is already of the form CN~¥(1 + \/;)’) where 7 can
be taken arbitrarily close to 1 by turning b and ¢ close to zero, and where y = b/2. The first term
N~'/2(1 4 /r)? can also be put in this form since for a large enough constant C > 0,

N7V 4 P = N7V 4 VPRI 4 VY SONTT (14 rY

where the inequality uses that 1 + \/;_' < C'N'/2 for some suitably large constant C’ > 0. Taking
X = ’72;1 puts this bound in the form CN~*(1 + \/;)’7. Therefore, we conclude that the contribu-

tion of Type (1) terms to |Ef](r)| satisfies the bound in Equation (8.53). Combining this with the
previous conclusion for Type (2) terms, we arrive at the bound in Equation (8.53) on |Ef] ).
Bounding |Ef\}(r)|. Recall that Ef,(r) is defined in Equation (8.49) in terms of Ay (a) defined
in Equation (8.48). From Equation (8.48), we see that AN(\/; + Els\j(r)) - AN(\/;) involves many
cancellations. All of the terms in Equation (8.48), which do not depend on the argument a imme-
diately cancel when taking this difference. Recalling the definition of A*[x, z] from Equations
(2.3) and (2.4), we also see that the terms in those functions involving 72 do not depend on the

z argument and hence also cancel upon taking a difference. Let us take an accounting of which
I'(z)
|

\/_

terms, while from .4, we need only account for (3) the (z — %) log(2) terms. Let us consider each
of these types of term separately and show how their contributions can be bounded by expressions
of the form of the right-hand side of Equation (8.53).

Type (1) terms contribute to AN(\/7 +E° () — AN(\/_ ) expressions of the form i 1 log( ).

terms remain. From A", we need to account for (1) the (z — %) log(x) terms and (2) the log[

Since x = % the magnitude of such terms is proportional to E N(r) log(N). The bound we estab-
lished in Equation (8.56) implies that the contribution to |Eﬁ (r)| of Type (1) terms can be bounded
by CN~*(1 + \/;)’7 provided y is small enough. This is precisely of the form of the right-hand side
of Equation (8.53). Note that Type (3) terms which arise from A~ involve Elev(r) log(2). Since for
N > 2,10g(2) < log(N), the argument above immediately controls those terms by CN~4(1 + \/;_')’7
as well.

All that remains is to control the contribution to |E1“f}(r)| from the Type (2) terms coming from

lo
o[~ \/—
+ l@ and z.(r)=c=+ i\/T; (case (1)), or zl(r) =c =+ i(\/; + Ei](r)) and z.(r)=c=+ i\/;

(case (2)). The proof in both cases is identical (just the constants change), so we focus on the

first case. Similarly, the argument we present works just as well for + = + and + = —, so we will

just address the + case. We claim that for any ¢ € R fixed, there exists Ny € Z5; and C, y > 0
such that for all N > N, and r € S™)¢ = [0,4N]

] in A*. These contributions are of the form log[T'(z..(r))] — log[['(z.(r))] where z.(r) =

log[T(z.(r))] — log[T(z.(r)]| < CNX(1 + \/r)". (8.59)

We will show this separately for r € [r,,4N] and for r € [0, ry], where r is specified momentarily.
The purpose of this split is that for large r, we can use the asymptotic behavior of the Gamma
function in the imaginary direction. For small r, we can use the uniform continuity of the gamma
function provided ¢ & Z. If c € Z,, we need to account for the divergence from the pole, but
after doing that we can still show the desired bound. We proceed with this argument now.
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Observe that by the fundamental theorem of calculus, for r > 0,

VrHES () Vr+ES ()

loglTL()] - oglr ) = [T oy loglrte+ inldy = [,

ip(c+iy)dy (8.60)

where in the second equality uses the Cauchy-Riemann equation to write d, log[T'(c + iy)] =
itp(c + iy) where 1 is the digamma function. Thus,

ES(n)

loglI(z/(r))] ~ log[T(z ()] < =

sup [Y(c + iy)l. (8.61)
6
re| 4]

It follows from the asymptotic expansion for the digamma function in Ref. [26, eq. (5.11.2)] or
Magnus et al. [40, page 18] that any c there exists C,y, > 0 such that for |y| > y, |¥(c + iy)| <

Clog(|lyl). Letry = 4y§ (so that @ = y,). Thus there exists C,C’ > 0 such that for r > r,,

log[I(ze(r))] — log[l“(zc(r))]‘ < CE} () log[|z{(MI] < C'ER (r) log(N)

where the second inequality comes from the fact that for r € SW).¢ = [0,4N], we can bound
|z.(r)| < C"log(N) for some C” > 0. Now we may appeal to Equation (8.56) to bound the
right-hand side above by CN~%(1 + \/;)'7 as desired in Equation (8.59).

It remains to demonstrate Equation (8.59) when r € [0, r]. First assume that ¢ ¢ Z,. For z in
any compact set away from Z ., analyticity implies that |(z)| is uniformly continuous. Combin-
ing this observation with Equation (8.61), we find that | log[T'(z.(r))] — log[T(z.(r))]| < CE%(;’).
Again, owing to Equation (8.56), we may bound this above by CN~¥(1 + \/;)’7 as desired in
Equation (8.59).

For the case when ¢ € Z,, we must appeal to the behavior of 1(z) near its poles Z,. As in
Magnus et al. [40, page 14], we have that for z in a vertical strip with real partin [c — 1/2,¢c + 1/2],
the function ¥(z) = —(z — ¢)~! + ¥.(z) where ¥.(z) is analytic in the strip. This and Equation
(8.60) imply

Vr+ES ()
log(T G ~ logzM = [ (=7 +tle+n)dy.

This shows that there exists a constant C > 0 such that

0g(r(a1 () - og(r(z. )] < clog (22 ) + e .

The second term Els\j(r)l is bounded by appealing to Equation (8.56). For the first,

VAHES () ES(r) % , T
10g<7 —IOg 1+7 STSCE,

for some constants C,C’ > 0. Since r € [0, r,], for any choice of > 1 and y < 1, there is a con-
stant C > 0 such that % <CNX(1+ \/;)’7 . This bound is of the form of Equation (8.59). Putting
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together the cases considered above, we have shown that Equation (8.59) holds. This completes
the proof of Equation (8.53) for |E;3(r)| and hence completes Step 3 and the proof of Lemma 8.3.

8.5.4 | Proof of Lemma 8.4

The convergence of the location of the atoms in Equations (8.18) and (8.19) follows immediately
from Equation (8.17) by Taylor expanding in N. The convergence of the masses of these atoms
in Equation (8.21) follows immediately from the bounds in Equation (8.20). Thus, our problem
reduces to showing Equation (8.20). We will deal with the case when v + /2 < 0, since the other
case of u — t/2 < 0 proceeds exactly in the same manner. From Equation (6.5), we can write down
the weights of the atoms as (recall the parametrization for a, b, ¢, d from Equation (8.16))

(q—2v—t _qu+1—t _q1+u q2)
(_ql—v’ qu—v—t’ _ql—v—l’ qZ+v+u)00 ’

ﬁEN),d(‘A,;N),v(I)) ) (q2v+t’ _qv+1+t’qv+u,_qv+1) . (1 _ q2v+2j+t) )

J . —v—u-1)J
ﬁEN),d(V(()N),v(t)) - (g, —qV, gl-utv+t _qu+t)j - (1 — g2vtt) (q )

~(N),d /A (N),
Ao (1) =

(8.62)

k]

where j € [[1,—v —t/2]. Since v + t/2 < 0 and u + v > 0, there is no chance of division by zero
in the above formulas.

Recalling the notation from Equations (8.38) and (8.40), Proposition 2.3 with m = 1 yields (here
(A5 +EDL1 1= AGL-1+Eg[D)

log <N“+”ﬁ§N)’d(v(()N)’”(t))> = (u+v)logN + (A}, + Ef)[-20 — 1,2]

+ e+ - L E-
—Ay+EPu—v—-2+v+u]l+(Ay+EPlu+1-t,u+1]

— (A +ERQI—v,1—v—1]. (8.63)
Simplifying the A terms, the N dependence drops and

+ + -
Ayl—2v =82l - AGlu—v—-t,2+v+ul+ Ajlu+1-t,u+1]

- Ay[1-v,1—v—t]+(u+v)logN = log [pf(vg(t))], (8.64)

where pfl(vg (1)) is given in Definition 6.2.

Since u, v, and ¢ are fixed, it follows from Equation (2.7) that the four error terms in Equation
(8.63) can be bounded in absolute value by CN~* for some C > 0 and any y € (0,1/2) (recall that
x = 2N~1/2), Combining this observation with Equation (8.64) proves Equation (8.20) for j = 0.

In the same manner, we can bound the asymptotic behavior of the other j € [1,—v — t/2]
masses. In order to do this, we must take into account the additional multiplicative terms, all of
which are of the form 1 — g%, 1 + g%, or g for some choices of real a. We use the following error
bound: for a € R, if we write

1- g 1+¢°
- _qq =a - eN®, Too +qq = FN@, e = B@ (8.65)
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2236 | CORWIN and KNIZEL

then there exist constants C, > 0 such that
EN@)| |E} (@) [Eh (@] < a2, (8.66)

A(N)d (N),v

Applying these bounds to the formula for # (v (t)) in Equation (8.62) and rewriting the

A(N)d (N),v

additional factors multiplying 7 (v (t)) in the form of 1 — g%, 1+ q“ and q® for various

choices of a, we see that

20+t v+1+t 0+u v+1 204+2j+t
L@, =gt (1= )

’_q j
— 1- _ )
(q’ quq u+v+t, qU-H)j(]_ q U+t)
w+j+t/2) - [2v+t,v+u]
(v+t/2)-j![1—u+v+t]j

(q (q—v—u—l)j

. M;
J EN/

M.
where |E’| < CN~'/2 for some constant C > 0. Recognizing that

Tw—v—16,2+0+u) (L+j+t/2)-[20+ 1,0 +u];
I(—2v—1t) ' (v+t/2)-j![1—u+v+t]j

= pl(vo(),

we arrive at Equation (8.20), thus completing the proof of Lemma 8.4.

8.5.5 | Proof of Lemma 8.5

There are three parts to this lemma.

Part 1. Observe that Equation (8.23) immediately follows from Equation (8.22). It remains to
prove the bound (8.22). The proof of this result very closely follows that of Lemma 8.3. From
Equation (8.4), it follows that for m, r € S™< = [0,4N],

1 M)
AN m, 1) = n(?’)’f’c(l ~ L= i) ML (8.67)
2N 4'q 2N 2N A(N),c(m)
S

Lemma 8.3 controls 7 A(N) “(r) and # A(N) *“(m). Thus, we need only to control

N r m
¥ )f’C(l - L1- —).
q-,q 2N 2N

It is useful to factorize this in order to utilize certain symmetries. Define

tu,i

2
(N),c(r) ::‘(_qa+z/2+i\/ﬁe,./2’qu+t/2+i\/ﬁer/2> ' ’

‘(q"\/ﬁe*";q>w‘2

’ (_qa+s/z+i\/ﬁem /2, quts/2+iv/Noy, /2)

(N)e -
gsuu(m) - 2’

[es]
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STATIONARY MEASURE FOR THE OPEN KPZ 2237

I’l(N)’C

s,t;u,ﬁ(m’ r) =

1
47N /2 1=
N 4N
(q, _qu+12+s’qt—s)oo 1
(_qu+ﬁ+t)°o ‘<

2 9’
q=9)/2+iV/N©O~+6,)/2, q<z—s)/z+ix/ﬁ<—er+em>/2>

oo
where we used the notation from Equation (8.43) (suppressing the N dependence above) that

0, = 9((1N) ;= arccos (1 - i).

2N
Defining
N),c, . N), N), N),
e (6) = NS NA = ) - g N = ) - BID (N = ), 2N(1 - )

it follows from Equation (6.2) that

n(N)’C’C(l -L1- ﬂ) = gec (1 - L1 ﬂ).
, u, 2N 2N

gy 2N 2N q',q%u,1
. =6 =6
Observe that if we send m — 4N —r, then 6, — 7 — 6, and thus also qlﬁ? - —qlﬁ? and
qi\/ﬁer - qi\/ﬁer. These transformations imply that
N), N), N), N),
AN —1) = fOr),  gIVC(AN — m) = g < (m). (8.68)

As in the proof of Lemma 8.3, by using the transformation (8.68), it will suffice to consider the
asymptotics behavior of these f and g functions just for m € [0,2N] and r € [0, 2N].
Using the notation from Equation (8.43) and the notation from Section 8.5, we may write

m 1 (N),ce oo o m\ [ _
log l\/ =8 "N ﬂq‘,qs;u,ﬁ<1 e 2N>] B
r
—log l4n’N\ /N] + Anwa(Vm, V1) + B o (m,r) + ES,, L (m,r). (8.69)

The function Ay, z(a, b) is defined for a, b € R, by

(a,b)+ A% (a,b)+ A" (a,b) (8.70)

N;u,i N;u,it

Anuala,b) 1= Al

N;u,i
where

/ kb s ][ b ol
AN;u’a(a,b). ANu+2+lz,u+2 i +.AN1,L+2+12,u+2 =]

b

g = Atia, —ia]— At u+ 2 +i2 L_-é]_ —[~ s+t g i_-_]
AN;u’a(a,b).—AN[la, ia] AN[u+2+12,u+2 12 ANu+2+12,u+2 12,

AR a(@b) 1= ALt — 5]+ Ay[u+ 1+ 5] — Ay[u+ 1+ t]-

t—s .a+b t-s .a+b t—s .a—=b t—s .a—b
A?\}[7+l—,——l—,—+17,——l—].
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2238 | CORWIN and KNIZEL

The error term E!

N 2(m,r) is defined as

(m,r) : = g (m, r)+ENuu(m r)+ENuu(m r),

Nuu N;u,i

where, for « € {f, g, h} we have

Extna(mor) 1= Ay (Vi 4 EOm), V4 90 ) = Ay (Vi V),

Similarly, we define the error term

ESya(mer) = Exua( Vi + EGm), Vi + EG0)),

where £y, z(a, b) is defined exactly as in Equation (8.70), except with the .4 symbol replaced by
En, as in Equation (8.40).

Next we use Equation (8.68) and the arguments from Lemma 8.3 to get an analogue of Equa-
tion (8.53), that is, for all > 1, there exists Ny € Z; and C, y > 0 such that for all N > N, and
m,r € SN =[0,4N],and « € {f, g}

En (. r)|, ’Efvw(m, r| < CN~X(1 + \/m)? + CN~X(1 + \/r)".

We can also prove such a bound for Ef\,‘;’z,ﬁ(m, r) directly by using Proposition 2.3 (since t —s > 0
we use the part of the proposition which assumes the condition that dist(Re(z), Z,) > r for some
r > 0).

Using the explicit formulas for .A* from Equations (2.3) and (2.4), when @ = 1 we may simplify
the above calculation to see that

~log lmv\f] + Ay aa (Vi V)

B e )
2

N .
I'fu+-+i , ,
2 272 2 2

(8.71)

=log

2
Sn.ﬁ.r(t—s)r<u+§+i§,i\/ﬁ>‘

There is a 47 factor on the left-hand side above versus 87 on the right-hand side. This extra factor
of two comes from an imbalance between the second order expansion in the AI‘\L, and Aj,. From
Lemma 8.3, we may write

V1= =284 c
aN (tN ) ~log [ ;t((;))] LE A(mc ") — E/r\riN) m)
V1= =7 (m) s

where the error terms Err, (r) and Errs (m) are controlled by the bounds in Equation (8.14).
In light of Equation (8.67), we may combine this with Equations (8.71) and (8.69) to conclude that

log
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(recall Definition 6.7)

log (1 /1— mﬁg) “4(m, V)>

2
F<u +o+ z@)l"(%s + i—ﬁ;V;)F(%S + i—ﬁ_\/;>

- g pi(r)
o 2 ps(m)
8w - \/; I'(t—s) F<u+ % + l%)y(l\/ﬁ)‘

+ Eﬁ;u,l(m’ r)+ E N, 1(”’1 V) + Errt (r) — A(N) C(m)

= log [pst(m r)] + Errit) (m,r),

_(N).c, £
where Erri’,)cc(m, r) = Ef\,‘,u 1(m,r) + ES ul(m r)+ Errt (r) ( e (m). The simplifica-
tion which produces p;’f(m,r) above can be verified by appealing to the explicit formula for
p; (m, r) from Definition 6.7,
_—(N),
Combining Equation (8.5) with Equation (8.14) in Lemma 8.3 (that |Err§ )C(r)l <CN X1+
—~(N),c,

\/;)’7 and likewise with r replaced by m), we see that Erri,[) ‘ c(m, r) is likewise bound in absolute
value by CN~X(1 + \/E)" +CN (1 + \/;7)’7, which completes the proof of Equation (8.22) and
hence part 1 of this lemma.

Part 2. Since Equation (8.25) follows from Equation (8.24), it remains to prove Equation (8.24).
We may rewrite Equation (8.5) as

AN<(r)
AN (W), r) = 200 (1= 2wV - —(N)d‘ o (8.72)
| | i (5)

s J

where r € S™)¢ = [0,4N] and V(N) v

S(N) a . (Recall that ¥ AEN) “(s) and vjN) “(s) are related by Equation 8.17.) For r € S)¢, we may use
Equation (6.7) to rewrite, for Borel V C R,

(s), for j € [0, [—v — s/2]]], constitutes all of the atoms in

o
q‘ q’

s s Sr t=s 6
(1—— V) =AW<V;qU+5,—q 2,q THNT ,q 2 -IVNT ) (8.73)

Based on the discussion about atoms in Section 6.1, we observe that as long as 1 + % > 0 and

t_TS > 0 (both of which necessarily hold since we have assumed s < ¢t and s,t € (-2, 2)), the only
N

o3
atoms are those coming from the qv 2 term. This term has absolute value exceeding 1 and hence
we see that the atoms of this measure are precisely V;N)’U(S) for j € [0, |—v —s/2]].
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2240 | CORWIN and KNIZEL

By Equation (6.5), the weight n(l:](); 41 - 2;], SN) “(s)) at V( )Y(s)is

<q—20—s’ _q1+z/2+i\/ﬁ%, _q1+t/2—i\/ﬁ%” qt‘s>

©
, (8.74)
(_ql—v’ q—v+t/2—s+i\/ﬁ%r’ q—v+l/2—s—i\/ﬁ%r , _qv+t+1>

o0

(N),v

while, for j € [1, |—v — s/2]], the weights at v (s) are

(N),c,d T (N) v (N),c,d r (N) v
Tgtgs <1 N’ (S)) =g <1 Vo (S))

where the additional multiplicative factor M; is defined as

>

T . =6
<q2v+s, _q1+u+s’ qU‘H/Z‘H\/N? qU‘H/Z—l\/N?) (1 _ q21)+2j+s)
J

. (—q—v—f)j ) (8.75)

<q, v, q1+v+s—z/2+ix/ﬁ%’ q1+s+u—t/2—i\/ﬁ%’> (1— qo+s)
J
In Equations (8.74) and (8.75), there are no instances of division by zero. This would arise in Equa-
tion (8.74), if —v +t/2 -5 € Z, and in Equation (8.75), if 1+ v+s—t/2+j—1=0for j €
[1, |—v —s/2]], or if 2v + s = 0. However, since v + s/2 < 0 and that § < t, none of these occur.
Using notation from Section 8.5, we may rewrite Equation (8.74) as

log [m755 (1= 3790 | = AvVD) + {0 + L) (870

The function Ay(a) is now (compared to the proof of Lemma 8.3) defined for a € R as

t  .a t .a
e AT _ _ - - el ;=
An(a) 1=AG[-2v —s,t s]+AN[1+2+12,1+2 12]

t . t
—A;(][—v+§—s+15 U+§—S—l—] Ayl —v,0+t+1]. (8.77)

The error term EA(r) = AN(\/7 +E9(r)) — AN(\/—) The error term E MM 8N(\/; + EN(r))
where Ey(a) is defined as in Equation (8.77), except with the A replaced by Ex.
Using the explicit formulas for .A* from Equations (2.3) and (2.4), we may simplify

f(e-rmoe )

I'(—2v —s,t —5)

An(y/r) =log (8.78)

From Lemmas 8.3 and 8.4, we may write

N ) c
T =loglp[(r)] & ) — & e,

d
2 (so) | =8 rEep)

log
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STATIONARY MEASURE FOR THE OPEN KPZ | 2241

N).d
where Errt (r) and Errs (vg (s)) are controlled by Equations (8.14) and (8.20). In light of Equa-
tion (8.72), we may combine this with Equations (8.78) and (8.76) to conclude (with Definition 6.7)

that
log l\/ m Aff)dc( O r)] = log [pst(vo,r)] + Errst (v”(s) r),

A(

where Errst (v”( ),r) 1= EA(r) +E¢ L)+ Err, (r) M (vg(s)). Just as in the proof of
Lemma 8.3, since Proposition 2.3 can be applied directly, we can show thatforalln > 1, there exists
. (N4,
Ny € Zs,; and C, > 0 such that for all N'> Ny and r € $M¢ = [0,4N], |Errey “(v2(s), )] <
CN= X1+ \/7)’7. This completes the proof of Equation (8.24) and hence part 2 of this lemma when
j=o.
When j € [[1, |[—v — s/2]]], we must consider M; in Equation (8.75). We claim that

[2v+s,v+%+i%,v+é—i§] Qu+2j+s)

M.
M, = / (1)) - BN’ (8.79)
! £, AT t \r
1,1+v+s—5+i7,1+v+s—5—i7 Qv +5)
J

where EAN/[j () satisfies the following bound: For all ) > 1, there exists Ny € Z5; and C, y > Osuch
that for all N > N, and r € S™)¢ = [0,4N],

[EN()] < CNTx( + /. (8.80)

If we combine the above claim with our already established result for j = 0, we may use
Definition 6.7 to match our formula with that of pgf(x}‘, r) so as to conclude that

log l,/ — A @), r)]=log[ Loy r)]+Err“ (o5, m)

where E/r\rit (v”( ),T) - _E/ﬁ'g t) (vo(s),r) +Ey ’(r) is bounded in absolute value

by CN~*(1 + \/— )?. This shows Equation (8.24) and hence part 2 of the lemma for
je 1, |-v—-s/2]].

It remains to demonstrate Equation (8.79) with the error bound (8.80). All of the terms in M;
which involve 1 — g%, 1 + g%, or q® for real a can be controlled via Equations (8.65) and (8.66), just
as in the proof of Lemma 8.4. The only terms in M ;, which are not controlled by these bounds are

those involving i1/N6, /2. To deal with those terms, we make use of a more general version of the

first growth bound above: there exists a constant C > 0 such that for all z € C— =z . V@
-q

where the error bound satisfies |E}(z)] < CN~Y/2(1 + |z|). By combining this bound with the
control on 6, demonstrated earlier in Step 2 of the proof of Lemma 8.3, we claim the following
bound: fora € R,

1— qa+n/ﬁer/z

e iVr/2) - eEn@n) (8.81)
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2242 | CORWIN and KNIZEL

where E?V(a, r) satisfies the bound that for any fixed a and for all > 1, there exists N, € Z5, and
C, x > Osuch that forall N > Ny and r € 8™ = [0,4N], |E} (a,r)| < CN~*(1 + 1/r)". Combin-
ing this bound with Equation (8.81), we can deduce that Equation (8.80) holds and hence complete
the proof of this part of the lemma.

Part 3. We may explicitly write 7 A(N) d: C(u(N) "

(s),r) exactly as in Equation (8.72) except with u

replacing v there. This formula 1nv01ves the measure H;N; 1a- %, V') defined on Borel V C R,
and Equation (8.73) provides a formula for this measure in terms of the Askey-Wilson measure.
We are concerned presently with the atomic part of this measure. However, inspection of the
a, b, c, d parameters of that measure reveals that as longas v + % >0,1+ % > 0,and ? > 0, this

measure has no atomic part. Our assumption in this part is that u — 2<0.Ifv+ > <0 as well,
this would imply that u + v < 0, which violates our assumption that u + v > 0. Thus, there is no
atomic part and so 7# A(N) d “(a EN)’M(S), r) = 0. This completes the proof of this part and hence the
entire lemma.

8.5.6 | Proofof Lemma 8.6

For parts 1 and 2 of this lemma, let us rewrite Equation (8.7) so that for x € SE,N)’d andy € SEN)’d

A(N)dd

(8.82)

A(N),d
(x, y)—n(N)’d’d(l—L 1 i) & 0)

q'.q° aN’T TN A(N)d(x)

Part 1. Since we have assumed that v + s/2 <0, SE,N)’d equals the set of V;N)’U(s) such that

j € [0, |—v —s/2]]]. There are three possibilities for SEN)’d: () Ifv+t/2 <0, then SEN)’d equals

the set of ¥ A(N) Y(t) such that k € [0, |—v —t/2]]; 2)if v+t/2>0and u —t/2 > 0, then SEN)’d

is empty; (3) ifv+t/2>0andu —t/2 <0, then SEN) “ contains u-atoms u(N) (t). However, this

third possibility is excluded since the condition v + s/2 implies thatu > 0 and by our assumption
that t < C,,,, it follows that u — t/2 > 0 (recall when u > 0, C,,, = min(2u,2) so t < C,, means

t < 2u). The case of empty support SEN)’d requires no further argument, so from here on out we
assume that we are in the first case where v + ¢ /2 < 0.

In Lemma 8.4, we have already controlled the convergence of the discrete marginal distribution
¥ (N) Y(t) and V(N)’U(t) are related by Equation (8.17), our problem now
(N).d.d

hgs

masses. So, recalling that ¥

reduces to studying the behav10r of 7yt . We may use Equation (6.7) to rewrite, for any Borel

subset V C R,

N t—s t
ﬂ((;t\f()]b( (N)v(t) V) :AW<V; qv+5’_q1+5 q7+v+k+_,q7_(v+k+5)>. (3.83)

We will analyze the probability masses in Equation (8.83) when V = {V(N)U

),v

(s)} for je

[0, |[—v — s/2]]]. The support of the measure 71 (v (t), V) may actually include more atoms

that just this set, namely coming from the fact that q 2 Tk 2 may have absolute value exceeding

1. We do not, however, need to consider these atoms since in Equation (8.82), we are restricting

ourselves to having the first variable x € SEN)’d, which does not include these additional atoms.
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STATIONARY MEASURE FOR THE OPEN KPZ 2243

We use Equation (6.5) to write out these masses. The weight at v(()N)’U(s) is

—20—8 _ 4U+k+1+t 4t—s _ 1-v—k
(N)dd< (N),v(t) V(N),v(s)) _ »—q »q4 " —q )oo
qt q° Vi >0 (_ql—v’ qk+t—s’ q—2U—k—S’ _qu+t+1)0°
while, for j € [1, |—v — s/2]], the weights at V(N)U(S) are
N)d,d [ (N), N), N)d,d [ (N), N),
0 (v 0,V (5)) = 700 (v, () x M
where the additional multiplicative factor M; is defined as
(q2v+s, _q1+v+s’ q21)+k+t, q—k)j (1 _ q20+2j+s) ;
M; = (=g

J (q, —qv, ql—k—t+s, q1+2v+k+s)j(1 — q2v+s)

The analysis of these formulas follows the same approach as the earlier lemmas, for exam-
ple part 2 of Lemma 8.5. In fact, since all exponents are real, the analysis and control of error
terms is even simpler. As such, we just record the limiting expressions, which arise from applying
Proposition 2.3. Observe that

lim 7, 7"
N-oco 99

(N),d,d (. (N),v (N)U Fk+t—s,—-2v—k—y)
t
( ®.v, ()> I(—2v —s,t—5s)
[2v+s,20+k+t,—k]j(20+2j+s)

lim M; = —1).
Nooo [1,1—k—t+s,1+20+k+s]j(20+s)( )

Putting these expressions together with our knowledge of the asymptotic behavior of

A(N)d(V(N)U(t)) and # A(N)d (N),v

(8.27).
Part 2. Since we have assumed that u — s/2 < 0, S(N) d equals the set of A(N)”(s) such that

(v (s)), we readily confirm the expansion (8.26) and error bound

j € [0, |—u+s/2]]. Since s < t, it follows that u —t/2 < 0 as well thus SE ) equals the set
of ﬁf{N)’”(t) such that k € [0, |—u +t/2]]]. As we will see, the transition mass from ﬁﬁN)’”(s) to

ﬁg(N)’“(t) is zero when j < k.
In Lemma 8.4, we have already controlled the convergence of the discrete marginal distribution
oMM (¢) and V(N) v

masses. So, recalling that v, (t) are related by Equation (8.17), our problem now

reduces to studying the behavior of 7T(N) d 4 We may use Equation (6.7) to rewrite, for any Borel
subset V C R,
N t—s t
”g&( (N)u(t) V) _ AW<V; s, _q1+2 q - +u+k——’ qT—(u+k—§)>. (8.84)

Atoms in the Askey-Wilson measure on the right-hand side of Equation (8.84) arise when argu-
ments exceed 1in absolute value. Since u — s/2 < 0, it follows (smce u+v>0)thatv+s/2>0

so|q” 2| <1 L1kew1se smce We have assumed that s > -2, | — 1 2| < 1. The fourth argument

—(u+k—-

necessarily satisfies |q 2 2 | because for k € [0, L u+ J]] we have that t —s —u + - =

k> %S > 0. The absolute value of the third argument |q 2 +u+k 2 | canexceed lifu + k — 5 <0.
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2244 | CORWIN and KNIZEL

In that case, this term will contribute atoms at u (s) fori e [0, |—u + = —k]|]l, which is a

subset of S(N) 4 For all other elements in S(N) d there W111 be no atom in this transrtron probability.

It remains to compute the masses of the atoms in the Askey-Wilson process (8.83) at u(N) “(s) for
ie o, |—u+ E — k|]]. For this we use Equation (6.5), noting that in this case, we have to switch
the a and c arguments in the formula for the masses. This yields

—2u—2k+s V+1+s U—u—k+t 1—u—k+t
»—q »q »—q )OO

7 Mdd (ug{N),u( N, u(kN),u (s)) _

q'.q° (qu—u—k+s’ _ql—u—k+s’ q—2u—2k+t, _qv+t+1)

[e5]

while fori € |1, |—u + ; — k]

N),d,d N), N), N),d,d N), N),
w0t (w0, w0 (9)) = 208 (w0, ul 9) ) x M

where the additional multiplicative factor M; is defined as
<q2u+2k s qv+u+k qu+1+k’ qt—s) ' (1 _ q2u+2k+2i—s)

P : - (—g-v-2t+s)
M; = (q, qu—v+1+k—s’ _qu+k—s’ q2u+2k—t+1)_(1 _ q2u+2k—s) ( q® S) .
i

The analysis of these formulas follows the same approach as the earlier lemmas, for example
part 2 of Lemma 8.5. In fact, since all exponents are real, the analysis and control of error terms
is even simpler. As such, we just record the limiting expressions, which arise from applying
Proposition 2.3. Observe that

lim 7, 7
N—oo q°,q

N,dod (- (N)u (N)u Fo—u—k+s)'(—2u—2k+1t)
t =
< O (S)> T(—2u— 2k +s)I(0 —u—k + 1)

and that

[2u + 2k —s,v+u+k,t —s],(2u + 2k + 2i — s) .
lim M; = (-1~
N—oo [1,u—v+1+k—s,2u+2k—t+1]j(2u+2k—s)

Putting these expressions together with our knowledge of the asymptotic behavior of

(8 29).

Part 3. First consider the case when u — t/2 < 0. In this case, the discrete support of the mea-
sure fr(N) (m,-)isgiven by SEN)’d, which equals the set of ﬁf(N)’“(t) suchthatk € [0, |—u +t/2]].
We may rewrite Equation (8.6) as

. (s)), we readily confirm the expansion (8.28) and error bound

ﬁ_(N),d <ﬁ(kN),u ( t))

_(N).c.d ( ~(N)u ) _ 1 LN ( (N)u t
7 m, 0 )= . (6),1—— . (8.85)
st k 2N Tatq 2N ﬁ_EN),c (m)

We have already studied the behavior of the marginal distribution terms on the right-hand side
above, thus we focus now on n(N)d C(u(N)“(t) 1-— E)' In Equation (8.84), we rewrote this in

terms of the Askey-Wilson process. The density of the absolutely continuous part of that measure
is given in Equation (6.2) and using that expression and mimicking the asymptotic analysis in the
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STATIONARY MEASURE FOR THE OPEN KPZ 2245

proof of Lemma 8.5, we show that

m

1— —
AN (N)def (N)u _m
2N ﬂqf,qs ( .1 2N>

- ofra “mu(o)

2
Sn-\/E-r(u+u+j,v—u—j+z,t—s)-‘r(tﬁ)‘

and that for all » > 1, there exists Ny € Z5; and C, y € R, such that for all N > N, and all
m e S™N< = [0,4N]

[Erer(m w(0)] < CN=2(L+ v/,

In light of Equation (8.85), combining the above error bound with our bounds on

A(N) d(u(N) “(t)) and fr(N) (m) from Lemmas 8.4 and 8.3, we arrive at the claimed result from

the lemma. Note that the factor of 4 /1 — E cancels with a corresponding factor coming from our

application of Lemma 8.3 and that the matching to pg’f(m, uZ(t)) can be seen from Definition 6.7.

Now let us turn to the case when v + t/2 < 0. In this case, the discrete support of the mea-

sure ﬁ(N)Cd(m -) is given by S( )d , which equals the set of A(N)”(t) such that k € [0, |—v —

t/2]]. We may rewrite Equation (8. 6) as in Equation (8.85) Wlth u replaced by v Focusing on
(N),d, c( (N),v
q'.q* ]

Pochhammer symbols in the numerator. This implies that the numerator is zero. By inspect, the

denominator is nonzero. This implies that 7 A(N) . d(m aN (1)) is identically zero, completing the

proof of part 3 and hence the lemma.

(),1 — =), we see that the explicit expression for this include g~¥ inside the g-

9 | ASYMPTOTICS OF (+¢%; q)..: PROOF OF PROPOSITION 2.3
Throughout, we will use the notation s = o + it and let Arg(s) € [, 7] denote the argument of
the complex number s.

9.1 | Preliminaries from analytic number theory

9.1.1 | Gamma function

For s € C with Re(s) > 1 define the gamma function as

I'(s) :=/ e~ *x5"dx.
0

This can be meromorphically continuated with

—1)k
simple poles at Z, and Res,__[T'(s)] = ( k') fork € Z. 9.1)
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2246 | CORWIN and KNIZEL

The Euler reflection formula shows that I'(1 — s)I'(s) = T For s = o + it, Rademacher [47,
(21.51)] shows that:

Lemma 9.1. For any compact K C R and € > 0, there exists t, > 0 such that for all o € K and ¢
with [t] > t,,

|T(s))|
\/Eltlcr—l/ze—n'ltl/Z

—1] <e. (9.2)

9.1.2 | Zeta and eta functions

(See Magnus et al. [40, Sections 1.3-1.4].) The Riemann zeta function {(s) is defined for Re(s) > 1
as

(6 =Y -
n=1

and is the z = 1 specialization of the Hurwitz zeta function ¢(s, z), which is defined for Re(s) > 1
and Re(z) > 0O as

$(s,2) 1= Z o Z)S 9.3)

Still assuming Re(s) > 1 and Re(z) > 0, the Hurwitz zeta function admits an integral representa-
tion as

e PZ o5~
¢(5,2) = r()/ P ©0.4)

As functions of s, both {(s) and ¢(s, z) can be meromorphically extended to the complex plane
and yield meromorphic functions having simple poles only at s = 1 with residues

Res,—1[{()] = Res;1[{(s,2)] = 1. (9.5)

We will use of the following evaluation formulas for the zeta function

2

(=%, t0n=3-2 ©6)

as well various derivatives and limits

d¢ (s, z) l I'(z) ] , 1
= log ,  ¢'(0) = —= log(2m),
a5 li=o Var ? (9.7)
lim¢(s,2) — — = ~$(2), lm¢(s) ~ —= = ~p(D).
Above we have used the digamma function ¥(z) = 1;((22)) whose evaluation ¢(1) = —y is given by

the Euler-Mascheroni constant y.
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STATIONARY MEASURE FOR THE OPEN KPZ 2247

Finally, the Dirichlet eta function 5(s) is defined for Re(s) > 0 as

& n—1
n(s) := Z( D

and is related to the zeta function via
n(s) = (1 —275)¢(s). 9.8)

From this, one sees that the eta function is an entire function (the 1 — 21~ factor cancels the
first-order pole of the zeta function at s = 1).

9.1.3 | Bernoulli polynomials

The Bernoulli polynomials {B,,(x)},cz. , are be defined via the generating function expression

otx °° i
1 = ZOB”(X)W
n=

In particular, B,,(x) is a degree n polynomial in x with the first few polynomials given by By(x) = 1,
Bi(x)=x— 1, B(x)=x>—x+ l, and so on. We recall some results we will need from Apostol
[2, Sections 12.11-12.12]. The Bernoulli polynomials satisfy

B,(1—-x) = (=1)"B,(x) and  B,(x+1)—B,(x) = nx"1, (9.9

which implies that, through taking x = 0, B,(1) = B,(0) for n € Z5, and B;(1) = % = —B;(0).

The Bernoulli numbers are defined as B, := B,(0). Besides B; = —%, all other odd indexed
Bernoulli numbers are 0.
In terms of the Bernoulli polynomials, we have that for n € Z

Bn+1(z)
n+1

, and ¢(-n) = (- 1)”n'f1 (9.10)

{(—l’l, Z) = -

9.1.4 | Asymptotics of {(s) and (s, z)

We will need the following asymptotic result for the Riemann zeta function, which can be found
in Rademacher [47, Section 43]. For o € [0, 1], the bound proven below is suboptimal, though
sufficient for our purposes. The Lindeldf function u(c) determines the optimal growth exponent.
The Lindel&f hypothesis posits that u(1/2) = 0, though this is far from proved. We use fi(c) below
to represent an upper bound on this exponent as o varies.
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2248 | CORWIN and KNIZEL

Lemma 9.2. For any compact K C R, there exists a C,t, > 0 such that |{(s)| < C|t|) for all
s=o0+itwitho € K and |t| > t,. Here fi(0) is defined by

0 foro>1,
(o) = 1—70 forog €10,1],
% —0o foro<0.

Next, we prove a simple bound on the Hurwitz zeta function.

Lemma 9.3. Forall oy > 1, there exists a C > 0 such that for all s with o > o and all z € C with
Re(z) > 0, we have

1£(s,2)| < CelAe@tl,

Proof. From Equation (9.3) and the triangle inequality, |¢(s, z)| < 220:0 |(n + z)~%]. Note that
|(n +2)75| = |n 4+ z|9eA8+2) | Since Re(z) > 0, |n+z| > |n], and |Arg(n + z)| < |Arg(z)|.
Thus we can further bound |{(s, 2)] < X [n|~%elA®@ 1 < CelAte(@)!l where the constant C can
be taken as 1 + ¢ (o). O

Controlling [{(s, z)| when Re(s) < 1 is considerably hard. It will be important to demonstrate
bounds in that case which contain the z dependence on the subleading polynomial terms. Such
bounds are provided below as Proposition 9.5. In the proof of the proposition, we will make use
of an integral formulas for {(s, z). There are many related formulas available in the literature (cf.
Magnus et al. [40, Section 1.4]). We could not find a precise statement of the formula in Lemma 9.4,
thus we prove it here.

Lemma9.4. Fors =0 +it & Z, |Arg(z)| < mandd € (0,1) witho +d & Z,

d+ico
Zl—s zS —u
s—1 " 27nr(s) / Pl + )z (u)du

d—ico

¢(s,2) =% +

_s =(o+ad)] (_Dk Zk+s

Y Dk + )¢k + 8)——. (9.11)
k=0 )

I'(s)

(Recall T(a, b) = T'(a)[(b)) where the summation in k is dropped if o + d > 0.

Proof. We will make use of the following formula [46, (3.3.9)]:

c+ico
1 r
— I'(s,a —s)x5ds = &
27mi 1+ x)e

c—ioco

, (9.12)

which is valid so long as Re(a) > ¢ > 0 and |Arg(x)| < 7.
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STATIONARY MEASURE FOR THE OPEN KPZ | 2249

Start by assuming o > 1, |Arg(z)| < 7, and ¢ € (1, o). Then from the definition of {(s, z) (this
formula appears as in Paris [45, (2.1)])

c+ioco

25¢(s,z) =1+ i (1 + g)_s =1+ % i % / F()’J-Y)(;)_ydy
n=1 n=1

o2 ody LT News + wz e (cudu
=1+ / 27iT(s) =1+ / 27il(s)

c—ioco —Cc—ioo

d+ico
1 4 z 4 / I'(—u,s + w)z*¢(—u)du
T2 s-1 27iT(s)

>

d—ioco

for d € (0,1). The first equality is by the definition of the Hurwitz zeta function; the second is
by Equation (9.12); the third is from interchanging the summation and integration (justified by
Fubini) and appealing to the definition of the zeta function (we assume o > ¢ > 1 here); the fourth
equality is the simple change of variables u = —y; and the final equality follows from shifting
the contour of integration to the right from —c + iR to d + iR for d € (0, 1). In this shifting, we
encounter two poles, one at u = —1 (from {(—u)) and one at u = 0 (from I'(—u)). The first two
terms in the final line come from evaluating these residues, see Equations (9.1) and (9.5). To justify
shifting the contours, we must show that the integrand decays sufficiently fast for |[Im(u)| large.
Using the bounds from Lemmas 9.1 and 9.2, we can prove uniformly in the strip between —c + iR
and d + iR, exponential decay like e(IA8@I=0ImWI (recall that |Arg(z)| < ) as |Im(u)| = co.
We have shown that for |Arg(z)| < 7,0 > 1, and any d € (0, 1),

d+ioco
1 Zl—s z= " p
$,2) = — + —— + I'(—u,u + s)z74{(—u)du. 9.13
(6.2) = 50+ Zg 4 om0z ©13)
d—ico
1-s

By Equation (9.7), it follows that {(s, z) — z
(0,1), the integral in Equation (9.13) is analytic in s provided ¢ + d > 0. By analytic continuation,
the formula (9.13) actually holds for all o > —d.

In order to extend to a formula for o < —d, we will need to make some contour deformations
and account for some residues.

Our aim is now to establish a formula for s = o + it when o < —d. For the moment, let us
assume that ¢ # 0 and let us fix some d € (0,1) and assume that o0 < —d and that o + d ¢ Z .
Fix some & < —d and let ¢, = |t|/2 (which is nonzero by our temporary assumption) and &; =
([-&1 + &)/2. By Cauchy’s theorem without changing the value of the integral, we can deform to
the contour C:

T is an entire function. For a fixed value of d €

C= [d—lOO,d—l(t+Eo)]U[d—l(t‘l'so),gl —6—l(t+50)]
U[El —5'—i(t+80),81 —6—l(t—80)]

U [51 -6 - l(t — Eo),d — l(t —50)] U [d - l(t - Eo),d + 100]
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2250 | CORWIN and KNIZEL

The purpose of this deformation is that the integral is now analytic in s provided that o > &. Let
us now assume that o = &. To reach a final formula, we will deform C back to the original con-
tour d + iR. In doing so, we cross poles from the I'(u + s) term. These occur when u + s = —k
for k € {0,1,..., |—(c + d)]}. Taking into account the residues and the direction of the contours
yields Equation (9.11) when ¢ # 0. Provided that s ¢ Z,, we can use continuity of both side of
Equation (9.11) in ¢ to extend to ¢t = 0. [l

‘We come to our main bound on the Hurwitz zeta function.

Proposition 9.5. For any noninteger o < 0 and d € (0,1/2) chosen such thatd + o & Z, there
exists C > 0 such that for all z € C with |Arg(z)| < wand all s € C with s = o + it,

1665.2)1 < (¥ (1277 + L+ 16 2117 + e /277 |2 =4-2 )

[—(o+d)]
+max(1, |[¢[1/>79) Z |z|k), (9.14)

k=0

where the summation in k is dropped if o + d > 0.
Forany ty >0, a < b, and z € C with |Arg(z)| < 7, there exists a constant C > 0 and ¢ < 7 /2
such that forall s € Cwith o € (a,b) and |t| > t,,

1$(s, 2)] < Ceclll. (9.15)

Proof. We focus on proving Equation (9.14). The proof of the bound (9.15) is simpler and proceeds
in much the same manner (and thus is not provided here).

In this proof when we write x < y, we mean that x < Cy for some constant, which may depend
on d and o, but nothing else. In turn, when we say that “x is bounded by y,” we mean that x Sy
and when we say that “x is bounded,” we mean that x is bounded by a constant. We also will
make use of Lemmas 9.1 and 9.2 to deduce bounds when the imaginary part of the argument of
the gamma or zeta function is small or large. For the rest of this proof, let ¢, be such that the bound
in Lemma 9.1 holds for € = 1/2, and such that the bound in Lemma 9.2 holds for some constant
C as specified in the lemma. We will use ¢, as the cutoff between small and large.

This proof relies on the integral representation for {(s, z) given in Lemma 9.4. The hardest term
to bound in that representation is the contour integral. Let us address the other terms first. For
the first two terms in the {(s, z) representation in Lemma 9.4, we find that

1-s

S eMEDZ1= and S e A1 4 1) |21,

‘ 1

S

where, in both terms, we have used the fact that |z*| = |z|7e 8@ and in the second inequality,
we use that for s with negative real part, [1/(1 —s)| < C(1 + |t|)_1 for some constant C. Since
eAT8(2) 1 and e~AT8E) are both bounded by e8!l we find that the contribution of these two
terms is upper bounded by the first two terms in the right-hand side of Equation (9.14).

The {(s, z) representation in Lemma 9.4 also involves terms indexed by k € {0, ..., |—(c + d)|}.
Taking absolute values, these terms contribute a constant times |T(s)|~' - |T'(k +s)| - |{(k +
$)||z|¥. For large t, appealing to the asymptotics of Lemmas 9.1 and 9.2, we can show that the
expression above is bounded by |t|!/2=9|z|X whereas for ¢ small, since we have assumed that s
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(and hence also s + k) is not in Z, the expression is bounded by |z|¥. These bounds produce the
final terms in Equation (9.14).

All that remains is to control the contour integral term in Equation (9.11). Taking the absolute
value inside of the integral, we are left to control

Z—S
27il(s)

/ IT(—d —ir,d + o 4+ i(r + t))| - |z7¢7| - |¢(=d — ir)dr]. (9.16)

The rest of this proof is devoted to showing that Equation (9.16) is bounded by the right-hand
side of Equation (9.14). This is elementary, though requires the analysis of a number of cases and
the use of the bounds from Lemmas 9.1 and 9.2 for large imaginary parts of the gamma and zeta
functions, as well as constant bounds on the gamma and zeta functions for small imaginary parts
(for the gamma function, this is where d + o ¢ Z is important).

We split our analysis of Equation (9.16) into two cases — |t| < ¢y and [t| > .

Case 1: |t| < ty. Using Lemma 9.1 and the analyticity of 1/T'(s), we bound the prefactor

< |Z|—UeArg(z)~t < |Z|—oe|Arg(2)-t| (9_17)

Z—S
‘ 27il(s)

Using this and |z=47"| = |z|~9eA™8(@)7 inside the integrand of Equation (9.16) yields

(9.16) S () x (II), where (I):=|z|79% . A8t and
arn := / IT(—d —ir,d + o +i(r +1))| - eA8DT . |¢(=d —ir)dr]|.

We claim that (IT) < 1. Assume this claim for the moment. Since d € (0,1/2), |z]7°~% < (|z|™7 +
|z|'=9). Thus (I) x (II) < e!A8@I(|z|=9 + |z|1~9) which is, itself, bounded by the right-hand side
of Equation (9.14) as desired.

To bound (II) < 1, we split the integral into |r| < t, and |r| > ¢,. In the first case, since the
integrands can be bounded by constants, the total contribution is likewise bounded by a constant.
In the second case, to estimate the integral over |r| > t,, we may use of Lemmas 9.1 and 9.2 for
the gamma and zeta functions. The integrand in (IT) is thus bounded up to a constant factor by

1 T 1
oHd=3 g3 IrHIrHDFARE T Gince o < 0andd € (0,1/2),0 +d — % < 0and hence |r|g+d_5 <1
for |r| > t,. Since |Arg(z)| < 7 and [t| < ¢, for r large enough, —§(|V| +|r+t])+Arg(z) - r<
—6r for some § > 0. Thus the integral in (IT) can be bounded by a constant as claimed.

Case 2: |t| > t,. We proceed in a similar, albeit more involved, manner as in case 1. In place of
the bound (9.17) we get (using Lemma 9.1 to control the behavior of |1/I'(s)|) that

Il

< |Z|—creArg(z)-t|t|—a+1/2e7r|t|/2‘

—S
‘ 27il(s)
As opposed to in case 1, we do not want to throw away the possible decay that eA'8(2)! can provide.
Instead, we write this as eAT8(2)t = elAt8(2)t] . pArg(2)t=|Arg(2)1] The first term goes with (I) below,
while the second term goes with (IT). Using |z=977"| = |z| 98" we see that

1
(9.16) S (I)x (II) where (I) :=|z|7974 . elAg@1l . 1¢7°F2  and
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2252 CORWIN and KNIZEL

FIGURE 2
(&)
(1) : = MED Al /FH(r;d,a, t,z)dr.
—00
with

Fy(r;d,o,t,z) = |T(=d —ir,d + o + i(r + 1))|e* 87 |¢{ (=d — ir)|

We claim that (II) < 1. Assuming this we see that (I) - (IT) is bounded by the right-hand side in
Equation (9.14). Thus, it remains to show that (IT) < 1.

In order to bound (IT), we split the integral depending on the size of r and r + t. Assume
that t > t, (the case t < —t, is completely analogous and involve the primed regions in the
figure; we will not repeat the argument in that case though). We define six regions in the (t,7)
plane: A = {(t,r) : t > to,r > o}, B={(t,r) : t > to, |r| Sty v+t >t} C={(t, 1) : t >ty |r] <
to, [ +t| <to}, D={(t,r) : t > tg, ¥ < —to,r +t > to}, E={(t,r) : t > ty,r < —ty, |r +t]| < tp},
F={(t,r) : t>ty,r < —ty,t +r < —ty}. For t given, we write (IT) 4 to denote the expression given
above for (IT) subject to the additional restriction that (r, r + t) € A (and likewise for B, C, D, E, F).

For a fixed ¢ in each region A, B, C, D, E, F, we may upper bound the integrand Fy;(r;d, o,t, z)
defining (II) either by constants if the imaginary part of the argument of the gamma or zeta
function is small, or by the asymptotics given in Lemmas 9.1 and 9.2 if the imaginary part of
the argument of the gamma or zeta function are large. We can then estimate the contribution of
each region to the integral. Depending on whether t € (¢, 2ty] or t > 2t,, the integral in r will
encounter a different set of regions. We consider these two cases. (Figure 2)

Case 2.a: t € (t,2ty]. Here (II) = (I1)4 + (ID)g + (IT)¢ + (II)g + (I)g. On regions B, C, and
E, the integrand Fy;(r;d,o0,t,z) < 1 and since the domain of integration for r in these regions
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is bounded, it follows that (IT)g, (IT)c, (II)g < 1. Regions A and F involve unbounded integrals

1 T
. . . . d+o—- -Z t])+Arg(z)-
and require close inspection. On region A, Fj;(r;d,o,t,z) S |r + ] to=3 e (IrHIrHtD+A@) T

We already encountered such an integral in case 1, when bounding (II) there. Since ¢ <0
1
andd € (0,1/2),0 +d — % < 0 and hence |r + t|a+d_5 < 1. Since |Arg(z)| < 7 and t € (g, 2t,],

for r large enough, —%(lrl + |r +t]) + Arg(z) - r < —6r for some § > 0. Since ¢ € (tg, 2ty], the

prefactor AE@ ARSI 4y front of the integral in (II) is also bounded by a constant.

Thus, (II) RS <1 as desired. The F region follows similarly, as the integrand Fy;(r;d,o,t,2) S

d+o— Se 2(|r|+|r+t|)+Arg(z)r

|r + t] . In both of these cases of region A and F, we have used the fact

that t € (¢y, 2t,] to bound the term e 2" in the prefactor by a constant. In the next case, this will
not be true.
Case 2.b: t > 2t,. Now (II) = (II)A + (II)B + {IDp + (IDg + (II)p. As in case 2.a, for (r,r +

1
t) € A, Fy(r;d,o,t,z) S |r+ t| =5 Uri+ir+th+Arez)r . The term |r + tldw—i <1, and the

e_5(|r|+|r+[|)+Arg(Z) "<e 2'7%7 for some § > 0. This implies that the integral of Fy;(r;d, 0,t,z)
over r such that (r,r + t) € A is bounded by a constant times e~!/2, This cancels the e”!l/2 pref-
actor outside the integral in (II). What is left is bounded by a constant times eArg(@)t-|Arg(2) | gpd
since Arg(z) - t — |Arg(z) - t| < 0, we conclude that (I I ) 4 S 1.

Inregion B, the integrand F;;(r;d, o,t,2z) S |r + t| FIreti+Arg@)r .Sincer + t > t;in this

region, and since the r-variable is integrated from —¢, to to, the contribution of the integral of
Fy;(r;d,o,t, z) for r in this region is bounded by a constant time e~"!/2. Again, this cancels the
e™!1/2 prefactor outside the integral in (IT) and thus (II)g < 1. Bounding the integral in regions
D, E, and F is more subtle.

Let us start by addressing (II)p. Here,

FH(I";d,O',t,Z)S |V+t|d o— 2e 2(|r|+|l+[|)+Arg(z)r

Since r € (—t + ty, —ty), |r| = —r, and |r + t| = r + t. Also, since d + o — % <0, |r+ t|d+0_§ is
bounded by a constant. Thus, the upper bound on the integrand F;;(r;d,o,t,z) reduces to
Fy(r;d,o,t,z) S e_gteArg(z)". The magnitude of the integral f__til eA18@) T dr depends on the sign
of Arg(z). If Arg(z) > 0, then the exponential eA"8(?)" decays and the integral is bounded by a con-
stant In this case, the prefactor to the integral in (IT) is elzrl which cancels the just demonstrated

¢~ 2' behavior of the integral. Thus, when Arg(z) > 0, (II)p < 1. If Arg(z) < 0, then the expo-
nential eA™8?)" grows and the integral is hence bounded by e~A™8?)!, Combining this with the

prefactor in (IT) shows that when Arg(z) < 0, II)p S e~1Arg@) 1l < 1 since t > to

Controlling the integral in region E works similarly. Here Fy;(r;d, 0,t,z) S e 2 S IrivargE)r .Since

here r € (—t — ty, —t + t;), we can bound the integral of F;;(r;d, 0, t, z) on this region by a con-

stant times e 2'e~A@, Putting this together with the prefactors in (II) shows that (IT)g <
e~ 182l < 1 since t > 2t,.

(|r|+|r+t|)+Arg(z) r

In region F, Fy(r;d,o,t,z) S |r+ t| . Since r < —t —tg, |r|+ |r +

t|=—2r—tands1nced+o—5<0,|r+t| 5§1.Thus,

s
Fii(r;d,o,t,2) § e

:sdny) suonIpuo)) pue suud 1, 3y 39S “[Hz0z/40/20] uo A1eiqry aunuQ Aip ‘saureiqr Ausiaatup) eiqunjo)) Aq £ 17z 8do/z001°01/10p/wod: Kd[1m: Kresqijaurjuoy/:sdny woiy papeojumod v “+70T ‘T10L601

wod Ko

pUE-SULId),

25URDIT SUOWIIOY) ANTERI) 2[qEarddE oy AQ PAWIOAO AIE SO[OIIE V() (98N JO So[nI 10§ ATBIqI] AUIUQ AA[1AL UO (Suony



2254 | CORWIN and KNIZEL

We can bound the integral of this over the range r € (—oo,—t —ty;) by a constant times

g (THATE@) ISt _ A =5 Combining this with the prefactors in (IT), we find that (II)r <
e~1A18@) 1 < 1 since t > 2t,. Thus, we have shown that (IT) < 1, which implies the desired bound
(9.14) and hence completes the proof of the proposition. [

9.1.5 | Jacobi theta function

Jacobi theta functions (see Rademacher [47, Chapter 10]) are defined in the following way for
complex v, p with Im(p) > 0 :

0 00
6,(v|p) = l Z (_l)kem’p(k+1/2)2eniv(2k+1), 6,(v|p) = Z enip(k+1/2)2e7ziv(2k+1)’
' k=—co k=—0c0
00 )
O;(v|p) = Z e”iPkZekaV’ 04(v|p) = Z (_1)keﬂipk2e2kﬂh).
k=—o00 k=—o00

For every value of p in this half-plane, the functions are entire functions of v. Note that 6,(v|p)
is an odd function in v and all others are even. We also need the following identities [47, (78.32),
(78.33), (79.7), (79.9) ]:

>

91(V|P) — _iem‘p/4 . em‘v . (e27rip’ e2m’(p+v)’ e—Zm'v; ezmp)oo

5

92(V|P) — enip/4 eV . (e27rip’ _e27ri(p+v)’ _e—Zniv;emrip)oo

— ) =iy B e ey wlp),
P i

=)=\ [E e e,mip),
P i

with the principal value of the square root. Using the 8, identity,

2 x  xz  xz?
Zexp(-——+—
X 8 2 2

. 61

27i
e e = z —) (9.18)
( )00 (e—K; e—K)oo (e—K(l—Z); e—K>°o x
Similarly, using the identities involve 8, and 6, we find that
27 x Xz xz?
Tew(f-5+%) 2ni
_,—KZ. ,—K — . 47
(—e™%e7) == (_e_x(l_z); e—K) 6,4 (z ” ) (9.19)
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STATIONARY MEASURE FOR THE OPEN KPZ 2255

9.1.6 | Theta function bounds

Lemma 9.6. For all a € (0, 1) there exist C,c,x, > 0 such that for all x € (0,%,) and allv € C

with |[Im(v)| < %
61( 64 <V

Proof. We can rewrite theta functions in the following way [47, (76.2)]:

27 e /(20)
“x ) 2sin(my) "

27i _<
§?>_qsc-en (9.20)

81(vlp) = 2 )\ (~1)kelk+1/27ie sin (2K + 1)7v),
k=0

O,(v|p) =1+2 Z(—l)kekzmp cos (2kmv).
k=1

Chebyshev polynomial of the first kind T} (x) and the second kind U (x) with x € [—1,1] are
defined in the following way (see Koekoek and Swarttouw [36, Section 1.8.2]): For x = cos(v),

T (x) :=cos(kv) and Up(x) := %;m Their coefficients are explicitly given by
lk/ 2]

Ty(x) = Z

Inserting the Chebyshev polynomials into these expressions, we arrive at

(- 1)k< ”l)(zx)k—Zn’ Up(x) = UﬁJ( 1)n< )(2 )k -2n

01(vlp) < P—
_——1=2 —1)kemie*+ 7, (cos(7v)), and
2T SinGen) kgl( ) 2k (cos(v))
0,(vlp) — 1 =2 ) (—1)Ke™PE Ty (cos(mv)). (9.21)

k=1

We now claim that with x = cos(zv), for allv € C

(1+ /5
Vs

To see this, consider the case |x| > 1/2 and |x| < 1/2 separately. When |x| > 1/2

U ()], |Te(x)| < -max (| cos(m/)|,2_1)k. (9.22)

k2l
k - — k
UL TGl < l2xl Y, (47 7) = 12xlFe+ 1),

n=0

where F(k + 1) is the Fibonacci number. When |x| < 1/2,

[k/2]
UKL T < 251212 3 (7" <P+,

dny woxy papeojumo( ‘¢ “pz0T ‘TIE0L60T

00" Ko

PUB-SULID)

11dde 2y £ PaUIaA0T A1E SA[IIE V() 128N JO a1 10 AIeIqI] AUIUQ AAJIAL UO (SUOUY

2SUOIT SUOWILIO)) DATIBALY) J[qEO!



2256 | CORWIN and KNIZEL

Putting these together, we see that |U(x)|, |Tx(x)| < F(k + 1) max (|2x], l)k. Since the Fibonacci
a+ \/g)k+1
2k+14/5 7
upper bound on F(k + 1) and combined with our earlier bounds on |U; (x)| and | T} (x)| we arrive
at Koekoek and R. Swarttouw (9.22).
Inserting Equation (9.22) into Equation (9.21), we find that

number F(k + 1) equals the nearest integer to multiplying this by 2 clearly yields an

¢} 21+ v5) -
: 10l 1’ < a+vs Z PP +(1 4+ 1/5)%¢ . max (| cos(mv)|, 2_1)2k,
2e7iP/4 sin(rrv) Vs

2(1+—\/§) Z e™iPk (1 4+ 1/5)%F . max (| cos(7v)], 2_1)2k.

Vs =

Since p = 27i/x, it follows that e™ =e 27'/* <1. Thus for k € Zs,, we can bound
emip(k+k) oripk? < omick This shows that for some C > 0,

61(vlp)
2e7iP/4 sin(rrv)

84(v]p) — 1| <

1|,

8,(vl0) - 1] (9.23)

22

_ 2 - —ﬁak 2k
< Ce "« -max(|cos(nv)|,271) Z ¢ %1 +1/5)% - max (| cos(zv)[, 271) .
k=0

Observe that | cos(zr)| < e™)I We have assumed that |[Im(v)| < < with « € (0, 7) and thus it
x
follows that there exists some ¢ > 0 such that

272 c

2 ¢
e« -max(|cos(mv)|,271) <e .

Plugging this bound into Equation (9.23) yields Equation (9.20) and hence the lemma. O

9.1.7 | Mellin transform

For a function f(x) on (0, 4+00), and s € C, define
F(s) = M[f;s] := /f(x)xs_ldx,
0

The largest open strip —co < a < Re(s) < b < oo in which the integral converges is called the
fundamental strip or the strip of analyticity of M[f;s]. Note that if g is defined by the relation

f(x) = g(—1logx),

/xs_lg(— log x)dx = /e_”g(t)dt = M([f;s].
0 -

Therefore, all basic properties of the Mellin transform follow from those of the Laplace trans-
form. The following inversion formula can be found as Bertrand et al. [10, Theorem 11.2.1.1] (other
similar statements abound).
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STATIONARY MEASURE FOR THE OPEN KPZ | 2257

Proposition 9.7. Assume that the function F(s) is analytic in the strip (a, ¢) and satisfies |F(s)| <
K - |s|72 for some K > 0. Then, for b € (a,c),

b+ico

fx) = Zim / F(s)x~5ds

b—ico

is a continuous function of the variable x € (0;00) and does not depend on the choice of b.
Furthermore, F(x) = M[f;s], and we then say that f(x) is the inverse Mellin transform of F(s).

9.2 | Proof of Proposition 2.3

The following is the key to being able to use the above derived asymptotics on special function to
access g-Pochhammer asymptotics.

Lemma 9.8. Forallc > 1, x > 0, Re(z) > 0, we have that

c+ioco
log(e7™%;e7*) = —% T(s)¢ (s + 1)¢ (s, z)g, (9.24)
c+ico
log(—e™%;e7") = _Z_m / Q275 = Dr(s)S(s + )¢, z)— (9.25)

Proof. Our goal is to show that log(e™%;e™*) and log(—e *#;e7*) are the inverse Mellin trans-
forms of the corresponding functions on the right-hand side of Equation (9.24). To do this, we
compute the Mellin transforms of the left-hand sides in Equation (9.24) and then show that they
can be inverted.

For a € C with |a| < 1 and q € (0,1), we may write

—log(a;q)e, = — ¥ log(1 — agk) = VY k=N —(9.26)
0gld: q ];og aq’) kz:;)nz::l n nglnkz:;)q Zln(l—q”) (

The interchange of the order of summations is possible due to Fubini’s theorem since for each
g € (0, 1), there exists C = C(g) > 0 such that

i CZ|a"|<oo

Let f1(x) = —log((e7™%;e7*) ). For Re(z) > 0 and Re(s) > 1,

n(l —x”)

[e¢]
—KZ)H

Mifiis) == [ log(e e e = [ 3 ol
0

n=1

e 1 e PZps—1 hd P ePZps—
- [ ¥ e Z [ = dp [ + 1. 2).
0 0

(9.27)
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2258 | CORWIN and KNIZEL

The first equality in Equation (9.27) is by the definition of the Mellin transform. The second
equality in Equation (9.27) uses Equation (9.26) with a = e7™% and g = e™*. The third equality
in Equation (9.27) comes from the change of variables ¥ = p/n. The fourth equality in Equation
(9.27) is valid because

o)

© S
1 e—pzps—l 1
2 nRe(s)+1 / (1 — e—P)d‘o‘ =C Z nRe(s)+1 <
0

n=1

n=1

The constant term C > 0 above comes from bounding the integral: Since Re(s) > 1, the behavior
near p = 0 is like pRe(S)‘z, which is integrable since Re(s) > 1; and near p = oo, the integrand
decays exponentially because Re(z) > 0. The final equality in Equation (9.27) uses Equation (9.4)

for ¢(s, z).
A similar computation for f,(x) = —log((—e™™%;e7%),), yields
ez - e D e
. _ Z. 1 —
M1f355) = = [ (e e e = 3 [ e
= 0

0

= =T(n(s + 1DE(s,2) = (27 = DI (s + (s, 2).

The last equality uses Equation (9.8).

Having computed the Mellin transform for f; and f,, we now verify that they can be inverted
using Proposition 9.7. We must check analyticity and the quadratic decay estimate. Due to the
analyticity of I'(s), {(s), and ¢(s, z), the analyticity of these Mellin transforms holds for Re(s) > 1.

Now we argue that there is quadratic decay. To apply Proposition 9.7, it suffices to have this
decay on any vertical strip. Fix a = 1 and any ¢ > 1. We claim that there exists a constant K > 0
such that for all s € C with Re(s) € (a,c) and all z € C with Re(z) > 0, [T'(s)¢(s + 1)¢(s,z)| <
K|s|~2. This follows by appealing to the gamma function decay bound in Lemma 9.1, the bound-
edness of {(s + 1) for Re(s) € (a, c), and the bound on |{(s, z)| from Lemma 9.3. With this, we can
invert the Mellin transform of f; and thus prove the desired formula. The case for f, is similar
since the factor (275 — 1) is bounded by a constant provided Re(s) € (a, ¢). O

9.2.1 | Proof of Proposition 2.3: Asymptotics of (e *%;e7*),

We will first consider the case when Re(z) > 1/2. This is addressed in three steps. Then, in a fourth
step, we will use the functional identity (9.18) to address the case when Re(z) < 1/2. In the fifth
and final step, we will combine these two bounds into a common bound.

Step 1. We start with the representation for (e 7?; ™), from Lemma 9.8 and shift the contour
of integration to the left of zero, picking up some residues. We claim the following formula: For
any noninteger a < 0,

a+ioco

£=1
—log(e™%; ™) = L / T(s)¢(s + 1)¢(s, z)x™5ds + Z Res,—¢[T(s)¢(s + 1)¢(s, 2)x 5.

27 Pl

a—ioo

(9.28)
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STATIONARY MEASURE FOR THE OPEN KPZ | 2259

The starting point for this is Equation (9.24) where the contour has real part ¢ > 1. The idea is
to shift the contour to the left until it lies on a vertical line with real part a < 0. In doing this,
we encounter polesats = 1,0, —1, ..., [a] whose residues must be accounted for. The summation
in Equation (9.28) is precisely the contribution of those residues. To justify the deformation, we
use Lemmas 9.1 and 9.2 with Equation (9.15) from Proposition 9.5 to show that for z fixed with
Re(z) > 0, there exists some € > 0 and C > 0 such that for all s with Re(s) = ¢ € [a,c]and |¢| > 1,
IT(s)¢(s + 1)¢(s, z)x ™| < Ceell,

Step 2. Next, we compute the residues in Equation (9.28). In order to do that this, we make
use of the following Taylor series expansions. We first address the residue at s = 0. By using the
results in Equation (9.7), we see that around s = 0

T(s)¢(s + 1)¢(s, 2K = slzr(s +1)-(s¢(s+1) - ¢(s,2) - x5 =

=52 1 IO )51 4 ...
_(2 z)s +<(z 2>logk+log[ﬁ )s + -,

where --- here represents lower order terms in s. From this expansion, it immediately follows that
T'(z)
Var

the residue at s =0 is (z — %)logk + log[—=]. Turning to the residue at s = 1, from Equation

(9.6), we have that

2

TED  Rest(s,z = 2.

Res[T(s)S(s + 1) (s, 2)x™*] =
S=
The residue at s = —n for n € Z, is evaluated by Equations (9.1) and (9.10) as

B,B11(2) on

Res [TX (5 + D55, 20] = Res ] ¢ (- + 1 (-, 2) x = o e

Recall that Bernoulli numbers are zero for odd integers. Combining these deductions, we conclude
for Re(z) > 0 and noninteger a < 0, we have

a+ico
—log(e™™%;e7") = % / T(s)¢(s + 1)¢(s, z)x5ds
a—ioco
n’ 1 1@ | | '& Bu(2)B,
+—+ (z — —) logx + log + Z ——x".  (9.29)
6% 2 \/E “~ n(n+1)!

Recall m € Z; in the statement of Proposition 2.3. For any a € (—m, —m + 1), we may com-
pare the right-hand sides of Equations (9.29) and (2.5) to see that the error term Err)[x, z] in
Equation (2.5) is precisely given by

a+ico

Errjn[x,z]=2‘—ﬂli / T(s)¢ (s + 1)¢(s, 2)x—5ds. (9.30)

a—ioo
Therefore, our problem reduces to bounding the absolute value of the above integral. Fix some
a € (—m,—m + 1). To estimate |Err;;[x, z]|, we bring the absolute value inside the integral and
utilize the bounds given in Propositions 9.2 and 9.5. Using the notation s = a + it, we will divide
the integral into small |¢| and large |¢]|. On account of the just mentioned lemma and propositions,
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2260 | CORWIN and KNIZEL

for all d € (0,1/2) such that a + d & Z, there exists a t, > 0 and C > 0 such that for all t < ¢,
and z € C with Re(z) > 1/2,

|T(a +it)¢(a + it + 1)¢(a + it, z)|

< C(elAre@l(|z]1=a 4 |¢]1/27a|z|~d=a) 4 |z]7d-9), (9.31)
while for all t > ¢y and z € C with Re(z) > 1/2,

I(a +i¢(a +it + )¢ (a +it,z)| < Ce 2"

x (el (210 4 (1 1) 2l 0+ e8] ) (e 2z ), (932)

In deriving the above, we made some simplifications from the bound in Proposition 9.5. For
|t| < to, we bounded max(1,|t|'/?~%) < C while for || >t,, we bounded max(1, |¢t]|'/27%) <
C|t|'/>=% where C > 0 depends on a and t,. Since we are presently assuming that Re(z) > 1/2
(and hence |z| > 1/2) we find a constant only dependent on a and t, such that for |t| < ¢,
2|7 + (1 + |t]) |z]'~% < C|z|'~@ and likewise find C > 0 only dependent on d + a such that
Tie ™ fzlt < Clal e,

With the ¢, above, we may bound |Err;;[x, z]| < ()" 'x~%(I + II) where

to
I= / |T(a + it)¢(a + it + 1)¢(a + it, z)|dt,
0

II = /oo |T(a +it)(a + it + 1) (a + it, z)|dt.

)

Estimating I from Equation (9.31) is done easily since t < t; and |z| > 1/2. The main contribution
is from the term |z|'~% and all other terms can be bounded by it. Thus, we find that there exists
C > 0 depending on a and ¢, such that I < C|z|'~%. To control II requires a bit more. Let us recall
two facts. The first is an immediate consequence of the gamma function integral formula: For any
a > —1landanye > 0,

(o]
/ e %dt = e T (a + 1). (9.33)
0

The second is that for all Re(z) > 1/2, there exists a C > 0 such that % — |Arg(z)| > C|z|~!. With
these facts, we may show that there exists C > 0 depending only on a such that

L T 3
/ e (G AN <|z|—a + @+ )z + |t|1/2_a|z|_d_a)dt < c<|z|1—a + |z|5‘2“‘d>.
to

To derive this inequality, we first extended the integration to (0, o), and then used Equation (9.33)
with e = % — Arg(z) > C|z|~!. Similarly, we find that

© g
/ e—5| ||t|1/2_a|Z|_d_adt < Clzl_d_a-

to
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STATIONARY MEASURE FOR THE OPEN KPZ 2261

Thus, in light of Equation (9.32) and the above bounds, we have shown that
3 2a-d
IISC<|Z|1_a+ |z|> + |z|—d—a>,

and combining this with the earlier bound on I, we see that there exists C > 0 dependent only on
a and d such that

2 3
|Err:—n[K’Z]| < CK_a<|Z|1_a + |Z|E_2a_d + |Z|_d_a> < CK_a<|Z|1_a + |Z|E—2a—d>‘

Since we were allowed to take a € (—m, —m + 1) arbitrary, and d € (0,1/2) provided a + d ¢
Z ., we may try to optimize the right-hand side above. Let b = —a € (m — 1, m). Then, we have
shown that for any € € (0,1/2) and any b € (m — 1, m), there exists C > 0 such that

Errm[x, z]| < Cxb(|z|*P + |z|1+20+€) < Cxcb|z| 120+, (9.34)

This completes the proof of the proposition when Re(z) > 1/2. Notice that there is no restriction
on Im(z) assumed here (in accordance with the statement of the proposition).

Step 4. We will now make use of the functional identity (9.18) to relate the Re(z) < 1/2 behav-
ior to the Re(z) > 1/2 result we have proven already above. The two Pochhammer symbols,
(e ;e ), and (e *(1~2); ™), which arise on the right-hand side of Equation (9.18) are both
of the form (e *%;e7*), forZ=1and 1 — z, respectively. In both cases (in the second case, due
to the assumption that Re(z) < 1/2), we have that Re(Z) > 1/2, hence the result we have proved
above can be applied. In particular, for any m € Z,, recalling A*[x, z] from Equation (2.3),

—log(e *1-2);e7) =

By, (1-2)B

m—1
—At[x,1-z]+ Py + Errl[x,1 - z].
[ ] ’Z‘l n(n +1)! ml ]

(9.35)
—log(e™;e™ ), =

m—1
B 1(1)Bn
—At[x, 1] + T e 4 Bl [x, 1.
[, 1] nz:“ln(n+1)! mle 1]

Recall that from Equation (9.9), we have B,,,;(1 — z) = (—=1)"*!B,,,,(z) and that, in particular,
B,+1 = B,41(1) = 0 for n even. Thus, we may replace B, (1 — z)B,, by —B,,.,1(2)B,, (when n is
even, both sides are zero). Also observe that the product B,,, 1B, = 0 for all n except n = 1. By the

r(1-z); _ _ . _ T'(z)
e ] = —log[2sin(7z)] — log[ —

(9.18), we find that we can write

Euler reflection equation, log[ ]. Plugging this into Equation

m—1

B,41(2)B
log(e™ ;e %) = At[x,z] — T e 4 Errt [,z
g( o = Al 21 = 2 SEE ml,2]
where
'S Buyr(1)B x xz xz*
Err) = T = 22 22 Errt 1 Err} 1-
rep,lx, z] nz::l Y x 3 > + > + Erry,(x,1) + Err,(x, z)

+ log l@l <z

omi\ ™ /(@0
7) 2sin(zz) |
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2262 | CORWIN and KNIZEL

This provides an explicit formula for the error term Err;,[x, z] in Equation (2.5). The first bound
in Lemma 9.6 shows that for any o € (0, ), there exist C, ¢, x; > 0 such that for all x € (0, x;) and
all z € C with |Im(z)| < =

x

N 2mi\ em /0
o8| “1 ( T) 2sin(7z)

The two terms Err;(x, 1) and Err}}, (x, 1 — z) were bounded in the first three steps of this proof, see
Equation (9.34). The summation involving Bernoulli numbers has only one nonzero term when
n = 1 and is proportional to x. Thus, to summarize so far, we have shown that for any a € (0, 7),
€ €(0,1/2) and b € (m — 1, m), there exist C, c,x, > 0 such that for all x € (0,xy) and all z € C
with |Im(z)| < %

Slog<1+C-e7> <C-e x.

(4
[Errif[x, z]| < C(K +x|1 = 2z|% + xP|1 — z|1+20+e 4o b 4 e_2>.

For each b, provided x is small enough, we can bound e * < x?. Since Re(z) < 1/2, it follows
that there exist a constant C, which depends on b such that 1 < C|1 — z|'*2b*¢, Thus, we can
simplify our bound to the following: For any a € (0, 7), € € (0,1/2), and b € (m — 1, m), there
exist C, ¢, %y > 0 such that for all ¥ € (0, %) and all z € C with |Im(z)| < %

Errhx, z]| < C(x + |1 — 22| + xP|1 — z|1F2b+e), (9.36)
m

Step 5. In this final step, we combine the bound (9.34) shown in Step 3 for all Re(z) > 1/2
with the bound just shown at the end of Step 4, in Equation (9.36) which holds for Re(z) < 1/2
(with some additional condition on the imaginary part). Notice that if Re(z) > 1/2, then there
exists a constant C such that |z| < C(1 + |z|), and similarly, if Re(z) < 1/2, then there exists a
constant C such that |1 — 2z| < C(1 + |z|). Making these replacements in the respective bounds
(9.34) and (9.36) immediately leads to the error bound claimed in Equation (2.7) for Errj,[x, z].
This completes the proof of the asymptotics of log(g®; q), provided |Im(z)| < % We will extend

this asymptotic to |Im(z)| < Z?a using the result for log(—g*; q). To avoid confusion, we defer
this until the end of the proof of the log(—q?; ), asymptotics.

9.2.2 | Proof of Proposition 2.3: Asymptotics of (—q%; @)

Comparing the formula (9.24) for (g%; ) to the formula (9.25) for (—g%; ), the only difference
is the inclusion of the factor 275 — 1 in the later. This will have very minor effect on the argument,
as compared to our earlier study of the asymptotics of (¢%; @), in Section 9.2. As such, we just
summarize the outcome of each of the five steps from that proof, subject to inclusion now of the
multiplicative factor 27 — 1. As a sixth and final step, we include the extension of the log(g%; q)
asymptotic to only assume |Im(z)| < 2?“
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STATIONARY MEASURE FOR THE OPEN KPZ | 2263

Step 1. Assume that Re(z) > 1/2. Under this condition, we may use Equation (9.25) and decay
estimates to show, as in Equation (9.28), that for noninteger a < 0,

a+ioco

—log(—e™™%;e7 ) =% / Q75 =1(s)¢(s + 1)¢(s, z)x3ds
=1
+ D Resg_o[(27° = DI(s)S (s + 1) (s, 2)x 5. (9.37)
t=[a]

Step 2. We compute the residues in Equation (9.37). Notice that around s = 0,wehave2™5 — 1 =
—slog(2) + ---. From this, we see that around s = 0,

(z - %)logz

QS = DI (s + 1)¢(s, 2)x ™ = ——+

where the --- represent lower order terms. Hence the residue at s = 0 is (z — %)log 2. At s =

2
1, the factor 275 — 1 is simply evaluated to —% and hence the residue there becomes —%.

K
Finally, for the residues at —n for n € Z5,, the 27° — 1 factor contributes a new multiplica-
tive factor 2" —1 to the residue. Thus, Equation (9.29) is replaced by (recall A~ [x,z] from
Equation (2.4))

a+ioco
—log(e™%;e7) :% / Q75 =) (s + 1)¢(s, z)x5ds

[—a]

— Aozl + Y @ -1y @B,
n=1

n(n + 1)! (0:38)

Step 3. We fix m € Z; and let a € (—m, —m + 1). Comparing the right-hand sides of Equa-
tions (9.38) and (2.6), we see that the error term Err,,[x, z] in Equation (2.6) is precisely given

by
a+ioco
_ -1
Err,[x,z] = 7 / Q75 =) (s + 1)¢(s, z)x5ds.
a—ico
Bounding the absolute value of the error term |Err,,[x,z]| proceeds quite similar to that of
|Err,[x, z]| in Equation (9.30). Since along our integration contour, Re(s) = a, it follows that
we can bound |275 — 1] < 27% 4 1, which can be absorbed into the constant C. Thus, we arrive

as the same bound as in Equation (9.34). In particular, we see that for any € € (0,1/2) and
b € (m — 1, m), there exists a constant C > 0 such that

|Err,[x, z]| < Cxb|z| +2b+e, (9.39)

This result still assumes that Re(z) > 1/2.
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2264 | CORWIN and KNIZEL

Step 4. We now return to Re(z) < 1/2 and use Equation (9.19) to deduce the asymptotics in
that regime from those derived above for Re(z) > 1/2. Since Re(1 — z) > 1/2, we may conclude
from the results of Steps 1-3 above that for any m € Z,,

Bn+1(1 Z) n X"

"t D) + Err,[x,1—z].

m—1
—log(—e1=2); ™) = —A~[x,1—z] + Z 2" —-1)
n=1

Combining this with the asymptotics of —log(e™;e™™)., in Equation (9.35) and the form of the
right-hand sides of Equation (2.6) in (2.6) yields

log (—e™*%;e7) = 2(2”— ) "H( )B;n K" + Err,[x, z]

where Err,,[x, z] is given by

m—1

_ B,y(DB, ,  x xz %z’ + _

Errm[K,z] = Zl mk + g — 7 + T + Err[_dJ [K, 1] + Errl_dJ[K,l —Z]
n=

+log (e4< 2’”)).

We may now invoke the second bound in Lemma 9.6, which shows that for any o € (0, 7r), there
exists C, ¢, xy > 0 such that for all ¥ € (0,%;) and all z € C with [Im(z)| < z
K

(o2

The term Err; (x, 1) was bounded in Section 9.2 whereas Err,,(x, 1 — z) has been already bounded
in the first three steps of this proof, see Equation (9.39). Thus, in the same manner as in
Section 9.2, we conclude that: For any a € (0,7), € € (0,1/2), and b € (m — 1, m), there exist
C,c,%y > 0 such that for all x € (0,%;) and all z € C with |Im(z)| < 2 (again, this is assuming
Re(z) < 1/2) i

S10g<1+C~e7> <C-e «x.

|Errplic, z]] < C(x +x|1 — 2z]* + x0|1 - Z|1+2b+s>'

Step 5. The synthesis of the Re(z) > 1/2 and Re(z) < 1/2 bounds on the error are precisely the
same as above, hence the proof is complete.
Step 6. The fact that the bound on Err;,[«, z] holds with |Im(z)| < 2?0( follows from Equation

(2.7) for Errii[x, z] with |Im(z)| < 2 by using the transformation (2.8). To see this, consider z with
X

Im(z) € [, 2—OC) (the negative imaginary case is the same). Then,
x x

108(% @)oo = 108(—q" *'; Qoo

1 B (Z— —l)B
T n+1 X n T
—A K,Z__i — E Zn_l—Kn+Err K,Z__i.
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STATIONARY MEASURE FOR THE OPEN KPZ 2265

Comparing this to Equation (2.5) shows that
+ - i +
Errplx,zl = A7 [x,z — ;l] — A'[x, z]

m—1 B (Z - zl)B
B,..(z)B n+l n
+ Z n+1(2) non _ (" — 1)—K‘Kn +Err,[x,z — zl]
& | n(n+1)! n(n +1)! K

For Im(z) € [<, 22y, we have that Im[z — Zi] e [Z£, 2an
X x x x x
some f € (0, 7). Thus we can apply the bound (2.7) to control Err},[x,z — —i]. All of the other
K
terms are also easily controlled (for the Gamma function, use the asymptotics from Lemma 9.1)
and doing so, we verify that Equation (2.7) holds for Err,[x, z]. The reason why we cannot do
the same extension of the range of imaginary part for Err,,[x, z] is that in replicating that above

argument, we encounter A*[x, z — Zi] = A7 [x, z] and the first term may have singularities from
X

), which is contained in (—g, é) for

the Gamma function.

Note that the above argument works for obtaining a bound on Erry;[x,z] for z with
dist(Re(z), Z<() > r for any r > 0 since we will avoid the singularities from the Gamma function.
This implies the final claim of the proposition.
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