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Abstract
We provide the first construction of stationary measures
for the open KPZ equation on the spatial interval [0,1]
with general inhomogeneous Neumann boundary condi-
tions at 0 and 1 depending on real parameters 𝑢 and 𝑣,
respectively. When 𝑢 + 𝑣 ≥ 0, we uniquely characterize
the constructed stationary measures through their mul-
tipoint Laplace transform, which we prove is given in
terms of a stochastic process that we call the continu-
ous dual Hahn process. Our work relies on asymptotic
analysis of Bryc and Wesołowski’s Askey–Wilson process
formulas for the open ASEP stationary measure (which in
turn arise from Uchiyama, Sasamoto and Wadati’s Askey-
Wilson Jacobi matrix representation of Derrida et al.’s
matrix product ansatz) in conjunction with Corwin and
Shen’s proof that open ASEP converges to open KPZ under
weakly asymmetric scaling.

1 INTRODUCTION

The open Kardar-Parisi-Zhang (KPZ) equationmodels stochastic interface growth on [0,1] subject
to inhomogeneous Neumann boundary conditions at 0 and 1. The equation is written as

𝜕𝑇𝐻(𝑇, 𝑋) =
1

2
𝜕2𝑋𝐻(𝑇, 𝑋) +

1

2
(𝜕𝑋𝐻(𝑇, 𝑋))

2
+ 𝜉(𝑇, 𝑋),

where 𝜉 is space-time white noise and for all 𝑇 > 0 we impose the boundary conditions

𝜕𝑋𝐻(𝑇, 𝑋)||𝑋=0 = 𝑢, 𝜕𝑋𝐻(𝑇, 𝑋)||𝑋=1 = −𝑣, 𝑢, 𝑣 ∈ ℝ.

This requires a careful definition that we provide here, following Corwin and Shen [21, Definition
2.5].
Let𝐶([0,∞), 𝐶([0, 1])) denote the space of continuous functions from [0,∞) → 𝐶([0, 1])where

𝐶([0, 1]) is the space of continuous function from [0, 1] → ℝ. Let (Ω, , ℙ) denote a probability
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space, which supports a space-time white noise 𝜉 and a random almost-surely strictly positive
function 𝑍0 taking values in 𝐶([0, 1]) and satisfying sup𝑋∈[0,1] 𝔼[𝑍0(𝑋)

𝑝] < ∞ for all 𝑝 > 0. For
𝑡 ≥ 0, let 𝑡 denote the filtration generated by 𝑍0 and (𝜉(𝑠, 𝑥))𝑠≤𝑡,𝑥∈[0,1]. Then the mild solution
to the stochastic heat equation (SHE) inhomogeneous Robin boundary conditions is a random
function 𝑍 ∈ 𝐶([0,∞), 𝐶([0, 1])) satisfying:

∙ Initial data: 𝑍(0, ⋅) = 𝑍0(⋅) almost surely (here and below 𝑓(⋅) denotes the function ⋅ ↦ 𝑓(⋅)) as
random functions in 𝐶([0, 1]).

∙ Measurability: 𝑍(𝑡, ⋅) is measurable with respect to 𝑡 for all 𝑡 ≥ 0.
∙ Duhamel form of SHE: For all 𝑇 > 0 and 𝑋 ∈ [0, 1]

𝑍(𝑇, 𝑋) = ∫
1

0
𝑃𝑢,𝑣(𝑇, 𝑋, 𝑌)𝑍0(𝑌)𝑑𝑌 + ∫

1

0 ∫
∞

0
𝑃𝑢,𝑣(𝑇 − 𝑆, 𝑋, 𝑌)𝑍(𝑆, 𝑌)𝜉(𝑑𝑆, 𝑑𝑌)

where the integral against 𝜉 is in the sense of Itô, and 𝑃𝑢,𝑣(𝑇, 𝑋, 𝑌) is the Gaussian heat kernel
on [0,1]with inhomogeneousRobin boundary conditions, that is, for all𝑇 > 0 and𝑋,𝑌 ∈ (0, 1)

𝜕𝑇𝑃𝑢,𝑣(𝑇, 𝑋, 𝑌) = 𝜕2𝑋𝑃𝑢,𝑣(𝑇, 𝑋, 𝑌),

with 𝑃𝑢,𝑣(0, 𝑋, 𝑌) = 𝛿𝑋=𝑌 and, for all 𝑇 > 0 and 𝑌 ∈ [0, 1],

𝜕𝑋𝑃𝑢,𝑣(𝑇, 𝑋, 𝑌)||𝑋=0 = (𝑢 −
1

2

)
𝑃𝑢,𝑣(𝑇, 0, 𝑌),

𝜕𝑋𝑃𝑢,𝑣(𝑇, 𝑋, 𝑌)||𝑋=1 = −
(
𝑣 −

1

2

)
𝑃𝑢,𝑣(𝑇, 1, 𝑌).

The existence, uniqueness, and strict positivity (i.e., provided that 𝑍0 is almost surely strictly pos-
itive then almost surely (𝑍(𝑡, 𝑥))𝑡≥0,𝑥∈[0,1] is likewise strictly positive) for the solution of the SHE
are proved in Corwin and Shen [21, Proposition 2.7] and Parekh [44, Proposition 4.2].
The Hopf–Cole solution to the open KPZwith inhomogeneous Neumann boundary conditions

parameterized by 𝑢, 𝑣 ∈ ℝ and initial data 𝐻0 = log 𝑍0 ∈ 𝐶([0, 1]) is then the random function
𝐻 ∈ 𝐶([0,∞), 𝐶([0, 1])) defined on the same probability space as above by the equality

𝐻(𝑡, 𝑥) ∶= log 𝑍(𝑡, 𝑥), ∀𝑡 ≥ 0, 𝑥 ∈ [0, 1].

Owing to the strict positivity, this logarithm is well-defined.
Informally, one writes the SHE as the solution to the following stochastic PDE

𝜕𝑇𝑍(𝑇, 𝑋) =
1

2
𝜕2𝑋𝑍(𝑇, 𝑋) + 𝜉(𝑇, 𝑋)𝑍(𝑇, 𝑋)

for 𝑇 ≥ 0 and 𝑋 ∈ [0, 1] with boundary conditions that for all 𝑇 > 0,

𝜕𝑋𝑍(𝑇, 𝑋)
||||𝑋=0 = (𝑢 −

1

2

)
𝑍(𝑇, 0), 𝜕𝑋𝑍(𝑇, 𝑋)

||||𝑋=1 = −
(
𝑣 −

1

2

)
𝑍(𝑇, 0).

Justifying the above Hopf–Cole notion of solution to the KPZ equation has a long history
going back in the full-line case to Bertini and Cancrini [9]. For the above open KPZ equation,
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STATIONARY MEASURE FOR THE OPEN KPZ 2185

Gerencsér and Hairer [32] use regularity structures to show that this Hopf–Cole solution arises
when one smoothes the noise 𝜉 (in which case all equationsmake classical sense) and then renor-
malizes the solution as the smoothing is removed. Note that in going from the SHE 1 to KPZ
equation boundary condition 1, we have removed a factor of 1∕2. This is simply a convention used
to match the parameterization of the KPZ boundary conditions present in Gerencsér and Hairer
[32] and Goncalves et al. [33].
Our aim in this work is to provide a characterization of stationary solutions to the above open

KPZ equation. The solution to the open KPZ equation is aMarkov process in timewith state space
given by 𝐶([0, 1]). This process does not have stationary probability measures in the usual sense
since there is an overall drift and diffusion of the height function (in a similar spirit to how the
SSRW does not have a stationary probability measure). However, as we will show, the open KPZ
increment Markov process (𝐻(𝑇, 𝑋) − 𝐻(𝑇, 0))𝑇≥0,𝑋∈[0,1] does have stationary probability mea-
sures. Precisely, we say that a probability measure 𝜇𝑢,𝑣 on 𝐶([0, 1]) is stationary for the open KPZ
increment process if the following holds: For all time 𝑇 ≥ 0, the law of (𝐻(𝑇, 𝑋) − 𝐻(𝑇, 0))𝑋∈[0,1]
equals 𝜇𝑢,𝑣 where𝐻(𝑇,𝑋) is the Hopf–Cole solution to the open KPZ with inhomogeneous Neu-
mann boundary conditions parameterized by 𝑢, 𝑣 ∈ ℝ and initial data𝐻0 ∈ 𝐶([0, 1])whose law is
𝜇𝑢,𝑣. Rather than working directly with the stationary measure 𝜇𝑢,𝑣, we will often find it easier to
think of a random function𝐻𝑢,𝑣 ∈ 𝐶([0, 1])whose law is 𝜇𝑢,𝑣, for example, the canonical process
on the probability space (𝐶([0, 1]), , 𝜇𝑢,𝑣) with  the Borel sigma-algebra for 𝐶([0, 1]).
Theorem 1.2 provides the first construction of stationary probability measures 𝜇𝑢,𝑣 for the open

KPZ increment process for all choices of 𝑢 and 𝑣. For 𝑢 + 𝑣 ≥ 0, we completely characterize 𝜇𝑢,𝑣
via a duality—its multipoint Laplace transform is explicitly given in terms of a Markov process
that we call the continuous dual Hahn process. A simple case of these formulas shows that for
𝑢, 𝑣 > 0 and 𝑐 ∈ (0, 2𝑢),

𝔼
[
𝑒−𝑐𝐻𝑢,𝑣(1)

]
= 𝑒𝑐

2∕4 ⋅

∞∫
0
𝑒−𝑟

2
⋅
||Γ( 𝑐2+𝑢+𝑖𝑟)Γ(− 𝑐

2
+𝑣+𝑖𝑟)||2||Γ(2𝑖𝑟)||2 𝑑𝑟

∞∫
0
𝑒−𝑟2 ⋅

||Γ(𝑢+𝑖𝑟)Γ(𝑣+𝑖𝑟)||2||Γ(2𝑖𝑟)||2 𝑑𝑟

. (1.1)

The notation on the left-hand side needs a bit of explanation. As noted above, we
are using 𝐻𝑢,𝑣(𝑋; 𝜔) to denote the canonical process associated with the probability space
(𝐶([0, 1]), , 𝜇𝑢,𝑣). The expectation 𝔼 simply denotes integrating against the measure 𝜇𝑢,𝑣. In
other words, it could be written as ∫

𝐶([0,1])
𝑒−𝑐𝜔(1)𝑑𝜇𝑢,𝑣(𝜔). However, as is often the case in work-

ing with random variables versus their measures, we find it more clear to simply think of𝐻𝑢,𝑣 as
a random function with law 𝜇𝑢,𝑣. In Equation (1.1), 𝐻𝑢,𝑣(1) records the net height change across
the interval [0,1]. For 𝑢, 𝑣 > 0 and 𝑐 ∈ (0, 2𝑢), the integral on the right-hand side involves a con-
tinuous integrand. In the case where either 𝑢 or 𝑣 is negative, the formula has an extension (that
follows from our main result, Theorem 1.2, below) involving a continuous integrand plus a sum
of discrete atoms.
The Laplace transform formulas for 𝜇𝑢,𝑣 were inverted after the first version of this paper was

posted. In themathematics literature, this came inwork of Bryc et al. [14]while in the physics liter-
ature, it came in work of Barraquand and Le Doussal [8]. The inversions provide a satisfying prob-
abilistic description for the stationary measures: 𝜇𝑢,𝑣 is equal to the distribution of 2−1∕2𝑊 + 𝑌
where𝑊 and 𝑌 are independent stochastic processes that we now briefly describe.𝑊 ∈ 𝐶([0, 1])
is a standard Brownian motion. 𝑌 ∈ 𝐶([0, 1]) is given by a reweighing of a Brownian motion of
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2186 CORWIN and KNIZEL

variance 1∕2 as follows. Write the law of 𝑌 as ℙ𝑌 and the law of Brownian motion with variance
1∕2 as ℙ𝐵𝑀 . Then, the Radon–Nikodym derivative 𝑑ℙ𝑌

𝑑ℙ𝐵𝑀
(𝛽) for 𝛽 ∈ 𝐶([0, 1]) is proportional to

𝑒−2𝑣𝛽(1)

(
∫

1

0
𝑒−2𝛽(𝑡)𝑑𝑡

)−𝑢−𝑣

.

This description has been proven rigorously in Bryc et al. [14, Proposition 1.7] provided 𝑢 + 𝑣 ≥ 0
andmin(𝑢, 𝑣) > −1, and is conjectured in Barraquand and Le Doussal [8] to hold for all values of
𝑢 and 𝑣. For 𝑢 + 𝑣 = 0, 𝑌 reduces to a Brownian motion with drift and one sees that 2−1∕2𝑊 + 𝑌
has the law of standard Brownian motion with drift 𝑢 = −𝑣 (i.e., the law of the random function
on [0,1] given by 𝑋 ↦ 𝐵(𝑋) + 𝑢𝑋 where 𝐵 is a standard variance 1 Brownian motion).
Let us also note one further development since this paper was originally posted. For the half-

space KPZ equation, Barraquand and Corwin [6] constructed what is conjectured to be the full
set of stationary measures. The approach taken therein is quite different than here and proceeds
through studying the half-space log-gamma polymer model. Interestingly, the above sort of struc-
ture for the stationary measure (as a reweighing of simple random-walk type objects) can be seen
directly already at the level of the log-gamma polymer. As such, it would be interesting to find a
more direct proof of the above open KPZ stationary measure description in which this structure
is already apparent at the level of a discretization of the process.
The aim of the rest of this introduction is to state our main result, Theorem 1.2. This requires

introducing two other Markov processes—the open ASEP on an interval and the continuous dual
Hahn process. We proceed with those first.

1.1 The open ASEP

Fix six parameters 𝑞 ∈ [0, 1), 𝛼, 𝛽 > 0, 𝛾, 𝛿 ≥ 0, and 𝑁 ∈ ℤ≥1. Open ASEP is a continuous-time
Markov process taking values in the state space {0, 1}⟦1,𝑁⟧. The state at time 𝑡 is denoted by 𝜏(𝑡) =
(𝜏1(𝑡), … , 𝜏𝑁(𝑡)); sites 𝑥 ∈ {1, …𝑁}where 𝜏𝑥(𝑡) = 1 are said to be occupied by a particle, and those
where 𝜏𝑥(𝑡) = 0 are unoccupied. The process is defined via the rates of its transitions as follows:
Particles jump left or right from occupied sites to unoccupied sites within ⟦1,𝑁⟧ at rate 𝑞 or 𝑝 = 1,
respectively; at the left boundary, sites become occupied (if presently unoccupied) at site 1 at rate 𝛼
and become unoccupied (if presently occupied) at rate 𝛾; at the right boundary, particles become
occupied (if unoccupied) at site 𝑁 at rate 𝛿 and become unoccupied (if occupied) at rate 𝛽. All
moves are from independent exponential clocks. As it is easy to write down the generator of this
process from the above description, we do not labor this point (we also do not make use of this).
The open ASEP has a unique stationary probability measure 𝜋ASEP

𝑁 (𝜏), with the dependence
on the other parameters 𝑞, 𝛼, 𝛽, 𝛾, 𝛿 implicit. In other words, 𝜋ASEP

𝑁 uniquely satisfies𝜋ASEP
𝑁 = 0

where  is the generator of open ASEP. Note that in this paper, we only use the term stationary to
refer to this sort of temporal statistical stationarity, not any sort of spatial shift-invariance (which
anyway does not make much sense in this context). We will denote the expectation of a function
𝑓 ∶ {0, 1}⟦1,𝑁⟧ → ℝ under 𝜋𝑁(𝜏) by

⟨𝑓⟩𝑁 ∶=
∑

𝜏∈{0,1}
⟦1,𝑁⟧ 𝑓(𝜏) ⋅ 𝜋

ASEP
𝑁 (𝜏). (1.2)
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STATIONARY MEASURE FOR THE OPEN KPZ 2187

F IGURE 1 Open ASEP with system size 𝑁 = 10 and its height function ℎ𝑁(𝑡, 𝑥). Red arrows indicate some
possible moves with rates labeled.

This is in accordance with notation used in much of the physics and mathematics literature
around this model. For 𝜏 (defined on some probability space) distributed according to 𝜋ASEP

𝑁 , we
write

ℎ𝑁(𝑥) =
𝑥∑
𝑖=1

(2𝜏𝑖 − 1) (1.3)

for the associated random height function. Extend this to a continuous function on [0, 𝑁] by
linear interpolation.
From the occupation variable process 𝜏(𝑡) defined above, we define the ASEP height function

Markov process ℎ𝑁(𝑡, 𝑥). The subscript indicates the lattice size 𝑁, and the time 𝑡 and spatial
location 𝑥 are both arguments. The dependence of ℎ𝑁(𝑡, 𝑥) on the other parameters 𝑞, 𝛼, 𝛽, 𝛾, 𝛿
will be generally suppressed. The height function is defined for 𝑡 ≥ 0 and 𝑥 ∈ ⟦0,𝑁⟧ as

ℎ𝑁(𝑡, 𝑥) ∶= ℎ𝑁(𝑡, 0) +
𝑥∑
𝑖=1

(2𝜏𝑖(𝑡) − 1), ℎ𝑁(𝑡, 0) ∶= −2𝑁(𝑡)

where the net current𝑁(𝑡) equals the number of particles to enter into site 1 from the left reser-
voir minus the number of particles to exit from site 1 into the left reservoir, up to time 𝑡. The
height function definition is extended to 𝑥 ∈ [0,𝑁] by linear interpolation—see Figure 1. Just as
for the open KPZ equation, the openASEP height function process will not have a stationarymea-
sure. However, it is the increment process (which is essentially just the 𝜏 process) will: If ℎ𝑁(𝑥)
is randomly chosen as in Equation (1.3), then starting the ASEP height function process from
that initial data, we immediately get that the law of ℎ𝑁(𝑡, ⋅) − ℎ𝑁(𝑡, 0) as a function of ⋅ will be
𝑡-independent.
It is convenient to work with a particular parameterization for open ASEP. Consider the

functions

𝜅±(𝑞, 𝑥, 𝑦) ∶=
1
2𝑥

(
1 − 𝑞 − 𝑥 + 𝑦 ±

√
(1 − 𝑞 − 𝑥 + 𝑦)2 + 4𝑥𝑦

)
.

Let us define (𝑞, 𝐴, 𝐵, 𝐶, 𝐷) in terms of (𝑞, 𝛼, 𝛽, 𝛾, 𝛿) as

𝐴 = 𝜅+(𝑞, 𝛽, 𝛿), 𝐵 = 𝜅−(𝑞, 𝛽, 𝛿), 𝐶 = 𝜅+(𝑞, 𝛼, 𝛾), 𝐷 = 𝜅−(𝑞, 𝛼, 𝛾) (1.4)
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2188 CORWIN and KNIZEL

Given 𝑞, Equation (1.4) provides a bijection between {(𝛼, 𝛽, 𝛾, 𝛿) ∶ 𝛼, 𝛽 > 0, 𝛾, 𝛿 ≥ 0} and
{(𝐴, 𝐵, 𝐶, 𝐷) ∶ 𝐴, 𝐶 > 0, 𝐵, 𝐷 ∈ (−1, 0]}.
In order to make contact with the open KPZ equation, we have to assume that the rates vary

with 𝑁 and two parameters 𝑢, 𝑣 ∈ ℝ as follows.

Assumption 1.1. Let

𝑞 = exp

(
−

2√
𝑁

)
, 𝐴 = 𝑞𝑣, 𝐵 = −𝑞, 𝐶 = 𝑞𝑢, 𝐷 = −𝑞. (1.5)

Solving for 𝛼, 𝛽, 𝛾, and 𝛿 in terms of 𝑞, 𝑢, and 𝑣,

𝛼 =
1

1 + 𝑞𝑢
, 𝛽 =

1
1 + 𝑞𝑣

, 𝛾 =
𝑞𝑢+1

1 + 𝑞𝑢
, 𝛿 =

𝑞𝑣+1

1 + 𝑞𝑣
. (1.6)

Let ℎ𝑁(𝑋) be a randomheight function defined as in Equation (1.3) whose law is the push-forward
of the ASEP stationary measure 𝜋ASEP

𝑁 . Define a diffusive scaling of ℎ𝑁(𝑋), keeping track of 𝑁 in
the super-script and keeping track of the parameters 𝑢 and 𝑣 in the subscript: For 𝑋 ∈ [0, 1] ∩
ℤ∕𝑁, let

𝐻(𝑁)
𝑢,𝑣 (𝑋) ∶= 𝑁−1∕2ℎ𝑁(𝑁𝑋) (1.7)

and then linear interpolate to all 𝑋 ∈ [0, 1]. Finally, let 𝜇(𝑁)
𝑢,𝑣 denote the law of 𝐻(𝑁)

𝑢,𝑣 , that is, the
stationary measure itself.

The scaling of 𝑞 in Equation (1.5) in conjunction with the height function scaling in Equation
(1.7) is called weak asymmetry scaling. The conditions on 𝐴, 𝐵, 𝐶, and 𝐷 in Equation (1.5) corre-
spond to 𝛼, 𝛽, 𝛾, and 𝛿, which satisfy Liggett’s condition [38, 39] that 𝛼 + 𝛾∕𝑞 = 1 and 𝛽 + 𝛿∕𝑞 = 1.
Moreover, from Equation (1.6), we see that 𝛼, 𝛽, 𝛾, and 𝛿 satisfy triple point scaling, which means
that as 𝑁 → ∞,

𝛼 =
1
2
+

𝑢
2
𝑁−1∕2 + 𝑜(𝑁−1∕2), 𝛽 =

1
2
+

𝑣
2
𝑁−1∕2 + 𝑜(𝑁−1∕2),

𝛾 =
1
2
−

𝑢
2
𝑁−1∕2 + 𝑜(𝑁−1∕2), 𝛿 =

1
2
−

𝑣
2
𝑁−1∕2 + 𝑜(𝑁−1∕2).

1.2 Continuous dual Hahn process

The open KPZ stationary measures that we construct can be characterized via a duality with
another stochastic process whichwe call the continuous dual Hahn process (denoted below by𝕋𝑠).
This is a special limit of the Askey–Wilson processes constructed by Bryc and Wesołowski [18];
see Section 6. The continuous dual Hahn process depends on two parameters 𝑢, 𝑣 ∈ ℝ, which are
assumed throughout to satisfy the relation 𝑢 + 𝑣 > 0. The definition of this process is simplest
(and also appears in Bryc [11]) when 𝑢, 𝑣 > 0 and thus for the sake of this introduction, we will
only define it in that case here. Section 6.2 addresses the considerably more complicated general
case of 𝑢 + 𝑣 > 0.
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STATIONARY MEASURE FOR THE OPEN KPZ 2189

Wewill only define the continuous dual Hahn process𝕋𝑠 for 𝑠 ∈ [0, 𝖢𝑢,𝑣) (see subsequent work
of Bryc [12] for an extension to all of ℝ) where

𝖢𝑢,𝑣 ∶=

{
2 if 𝑢 ≤ 0 or 𝑢 ≥ 1,

2𝑢 if 𝑢 ∈ (0, 1).
(1.8)

Formulas become more involved outside [0, 𝖢𝑢,𝑣) and will not be needed.
For 𝑢, 𝑣 > 0 and 𝑠 ∈ [0, 𝖢𝑢,𝑣) define a measure 𝔭𝑠 with density given by

𝔭𝑠(𝑟) ∶=
(𝑣 + 𝑢)(𝑣 + 𝑢 + 1)

8𝜋
⋅

|||Γ
(
𝑠
2
+ 𝑣 + 𝑖

√
𝑟

2

)
⋅ Γ

(
−
𝑠
2
+ 𝑢 + 𝑖

√
𝑟

2

)|||2√
𝑟 ⋅ ||Γ(𝑖√𝑟)||2 𝟏𝑟>0.

This family of infinite measures will turn out to be preserve by our Markov process and necessary
in the statement of our main results.
FollowingWilson [51], we define the orthogonality probabilitymeasure for the continuous dual

Hahn orthogonal polynomials as follows: For 𝑎 ∈ ℝ and 𝑏 = 𝑐 ∈ ℂ ⧵ ℝ with Re(𝑏) = Re(𝑐) > 0
let

𝖢𝖣𝖧(𝑥; 𝑎, 𝑏, 𝑐) ∶=
1
8𝜋

⋅

||||Γ
(
𝑎 + 𝑖

√
𝑥

2

)
⋅ Γ

(
𝑏 + 𝑖

√
𝑥

2

)
⋅ Γ

(
𝑐 + 𝑖

√
𝑥

2

)||||
2

Γ(𝑎 + 𝑏) ⋅ Γ(𝑎 + 𝑐) ⋅ Γ(𝑏 + 𝑐) ⋅
√
𝑥 ⋅
||||Γ(𝑖√𝑥

)||||
2
𝟏𝑥>0.

For 𝑠, 𝑡 ∈ [0, 𝖢𝑢,𝑣) with 𝑠 < 𝑡 and𝑚, 𝑟 ∈ (0,∞), define a measure 𝔭𝑠,𝑡(𝑚, ⋅) with density in 𝑟 by

𝔭𝑠,𝑡(𝑚, 𝑟) ∶= 𝖢𝖣𝖧

(
𝑟; 𝑢 −

𝑡
2
,
𝑡 − 𝑠
2

+ 𝑖

√
𝑚

2
,
𝑡 − 𝑠
2

− 𝑖

√
𝑚

2

)
.

The continuous dualHahn process (with𝑢, 𝑣 > 0) {𝕋𝑠}𝑠∈[0,𝖢𝑢,𝑣) is theMarkov processwith state-
space ℝ>0 and transition probabilities given by 𝔭𝑠,𝑡. Lemma 6.9 verifies that the 𝔭𝑠,𝑡 satisfy the
Chapman–Kolmogorov equation. That lemma also verifies that if 𝕋0 is started according to the
infinite distribution 𝔭0 then the infinite distribution of 𝕋𝑠 is 𝔭𝑠 for all 𝑠 ∈ [0, 𝖢𝑢,𝑣).

1.3 Statement of the main result

For 𝑑 ∈ ℤ≥1, we will assume that

𝑋⃗ = (𝑋0, … , 𝑋𝑑+1) where 0 = 𝑋0 < 𝑋1 < ⋯ < 𝑋𝑑 ≤ 𝑋𝑑+1 = 1,

𝑐 = (𝑐1, … , 𝑐𝑑) where 𝑐1, … , 𝑐𝑑 > 0,

𝑠 = (𝑠1 > ⋯ > 𝑠𝑑+1) where 𝑠𝑘 = 𝑐𝑘 +⋯+ 𝑐𝑑 and 𝑠𝑑+1 = 0. (1.9)
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2190 CORWIN and KNIZEL

We are now prepared to state our main theorem. Part (1) shows the existence of stationary
measures for the open KPZ increment process as limits of stationary measures for the WASEP
increment process (i.e., with parameters scaled as in Equation (1.5)). Part (2) records a coupling
between these stationary measures in which height differences are stochastically ordered relative
to a certain ordering of the boundary parameters. Part (3) records the simple Brownian case for the
stationary measure, which occurs when 𝑢 + 𝑣 = 0. Part (4) records a duality, which comes from
switching the roles of 𝑢 and 𝑣. Part (5) provides a unique characterization of the WASEP derived
stationary measures for the open KPZ increment process provided that 𝑢 + 𝑣 > 0 (the 𝑢 + 𝑣 = 0
case was already addressed in part (3)). This characterization is given by a remarkable duality
formula, which relates the Laplace transform of the KPZ stationary measure to the continuous
dual Hahn process introduced above and in greater generality in Section 6.2. This shows that
provided 𝑢 + 𝑣 > 0, there is a unique limit point in part (1).
Section 2 gives an outline of the key ideas and logic that go into the proof of these results.

Theorem 1.2. Assume that open ASEP satisfies Assumption 1.1 for all𝑁.

(1) Tightness and construction of WASEP-stationary measures: For any 𝑢, 𝑣 ∈ ℝ, the 𝑁-
indexed sequence of laws of 𝜇(𝑁)

𝑢,𝑣 (recall from Assumption 1.1) are tight in the space of measures
on 𝐶([0, 1]) and all subsequential limits 𝜇𝑢,𝑣 are stationary measures for the open KPZ incre-
ment process and are almost surely Hölder 𝛼 for all 𝛼 < 1∕2. Call any such subsequential limit
aWASEP-stationary measure for the open KPZ increment process.

(2) Coupling: For any 𝑀 ∈ ℤ≥2, 𝑢1 ≤ ⋯ ≤ 𝑢𝑀 and 𝑣1 ≥ ⋯ ≥ 𝑣𝑀 , assume that {𝜇𝑢𝑖,𝑣𝑖 }
𝑀
𝑖=1 are

WASEP-stationary measures that arise in part (1) along the same subsequence as𝑁 → ∞. Then
there exists a probability space, which supports𝑀 random functions {𝐻𝑢𝑖,𝑣𝑖 }

𝑀
𝑖=1 in 𝐶([0, 1]) such

that marginally each 𝐻𝑢𝑖,𝑣𝑖 has distribution 𝜇𝑢𝑖,𝑣𝑖 and such that for all 0 ≤ 𝑋 ≤ 𝑋′ ≤ 1 and
1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑀,

𝐻𝑢𝑖,𝑣𝑖 (𝑋
′) − 𝐻𝑢𝑖,𝑣𝑖 (𝑋) ≤ 𝐻𝑢𝑗,𝑣𝑗 (𝑋

′) − 𝐻𝑢𝑗,𝑣𝑗 (𝑋).

(3) Brownian case: For 𝑢 + 𝑣 = 0, there is a uniqueWASEP-stationarymeasure 𝜇𝑢,−𝑢 for the open
KPZ increment process that coincides with the law of standard Brownianmotion of drift 𝑢 = −𝑣.

(4) Duality: For any 𝑢, 𝑣 ∈ ℝ, let 𝜇𝑢,𝑣 and 𝜇𝑣,𝑢 be a pair of WASEP-stationary measures for the
open KPZ equation, which arise in part (1) along the same subsequence as 𝑁 → ∞. Then the
corresponding stochastic processes𝑋 ↦ 𝐻𝑢,𝑣(𝑋) and𝑋 ↦ 𝐻𝑣,𝑢(1 − 𝑋) − 𝐻𝑣,𝑢(1)have the same
law in 𝐶([0, 1]).

(5) Explicit Laplace transform characterization: For 𝑢, 𝑣 ∈ ℝ with 𝑢 + 𝑣 > 0, the measures
𝜇(𝑁)
𝑢,𝑣 converge to a unique limit 𝜇𝑢,𝑣 as 𝑁 → ∞ (hence there is a unique WASEP-stationary
measure). This limit 𝜇𝑢,𝑣 is supported on 𝐶([0, 1]) and is determined by its multipoint Laplace
transform formula: For any 𝑑 ∈ ℤ≥1, 𝑋⃗, 𝑐, and 𝑠 as in Equation (1.9), provided 𝑠1 < 𝖢𝑢,𝑣 , see
Equation (1.8),

𝔼
[
𝑒−
∑𝑑

𝑘=1 𝑐𝑘𝐻𝑢,𝑣(𝑋𝑘)
]
=

𝔼

[
𝑒
1

4

∑𝑑+1
𝑘=1(𝑠

2
𝑘
−𝕋𝑠𝑘

)(𝑋𝑘−𝑋𝑘−1)
]

𝔼
[
𝑒
−

1

4
𝕋0
] =∶ 𝜙𝑢,𝑣(𝑐, 𝑋⃗) (1.10)

where on the left-hand side𝐻𝑢,𝑣 has law 𝜇𝑢,𝑣 and on the right-hand side where 𝕋𝑠 is the contin-
uous dual Hahn process started with 𝕋0 according to the infinite distribution 𝔭0 (see Sections 1.2
and 6.2). In particular, this implies that𝐻(𝑁)

𝑢,𝑣 ⇒ 𝐻𝑢,𝑣 as stochastic processes in 𝐶([0, 1]).
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STATIONARY MEASURE FOR THE OPEN KPZ 2191

As remarked earlier, the Laplace transform formula can be inverted. This was achieved after
the posting of this paper by Bryc et al. [14] and Barraquand and Le Doussal [8], see also Bryc and
Kuznetsov [13] where, in particular, the relationship between the results in Bryc et al. [14] and Bar-
raquand and Le Doussal [8] is discussed. The inversion relies on the spectral decomposition of the
heat kernel with an exponential potential (known as Liouville quantum mechanics in physics).
The condition 𝑢 + 𝑣 > 0 that we assume corresponds to the fan region for open ASEP/KPZ.While
we do not currently have formulas for 𝑢 + 𝑣 < 0 (the shock region), the description given in Bar-
raquand and Le Doussal [8] offers a plausible conjecture for the stationary measure with those
parameters. With our methods, it should also be possible to access the stationary measure for
the open KPZ increment process on an interval [0,𝑀] for any 𝑀 > 0. Taking the 𝑀 → ∞ limit
should make contact with the KPZ equation in a half-space. See Refs. [7, 8] for some discussion
on this limit procedure and Barraquand and Corwin [6] for an alternative approach to construct
the half-space KPZ increment process stationary measures.
Another important remark is that while our tightness result implies existence of stationary

measures for the open KPZ increment process, it does not imply uniqueness. Even for parame-
ters where we prove that WASEP-stationary measures are unique (i.e., uniqueness of the limit
points of the scaled open WASEP stationary measures), we do not rule out the existence of other
stationary measures for the open KPZ increment process with the same boundary parameters.
However, based on related results in the literature, we conxstructed are unique for all choices
of 𝑢 and 𝑣.

Conjecture 1.3. Fix any 𝑢, 𝑣 ∈ ℝ. Consider any two random functions 𝐻0, 𝐻̃0 ∈ 𝐶([0, 1]), sup-
ported on the same probability space. On this probability space, define a space-time white noise 𝜉
with the time variable ranging over ℝ and let 𝐻(𝑇,𝑋;−𝑇0) and 𝐻̃(𝑇, 𝑋;−𝑇0) denote the solutions
to the open KPZ equation started at time −𝑇0 with initial data 𝐻0 and 𝐻̃0, respectively. Then the
following one force one solution principle holds: For any 𝑆 < 𝑆′, the random functions (𝑇, 𝑋) ↦
𝐻(𝑇,𝑋) − 𝐻(𝑇, 0) and (𝑇, 𝑋) ↦ 𝐻̃(𝑇, 𝑋) − 𝐻̃(𝑇, 0) in 𝐶([𝑆, 𝑆′], 𝐶([0, 1])) converge almost surely
to the same limit as 𝑇0 → ∞. In particular, for any fixed 𝑢, 𝑣 ∈ 𝑅, there exists a unique stationary
measure for the open KPZ increment process.

For the KPZ increment process with periodic boundary conditions, Hairer and Mattingly
[35] showed uniqueness of the Brownian bridge stationary measure while [34] constructed the
infinitesimal generator and estimated its spectral gap, establishing 𝐿2 exponential ergodicity. Fur-
ther, Rosati [48] demonstrated the one force one solution principle. Let us also mention related
work of Refs. [5, 27, 28] for the stochastic Burgers equation, and work on the mixing time of open
ASEP [19, 24, 31, 37, 49].
Finally, we remark that Theorem 1.2 (2) and (3) combine to show that increments of 𝐻𝑢,𝑣 ∈

𝐶([0, 1]) with law 𝜇𝑢,𝑣 (for any WASEP-stationary measure coming for Theorem 1.2 (1)) are
stochastically sandwiched between Brownian motions of different drifts. Take 𝑀 = 3 and let
𝑢1 = −𝑣, 𝑢2 = 𝑢, 𝑢3 = 𝑢, and 𝑣1 = −𝑢, 𝑣2 = 𝑣, 𝑣3 = 𝑣. Then Theorem 1.2(3) implies that along
every subsequence of𝑁 → ∞, 𝜇(𝑁)

𝑢1,𝑣1 converges to 𝜇𝑢1,𝑣1 , which is the law of a standard Brownian
motion 𝐵−𝑣 of drift −𝑣; similarly 𝜇

(𝑁)
𝑢3,𝑣3 converges 𝜇𝑢3,𝑣3 , which is the law of a standard Brownian

motion 𝐵𝑢 of drift 𝑢. There is a subsequence along which 𝜇
(𝑁)
𝑢2,𝑣2 converges to the limit 𝜇𝑢2,𝑣2 . Thus,

Theorem 1.2 (2) implies that for all 0 ≤ 𝑋 ≤ 𝑋′ ≤ 1,

𝐵−𝑣(𝑋
′) − 𝐵−𝑣(𝑋) ≤ 𝐻𝑢,𝑣(𝑋

′) − 𝐻𝑢,𝑣(𝑋) ≤ 𝐵𝑢(𝑋
′) − 𝐵𝑢(𝑋) (1.11)
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2192 CORWIN and KNIZEL

with 𝐵−𝑣,𝐻𝑢,𝑣, 𝐵𝑢 are all random 𝐶([0, 1]) functions defined on a common probability space with
marginals given by 𝜇𝑢1,𝑣1 , 𝜇𝑢2,𝑣2 , and 𝜇𝑢3,𝑣3 , respectively. The Brownian case in Theorem 1.2 fol-
lows easily from the known fact that Bernoulli product measure is the stationary measure for
open ASEP when 𝑢 + 𝑣 = 0. This is the only case when the stationary measure for open ASEP
is simple and of product form. For general parameters, it is quite complicated. For ASEP on the
full line or torus, the stationary measure is product Bernoulli so for full line [30] and periodic [35]
KPZ increment processes the stationary measure is Brownian (two-sided Brownian motion with
general drift, or Brownian bridge with any fixed height shift).

1.3.1 Outline

Section 2 reviews the key ideas in the proof of Theorem 1.2. The proofs of Theorem 1.2 (1)–(4) are
in Section 5 and rely on Section 3 (the weak asymmetry scaling under which open ASEP height
function process converges to the open KPZ equation height function process) and Section 4
(coupling results for open ASEP). The proof of Theorem 1.2 (5) is given in Section 7. The starting
point in this proof (given in Section 6) is Corollary 2.2 (see also Proposition 2.1 and Bryc and
Wesołowski [18, Theorem 1]) which relates the generating function for the open ASEP stationary
measure to the Askey–Wilson process. Section 6.2 defines the continuous dual Hahn process,
which arises as a special limit of the Askey–Wilson process. The main calculation in the proof of
Theorem 1.2 (5) is Proposition 7.1 which computes the limit of the open ASEP stationary measure
generating function. Combining this with some of the results in Theorem 1.2 (1)–(4), we show
weak convergence and that the limit of the open ASEP formula gives the open KPZ Laplace
transform formula claimed in the theorem. The proof of this limit is given in Section 8 and relies
heavily on precise asymptotics for 𝑞-Pochhammer symbols. These asymptotics are stated as
Proposition 2.3 and proven in Section 9.

1.3.2 Notation

Lower versus upper case variableswill refer to discrete versus continuous objects, respectively. For
integers 𝑎 ≤ 𝑏, let ⟦𝑎, 𝑏⟧ ∶= {𝑎, … , 𝑏} andℤ≥𝑎 = ℤ ∩ [𝑎,∞) (and likewise forℤ replaced byℝ and
≥ replaced by>,≤ or<).Wewill use the standard notation for the Pochhammer and 𝑞-Pochhamer
symbols: For 𝑗 ∈ ℤ≥0 and 𝑥 ∈ ℝ, define [𝑥]𝑗 ∶= (𝑥)(𝑥 + 1)⋯ (𝑥 + 𝑗 − 1) with the conven-
tion that [𝑥]0 ∶= 1. For multiple arguments 𝑥1, … 𝑥𝑛 ∈ ℝ, define [𝑥1, … , 𝑥𝑛]𝑗 ∶= [𝑥1]𝑗 ⋯ [𝑥𝑛]𝑗 .
For 𝑎, 𝑞 ∈ ℂ, with |𝑞| < 1, and 𝑗 ∈ ℤ≥0 ∪ {∞}, define (𝑎; 𝑞)𝑗 ∶= (1 − 𝑎)(1 − 𝑎𝑞)⋯ (1 − 𝑎𝑞𝑗−1)
and (𝑎1, … , 𝑎𝑛; 𝑞)𝑗 = (𝑎1; 𝑞)𝑗 ⋯ (𝑎𝑗; 𝑞)𝑗 . We will often omit the dependence on 𝑞 and write
(𝑎)𝑗 or (𝑎1, … , 𝑎𝑛)𝑗 . We also use the notation Γ(𝑥1, … , 𝑥𝑛) ∶= Γ(𝑥1)⋯Γ(𝑥𝑛). We will denote
𝑖 ∶=

√
−1.

2 KEY IDEAS IN PROVING THEOREM 1.2

2.1 Key ideas in proving Theorem 1.2 (1)–(4)

The open ASEP height function process converges to the open KPZ equation height function pro-
cess under suitable weak asymmetry and triple point scaling. This result is basically contained in
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STATIONARY MEASURE FOR THE OPEN KPZ 2193

Refs. [21, 44] (see Section 3). To apply it to the open ASEP height function stationary measure, we
need to verify Hölder bounds on the exponential of 𝐻(𝑁)

𝑢,𝑣 (𝑋). These can be deduced from the fol-
lowing considerations. When 𝑢 + 𝑣 = 0, the open ASEP stationary measure is product Bernoulli.
This implies tightness of the height function 𝐻(𝑁)

𝑢,−𝑢 and Hölder bounds for it, and yields Theo-
rem 1.2 (3). To move to general 𝑢, 𝑣 we use the fact that here exists an attractive coupling between
versions of open ASEP with different boundary rates (a finite 𝑁 version of Theorem 1.2 (2)).
This coupling implies that the increments of the stationary height function are bounded above
and below by random walk increments (by appealing to the 𝑢 + 𝑣 = 0 result). This yields Hölder
bounds for all 𝑢 and 𝑣.

2.2 Key ideas in proving Theorem 1.2 (5)

The starting point for our work is the matrix product ansatz, introduced by Derrida et al. [25],
which describes the stationary measure in terms of certain noncommuting operator products.
Useful (infinite) matrix representations for these operators related to Askey–Wilson polynomials
[4, 36]. Jacobi matrices were discovered by Uchiyama et al. [50]; based on a slightly more gen-
eral matrix representation, Corteel and Williams [20] developed a combinatorial description for
the open ASEP stationary measure in terms of tableaux combinatorics. So far, these formulas
for the stationary measure have not been used for the type of asymptotics we need to perform
in order to access the KPZ equation, though Uchiyama et al. [50] did perform other interesting
asymptotics.
More recently, relying on the work of Uchiyama et al. [50], Bryc and Wesołowski [18] discov-

ered a way to rewrite the Askey–Wilson Jacobi matrix solution to the matrix product ansatz in
terms of the Askey–Wilson processes. These Markov processes were introduced earlier in Bryc
and Wesołowski [17] in relation to quadratic harnesses. Askey–Wilson polynomials are orthogo-
nal martingale polynomials for these processes. The following remarkable identity is our starting
point.

Proposition 2.1 (Theorem 1 of Bryc and Wesołowski [18]). Let ⟨⋅⟩𝑁 denote the expectation with
respect to the stationary measure 𝜋ASEP

𝑁 of open ASEP parameterized by 𝑞 and (𝐴, 𝐵, 𝐶, 𝐷) as in
Equation (1.4). Assume that𝐴𝐶 < 1. Then for 0 < 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛, the joint generating function of
the stationary measure for open ASEP can be expressed as

⟨ 𝑁∏
𝑗=1

𝑡
𝜏𝑗
𝑗

⟩
𝑁

=
𝔼
[∏𝑁

𝑗=1

(
1 + 𝑡𝑗 + 2

√
𝑡𝑗𝕐𝑡𝑗

)]
2𝑁𝔼

[
(1 + 𝕐1)

𝑁
] ,

where {𝕐𝑡}𝑡≥0 is the Askey–Wilson process with parameters (𝐴, 𝐵, 𝐶, 𝐷, 𝑞) defined in Section 6.

An immediate corollary [16, Section 4.3] of this is the multipoint Laplace transform formula
for𝐻(𝑁)

𝑢,𝑣 (𝑋) (defined from 𝜏 by combining Equations (1.7) and (1.3)) under the stationarymeasure
𝜋ASEP
𝑁 .

Corollary 2.2. As in Equation (1.4), let ⟨⋅⟩𝑁 denote the expectation with respect to the stationary
measure 𝜋ASEP

𝑁 of open ASEP parameterized by 𝑞 and (𝐴, 𝐵, 𝐶, 𝐷). Assume that 𝐴𝐶 < 1. For any
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2194 CORWIN and KNIZEL

𝑑 ∈ ℤ≥1, let 𝑋⃗, 𝑐, and 𝑠 be as in Equation (1.9), 𝑐 ∈ ℝ. Then,

𝜙(𝑁)(𝑐, 𝑐, 𝑋⃗) ∶=
⟨
𝑒−

∑𝑑

𝑘=1 𝑐𝑘𝐻
(𝑁)
𝑢,𝑣 (𝑋

(𝑁)
𝑘 )−𝑐𝐻(𝑁)

𝑢,𝑣 (1)
⟩
𝑁
=

𝔼

[
𝑑+1∏
𝑘=1

(
cosh

(
𝑠(𝑁)
𝑘

)
+ 𝕐

𝑒
−2𝑠

(𝑁)
𝑘

)𝑛𝑘−𝑛𝑘−1]
𝔼
[
(1 + 𝕐1)

𝑁
] (2.1)

where 𝑠(𝑁)
𝑘

= 𝑁−1∕2(𝑠𝑘 + 𝑐) for 𝑘 ∈ ⟦1, 𝑑 + 1⟧, 𝑋(𝑁)
𝑘

∶= 𝑁−1⌊𝑁𝑋𝑘⌋, 𝑛𝑘 = ⌊𝑁𝑋𝑘⌋ for 𝑘 ∈ ⟦1, 𝑑⟧,
and 𝕐𝑠 is the Askey–Wilson process (Definition 6.1) with parameters 𝐴, 𝐵, 𝐶, 𝐷, 𝑞 matching those
of the ASEP we are considering, and withmarginal distribution𝜋𝑠 (see Equation (6.8)) at all times 𝑠.
When 𝑐 = 0, wewill write𝜙(𝑁)(𝑐, 𝑋⃗) instead of𝜙(𝑁)(𝑐, 0, 𝑋⃗) and use 𝑠𝑘 instead of 𝑠𝑘 on the right-hand
side of Equation (2.1).

Note that the restriction that the 𝑐𝑘 are strictly positive comes from the increasing nature of the
𝑡’s from Proposition 2.1. We do not know how to analytically continue to general 𝑐𝑘. However, for
our purposes, it is sufficient to work with the positive 𝑐𝑘 and also to assume 𝑐 = 0. In that case,
when 𝑐 = 0, we write 𝜙(𝑁)(𝑐, 𝑋⃗) instead of 𝜙(𝑁)(𝑐, 0, 𝑋⃗).
Using this corollary, we see that the finite 𝑁 Laplace transform can be written as (see also

Equation (8.9))

𝜙(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) =

𝜙̃(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗)

𝜙̃(𝑁)
𝑢,𝑣 (0⃗, 𝑋⃗)

, 𝜙̃(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) ∶= 𝔼

[
𝑁𝑢+𝑣(𝑁)

((
𝕐̂(𝑁)
𝑠1 , … , 𝕐̂(𝑁)

𝑠𝑑+1

)
; 𝑐; 𝑋⃗

)]
.

Here we have set (see Equation (8.2)) 𝕐̂(𝑁)
𝑠 ∶= 2𝑁(1 − 𝕐𝑞𝑠 ) and (see Equation (8.8))

(𝑁)(𝑟; 𝑐; 𝑋⃗) ∶= 𝟏𝑟∈ℝ𝑑+1≤4𝑁 ⋅ 2−𝑁
𝑑+1∏
𝑘=1

(
cosh

(
𝑠𝑘√
𝑁

)
+ 1 −

𝑟𝑘

2𝑁

)𝑁(𝑋(𝑁)
𝑘

−𝑋(𝑁)
𝑘−1

)

.

It is easy to check that as a function in 𝑟, (𝑁)(𝑟; 𝑐; 𝑋⃗) converges point-wise to (see Equation (7.2))

(𝑟; 𝑐; 𝑋⃗) ∶= exp

(
1
4

𝑑+1∑
𝑘=1

(𝑠2
𝑘
− 𝑟𝑘)(𝑋𝑘 − 𝑋𝑘−1)

)
.

The overwhelming majority of the work is, thus, left to show that in an appropriate strong sense

𝑁𝑢+𝑣Law
(
𝕐̂(𝑁)
𝑠1 , … , 𝕐̂(𝑁)

𝑠𝑑+1

)
⇒ Law(𝕋𝑠1 , … , 𝕋𝑠𝑑+1)

where𝕋𝑠 is the continuous dual Hahn process started at 𝕋𝑠1 according to the infinite measure 𝔭𝑠1 .
In fact, what is really needed is the convergence of

𝜙̃(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) → 𝜙̃𝑢,𝑣(𝑐, 𝑋⃗) ∶= 𝔼

[((𝕋𝑠1 , … , 𝕋𝑠𝑑+1); 𝑐; 𝑋⃗
)]

(2.2)

from which the convergence 𝜙(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) → 𝜙𝑢,𝑣(𝑐, 𝑋⃗) readily follows.
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STATIONARY MEASURE FOR THE OPEN KPZ 2195

The 𝕐̂(𝑁) process can be thought of as a secant process to the Askey–Wilson process. If one
conditions on its value at 𝑠1, then the distribution of its values at times 𝑠2, … are given by the
product of bona-fide transition probabilities. On the other hand, themarginal distribution that we
have assumed of the Askey–Wilson process requires rescaling by 𝑁𝑢+𝑣 to have a nontrivial limit
as 𝑁 → ∞. As a result, in the limit 𝑁 → ∞, the marginal distribution of 𝕐̂(𝑁) ends up becoming
an infinite measure. This means that in order to establish the limit (2.2), we must establish both
point-wise convergence and rather strong bounds on themarginal and transitionalmeasures used
to define the 𝕐̂(𝑁) process, so as to be able to apply the dominated convergence theorem. Owing to
the fact that these measures are written in terms of 𝑞-Pochhammer functions, this analysis ends
up involving rather refined asymptotics of log(±𝑞𝑧; 𝑞)∞ for 𝑞 = 𝑒−𝜅 with both 𝜅 and 𝑧 varying in
certain potentially unbounded ranges.
Before delving into those asymptotics, let us explain one final wrinkle in the proof of Theo-

rem 1.2 (5). The argument described above ultimately shows (see Proposition 7.1) that the Laplace
transform 𝜙(𝑁)

𝑢,𝑣 (𝑐, 𝑋⃗) of the finite dimensional marginals of 𝜇
(𝑁)
𝑢,𝑣 converge to a limit 𝜙𝑢,𝑣(𝑐, 𝑋⃗)

as 𝑁 → ∞, provided the spectral variables 𝑐 ∈ (0, 𝖢𝑑,𝑢,𝑣)
𝑑. However, this does not immediately

means that 𝜇(𝑁)
𝑢,𝑣 converges to a limit itself. Indeed, if we knew independently that 𝜙𝑢,𝑣(𝑐, 𝑋⃗) was

the Laplace transform (in the 𝑐 variables) of some probability distribution 𝜇𝑢,𝑣 then this would
imply that 𝜇(𝑁)

𝑢,𝑣 ⇒ 𝜇𝑢,𝑣. This is due to a generalization (see Bryc and Wang [16, Appendix A]) of
an old result of Curtiss [22]. The work of Bryc et al. [14] (subsequent to our current paper) estab-
lished this property of 𝜙𝑢,𝑣(𝑐, 𝑋⃗) providedmin(𝑢, 𝑣) > −1 (in addition to the ongoing assumption
here that 𝑢 + 𝑣 > 0). That, however, does not cover the full range of 𝑢 and 𝑣.
In any case, prior to this inversion work, we developed a rather different route to show

that 𝜙𝑢,𝑣(𝑐, 𝑋⃗) is the Laplace transform of some probability distribution 𝜇𝑢,𝑣 and hence that
𝜇(𝑁)
𝑢,𝑣 ⇒ 𝜇𝑢,𝑣. Our approach uses some of the additional probabilistic information about the 𝜇

(𝑁)
𝑢,𝑣

measures provided to us by the earlier parts of Theorem 1.2. Namely, we use the tightness of 𝜇(𝑁)
𝑢,𝑣

(from Theorem 1.2 (1) and uniform control over exponential moments 𝜇(𝑁)
𝑢,𝑣 (from Theorem 1.2

(2) and (3)) to show that 𝜙𝑢,𝑣(𝑐, 𝑋⃗) coincides on an open set with the Laplace transform of some
sub(sub)sequential weak limits of 𝜇(𝑁)𝑢,𝑣. This identifies uniquely the weak limits along all
subsubsequences as being the same, and hence shows convergence of the original sequence of
measures. This combination of integrable (exact asymptotic calculation) and probabilistic (the
tightness and coupling arguments) methods is quite powerful and allowed us to proceed where
each method on its own failed to produce results.
As noted above, the proof of the Laplace transform convergence 𝜙(𝑁)

𝑢,𝑣 (𝑐, 𝑋⃗) → 𝜙𝑢,𝑣(𝑐, 𝑋⃗) consti-
tutes the most technically demanding part of this work. The starting point for this convergence
is the fact that the Askey–Wilson process marginal distributions and transition probabilities are
written explicitly in terms of the Askey–Wilson orthogonality measure, which in turn is written
in terms of 𝑞-gamma functions (i.e., certain 𝑞-Pochhammer symbols).
Thus, one of the key technical challenges here is to develop an explicit asymptotic expansion of

𝑞-Pochhammer symbols (really the 𝑞-gamma function) as 𝑞 → 1with precise error bounds which
can be controlled uniformly over all arguments. Recall that for 𝑎, 𝑞 ∈ ℂ, |𝑞| < 1, we let (𝑎; 𝑞)𝑗 ∶=
(1 − 𝑎)(1 − 𝑎𝑞)… (1 − 𝑎𝑞𝑗−1) and write (𝑎1, … , 𝑎𝑛; 𝑞)𝑗 = (𝑎1; 𝑞)𝑗 … (𝑎𝑗; 𝑞)𝑗 . We often drop the 𝑞
dependence. Let us define for 𝑧 ∈ ℂ and 𝜅 > 0 the following functions:

+[𝜅, 𝑧] = −
𝜋2

6𝜅
−

(
𝑧 −

1
2

)
log 𝜅 − log

[
Γ(𝑧)√
2𝜋

]
, (2.3)
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2196 CORWIN and KNIZEL

−[𝜅, 𝑧] =
𝜋2

12𝜅
−

(
𝑧 −

1
2

)
log 2. (2.4)

Proposition 2.3. For 𝜅 ∈ (0, 1) let 𝑞 = 𝑒−𝜅. For 𝑧 ∈ ℂ and𝑚 ∈ ℤ≥1

log(𝑞𝑧; 𝑞)∞ = +[𝜅, 𝑧] −
𝑚−1∑
𝑛=1

𝐵𝑛+1(𝑧)𝐵𝑛
𝑛(𝑛 + 1)!

𝜅𝑛 + 𝖤𝗋𝗋+𝑚[𝜅, 𝑧], (2.5)

log(−𝑞𝑧; 𝑞)∞ = −[𝜅, 𝑧] −
𝑚−1∑
𝑛=1

(2𝑛 − 1)
𝐵𝑛+1(𝑧)𝐵𝑛
𝑛(𝑛 + 1)!

𝜅𝑛 + 𝖤𝗋𝗋−𝑚[𝜅, 𝑧]. (2.6)

where 𝐵𝑘(𝑧) and 𝐵𝑘 denote Bernoulli polynomials and Bernoulli numbers (Section 9.1). For any 𝛼 ∈
(0, 𝜋), 𝜀 ∈ (0, 1∕2), and 𝑏 ∈ (𝑚 − 1,𝑚), there exist 𝐶, 𝜅0 > 0 such that for all 𝜅 ∈ (0, 𝜅0) and all
𝑧 ∈ ℂ with |Im(𝑧)| < 𝛼

𝜅

||𝖤𝗋𝗋±𝑚[𝜅, 𝑧]|| ≤ 𝐶
(
𝜅(1 + |𝑧|)2 + 𝜅𝑏(1 + |𝑧|)1+2𝑏+𝜀). (2.7)

The bound on 𝖤𝗋𝗋+𝑚[𝜅, 𝑧] further holds with the condition |Im(𝑧)| < 𝛼

𝜅
replaced by |Im(𝑧)| < 2𝛼

𝜅
.

Furthermore, for any 𝑟 > 0, 𝜀 ∈ (0, 1∕2) and 𝑏 ∈ (𝑚 − 1,𝑚), there exist 𝐶, 𝜅0 > 0 such that for all
𝜅 ∈ (0, 𝜅0) and all 𝑧 ∈ ℂ with dist(Re(𝑧), ℤ≤0) > 𝑟, Equation (2.7) continues to hold.

Observe that since 𝑒𝜋𝑖 = −1,

log(𝑞𝑧; 𝑞)∞ ↦ log(−𝑞𝑧; 𝑞)∞ when 𝑧 ↦ 𝑧 +
𝜋
𝜅
𝑖. (2.8)

Thus, the restriction that |Im(𝑧)| < 𝛼

𝜅
is quite natural and not really a restriction since we can

extract asymptotics for log(𝑞𝑧; 𝑞)∞ for general imaginary part using the above fact in conjunction
that log(𝑞𝑧; 𝑞)∞ remains invariant under 𝑧 ↦ 𝑧 +

2𝜋

𝜅
𝑖. This invariance easily implies the claims

after Equation (2.7) as corollaries of that bound with the restriction |Im(𝑧)| < 𝛼

𝜅
in place.

Wewill, in fact, onlymake use of the𝑚 = 1 case of the proposition, thoughwe leave the general
result since it is not much harder to prove and may be of subsequent use to others.
The 𝑞-gamma function is closely related to (𝑞𝑧; 𝑞)∞ and given byΓ𝑞(𝑧) = (1 − 𝑞)1−𝑧

(𝑞;𝑞)∞

(𝑞𝑧;𝑞)∞
, thus

our result can be seen as an asymptotic result for the 𝑞-gamma function as well. Asymptotics of
Γ𝑞 have been studied in a number of contexts previously, for example, Refs. [23, 41, 42, 52]. In all of
thoseworks (and others) the error bounds are either for 𝑧 fixed as 𝜅 goes to zero, or 𝜅 fixed as 𝑧 goes
to infinity in some direction. To our knowledge, there has been no analysis of how these two limits
balance. This balance, however, is extremely important for us since we will deal with measures
that are defined with respect to these 𝑞-Pochhammer symbols and certain key asymptotics that
we perform in Section 8 will involve probing |𝑧| of order 𝜅−1, with 𝜅 going to zero.
The proof of Proposition 2.3 (Section 9) relies on complex analytic methods often used in

analytic number theory [43, 47] such as the Mellin transform and the use of gamma, zeta,
Hurwitz zeta, and Jacobi theta functions. The formula (2.5) can already be found in [52, Theorem
2], though the error bound stated there involves fixed 𝑧 with 𝜅 tending to zero. In fact, the
proof of [52, Theorem 2] relies on an incorrect result, Zhang [52, Lemma 5], which claims
that 𝜁(𝑠, 𝑧) = (|𝑡|2𝑁+1) as |𝑡|→ ∞ uniformly for 𝑧 in any compact subset of Re(𝑧) > 0. Here
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STATIONARY MEASURE FOR THE OPEN KPZ 2197

𝜁(𝑠, 𝑧) is the Hurwitz zeta function and 𝑠 = 𝜎 + 𝑖𝑡 with real 𝜎 > −2𝑁 for 𝑁 ∈ ℤ≥1 and 𝑡 ∈ ℝ.
Proposition 9.5 provides a correct bound on the Hurwitz zeta function with exponential growth
𝑒|Arg(z)⋅𝑡| and important polynomial factors, which ultimately translate into our error bound
above. The analysis of (−𝑞𝑧; 𝑞)∞ is similar, though it involves the Dirichlet eta function as well.
We close this discussion by comparing our proof to that of Bryc and Wang [16] who studied

the scaling limit of the ASEP stationary measure for 𝑞 (and the boundary parameters) fixed, as
opposed to scaling with 𝑁. There they also utilized the Askey–Wilson processes, but there were
two major simplifications. The first was that the 𝑞-Pochhammer symbols that come up there
are easily controlled since 𝑞 is not varying. This renders the asymptotics of the Laplace trans-
form considerably simpler. The second is that the limiting Laplace transform was recognizable
as the Laplace transform of a probability distribution due to their work in Bryc and Wang [15].
This avoided the need for the additional twist described above. Another difference with Bryc and
Wang [16] is that they were only concerned with taking a limit of the stationary measure—they
do not show that this limit measure is stationary for some limiting Markov process. In our case,
additional probabilistic/stochastic analytic work is needed to show that the limiting measures are
stationarymeasures for the openKPZ equation height function increment process. These remarks
are not meant to diminish the work of Bryc and Wang [16] but rather indicate how it serves a key
starting point for this current paper, which has to confront a number of additional conceptual and
technical challenges.

3 WEAK ASYMMETRY LIMIT TO THE OPEN KPZ EQUATION

The open ASEP height function process (recall from Section 1.1) converges to the Hopf–Cole solu-
tion to the open KPZ equation under the following assumptions on parameters. Here we will not
necessarily assume that ASEP is started from its stationary measure, but rather allow for a very
general class of initial data that satisfy some Hölder bounds.

Assumption 3.1.

(1) Weak asymmetry scaling: 𝑞 = exp(−
2√
𝑁
).

(2) Liggett’s condition: 𝛼 + 𝛾∕𝑞 = 1 and 𝛽 + 𝛿∕𝑞 = 1.
(3) Triple point scaling: For some 𝑢, 𝑣 ∈ ℝ, as 𝑁 → ∞

𝛼 =
1
2
+

𝑢
2
𝑁−1∕2 + 𝑜(𝑁−1∕2), 𝛽 =

1
2
+

𝑣
2
𝑁−1∕2 + 𝑜(𝑁−1∕2),

𝛾 =
1
2
−

𝑢
2
𝑁−1∕2 + 𝑜(𝑁−1∕2), 𝛿 =

1
2
−

𝑣
2
𝑁−1∕2 + 𝑜(𝑁−1∕2).

(4) 4 ∶ 2 ∶ 1 height function scaling: For 𝑇 ≥ 0 and 𝑋 ∈ [0, 1] define

𝐻(𝑁)
𝑢,𝑣 (𝑇, 𝑋) ∶= 𝑁−1∕2ℎ𝑁(

1

2
𝑒𝑁

−1∕2
𝑁2𝑇,𝑁𝑋) + (

1

2
𝑁 +

1

24
)𝑇,

𝑍(𝑁)
𝑢,𝑣 (𝑇, 𝑋) ∶= 𝑒𝐻

(𝑁)
𝑢,𝑣 (𝑇,𝑋),

where ℎ𝑁 is the ASEP height function process.
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2198 CORWIN and KNIZEL

(5) Hölder bounds on initial data: The 𝑁-indexed sequence of open ASEP initial data ℎ𝑁(0, ⋅)
satisfies that for all 𝜃 ∈ (0,

1

2
) and 𝑛 ∈ ℤ≥1, there exist positive 𝐶(𝑛), 𝐶(𝜃, 𝑛) such that for

every 𝑋,𝑋′ ∈ [0, 1] and 𝑁 ∈ ℤ≥1

‖𝑍(𝑁)
𝑢,𝑣 (0, 𝑋)‖𝑛 ≤ 𝐶(𝑛), and ‖𝑍(𝑁)

𝑢,𝑣 (0, 𝑋) − 𝑍(𝑁)
𝑢,𝑣 (0, 𝑋

′)‖𝑛 ≤ 𝐶(𝜃, 𝑛)|𝑋 − 𝑋′|𝜃.
Here ‖ ⋅ ‖𝑛 ∶= (𝔼[| ⋅ |𝑛])1∕𝑛 where 𝔼 is expectation over ℎ𝑁(0, ⋅) (recall that we are not
currently assuming that the law of this initial data is stationary).

Proposition 3.2. Consider any 𝑁-indexed sequence of open ASEPs with parameters and initial
datum satisfying all Assumption 3.1. Then the law of 𝑍(𝑁)

𝑢,𝑣 (⋅, ⋅) ∈ 𝐷([0, 𝑇0], 𝐶([0, 1])) (the Skoro-
hod space) is tight as 𝑇 → ∞ for any fixed 𝑇0 > 0 and all limit points are in 𝐶([0, 𝑇0], 𝐶([0, 1])).
If there exists a (possibly random) non-negative-valued function 𝑍0 ∈ 𝐶([0, 1]) such that, as 𝑁 →
∞, 𝑍(𝑁)

𝑢,𝑣 (0, 𝑋) ⟹ 𝑍0(𝑋) in the space of continuous processes of 𝑋 ∈ [0, 1]), then 𝑍(𝑁)
𝑢,𝑣 (𝑇, 𝑋) ⟹

𝑍𝑢,𝑣(𝑇, 𝑋) in𝐷([0, 𝑇0], 𝐶([0, 1])) for any 𝑇0 > 0 as𝑁 → ∞, where 𝑍𝑢,𝑣(𝑇, 𝑋) in𝐶([0, 𝑇0], 𝐶([0, 1]))
is the unique mild solution to the SHE with boundary parameters 𝑢 and 𝑣, and initial data 𝑍0(𝑋)
(recall the definition from the beginning of Section 1).

The Skorohod space is used above since ASEP takes discrete jumps in time.

Proof. This result is essentially contained in Corwin and Shen [21] for 𝑢, 𝑣 ≥ 1∕2 and Parekh [44]
for general 𝑢, 𝑣 ∈ ℝ. The tightness is fromCorwin and Shen [21, Proposition 4.17] and Parekh [44,
Proposition 5.4] while the convergence result is from Corwin and Shen [21, Theorem 2.18] and
Parekh [44, Theorem 1.1]. The only difference from those works is that we have used a different
parametrization. For the tightness, the boundary parameters play no role and hence our result fol-
lows immediately from that of Refs. [21, 44]. For the convergence result, our parametrization can
relatively easily bematched to that used in Refs. [21, 44] and their parameters𝐴 and 𝐵 correspond
to 𝑢 − 1∕2 + 𝑜(1) and 𝑣 − 1∕2 + 𝑜(1), respectively. The 𝑜(1) terms go to zero as 𝑁 go to infinity
and thus do not affect the limiting equation (as can be justified either by a coupling argument or
by tracing through the proof in Refs. [21, 44]). □

4 ATTRACTIVE COUPLING OF DIFFERENT BOUNDARY
PARAMETERS

This prepares us for the proof of Theorem 1.2 (1)–(4) in Section 5.

4.1 Coupling via multispecies open ASEP

We prove an attractive coupling of open ASEPs with different boundary conditions. This means
that if the occupation variables start ordered between different ASEPs, then they will remain
ordered. As is standard in proving attractive couplings (e.g., Andjel and Vares [1]), we appeal to
a multispecies version of the model. For 𝑀 = 2, part (1) below coincides with Gantert et al. [31,
Lemma 2.1].
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STATIONARY MEASURE FOR THE OPEN KPZ 2199

Lemma 4.1. Fix 𝑞 ≥ 0, any𝑀 ≥ 2 and any non-negative real numbers {𝛼𝑖}𝑀𝑖=1, {𝛽
𝑖}𝑀𝑖=1, {𝛾

𝑖}𝑀𝑖=1, and
{𝛿𝑖}𝑀𝑖=1 such that for all 𝑖 < 𝑗,

𝛼𝑖 ≤ 𝛼𝑗, 𝛽𝑖 ≥ 𝛽𝑗, 𝛾𝑖 ≥ 𝛾𝑗, 𝛿𝑖 ≤ 𝛿𝑗.

For each 𝑖 ∈ {1, … ,𝑀} fix any initial data 𝜏𝑖 = (𝜏𝑖𝑥)𝑥∈⟦1,𝑁⟧ ∈ {0, 1}𝑁 such that for all 1 ≤ 𝑖 < 𝑗 ≤
𝑀, 𝜏𝑖 ≤ 𝜏𝑗 (i.e., 𝜏𝑖𝑥 ≤ 𝜏

𝑗
𝑥 for all 𝑥 ∈ ⟦1,𝑁⟧). Let 𝜏𝑖(⋅) denote the 𝑁 site open ASEP with parameter

(𝑞, 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝛿𝑖) started with 𝜏𝑖(0) = 𝜏𝑖 . Then,

(1) There exists a single probability space supporting 𝑀 processes 𝜏1(⋅), … , 𝜏𝑀(⋅) and has the
property that for all 𝑡 ≥ 0 and 1 ≤ 𝑖 < 𝑗 ≤ 𝑀, 𝜏𝑖(𝑡) ≤ 𝜏𝑗(𝑡).

(2) Let 𝜏̃𝑖 denote an occupation vector distributed according to the stationary measure for the𝑁 site
open ASEP with parameters (𝑞, 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝛿𝑖). Then, there exists a coupling of all 𝑀 stationary
measures such that for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑀, 𝜏̃𝑖 ≤ 𝜏̃𝑗 .

Proof. The second claim follows immediately from the first by taking time to infinity and using the
uniqueness of the stationarymeasure. The first claim can be shown by appealing to amultispecies
open ASEP. Consider an𝑀 species version of open ASEP where sites can be occupied by a single
particle of species 1 through 𝑀. This process has the following transition rates (as a convention
let 𝛼0 = 𝛽𝑀+1 = 𝛾𝑀+1 = 𝛿0 = 0)

(1) For 𝑥 ∈ ⟦1,𝑁 − 1⟧, if sites 𝑥 and 𝑥 + 1 are occupied by 𝐴𝐵 (i.e., there is a species 𝐴 particle
at site 𝑥 and a species 𝐵 particle at site 𝑥 + 1), then this becomes 𝐵𝐴 with rate 1 if 𝐴 < 𝐵 and
rate 𝑞 if 𝐴 > 𝐵.

(2) If site 1 is occupied by𝐴, then this becomes 𝐵 at rate 𝛼𝐵 − 𝛼𝐵−1 if𝐴 > 𝐵 and at rate 𝛾𝐵 − 𝛾𝐵+1

of 𝐴 < 𝐵.
(3) If site𝑁 is occupied by𝐴, then this becomes𝐵 at rate 𝛽𝐵 − 𝛽𝐵+1 if𝐴 < 𝐵 and at rate 𝛿𝐵 − 𝛿𝐵−1

if 𝐴 > 𝐵.

Denote the occupation variables for this process by 𝜂𝑖𝑥(𝑡) ∈ {0, 1}where 𝑖 ∈ ⟦1,𝑀⟧,𝑥 ∈ ⟦1,𝑁⟧ and
𝑡 ≥ 0. In otherwords, 𝜂𝑖𝑥(𝑡) = 1 if there is a species 𝑖 particle at position𝑥 at time 𝑡, and 0 otherwise.
From these multispecies occupation variables, we define 𝜏𝑖𝑥(𝑡) =

∑𝑖
𝑗=1 𝜂

𝑗
𝑥(𝑡). From the 𝜏𝑖𝑥 in the

statement of the lemma, we define initial data for the multispecies ASEP by 𝜂
𝑗
𝑥(0) = 𝜏𝑖𝑥 − 𝜏𝑖−1𝑥

(with the convention that 𝜏0𝑥 = 0). It is evident that 𝜏𝑖𝑥(0) = 𝜏𝑖𝑥 and that marginally, for each 𝑖 ∈⟦1,𝑀⟧, 𝜏𝑖(𝑡) evolves as a process in 𝑡 precisely as openASEPwith parameters (𝑞, 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝛿𝑖). This
implies the desired attractive coupling since for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑁, the difference 𝜏𝑗𝑥(𝑡) − 𝜏𝑖𝑥(𝑡) =∑𝑗

𝑘=𝑖+1 𝜂
𝑘
𝑥(𝑡) is positive, hence 𝜏𝑖𝑥(𝑡) ≤ 𝜏

𝑗
𝑥(𝑡) as desired. □

4.2 Height function coupling and its implications

Armed with the attractive coupling of Lemma 4.1, we may now prove the following results.

Proposition 4.2. Fix 𝑢, 𝑣 ∈ ℝ and consider the stationary measure for 𝑁 site open ASEP param-
eterized as in Equation (1.5) of Assumption 1.1 by 𝑢 and 𝑣. As in Equation (1.7), define the diffusive
scaled stationary height function 𝐻(𝑁)

𝑢,𝑣 (𝑋) ∈ 𝐶([0, 1]), and then define its exponential transform
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2200 CORWIN and KNIZEL

𝑍(𝑁)
𝑢,𝑣 (𝑋) ∶= exp(𝐻(𝑁)

𝑢,𝑣 (𝑋)). Then the following holds (in points Equations 4 and 5) below we use the
notation ‖ ⋅ ‖𝑛 ∶= (⟨| ⋅ |𝑛⟩𝑁)1∕𝑛 where ⟨⋅⟩𝑁 is the expectation from Equation (1.2) with respect to the
open ASEP stationary measure 𝜋ASEP

𝑁 ):

(1) As processes in 𝐶([0, 1]) as 𝑁 → ∞ 𝐻(𝑁)
𝑢,−𝑢(𝑋) ⟹ 𝐵𝑢(𝑋) where 𝐵𝑢 is a standard Brownian

motion with drift 𝑢 (i.e., 𝐵𝑢(𝑋) = 𝐵(𝑋) + 𝑢𝑋 for 𝐵 a standard variance 1 Brownian motion and
𝑋 ∈ [0, 1]).

(2) For any 𝑢, 𝑣 ∈ ℝ, 𝐻(𝑁)
𝑢,𝑣 (⋅) and 𝐻

(𝑁)
𝑣,𝑢 (1 − 𝑋) − 𝐻(𝑁)

𝑣,𝑢 (1) have the same law as random functions
in 𝐶([0, 1]).

(3) For all 𝑢 and 𝑣 such that 𝑢 + 𝑣 ≥ 0, there exists a coupling of 𝐻(𝑁)
𝑢,𝑣 with 𝐻(𝑁)

𝑢,−𝑢 and 𝐻
(𝑁)
−𝑣,𝑣 such

that for all 𝑋,𝑋′ ∈ [0, 1] with 𝑋 ≤ 𝑋′,

𝐻(𝑁)
−𝑣,𝑣(𝑋

′) − 𝐻(𝑁)
−𝑣,𝑣(𝑋) ≤ 𝐻(𝑁)

𝑢,𝑣 (𝑋
′) − 𝐻(𝑁)

𝑢,𝑣 (𝑋) ≤ 𝐻(𝑁)
𝑢,−𝑢(𝑋

′) − 𝐻(𝑁)
𝑢,−𝑢(𝑋).

For all 𝑢 and 𝑣 such that 𝑢 + 𝑣 ≤ 0, there exists a coupling of 𝐻(𝑁)
𝑢,𝑣 with 𝐻(𝑁)

𝑢,−𝑢 and 𝐻
(𝑁)
−𝑣,𝑣 such

that for all 𝑋,𝑋′ ∈ [0, 1] with 𝑋 ≤ 𝑋′,

𝐻(𝑁)
−𝑣,𝑣(𝑋

′) − 𝐻(𝑁)
−𝑣,𝑣(𝑋) ≥ 𝐻(𝑁)

𝑢,𝑣 (𝑋
′) − 𝐻(𝑁)

𝑢,𝑣 (𝑋) ≥ 𝐻(𝑁)
𝑢,−𝑢(𝑋

′) − 𝐻(𝑁)
𝑢,−𝑢(𝑋).

(4) For all 𝑢, 𝑣 ∈ ℝ, we have the followingHölder bound. For all 𝜃 ∈ (0,
1

2
) and every 𝑛 ∈ ℤ≥1, there

exists a constant 𝐶(𝜃, 𝑛, 𝑢, 𝑣) > 0 such that for every 𝑋,𝑋′ ∈ [0, 1] and every𝑁 ∈ ℤ≥1,

‖‖𝐻(𝑁)
𝑢,𝑣 (𝑋) − 𝐻(𝑁)

𝑢,𝑣 (𝑋
′)‖‖𝑛 ≤ 𝐶(𝜃, 𝑛, 𝑢, 𝑣)||𝑋 − 𝑋′||𝜃. (4.1)

(5) For all 𝑢, 𝑣 ∈ ℝ, we have the following Hölder bounds. For all 𝑛 ∈ ℤ, there exists 𝐶(𝑛, 𝑢, 𝑣) > 0
such that for all𝑁 ∈ ℤ≥1 and all 𝑋 ∈ [0, 1]

‖𝑍(𝑁)
𝑢,𝑣 (𝑋)‖𝑛 ≤ 𝐶(𝑛, 𝑢, 𝑣), (4.2)

and for all 𝜃 ∈ (0,
1

2
) and every 𝑛 ∈ ℤ≥1, there exists a constant 𝐶(𝜃, 𝑛, 𝑢, 𝑣) > 0 such that for

every 𝑋,𝑋′ ∈ [0, 1] and every𝑁 ∈ ℤ≥1,

‖‖𝑍(𝑁)
𝑢,𝑣 (𝑋) − 𝑍(𝑁)

𝑢,𝑣 (𝑋
′)‖‖𝑛 ≤ 𝐶(𝜃, 𝑛, 𝑢, 𝑣)||𝑋 − 𝑋′||𝜃. (4.3)

Proof. Part (1) follows from that fact that when 𝑣 = −𝑢, 𝐴𝐶 = 1 (recall 𝐴 and 𝐶 from Equation
(1.5)), which implies (see Bryc and Wang [16, Remark 2.4], Enaud and Derrida [29], or Goncalves
et al. [33]) that the open ASEP stationary measure is product Bernoulli with particle density
𝜌 = (1 + 𝐴)−1. As in Equation (1.3), for 𝑥 ∈ ⟦0,𝑁⟧ define ℎ𝑁;𝑢,−𝑢(𝑥) =

∑𝑥
𝑖=1(2𝜏𝑖 − 1) where 𝜏

has this stationary Bernoulli product measure. This means that ℎ𝑁;𝑢,−𝑢(⋅) is a random walk with
i.i.d. ±1 increments, increasing by 1 with probability 𝜌(𝑢) = (1 + 𝑞𝑢)

−1 and decreasing by 1 with
probability 1 − 𝜌(𝑢). Since 𝜌 = 𝜌(𝑢) =

1

2
(1 − 𝑢𝑁−1∕2 + 𝑂(𝑁−1)), the mean of the jump distribu-

tion for ℎ𝑁;𝑢,−𝑢(𝑥) is 𝑢𝑁−1∕2 + 𝑂(𝑁−1) and the variance is 1 + 𝑂(𝑁−1∕2). It then follows from
Donsker’s invariant theorem that under diffusive scaling,𝐻(𝑁)

𝑢,𝑣 (𝑋) = 𝑁−1∕2𝐻(𝑁)
𝑢,−𝑢(𝑁𝑋) converges

as a process in 𝐶([0, 1]) to 𝐵𝑢, a standard Brownian motion with drift 𝑢, as claimed. Part (2) fol-
lows immediately from the particle/hole duality for open ASEP. Part (3) follows immediately by
applying Lemma 4.1 with𝑀 = 3 to sandwich the 𝑢, 𝑣 height function by the 𝑢,−𝑢 and −𝑣, 𝑣 one.
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STATIONARY MEASURE FOR THE OPEN KPZ 2201

Part (4) makes use of results we have already demonstrated in parts (1) and (3) above. By part
(1),𝐻(𝑁)

−𝑣,𝑣 and𝐻
(𝑁)
𝑢,−𝑢 are both diffusively rescaled randomwalks and by part (3), the increments of

𝐻(𝑁)
𝑢,𝑣 are bounded below and above in our coupled probability space by the increments of 𝐻(𝑁)

−𝑣,𝑣

and 𝐻(𝑁)
𝑢,−𝑢 (depending on the sign of 𝑢 + 𝑣, the ordering is switched). Taking the 𝑛th power of

these inequalities and then expectations yields

‖‖𝐻(𝑁)
𝑢,𝑣 (𝑋

′) − 𝐻(𝑁)
𝑢,𝑣 (𝑋)‖‖𝑛𝑛 ≤ 2max

(‖‖‖𝐻(𝑁)
−𝑣,𝑣(𝑋

′) − 𝐻(𝑁)
−𝑣,𝑣(𝑋)

‖‖‖𝑛𝑛, ‖‖‖𝐻(𝑁)
𝑢,−𝑢(𝑋

′) − 𝐻(𝑁)
𝑢,−𝑢(𝑋)

‖‖‖𝑛𝑛).
(Here we have used the following argument. Given two non-negative numbers 𝑎 and 𝑏, note that
max(𝑎, 𝑏) ≤ 𝑎 + 𝑏 ≤ 2max(𝑎, 𝑏). Now, consider two non-negative random variables𝐴 and𝐵. The
first inequality gives 𝔼[max(𝐴, 𝐵)] ≤ 𝔼[𝐴] + 𝔼[𝐵] and using the second inequality, we find that
𝔼[𝐴] + 𝔼[𝐵] ≤ 2max(𝔼[𝐴], 𝔼[𝐵])). Thus, in order to prove the Hölder bound (4.1) for 𝐻(𝑁)

𝑢,𝑣 , it
suffices to show it for both𝐻(𝑁)

−𝑣,𝑣 and𝐻
(𝑁)
𝑢,−𝑢. These bounds, however, follow readily since𝐻(𝑁)

−𝑣,𝑣 and
𝐻(𝑁)

𝑢,−𝑢 are diffusively rescaled simple randomwalks, which converge to drifted Brownianmotions.
Turning to part (5), we first show Equation (4.2). As in the part (4) proof, we may use the

coupling in part (3) to show that

‖‖𝑍(𝑁)
𝑢,𝑣 (𝑋)‖‖𝑛𝑛 ≤ 2max

(‖‖𝑍(𝑁)
−𝑣,𝑣(𝑋)‖‖𝑛𝑛, ‖‖𝑍(𝑁)

𝑢,−𝑢(𝑋)‖‖𝑛𝑛). (4.4)

So, it is sufficient to show Equation (4.2) with 𝑍(𝑁)
𝑢,𝑣 (𝑋) replaced by both 𝑍(𝑁)

−𝑣,𝑣(𝑋) and 𝑍(𝑁)
𝑢,−𝑢(𝑋).

Each of these expressions involves the exponential of a diffusively scaled i.i.d. simple random
walks. As we did not include the analogous calculation in part (4), we include this.
Let 𝑦1, … , 𝑦𝑁 be i.i.d. random variables with ℙ(𝑦1 = 1) = 𝜌 ∶= (1 + 𝑞𝑢)

−1 and ℙ(𝑦1 = −1) =
1 − 𝜌. Then we claim that for all 𝑛 ∈ ℤ≥1, there exists 𝐶(𝑛, 𝑢) > 0 such that

𝔼

[(
𝑒𝑁

−1∕2(𝑦1+⋯+𝑦𝑀)
)𝑛] ≤ 𝐶(𝑛, 𝑢) (4.5)

for all 𝑀 ≤ 𝑁 ∈ ℤ≥1. It is clear that Equation (4.2) immediately follows by combining this with
Equation (4.4) and the randomwalk description of both 𝑍(𝑁)

−𝑣,𝑣(𝑋) and 𝑍
(𝑁)
𝑢,−𝑢(𝑋). So, we now focus

on proving Equation (4.5).
By independence of the 𝑦𝑖 , we can rewrite the left-hand side of Equation (4.5) as

𝔼

[(
𝑒𝑁

−1∕2(𝑦1+⋯+𝑦𝑀)
)𝑛]

=
(
𝜌𝑒𝑛𝑁

−1∕2
+ (1 − 𝜌)𝑒−𝑛𝑁

−1∕2
)𝑀

. (4.6)

Taylor expanding yields the asymptotics that 𝜌𝑒𝑛𝑁−1∕2
+ (1 − 𝜌)𝑒−𝑛𝑁

−1∕2
= 1 + (𝑛2∕2 + 𝑢𝑛)𝑁−1 +

𝑜(𝑁−1). Raising this to the𝑀th power yields a bound on the right-hand side of Equation (4.6) like
𝑒(𝑛

2∕2+𝑢𝑛)𝑋 where 𝑋 = 𝑀∕𝑁 ∈ [0, 1]. The maximum occurs at either 𝑋 = 0 or 𝑋 = 1 depending
on the sign of 𝑛2∕2 + 𝑢𝑛, and thus letting 𝐶(𝑛, 𝑢) = max(1, 𝑒𝑛

2∕2+𝑢𝑛) seems to work. To make the
above argument rigorous, we just need to control the Taylor expansion error. If 𝜌𝑒𝑛𝑁−1∕2

+ (1 −

𝜌)𝑒−𝑛𝑁
−1∕2 ≤ 1 then the right-hand side in Equation (4.6) is maximized when 𝑀 = 0, otherwise

it is maximized when𝑀 = 𝑁. In the first case when𝑀 = 0, the right-hand side of Equation (4.6)
is obviously bounded by 1. So, it suffices to bound the right-hand side of Equation (4.6) when
𝑀 = 𝑁.
We recall a few elementary inequalities which control the Taylor expansion and provide bounds

which hold for all 𝑛,𝑁 ∈ ℤ≥1 and 𝑢 ∈ ℝ. Below, 𝐶 will denote a positive constant. Recall that

 10970312, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22174 by C

olum
bia U

niversity L
ibraries, W

iley O
nline L

ibrary on [02/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2202 CORWIN and KNIZEL

𝑞 = 𝑒−2𝑁
−1∕2 . We can bound |𝜌 − (

1

2
−

𝑢

2
𝑁−1∕2)| ≤ 𝐶|𝑢|3𝑁−3∕2. With this we can show that

|||𝜌𝑒𝑛𝑁−1∕2
+ (1 − 𝜌)𝑒−𝑛𝑁

−1∕2
−
(
cosh(𝑛𝑁−1∕2) + sinh(𝑛𝑁−1∕2)𝑢𝑁−1∕2

)||| ≤ 𝐶 cosh(𝑛𝑁−1∕2)|𝑢|3𝑁−3∕2.

Bounding|||||cosh(𝑛𝑁−1∕2) −

(
1 +

𝑛2

2
𝑁−1

)||||| ≤ 𝐶𝑛4𝑁−2, |||sinh(𝑛𝑁−1∕2) − 𝑛𝑁−1∕2||| ≤ 𝐶𝑛3𝑁−3∕2,

and cosh(𝑛𝑁−1∕2) ≤ cosh(𝑛) for 𝑁 ∈ ℤ≥1, we deduce that|||||𝜌𝑒𝑛𝑁−1∕2
+ (1 − 𝜌)𝑒−𝑛𝑁

−1∕2
−

(
1 +

(
𝑛2

2
+ 𝑢𝑛

)
𝑁−1

)||||| ≤ 𝐶(𝑢, 𝑛)𝑁−3∕2.

Here and below 𝐶(𝑢, 𝑛) > 0 depends on 𝑢 and 𝑛 (though may vary between lines). From this, it

follows that (𝜌𝑒𝑛𝑁−1∕2
+ (1 − 𝜌)𝑒−𝑛𝑁

−1∕2
)
𝑁 ≤ 𝐶(𝑢, 𝑛) as needed to show Equation (4.2).

We now turn to showing Equation (4.3). This bound follows by combining the result of
part (4) with the already showed inequality (4.2) in part (5). First note that for all 𝑎, 𝑏 ∈
ℝ, |𝑒𝑎 − 𝑒𝑏| ≤ max(𝑒𝑎, 𝑒𝑏)|𝑎 − 𝑏|. Substituting 𝑎 = 𝐻(𝑁)

𝑢,𝑣 (𝑋) and 𝑏 = 𝐻(𝑁)
𝑢,𝑣 (𝑋

′), taking expecta-
tions and using Cauchy–Schwarz yields ‖𝑍(𝑁)

𝑢,𝑣 (𝑋) − 𝑍(𝑁)
𝑢,𝑣 (𝑋

′)‖𝑛 ≤ ‖max(𝑍(𝑁)
𝑢,𝑣 (𝑋), 𝑍

(𝑁)
𝑢,𝑣 (𝑋

′))‖2𝑛 ⋅‖𝐻(𝑁)
𝑢,𝑣 (𝑋) − 𝐻(𝑁)

𝑢,𝑣 (𝑋
′)‖2𝑛. The result of part (4) provides us with control over the second term

on the right-hand side thus it suffices to prove that there exists 𝐶′(𝑛, 𝑢, 𝑣) > 0 such that for all
𝑋,𝑋′ ∈ [0, 1] ‖‖‖‖max

(
𝑍(𝑁)
𝑢,𝑣 (𝑋), 𝑍

(𝑁)
𝑢,𝑣 (𝑥

′)
)‖‖‖‖2𝑛 ≤ 𝐶′(𝑛, 𝑢, 𝑣). (4.7)

We already know how to control the 𝑛-norms of the individual terms inside of the
max in the left-hand side of Equation (4.7) by the already proved bound (4.2). We need
to control to the 𝑛-norm of the max. For positive random variables 𝐴 and 𝐵, using the
binomial expansion and Cauchy–Schwarz, we show that for any 𝑚 ∈ ℤ≥1, 𝔼[max(𝐴, 𝐵)𝑚] ≤
2𝑚 max𝑘∈⟦0,𝑚⟧ 𝔼[𝐴2𝑘]1∕2𝔼[𝐵2(𝑚−𝑘)]1∕2. Substituting 𝑚 = 2𝑛, 𝐴 = 𝑍(𝑁)

𝑢,𝑣 (𝑋), 𝐵 = 𝑍(𝑁)
𝑢,𝑣 (𝑋

′) and
using the bound proved in Equation (4.2), it follows that 𝔼[𝐴2𝑘]1∕2 ≤ 𝐶(2𝑘, 𝑢, 𝑣)𝑘 and likewise
𝔼[𝐵2(𝑚−𝑘)]1∕2 ≤ 𝐶(2(𝑚 − 𝑘), 𝑢, 𝑣)

𝑚−𝑘. Thus,

‖max(𝑍(𝑁)(𝑥), 𝑍(𝑁)(𝑥′))‖2𝑛 ≤ 2 max
𝑘∈{0,…,2𝑛}

𝐶(2𝑘, 𝑢, 𝑣)
𝑘

2𝑛 𝐶(2(2𝑛 − 𝑘), 𝑢, 𝑣)
2𝑛−𝑘

2𝑛

whichwe can take to be𝐶′(𝑛, 𝑢, 𝑣). This provesEquation (4.7) and completes the proof of Equation
(4.3). □

5 PROOF OF THEOREM 1.2 (1)–(4)

Proof of Theorem 1.2 (1). That the law 𝜇(𝑁)
𝑢,𝑣 of 𝐻

(𝑁)
𝑢,𝑣 (⋅) ∈ 𝐶([0, 1]) is tight as 𝑁 → ∞ follows from

Proposition 4.2 (4) and the fact that𝐻(𝑁)
𝑢,𝑣 (0) = 0 by applying the Kolmogorov continuity theorem.

That theorem further implies that all subsequential limits 𝜇𝑢,𝑣 of 𝜇
(𝑁)
𝑢,𝑣 are supported on the space

of Hölder 𝛼 functions for all 𝛼 < 1∕2.
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STATIONARY MEASURE FOR THE OPEN KPZ 2203

Now, consider any subsequence {𝑁𝑘}
∞
𝑘=1

along which 𝜇
(𝑁𝑘)
𝑢,𝑣 converges to a limit 𝜇𝑢,𝑣. Let

𝐻(𝑁)
𝑢,𝑣 (⋅) ∈ 𝐶([0, 1]) be distributed according to the law 𝜇𝑢,𝑣. We claim that all of the condi-

tions of Assumption 3.1 are satisfied. Weak asymmetry, Liggitt’s condition, and the triple point
scaling assumptions all follow from the choice of parameters we have made in Assumption
1.1 and the Hölder bounds on the initial data are shown in Proposition 4.2 (5). Finally, since
we have assumed that the subsequence {𝑁𝑘} is such that 𝐻(𝑁𝑘)

𝑢,𝑣 (⋅) ⇒ 𝐻𝑢,𝑣(⋅) as random func-
tions in 𝐶([0, 1]), it follows likewise that 𝑍(𝑁𝑘)

𝑢,𝑣 (𝑋) ⇒ 𝑍𝑢,𝑣(𝑋) = 𝑒𝐻𝑢,𝑣(𝑋). Thus Proposition 3.2
implies that 𝑍(𝑁𝑘)

𝑢,𝑣 (𝑇, 𝑋) ⇒ 𝑍𝑢,𝑣(𝑇, 𝑋) in 𝐷([0, 𝑇0], 𝐶([0, 1])) for any 𝑇0 > 0 where 𝑍𝑢,𝑣(𝑇, 𝑋) ∈
𝐶([0, 𝑇0], 𝐶([0, 1])) the unique mild solution to the SHE with boundary parameters 𝑢 and 𝑣 and
initial data 𝑍0(𝑋) = 𝑒𝐻𝑢,𝑣(𝑋). Since the initial data for the open ASEP height process were chosen
to be stationary (in terms of the height function increment process), it follows immediately that
the law of𝑋 ↦ 𝑍

(𝑁𝑘)
𝑢,𝑣 (𝑇, 𝑋)∕𝑍

(𝑁𝑘)
𝑢,𝑣 (𝑇, 0) ∈ 𝐶([0, 1]) is independent of 𝑇. By the convergence to the

SHE, the same is true for 𝑋 ↦ 𝑍𝑢,𝑣(𝑇, 𝑋)∕𝑍𝑢,𝑣(𝑇, 0) ∈ 𝐶([0, 1]) and taking the logarithm of this
implies that the law of 𝑋 ↦ 𝐻𝑢,𝑣(𝑇, 𝑋) − 𝐻𝑢,𝑣(𝑇, 0) ∈ 𝐶([0, 1]) is likewise independent of 𝑇. This
implies that the law 𝜇𝑢,𝑣 of any limit point of 𝜇

(𝑁)
𝑢,𝑣 will be a stationary measure for the open KPZ

equation height function increment process. □

Proof of Theorem 1.2 (2). Proposition 4.2 (3) implies that the coupling holds along any subsequence
{𝑁𝑘}

∞
𝑘=1

such that all of the {𝜇(𝑁𝑘)
𝑢𝑖 ,𝑣𝑖 }

𝑀
𝑖=1 converge to the limit points {𝜇𝑢𝑖,𝑣𝑖 }

𝑀
𝑖=1; hence it passes to the

limit. □

Proof of Theorem 1.2 (3). This follows from Proposition 4.2 (1) in conjunction with the result in
part (1) of this theorem. □

Proof of Theorem 1.2 (4). Proposition 4.2 (2) implies that the desired equality holds along any
subsequence {𝑁𝑘}

∞
𝑘=1

such that 𝜇(𝑁𝑘)
𝑢,𝑣 and 𝜇(𝑁𝑘)

𝑣,𝑢 converges to their limit points 𝜇𝑢,𝑣 and 𝜇𝑣,𝑢; hence
it passes to the limit. □

6 ASKEY–WILSON AND CONTINUOUS DUAL HAHN PROCESSES

6.1 Definition of the Askey–Wilson process

Fix 𝑞 ∈ (−1, 1) and 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ be such that

𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑, 𝑞𝑎𝑐, 𝑞𝑎𝑑, 𝑞𝑏𝑐, 𝑞𝑏𝑑, 𝑎𝑏𝑐𝑑, 𝑞𝑎𝑏𝑐𝑑 ∈ ℂ ⧵ [1,∞), (6.1)

and such that either all 𝑎, 𝑏, 𝑐, 𝑑 are real, or two of them are real and two form a complex conjugate
pair (e.g., 𝑎, 𝑏 ∈ ℝ and 𝑐 = 𝑑), or they form two complex conjugate pairs (e.g., 𝑎 = 𝑐 and 𝑏 = 𝑑).
We will not need the Askey–Wilson polynomials, but rather just their orthogonality measure.

6.1.1 Askey–Wilson probability measure

Fix parameters (𝑎, 𝑏, 𝑐, 𝑑, 𝑞). Under Assumption (6.1), the corresponding Askey–Wilson polyno-
mials are orthogonal with respect to a unique compactly supported probability measure. This
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2204 CORWIN and KNIZEL

Askey–Wilson probability measure on ℝ is defined by the values it takes on Borel sets 𝑉 ⊂ ℝ,
which we write as 𝐴𝑊(𝑉; 𝑎, 𝑏, 𝑐, 𝑑, 𝑞). As shown in Bryc and Wesołowski [17, Theorem A.1] or
Askey and Wilson [4, Theorem 2.5], the Askey–Wilson probability measure can be decomposed
into an absolutely continuous part and a discrete finitely supported atomic part. The density, rel-
ative to the Lebesgue measure, of the absolutely continuous part will be denoted by𝐴𝑊𝑐 and the
discrete part, which is a sum of weighted Dirac delta functions, will be denoted by 𝐴𝑊𝑑. Thus,

𝐴𝑊(𝑉; 𝑎, 𝑏, 𝑐, 𝑑, 𝑞) = ∫𝑉 𝐴𝑊𝑐(𝑥; 𝑎, 𝑏, 𝑐, 𝑑, 𝑞)𝑑𝑥 + 𝐴𝑊𝑑(𝑉; 𝑎, 𝑏, 𝑐, 𝑑, 𝑞).

The density 𝐴𝑊𝑐 is supported on 𝑥 ∈ S𝑐 ∶= [−1, 1] and given by

𝐴𝑊𝑐(𝑥; 𝑎, 𝑏, 𝑐, 𝑑, 𝑞) =
(𝑞, 𝑎𝑏, 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑, 𝑐𝑑)∞

2𝜋(𝑎𝑏𝑐𝑑)∞
√
1 − 𝑥2

|||| (𝑒2𝑖𝜃𝑥 )∞
(𝑎𝑒𝑖𝜃𝑥 , 𝑏𝑒𝑖𝜃𝑥 , 𝑐𝑒𝑖𝜃𝑥 , 𝑑𝑒𝑖𝜃𝑥 )∞

||||
2

, (6.2)

with 𝑥 = cos 𝜃𝑥. (We have dropped the 𝑞 in the 𝑞-Pochhammer symbols.) The discrete part 𝐴𝑊𝑑

is given by

𝐴𝑊𝑑(𝑉; 𝑎, 𝑏, 𝑐, 𝑑, 𝑞) =
∑

𝑦∈𝑉∩S𝑑(𝑎,𝑏,𝑐,𝑑,𝑞)

𝐴𝑊𝑑(𝑦; 𝑎, 𝑏, 𝑐, 𝑑, 𝑞), (6.3)

a sum of delta functions with masses 𝐴𝑊𝑑(𝑦; 𝑎, 𝑏, 𝑐, 𝑑, 𝑞) at points 𝑦 ∈S𝑑(𝑎, 𝑏, 𝑐, 𝑑, 𝑞) The set
S𝑑(𝑎, 𝑏, 𝑐, 𝑑, 𝑞) and masses 𝐴𝑊𝑑 are given as follows. If |𝑎|, |𝑏|, |𝑐|, |𝑑| < 1, the set S𝑑(𝑎, 𝑏, 𝑐, 𝑑, 𝑞)
is empty. By Equation (6.1), if 𝜒 ∈ {𝑎, 𝑏, 𝑐, 𝑑} has |𝜒| > 1 then it must be real. Each 𝜒 ∈ {𝑎, 𝑏, 𝑐, 𝑑}
with |𝜒| > 1 generate its own set of atoms, the union ofwhich constitutes S𝑑(𝑎, 𝑏, 𝑐, 𝑑, 𝑞). By Equa-
tion (6.1), any element𝜒 ∈ {𝑎, 𝑏, 𝑐, 𝑑}with |𝜒| > 1must be distinct from all other elements in that
set. There are finitely many atoms generated by such 𝜒 and they are at locations

𝑦𝑗 =
1
2

(
𝜒𝑞𝑗 +

1

𝜒𝑞𝑗

)
, for 𝑗 ∈ ℤ≥0 such that |𝜒𝑞𝑗| ≥ 1. (6.4)

Each atomhas a differentmass.When𝜒 = 𝑎, these are given as (here 𝑦𝑗 are as abovewith𝜒 = 𝑎)

𝐴𝑊𝑑(𝑦0; 𝑎, 𝑏, 𝑐, 𝑑, 𝑞) =

(
𝑎−2, 𝑏𝑐, 𝑏𝑑, 𝑐𝑑

)
∞

(𝑏∕𝑎, 𝑐∕𝑎, 𝑑∕𝑎, 𝑎𝑏𝑐𝑑)∞
,

𝐴𝑊𝑑(𝑦𝑗; 𝑎, 𝑏, 𝑐, 𝑑, 𝑞)

𝐴𝑊𝑑(𝑦𝑎0 ; 𝑎, 𝑏, 𝑐, 𝑑, 𝑞)
=

(
𝑎2, 𝑎𝑏, 𝑎𝑐, 𝑎𝑑

)
𝑗

(
1 − 𝑎2𝑞2𝑗

)
(𝑞, 𝑞𝑎∕𝑏, 𝑞𝑎∕𝑐, 𝑞𝑎∕𝑑)𝑗(1 − 𝑎2)

( 𝑞

𝑎𝑏𝑐𝑑

)𝑗
, (6.5)

where, in the second line, we assume that 𝑗 ∈ ℤ≥1 such that |𝜒𝑞𝑗| ≥ 1. For other values of 𝜒, the
masses are as above except with 𝑎 and 𝜒 swapped.

6.1.2 Askey–Wilson process

Following Bryc and Wesołowski [17], we define the Askey–Wilson process, a time–
inhomogeneous Markov process that depends on parameters 𝐴, 𝐵, 𝐶, 𝐷, 𝑞. We assume that
𝐴, 𝐵, 𝐶, 𝐷 correspond to the ASEP parameters 𝛼, 𝛽, 𝛾, 𝛿 via Equation (1.4), in which case𝐴,𝐶 > 0
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STATIONARY MEASURE FOR THE OPEN KPZ 2205

and 𝐵,𝐷 ∈ (−1, 0]. Additionally, we will assume that 𝐴𝐶 < 1, as is necessary for the existence of
the Askey–Wilson processes. This puts us in the fan region of the open ASEP phase diagram.

Definition 6.1. Under the above assumptions on 𝐴, 𝐵, 𝐶, 𝐷, the Askey–Wilson process is the
time-inhomogeneous Markov process {𝕐𝑠}𝑠∈[0,∞) whose time-inhomogeneous state-space and
transitional probability distributions are given as follows. Define the continuous and discrete
atomic part of the time 𝑠 state-space as

S𝑐𝑠 = S𝑐 ∶= [−1, 1], S𝑑𝑠 ∶= S𝑑

(
𝐴
√
𝑠, 𝐵
√
𝑠,

𝐶√
𝑠
,
𝐷√
𝑠
, 𝑞

)
(6.6)

where S𝑑(𝑎, 𝑏, 𝑐, 𝑑, 𝑞) is defined as in Section 6.1. Let S𝑠 ∶= S𝑐𝑠 ∪ S𝑑𝑠 represent the time 𝑠 state-
space for the Askey–Wilson process. For any 𝑠 < 𝑡, the transitional probability distribution 𝜋𝑠,𝑡

from 𝑥 ∈ S𝑠 to any Borel 𝑉 ⊂ ℝ is

𝜋𝑠,𝑡(𝑥, 𝑉) ∶= 𝐴𝑊

(
𝑉;𝐴

√
𝑡, 𝐵
√
𝑡,

√
𝑠
𝑡

(
𝑥 +

√
𝑥2 − 1

)
,

√
𝑠
𝑡

(
𝑥 −

√
𝑥2 − 1

))
, (6.7)

where, for 𝑥 ∈ S𝑐, we define 𝑥 ±
√
𝑥2 − 1 = 𝑒±𝑖𝜃𝑥 with 𝜃𝑥 defined through 𝑥 = cos 𝜃𝑥. From the

definitions of the Askey–Wilson probability measure, for 𝑥 ∈ S𝑠, the support of 𝜋𝑠,𝑡(𝑥, ⋅) is S𝑡. This
defines the Askey–Wilson process.
We will also make use of a family of probability distributions 𝜋𝑠 with support S𝑠 defined such

that for any Borel 𝑉 ⊂ ℝ,

𝜋𝑠(𝑉) ∶= 𝐴𝑊

(
𝑉;𝐴

√
𝑠, 𝐵
√
𝑠,

𝐶√
𝑠
,
𝐷√
𝑠

)
. (6.8)

As explained below, the Askey–Wilson process started with distribution 𝜋𝑠 at time 𝑠 will have the
property that it marginally has the distribution 𝜋𝑡 at any later 𝑡 > 𝑠.

Both 𝜋𝑠 and 𝜋𝑠,𝑡 have absolutely continuous and discrete atomic parts. For 𝑥 ∈ S𝑐, we denote
the density of 𝜋𝑠 by 𝜋𝑐

𝑠 (𝑥) and for 𝑥 ∈ S𝑑𝑠 , we denote that the mass 𝜋𝑠(⋅) assigns to 𝑥 by 𝜋𝑑
𝑠 (𝑥).

Likewise for the transitional probability distribution, if 𝑥 ∈ S𝑐 and 𝑦 ∈ S𝑐, then wewrite 𝜋𝑐,𝑐
𝑠,𝑡 (𝑥, 𝑦)

for the density in 𝑦; if 𝑥 ∈ S𝑐 and 𝑦 ∈ S𝑑𝑡 , then we write 𝜋
𝑐,𝑑
𝑠,𝑡 (𝑥, 𝑦) for the mass assigned to 𝑦; if

𝑥 ∈ S𝑑𝑠 and 𝑦 ∈ S𝑐 then we write 𝜋𝑑,𝑐
𝑠,𝑡 (𝑥, 𝑦) for the density in 𝑦; and if 𝑥 ∈ S𝑑𝑠 and 𝑦 ∈ S𝑑𝑡 , then we

write 𝜋𝑑,𝑑
𝑠,𝑡 (𝑥, 𝑦) for the mass assigned to 𝑦. For all other values of 𝑥 and 𝑦, we declare that these

functions are zero.
The existence and uniqueness of the Askey–Wilson process defined above are shown in Bryc

and Wesołowski [17, Section 3] as is the property that it preserves the 𝜋𝑠 marginals. In particular,
Bryc and Wesołowski [17, Proposition 3.4] shows that for all Borel sets 𝑉 ⊂ ℝ (and in the second
equation, for all 𝑥 ∈ S𝑠)

∫ℝ 𝜋𝑠(𝑑𝑥)𝜋𝑠,𝑡(𝑥, 𝑉) = 𝜋𝑡(𝑉), and ∫ℝ 𝜋𝑠,𝑡(𝑥, 𝑑𝑦)𝜋𝑡,𝑢(𝑦, 𝑉) = 𝜋𝑠,𝑢(𝑥, 𝑉).
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2206 CORWIN and KNIZEL

The first identity implies that the Askey–Wilson process started under 𝜋𝑠 at time 𝑠 has marginal
distribution 𝜋𝑡 at time 𝑡, while the second is the Chapman–Kolmogorov identity necessary to
define the Markov process.

6.2 The continuous dual Hahn process

The open KPZ stationary measures that we construct in Theorem 1.2 (5) is characterized by
a duality with the continuous dual Hahn process that we define here (the special case of this
when 𝑢, 𝑣 > 0 was already defined in Section 1.2). This time-inhomoeneous Markov process is
a certain limit of the Askey–Wilson processes [18] (see Section 6.1). We will use the standard nota-
tion for the Pochhamer symbol: For 𝑗 ∈ ℤ≥0 and 𝑥 ∈ ℝ, define [𝑥]𝑗 ∶= (𝑥)(𝑥 + 1)⋯ (𝑥 + 𝑗 − 1)
with the convention that [𝑥]0 ∶= 1. For multiple arguments 𝑥1, … 𝑥𝑛 ∈ ℝ, define [𝑥1, … , 𝑥𝑛]𝑗 ∶=
[𝑥1]𝑗 ⋯ [𝑥𝑛]𝑗 . Likewise, define Γ(𝑥1, … , 𝑥𝑛) = Γ(𝑥1)⋯Γ(𝑥𝑛).
We will define the time-inhomogeneous state-spaces 𝑠 and transitional probability distribu-

tions 𝔭𝑠,𝑡 for the continuous dual Hahn process, and show their consistency. We will also define a
family {𝔭𝑠}𝑠 of infinite measures supported on the state-spaces for this process that are preserved
by the transitional probability distributions. All of these distributions are all related to general-
ized beta integrals [3, 51]. We will only define the continuous dual Hahn process for times in
𝑠 ∈ [0, 𝖢𝑢,𝑣) where we recall from Equation (1.8) that [0, 𝖢𝑢,𝑣) always has a nonempty interior.
Bryc [12] has subsequently extended this definition to all times in ℝ, though we do not need to
rely on that.
We start by defining the family {𝔭𝑠}𝑠 of infinite measures along with their supports 𝑠 that will

also serve as the support for the continuous dual Hahn process. We emphasize that the 𝔭𝑠 are not
probability distributions but rather positive distributions of infinite mass. For the remainder of
the definitions below, we will assume that 𝑢 + 𝑣 > 0. We will also adopt the following notation.
For 𝑢, 𝑣, 𝑠 ∈ ℝ and 𝑗 ∈ ℤ define

𝐮𝑢𝑗 (𝑠) ∶= −4(𝑢 + 𝑗 − 𝑠∕2)
2 and 𝐯𝑣𝑗 (𝑠) ∶= −4(𝑣 + 𝑗 + 𝑠∕2)

2
. (6.9)

Similarly, if 𝑢 − 𝑠∕2 < 0 or 𝑣 + 𝑠∕2 < 0 we define (respectively)

 𝑑,𝑢
𝑠 ∶=

⌊−𝑢+𝑠∕2⌋⋃
𝑗=0

{𝐮𝑢𝑗 (𝑠)}, 𝑑,𝑣
𝑠 ∶=

⌊−𝑣−𝑠∕2⌋⋃
𝑗=0

{𝐯𝑣𝑗 (𝑠)}.

Here 𝑑 indicates that this will be the support for a discrete atomic measure.

Definition 6.2. Assume that 𝑢, 𝑣 ∈ ℝ with 𝑢 + 𝑣 > 0 and 𝑠 ∈ [0, 𝖢𝑢,𝑣). For any Borel 𝑉 ⊂ ℝ,
define the infinite measure

𝔭𝑠(𝑉) ∶= ∫
𝑉∩𝑐

𝑠

𝔭𝑐𝑠(𝑟)𝑑𝑟 +
∑

𝑟∈𝑑
𝑠 ∩𝑉

𝔭𝑑𝑠 (𝑟)
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STATIONARY MEASURE FOR THE OPEN KPZ 2207

where the support of the absolutely continuous part is 𝑐
𝑠 ∶= (0,∞) and its density is defined as

𝔭𝑐𝑠(𝑟) ∶=
(𝑣 + 𝑢)(𝑣 + 𝑢 + 1)

8𝜋
⋅

|||Γ
(

𝑠

2
+ 𝑣 + 𝑖

√
𝑟

2
, −

𝑠

2
+ 𝑢 + 𝑖

√
𝑟

2

)|||2√
𝑟 ⋅ ||Γ(𝑖√𝑟)||2 𝟏𝑟>0,

and the support 𝑑
𝑠 and masses 𝔭𝑑𝑠 (𝑟) of the discrete part are as follows: If 𝑢 − 𝑠∕2 < 0, then 𝑑

𝑠 =
 𝑑,𝑢

𝑠 and for 𝑗 ∈ ⟦0, ⌊−𝑢 + 𝑠∕2⌋⟧, the masses at the points of the support are given by
𝔭𝑑𝑠

(
𝐮𝑢𝑗 (𝑠)

)
=

Γ(𝑣 − 𝑢 + 𝑠, 𝑣 + 𝑢 + 2)

Γ(−2𝑢 + 𝑠)
⋅
(𝑢 + 𝑗 − 𝑠∕2) ⋅ [2𝑢 − 𝑠, 𝑣 + 𝑢]𝑗

(𝑢 − 𝑠∕2) ⋅ [1, 1 − 𝑣 + 𝑢 − 𝑠]𝑗
.

If 𝑣 + 𝑠∕2 < 0, then 𝑑
𝑠 = 𝑑,𝑣

𝑠 and for 𝑗 ∈ ⟦0, ⌊−𝑣 − 𝑠∕2⌋⟧, the masses at the points of the
support are given by

𝔭𝑑𝑠

(
𝐯𝑣𝑗 (𝑠)

)
=

Γ(𝑢 − 𝑣 − 𝑠, 2 + 𝑣 + 𝑢)

Γ(−2𝑣 − 𝑠)
⋅
(𝑣 + 𝑗 + 𝑠∕2) ⋅ [2𝑣 + 𝑠, 𝑣 + 𝑢]𝑗

(𝑣 + 𝑠∕2) ⋅ [1, 1 − 𝑢 + 𝑣 + 𝑠]𝑗
.

If neither of these conditions hold, then 𝑑
𝑠 = ∅ and there is no discrete part. Since 𝑢 + 𝑣 > 0, it

is not possible that both conditions hold. Define the total support of 𝔭𝑠 to be

𝑠 = 𝑐
𝑠 ∪ 𝑑

𝑠 . (6.10)

This will also serve as the support for the continuous dual Hahn process. Since 𝑐
𝑠 ∩ 𝑑

𝑠 = ∅, in
the proof of Lemma 6.9, we will find it convenient to overload notation and write 𝔭𝑠(𝑥) for the
density function 𝔭𝑠(𝑥) when 𝑥 ∈ 𝑐

𝑠 and for the mass function 𝔭𝑠(𝑥) when 𝑥 ∈ 𝑑
𝑠 .

To define the transition probability distributions, we first define the orthogonality measure for
the continuous dual Hahn orthogonal polynomials.

Definition 6.3. Assume that 𝑎, 𝑏, 𝑐 ∈ ℝ with 𝑎 + 𝑏, 𝑎 + 𝑐 > 0 or 𝑎 ∈ ℝ and 𝑏 = 𝑐 ∈ ℂ ⧵ ℝ with
Re(𝑏) = Re(𝑐) > 0. For such 𝑎, 𝑏, 𝑐, define

𝖢𝖣𝖧𝑐(𝑥; 𝑎, 𝑏, 𝑐) ∶=
1
8𝜋

⋅

||||Γ
(
𝑎 + 𝑖

√
𝑥

2
, 𝑏 + 𝑖

√
𝑥

2
, 𝑐 + 𝑖

√
𝑥

2

)||||
2

Γ(𝑎 + 𝑏, 𝑎 + 𝑐, 𝑏 + 𝑐) ⋅
√
𝑥 ⋅
||||Γ(𝑖√𝑥

)||||
2
𝟏𝑥>0.

Definition 6.4. Assume that 𝑎 < 0 and that  is a finite subset of ℝ with size | | = ⌊−𝑎⌋ + 1
and elements 𝑥0 < 𝑥1 < ⋯ < 𝑥⌊−𝑎⌋. Assume that 𝑏, 𝑐, and 𝑗 satisfy one of the three conditions:
∙ 𝑏 = 𝑐 ∈ ℂ ⧵ ℝ with Re(𝑏),Re(𝑐) > 0, and 𝑗 ∈ ⟦0, ⌊−𝑎⌋⟧;
∙ 𝑏, 𝑐 ∈ ℝ with 𝑎 + 𝑏, 𝑎 + 𝑐 > 0, and 𝑗 ∈ ⟦0, ⌊−𝑎⌋⟧;
∙ 𝑏, 𝑐 ∈ ℝ and 𝑏, 𝑏 + 𝑐, 𝑐 − 𝑎 > 0, with 𝑎 + 𝑏 = −𝑘 ∈ ℤ≤0, and 𝑗 ∈ ⟦0, 𝑘⟧.
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2208 CORWIN and KNIZEL

For 𝑎, 𝑏, 𝑐,  , and 𝑗 as above, define

𝖢𝖣𝖧𝑑(𝑥𝑗; 𝑎, 𝑏, 𝑐;) ∶= [2𝑎, 𝑎 + 𝑏, 𝑎 + 𝑐]𝑗 ⋅ (𝑎 + 𝑗) ⋅ Γ(𝑏 − 𝑎, 𝑐 − 𝑎)

[1, 𝑎 − 𝑏 + 1, 𝑎 − 𝑐 + 1]𝑗 ⋅ 𝑎 ⋅ Γ(−2𝑎, 𝑏 + 𝑐)
⋅ (−1)𝑗.

For all other first arguments, define 𝖢𝖣𝖧𝑑(⋅; 𝑎, 𝑏, 𝑐;) = 0.

Definition 6.5. We will define the measure 𝖢𝖣𝖧(𝑉; 𝑎, 𝑏, 𝑐;) (for Borel subsets 𝑉 of ℝ) under
three possible sets of conditions on parameters:

P: For 𝑎 ≥ 0;  = ∅; and either 𝑏 = 𝑐 ∈ ℂ ⧵ ℝ with Re(𝑏),Re(𝑐) > 0 or 𝑏, 𝑐 ∈ ℝ>0, define

𝖢𝖣𝖧(𝑉; 𝑎, 𝑏, 𝑐;) ∶= ∫𝑉 𝖢𝖣𝖧𝑐(𝑥; 𝑎, 𝑏, 𝑐)𝑑𝑥.

N1: For 𝑎 < 0;  a finite subset of ℝ with size | | = ⌊−𝑎⌋ + 1 and elements 𝑥0 < 𝑥1 < ⋯ <
𝑥⌊−𝑎⌋; and either 𝑏 = 𝑐 ∈ ℂ ⧵ ℝ with Re(𝑏),Re(𝑐) > 0, or 𝑏, 𝑐 ∈ ℝ with 𝑎 + 𝑏, 𝑎 + 𝑐 > 0,
define

𝖢𝖣𝖧(𝑉; 𝑎, 𝑏, 𝑐;) ∶= ∫𝑉 𝖢𝖣𝖧𝑐(𝑥; 𝑎, 𝑏, 𝑐)𝑑𝑥 +
∑

𝑥∈∩𝑉
𝖢𝖣𝖧𝑑(𝑥; 𝑎, 𝑏, 𝑐;)

N2: For 𝑎 < 0;  a finite subset of ℝ with size | | = ⌊−𝑎⌋ + 1 and elements 𝑥0 < 𝑥1 < ⋯ <
𝑥⌊−𝑎⌋; and 𝑏, 𝑐 ∈ ℝ with 𝑏, 𝑏 + 𝑐, 𝑐 − 𝑎 > 0 and 𝑎 + 𝑏 = −𝑘 ∈ ℤ≤0, define

𝖢𝖣𝖧(𝑉; 𝑎, 𝑏, 𝑐;) ∶= ∑
𝑥∈∩𝑉

𝖢𝖣𝖧𝑑(𝑥; 𝑎, 𝑏, 𝑐;).

Lemma 6.6. In all three cases of Definition 6.5, 𝖢𝖣𝖧(⋅; 𝑎, 𝑏, 𝑐;) is a probability measure onℝ.
Proof. This follows fromEquations (3.1), (3.3), and (3.4) inWilson [51] as a limitwhenWilson poly-
nomials degenerate to dual continuous Hahn polynomials. In particular, this limit corresponds
to taking one of the parameters of the Wilson polynomials to infinity. The case when 𝑎 = 0 does
not seem to be covered therein, but can be recovered by taking the limit as 𝑎 → 0. □

Wenow define what will be the transition probability distribution of the continuous dual Hahn
process.

Definition 6.7. Assume that 𝑢, 𝑣 ∈ ℝwith 𝑢 + 𝑣 > 0 and 𝑠, 𝑡 ∈ [0, 𝖢𝑢,𝑣)with 𝑠 < 𝑡. For any Borel
set 𝑉 ⊂ ℝ, we define the transition probability 𝔭𝑠,𝑡 as follows. For𝑚 ∈ 𝑐

𝑠 = (0,∞)

𝔭𝑠,𝑡(𝑚, 𝑉) ∶= 𝖢𝖣𝖧

(
𝑉; 𝑢 −

𝑡
2
,
𝑡 − 𝑠
2

+ 𝑖

√
𝑚

2
,
𝑡 − 𝑠
2

− 𝑖

√
𝑚

2
; 𝑑,𝑢

𝑡

)
. (6.11)

If 𝑢 − 𝑠∕2 < 0, so that 𝑑
𝑠 =  𝑑,𝑢

𝑠 , then for 𝑗 ∈ ⟦0, ⌊−𝑢 + 𝑠∕2⌋⟧
𝔭𝑠,𝑡(𝐮

𝑢
𝑗 (𝑠), 𝑉) ∶= 𝖢𝖣𝖧

(
𝑉; 𝑢 −

𝑡
2
, −𝑢 +

𝑡
2
− 𝑗, 𝑢 +

𝑡
2
− 𝑠 + 𝑗; 𝑑,𝑢

𝑡

)
. (6.12)
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STATIONARY MEASURE FOR THE OPEN KPZ 2209

If 𝑣 + 𝑠∕2 < 0, so that 𝑑
𝑠 = 𝑑,𝑣

𝑠 , then for 𝑗 ∈ ⟦0, ⌊−𝑣 − 𝑠∕2⌋⟧
𝔭𝑠,𝑡(𝐯

𝑣
𝑗 (𝑠), 𝑉) ∶= 𝖢𝖣𝖧

(
𝑉; 𝑣 + 𝑗 +

𝑡
2
,
𝑡
2
− 𝑠 − 𝑣 − 𝑗, 𝑢 −

𝑡
2
;𝑑,𝑣

𝑡

)
. (6.13)

For all other first arguments besides those described above, we define 𝔭𝑠,𝑡 = 0.
As in Definition 6.2, we introduce the following notation: If 𝑥 ∈ 𝑐

𝑠 and 𝑦 ∈ 𝑐
𝑡 , then we write

𝔭𝑐,𝑐𝑠,𝑡 (𝑥, 𝑦) for the density in 𝑦 of the absolutely continuous part of the measure 𝔭𝑠,𝑡(𝑥, ⋅); if 𝑥 ∈ 𝑐
𝑠

and 𝑦 ∈ 𝑑
𝑡 , then we write 𝔭𝑐,𝑑𝑠,𝑡 (𝑥, 𝑦) for the mass assigned to 𝑦 of the discrete atomic part of

the measure 𝔭𝑠,𝑡(𝑥, ⋅); if 𝑥 ∈ 𝑑
𝑠 and 𝑦 ∈ 𝑐

𝑡 , then we write 𝔭
𝑑,𝑐
𝑠,𝑡 (𝑥, 𝑦) for the density in 𝑦 of the

absolutely continuous part of themeasure 𝔭𝑠,𝑡(𝑥, ⋅); if 𝑥 ∈ 𝑑
𝑠 and 𝑦 ∈ 𝑑

𝑡 , thenwewrite 𝔭
𝑑,𝑑
𝑠,𝑡 (𝑥, 𝑦)

for the mass assigned to 𝑦 of the discrete atomic part of the measure 𝔭𝑠,𝑡(𝑥, ⋅).
In the proof of Lemma 6.9, we will find it convenient to overload notation and write 𝔭𝑠,𝑡(𝑥, 𝑦)

to denote the corresponding density or mass function dictated by whether 𝑥 and 𝑦 are in their
discrete or continuous supports (for example, when 𝑥 ∈ 𝑐

𝑠 and 𝑦 ∈ 𝑑
𝑡 , 𝔭𝑠,𝑡(𝑥, 𝑦) = 𝔭𝑐,𝑑𝑠,𝑡 (𝑥, 𝑦)).

The following lemma verifies that 𝔭𝑠,𝑡 is, indeed, a probability distribution and provides
conditions under which the density or mass function is nonzero.

Lemma 6.8. Assume that 𝑢, 𝑣 ∈ ℝ with 𝑢 + 𝑣 > 0 and 𝑠, 𝑡 ∈ [0, 𝖢𝑢,𝑣) with 𝑠 < 𝑡. For any 𝑥 ∈ 𝑠,
𝔭𝑠,𝑡(𝑥, ⋅) in Definition 6.7 defines a probability distribution whose support is contained in 𝑡 . For
all 𝑥 ∈ 𝑠 and 𝑦 ∈ 𝑡 , 𝔭𝑠,𝑡(𝑥, 𝑦) ≥ 0 (we are using the overloaded notation from the end of Defini-
tion 6.7) and the only choices of 𝑥 and 𝑦 for which𝔭𝑠,𝑡(𝑥, 𝑦) = 0 are: (1) 𝑥 ∈ 𝑐

𝑠 and 𝑦 ∈ 𝑑
𝑡 = 𝑑,𝑣

𝑡 ;
(2) 𝑥 ∈ 𝑑

𝑠 = 𝑑,𝑣
𝑠 and 𝑦 ∈ 𝑑

𝑡 =  𝑑,𝑢
𝑡 ; (3) 𝑥 ∈ 𝑑

𝑠 =  𝑑,𝑢
𝑠 and 𝑦 ∈ 𝑐

𝑡 ; (4) 𝑥 ∈ 𝑑
𝑠 =  𝑑,𝑢

𝑠 ,
𝑦 ∈ 𝑑

𝑡 = 𝑑,𝑣
𝑡 ; (5) 𝑥 = 𝐮𝑢𝑗 (𝑠) ∈ 𝑑

𝑠 =  𝑑,𝑢
𝑠 , 𝑦 = 𝐮𝑢

𝑘
(𝑠) ∈ 𝑑

𝑡 =  𝑑,𝑢
𝑡 with 𝑘 > 𝑗.

Proof. There are three cases to consider: Equations (6.11)–(6.13).
In Equation (6.11): If 𝑢 − 𝑡∕2 ≥ 0, then case P of Definition 6.5 applies with

𝑎 = 𝑢 − 𝑡∕2,  =  𝑑,𝑢
𝑡 , 𝑏 =

𝑡 − 𝑠
2

+ 𝑖

√
𝑚

2
, 𝑐 =

𝑡 − 𝑠
2

− 𝑖

√
𝑚

2

since 𝑎 ≥ 0,  = ∅, and 𝑏 = 𝑐 with Re(𝑏) = 𝑡 − 𝑠
2

> 0; if 𝑢 − 𝑡∕2 < 0, then case N1 of Defini-
tion 6.5 applies with the same choices of parameters since 𝑎 < 0, | | = ⌊−𝑎⌋ + 1 and 𝑏 = 𝑐

with Re(𝑏) = 𝑡 − 𝑠
2

> 0. We see from above that for 𝑥 ∈ 𝑐
𝑠 , the measure 𝔭𝑠,𝑡(𝑥, ⋅) is supported

and everywhere non-zero (in terms of its density or mass function) on 𝑐
𝑡 ∪  𝑑,𝑢

𝑡 . In partic-
ular, when 𝑢 − 𝑡∕2 ≥ 0 and 𝑣 + 𝑡∕2 < 0, the mass function 𝔭𝑠,𝑡(𝑥, 𝑦) is zero on the discrete set
𝑦 ∈ 𝑑

𝑡 = 𝑑,𝑣
𝑡 .

In Equation (6.12): Since 𝑢 − 𝑠∕2 < 0, so does 𝑢 − 𝑡∕2 < 0. In that case, N2 of Definition 6.5
applies with

𝑎 = 𝑢 − 𝑡∕2,  =  𝑑,𝑢
𝑡 , 𝑏 = −𝑢 +

𝑡
2
− 𝑗, 𝑐 = 𝑢 +

𝑡
2
− 𝑠 + 𝑗
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2210 CORWIN and KNIZEL

since 𝑎 < 0, | | = ⌊−𝑎⌋ + 1, 𝑏 ≥ 𝑡 − 𝑠
2

> 0, 𝑏 + 𝑐 = 𝑡 − 𝑠 > 0, 𝑐 − 𝑎 = 𝑡 − 𝑠 + 𝑗 > 0, and 𝑎 + 𝑏 =

−𝑗 for 𝑗 ∈ ℤ≥0. We see from this that for 𝑥 = 𝐮𝑢𝑗 (𝑠) ∈  𝑑,𝑢
𝑠 , the measure 𝔭𝑠,𝑡(𝑥, 𝑦) is nonzero

only when 𝑦 = 𝐮𝑢
𝑘
(𝑡) ∈  𝑑,𝑢

𝑡 with 𝑘 ∈ ⟦0, 𝑗⟧.
In Equation (6.13): If 𝑣 + 𝑗 + 𝑡∕2 ≥ 0, then case P of Definition 6.5 applies with

𝑎 = 𝑣 + 𝑗 + 𝑡∕2,  = 𝑑,𝑣
𝑡 , 𝑏 =

𝑡
2
− 𝑠 − 𝑣 − 𝑗, 𝑐 = 𝑢 −

𝑡
2

since 𝑎 ≥ 0,  = ∅, 𝑏 ≥ 𝑡 − 𝑠
2

> 0 (since 𝑗 ∈ ⟦0, ⌊−𝑣 − 𝑠∕2⌋⟧), and 𝑐 > 0 (since when 𝑣 + 𝑠∕2 <

0 it follows that 𝑢 > 0 and hence 𝑡 ∈ [0, 𝖢𝑢,𝑣) implies that 𝑡 < 2𝑢); if 𝑣 + 𝑗 + 𝑡∕2 < 0, then case
N1 of Definition 6.5 applies with the same choices of parameters since 𝑎 < 0, | | = ⌊−𝑎⌋ + 1,
𝑎 + 𝑏 = 𝑡 − 𝑠 > 0, and 𝑎 + 𝑐 = 𝑣 + 𝑢 + 𝑗 > 0. We see from above that for 𝑥 ∈ 𝑑,𝑣

𝑠 , the measure
𝔭𝑠,𝑡(𝑥, ⋅) is supported and everywhere nonzero (in terms of its density or mass function) on 𝑐

𝑡 ∪𝑑,𝑣
𝑡 . In particular, if 𝑢 − 𝑡∕2 < 0, themass function 𝔭𝑠,𝑡(𝑥, 𝑦) is zero on the discrete set 𝑦 ∈ 𝑑

𝑡 =

 𝑑,𝑢
𝑡 . □

The next lemma is key to defining the continuous dual Hahn process and to showing that it
preserves the class of marginal measures 𝔭𝑠.

Lemma 6.9. Let 𝑢, 𝑣 ∈ ℝ with 𝑢 + 𝑣 > 0 and 0 ≤ 𝑠 < 𝑡 < 𝑤 < 𝖢𝑢,𝑣 . For any Borel 𝑉 ⊂ ℝ,

∫
ℝ

𝔭𝑠(𝑑𝑚)𝔭𝑠,𝑡(𝑚, 𝑉) = 𝔭𝑡(𝑉), and ∫
ℝ

𝔭𝑠,𝑡(𝑚, 𝑑𝑟)𝔭𝑡,𝑤(𝑟, 𝑉) = 𝔭𝑠,𝑤(𝑚,𝑉).

We prove this after defining the continuous dual Hahn process.

Definition 6.10 (Continuous dual Hahn process). Let 𝑢, 𝑣 ∈ ℝ with 𝑢 + 𝑣 > 0. The continuous
dual Hahn process is the Markov process {𝕋𝑠}𝑠∈[0,𝖢𝑢,𝑣) with time-inhomogeneous state space 𝑠

from Equation (6.10) and transition probability given by 𝔭𝑠,𝑡. This process is well-defined since
Lemma 6.9 shows that Chapman–Kolmogorov is satisfied. Lemma 6.9 also proves that if the con-
tinuous dual Hahn process is started at time 0 according to the infinite measure 𝔭0 then at time
𝑠 ∈ [0, 𝖢𝑢,𝑣) the marginal infinite measure for the process will be given by 𝔭𝑠.

The preservation of the family 𝔭𝑠 should be thought of as similar to the fact that Brownian
motion preserves Lebesgue measure.
The rest of this section is devoted to the proof of Lemma 6.9. We start by recalling the

orthogonality probability measure for the Wilson orthogonal polynomials fromWilson [51].

Definition 6.11. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ either form two conjugate pairs such that 𝑎 = 𝑏̄, 𝑐 = 𝑑, one
conjugate pair (either 𝑎 = 𝑏̄ or 𝑐 = 𝑑) and one pair of real numbers, or four real numbers; in all
cases, assume that Re(𝑏),Re(𝑐),Re(𝑑) > 0. For such 𝑎, 𝑏, 𝑐, 𝑑, define

𝖶𝑐(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) ∶=

Γ(𝑎 + 𝑏 + 𝑐 + 𝑑)|||Γ
(
𝑎 + 𝑖

√
𝑥

2
, 𝑏 + 𝑖

√
𝑥

2
, 𝑐 + 𝑖

√
𝑥

2
, 𝑑 + 𝑖

√
𝑥

2

)|||2
8𝜋 ⋅ Γ(𝑎 + 𝑏, 𝑎 + 𝑐, 𝑏 + 𝑐, 𝑎 + 𝑑, 𝑏 + 𝑑, 𝑐 + 𝑑)

√
𝑥 ⋅

||||Γ(𝑖√𝑥
)||||

2
.
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STATIONARY MEASURE FOR THE OPEN KPZ 2211

Definition 6.12. Assume that 𝑎 < 0 and that  is a finite subset of ℝ with size | | = ⌊−𝑎⌋ + 1
with elements 𝑥0 < 𝑥1 < ⋯ < 𝑥⌊−𝑎⌋. Assume that 𝑏, 𝑐, 𝑑, and 𝑗 satisfy one of the three conditions:
∙ 𝑏 ∈ ℝ>0, 𝑐 = 𝑑 ∈ ℂ ⧵ ℝ with Re(𝑐),Re(𝑑) > 0, and 𝑗 ∈ ⟦0, ⌊−𝑎⌋⟧;
∙ 𝑏, 𝑐, 𝑑 ∈ ℝ>0, with 𝑎 + 𝑑, 𝑎 + 𝑐 > 0, 𝑗 ∈ ⟦0, ⌊−𝑎⌋⟧;
∙ 𝑏, 𝑐, 𝑑 ∈ ℝ with 𝑏, 𝑏 + 𝑐, 𝑐 − 𝑎 > 0, 𝑎 + 𝑏 = −𝑘 for 𝑘 ∈ ℤ≥0, and 𝑗 ∈ ⟦0, ⌊−𝑎⌋⟧.
For 𝑎, 𝑏, 𝑐, 𝑑,  , and 𝑗 as above, define

𝖶𝑑(𝑥𝑗; 𝑎, 𝑏, 𝑐, 𝑑;) ∶=
[2𝑎, 𝑎 + 𝑏, 𝑎 + 𝑐, 𝑎 + 𝑑]𝑗 ⋅ (𝑎 + 𝑗)

[1, 𝑎 − 𝑏 + 1, 𝑎 − 𝑐 + 1, 𝑎 − 𝑑 + 1]𝑗 ⋅ 𝑎

×
Γ(𝑎 + 𝑏 + 𝑐 + 𝑑, 𝑏 − 𝑎, 𝑐 − 𝑎, 𝑑 − 𝑎)

Γ(−2𝑎, 𝑏 + 𝑐, 𝑐 + 𝑑, 𝑏 + 𝑑)
.

For all other first arguments, define𝖶𝑑(𝑥𝑗; 𝑎, 𝑏, 𝑐, 𝑑;) = 0.

Definition 6.13. We will define the measure𝖶(𝑉; 𝑎, 𝑏, 𝑐, 𝑑;) (for Borel subsets 𝑉 of ℝ) under
four possible sets of conditions on parameters:

P1: For 𝑎 ≥ 0;  = ∅; 𝑏 ∈ ℝ>0; and either 𝑐 = 𝑑 ∈ ℂ ⧵ ℝ with Re(𝑐),Re(𝑑) > 0 or 𝑐, 𝑑 ∈ ℝ>0,
define

𝖶(𝑉; 𝑎, 𝑏, 𝑐, 𝑑;) ∶= ∫𝑉 𝖶𝑐(𝑥; 𝑎, 𝑏, 𝑐, 𝑑)𝑑𝑥.

P2: For 𝑎 = 𝑏̄ ∈ ℂ ⧵ ℝ with Re(𝑎),Re(𝑏) > 0;  = ∅; and either 𝑐 = 𝑑 ∈ ℂ ⧵ ℝ with
Re(𝑐),Re(𝑑) > 0 or 𝑐, 𝑑 ∈ ℝ>0, define

𝖶(𝑉; 𝑎, 𝑏, 𝑐, 𝑑;) ∶= ∫𝑉 𝖶𝑐(𝑥; 𝑎, 𝑏, 𝑐, 𝑑)𝑑𝑥.

N1: For 𝑎 < 0;  a finite subset of ℝ with size | | = ⌊−𝑎⌋ + 1 and elements 𝑥0 < 𝑥1 < ⋯ <
𝑥⌊−𝑎⌋; 𝑏 ∈ ℝ>0; and either 𝑐 = 𝑑 ∈ ℂ ⧵ ℝ with Re(𝑐),Re(𝑑) > 0 or 𝑐, 𝑑 ∈ ℝ with 𝑎 + 𝑐, 𝑎 +
𝑑 > 0, define

𝖶(𝑉; 𝑎, 𝑏, 𝑐, 𝑑;) ∶= ∫𝑉 𝖶𝑐(𝑥; 𝑎, 𝑏, 𝑐, 𝑑)𝑑𝑥 +
∑

𝑥∈∩𝑉
𝖶𝑑(𝑥; 𝑎, 𝑏, 𝑐, 𝑑;)

N2: For 𝑎 < 0;  a finite subset of ℝ with size | | = ⌊−𝑎⌋ + 1 and elements 𝑥0 < 𝑥1 < ⋯ <
𝑥⌊−𝑎⌋; 𝑏 ∈ ℝ>0with𝑎 + 𝑏 = −𝑘 for 𝑘 ∈ ℤ≥0; and 𝑐, 𝑑 ∈ ℝwith 𝑏 + 𝑐, 𝑏 + 𝑑, 𝑐 − 𝑎, 𝑑 − 𝑎 > 0,
define

𝖶(𝑉; 𝑎, 𝑏, 𝑐, 𝑑;) ∶= ∑
𝑥∈∩𝑉

𝖶𝑑(𝑥; 𝑎, 𝑏, 𝑐, 𝑑;).

Lemma 6.14. In all cases of Definition 6.13,𝖶(⋅; 𝑎, 𝑏, 𝑐, 𝑑;) is a probability measure onℝ.
Proof. This follows directly from the identities (3.1), (3.3), and (3.4) in Wilson [51]. The case when
𝑎 = 0 does not seem to be covered therein, but can be recovered by taking the limit as 𝑎 → 0. □

 10970312, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22174 by C

olum
bia U

niversity L
ibraries, W

iley O
nline L

ibrary on [02/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2212 CORWIN and KNIZEL

We can now give the proof of Lemma 6.9.

Proof of Lemma 6.9. The idea is to rewrite the relations in Lemma 6.9 in terms of the
𝖢𝖣𝖧(⋅; 𝑎, 𝑏, 𝑐;) and 𝖶(⋅; 𝑎, 𝑏, 𝑐, 𝑑;) measures, and then use the fact that they integrate to 1
to demonstrate the desired identities.
Proving the first identity in Lemma 6.9. It suffices to prove that

∫ℝ 𝔭𝑠(𝑑𝑚)𝔭𝑠,𝑡(𝑚, 𝑟) = 𝔭𝑡(𝑟) (6.14)

for all 𝑟 ∈ ℝ. Here we have overloaded the 𝔭𝑡 and 𝔭𝑠,𝑡 notation (as density and mass functions)
as explained at the end of Definitions 6.2 and 6.7. For 𝑟 ∉ 𝑡, 𝔭𝑡(𝑟) = 0. Likewise, for such 𝑟, it is
easy to see from the five cases in Lemma 6.8 that the left-hand side in Equation (6.14) is also zero.
Thus, we assume now that 𝑟 ∈ 𝑡. We can now divide and rewrite Equation (6.14) as

∫ℝ
𝔭𝑠(𝑑𝑚)𝔭𝑠,𝑡(𝑚, 𝑟)

𝔭𝑡(𝑟)
= 1.

To show this identity, we identify the integrand above with the continuous dual Hahn probability
measure (hence its integral is 1). There are three cases, which we address below.

Case 1. For 𝑟 ∈ 𝑐
𝑡 ,

𝔭𝑠(𝑑𝑚)𝔭𝑠,𝑡(𝑚, 𝑟)

𝔭𝑡(𝑟)
= 𝖢𝖣𝖧

(
𝑑𝑚; 𝑣 +

𝑠
2
,
𝑡 − 𝑠
2

+ 𝑖

√
𝑟

2
,
𝑡 − 𝑠
2

− 𝑖

√
𝑟

2
;𝑑,𝑣

𝑠

)
. (6.15)

To prove this, observe that for𝑚 ∈ 𝑐
𝑠 , we may rewrite

𝔭𝑠(𝑚)𝔭𝑠,𝑡(𝑚, 𝑟)

𝔭𝑡(𝑟)
= 𝖢𝖣𝖧𝑐

(
𝑚; 𝑣 +

𝑠
2
;
𝑡 − 𝑠
2

+ 𝑖

√
𝑟

2
,
𝑡 − 𝑠
2

− 𝑖

√
𝑟

2

)
. (6.16)

The computation here is obtained by regrouping the terms and using the identity Γ(𝑥 + 1) =
𝑥Γ(𝑥). Similarly, for𝑚 = 𝐯𝑣𝑗 (𝑠) ∈ 𝑑

𝑠 = 𝑑,𝑣
𝑠 ,

𝔭𝑠(𝑚)𝔭𝑠,𝑡(𝑚, 𝑟)

𝔭𝑡(𝑟)
= 𝖢𝖣𝖧𝑑

(
𝑚; 𝑣 +

𝑠
2
,
𝑡 − 𝑠
2

+ 𝑖

√
𝑟

2
,
𝑡 − 𝑠
2

− 𝑖

√
𝑟

2
;𝑑,𝑣

𝑠

)
. (6.17)

From Lemma 6.8, we have that for 𝑚 = 𝐮𝑢𝑗 (𝑠) ∈ 𝑑
𝑠 =  𝑑,𝑢

𝑠 , 𝔭𝑠,𝑡(𝑚, 𝑟) = 0. Depending on the
value of 𝑣, we see that the parameters in Equations (6.16) and (6.17) either satisfy P or N1 in
Definition 6.5 and either way we arrive at Equation (6.15) and verify that the right-hand side is a
probability measure.

Case 2. For 𝑟 = 𝐮𝑢
𝑘
(𝑡) ∈ 𝑑

𝑡 =  𝑑,𝑢
𝑡 ,

𝔭𝑠(𝑑𝑚)𝔭𝑠,𝑡(𝑚, 𝑟)

𝔭𝑡(𝑟)
= 𝖢𝖣𝖧

(
𝑑𝑚; 𝑢 + 𝑘 −

𝑠
2
, 𝑣 +

𝑠
2
, −𝑢 − 𝑘 + 𝑡 −

𝑠
2
;𝑑,𝑢

𝑠

)
. (6.18)
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STATIONARY MEASURE FOR THE OPEN KPZ 2213

To prove this, observe that for𝑚 ∈ 𝑐
𝑠 , we may rewrite

𝔭𝑠(𝑑𝑚)𝔭𝑠,𝑡(𝑚, 𝑟)

𝔭𝑡(𝑟)
= 𝖢𝖣𝖧𝑐

(
𝑚;𝑢 + 𝑘 −

𝑠
2
, 𝑣 +

𝑠
2
, −𝑢 − 𝑘 + 𝑡 −

𝑠
2

)
. (6.19)

Similarly, for𝑚 = 𝐮𝑢𝑗 (𝑡) ∈ 𝑑
𝑠 = 𝑑,𝑣

𝑠 ,

𝔭𝑠(𝑑𝑚)𝔭𝑠,𝑡(𝑚, 𝑟)

𝔭𝑡(𝑟)
= 𝖢𝖣𝖧𝑑

(
𝑚;𝑢 + 𝑘 −

𝑠
2
, 𝑣 +

𝑠
2
, −𝑢 − 𝑘 + 𝑡 −

𝑠
2
; 𝑑,𝑢

𝑠

)
. (6.20)

From Lemma 6.8, we have that for 𝑚 = 𝐯𝑣𝑗 (𝑠) ∈ 𝑑
𝑠 = 𝑑,𝑣

𝑠 , 𝔭𝑠,𝑡(𝑚, 𝑟) = 0. Depending on the
value of 𝑢, the parameters in Equations (6.19) and (6.20) either satisfyP orN1 in Definition 6.5 and
either waywe arrive at Equation (6.18) and verify that the right-hand side is a probabilitymeasure.

Case 3. For 𝑟 = 𝐯𝑣
𝑘
(𝑡) ∈ 𝑑

𝑡 = 𝑑,𝑣
𝑡 ,

𝔭𝑠(𝑑𝑚)𝔭𝑠,𝑡(𝑚, 𝑟)

𝔭𝑡(𝑟)
= 𝖢𝖣𝖧

(
𝑑𝑚; 𝑣

𝑠
2
, −𝑣 −

𝑠
2
− 𝑘, 𝑣 + 𝑡 −

𝑠
2
+ 𝑘;𝑑,𝑣

𝑠

)
. (6.21)

To prove this, observe that for𝑚 = 𝐯𝑣𝑗 (𝑠) ∈ 𝑑
𝑠 = 𝑑,𝑣

𝑠 , we may rewrite

𝔭𝑠(𝑚)𝔭𝑠,𝑡(𝑚, 𝑟)

𝔭𝑡(𝑟)
= 𝖢𝖣𝖧𝑑

(
𝑚; 𝑣 +

𝑠
2
, −𝑣 −

𝑠
2
− 𝑘, 𝑣 + 𝑡 −

𝑠
2
+ 𝑘;𝑑,𝑣

𝑠

)
. (6.22)

From Lemma 6.8, we have that for𝑚 = 𝐮𝑢𝑗 (𝑠) ∈ 𝑑
𝑠 =  𝑑,𝑢

𝑠 , 𝔭𝑠,𝑡(𝑚, 𝑟) = 0 and likewise for𝑚 ∈
𝑐
𝑠 ,𝔭𝑠,𝑡(𝑚, 𝑟) = 0. The parameters in Equation (6.22) satisfyN2 inDefinition 6.5 and thuswe arrive

at Equation (6.21) and verify that the right-hand side is a probability measure.

Proving the second identity in Lemma 6.9. It suffices to prove that

∫
ℝ

𝔭𝑠,𝑡(𝑚, 𝑑𝑟)𝔭𝑡,𝑤(𝑟, 𝑥) = 𝔭𝑠,𝑤(𝑚, 𝑥) (6.23)

for all 𝑚, 𝑥 ∈ ℝ. As in the proof of the first identity, we are overloading the 𝔭𝑠,𝑡 notation (as
density and mass functions) as explained at the end of Definition 6.7. If 𝑚 ∉ 𝑠 or 𝑥 ∉ 𝑡, then
𝔭𝑠,𝑤(𝑚, 𝑥) = 0. It is likewise easy to see that in this case, the right-hand side of Equation (6.23)
is also zero. The five cases in Lemma 6.8 identify the choices of𝑚 ∈ 𝑠 and 𝑥 ∈ 𝑡 for which we
still have 𝔭𝑠,𝑤(𝑚, 𝑥) = 0. It is easy to check from that list that for these choices of 𝑚 and 𝑥, the
right-hand side of Equation (6.23) is also zero. Thus, we may now assume that𝑚 and 𝑥 are such
that 𝔭𝑠,𝑤(𝑚, 𝑥) > 0.
In that case, we may divide and rewrite Equation (6.23) as ∫

ℝ

𝔭𝑠,𝑡(𝑚,𝑑𝑟)𝔭𝑡,𝑤(𝑟,𝑥)

𝔭𝑠,𝑤(𝑚,𝑥)
= 1. To show this

identity, we identify the integrand above with the Wilson probability measure (hence its integral
is 1). There are five cases, which we address below. In light of the five cases in Lemma 6.8, we see
that these are the only cases in which 𝔭𝑠,𝑤(𝑚, 𝑥) > 0. Since the proofs here are similar to those
used to show the first identity in Lemma 6.9, we simply record the five cases. To shorten notation,
write (⋆) ∶= 𝔭𝑠,𝑡(𝑚,𝑑𝑟)𝔭𝑡,𝑤(𝑟,𝑥)

𝔭𝑠,𝑤(𝑚,𝑥)
. Then,
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2214 CORWIN and KNIZEL

Case 1. For𝑚 ∈ 𝑐
𝑠 and 𝑥 ∈ 𝑐

𝑤,

(⋆) = 𝖶

(
𝑑𝑟;

𝑤 − 𝑡
2

+ 𝑖

√
𝑥

2
,
𝑤 − 𝑡
2

− 𝑖

√
𝑥

2
,
𝑡 − 𝑠
2

+ 𝑖

√
𝑚

2
,
𝑡 − 𝑠
2

− 𝑖

√
𝑚

2

)
.

P2 in Definition 6.13 applies.

Case 2. For𝑚 ∈ 𝑐
𝑠 and 𝑥 = 𝐮𝑢

𝑘
(𝑤) ∈ 𝑑

𝑤 =  𝑑,𝑢
𝑤 ,

(⋆) = 𝖶

(
𝑑𝑟; 𝑢 + 𝑘 −

𝑡
2
, 𝑤 −

𝑡
2
− 𝑢 − 𝑘,

𝑡 − 𝑠
2

+ 𝑖

√
𝑚

2
;
𝑡 − 𝑠
2

+ 𝑖

√
𝑚

2
; 𝑑,𝑢

𝑡

)
.

Depending on the value of 𝑢, either P1 orN1 in Definition 6.13 applies.

Case 3. For𝑚 = 𝐯𝑣𝑗 (𝑠) ∈ 𝑑
𝑠 = 𝑑,𝑣

𝑠 and 𝑥 ∈ 𝑐
𝑤,

(⋆) = 𝖶

(
𝑑𝑟; 𝑣 + 𝑗 +

𝑡
2
, −𝑣 +

𝑡
2
− 𝑠 − 𝑗,

𝑤 − 𝑡
2

+ 𝑖

√
𝑥

2
,
𝑤 − 𝑡
2

− 𝑖

√
𝑥

2
;𝑑,𝑣

𝑡

)
.

Depending on the value of 𝑣, either P1 orN1 in Definition 6.13 applies.

Case 4. For𝑚 = 𝐯𝑣𝑗 (𝑠) ∈ 𝑑
𝑠 = 𝑑,𝑣

𝑠 and 𝑥 = 𝐯𝑣
𝑘
(𝑠) ∈ 𝑑

𝑤 = 𝑑,𝑣
𝑤 ,

(⋆) = 𝖶
(
𝑑𝑟; 𝑣 + 𝑘 +

𝑡
2
, −𝑣 −

𝑡
2
− 𝑗, −𝑣 +

𝑡
2
− 𝑘 − 𝑠, 𝑣 −

𝑡
2
+ 𝑗 + 𝑤;𝑑,𝑣

𝑡

)
.

N2 in Definition 6.13 applies.

Case 5. For𝑚 = 𝐮𝑢𝑗 (𝑠) ∈ 𝑑
𝑠 =  𝑑,𝑢

𝑠 and 𝑥 = 𝐮𝑢
𝑘
(𝑤) ∈ 𝑑

𝑤 =  𝑑,𝑢
𝑤 with 𝑘 ∈ ⟦0, 𝑗⟧,

(⋆) = 𝖶
(
𝑑𝑟; 𝑢 −

𝑡
2
+ 𝑘,−𝑢 +

𝑡
2
− 𝑗, −𝑢 −

𝑡
2
− 𝑘 + 𝑤, 𝑢 +

𝑡
2
+ 𝑗 − 𝑠; 𝑑,𝑢

𝑡

)
.

N2 in Definition 6.13 applies.

□

7 ASYMPTOTICS OF THE ASEP GENERATING FUNCTION AND
PROOF OF THEOREM 1.2 (5)

The main technical ingredient to proving Theorem 1.2 (5) is provided by Proposition 7.1, which
is stated below and proved in Section 8. Before stating the proposition, we rewrite the function
𝜙𝑢,𝑣(𝑐, 𝑋⃗) in Equation (1.10) as in Section 2 as

𝜙𝑢,𝑣(𝑐, 𝑋⃗) =
𝜙̃𝑢,𝑣(𝑐, 𝑋⃗)

𝜙̃𝑢,𝑣(0⃗, 𝑋⃗)
, 𝜙̃𝑢,𝑣(𝑐, 𝑋⃗) ∶= 𝔼

[((𝕋𝑠1 , … , 𝕋𝑠𝑑+1); 𝑐; 𝑋⃗
)]

, (7.1)
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STATIONARY MEASURE FOR THE OPEN KPZ 2215

where 𝕋 is the continuous dual Hahn process started with 𝕋0 distributed according to the infinite
measure 𝔭0. Explicitly, this means that

𝜙̃𝑢,𝑣(𝑐, 𝑋⃗) = ∫ (𝑟; 𝑐; 𝑋⃗)
𝑑∏
𝑖=1

𝔭𝑠𝑖+1,𝑠𝑖 (𝑟𝑖+1, 𝑑𝑟𝑖) ⋅ 𝔭𝑠𝑑+1(𝑑𝑟𝑑+1)

where 𝔭𝑠 and 𝔭𝑠,𝑡 (recall Definitions 6.2 and 6.7) are the marginal and transition measures for
the continuous dual Hahn process with this initial distribution (recall Definition 6.10), and the
function  is defined as

(𝑟; 𝑐; 𝑋⃗) ∶= exp

(
1
4

𝑑+1∑
𝑘=1

(
𝑠2
𝑘
− 𝑟𝑘

)
(𝑋𝑘 − 𝑋𝑘−1)

)
. (7.2)

Recall that 𝑠 = (𝑠1 > ⋯ > 𝑠𝑑+1) is related to 𝑐 = (𝑐1, … , 𝑐𝑑) as in Equation (1.9) by 𝑠𝑘 = 𝑐𝑘 +⋯+
𝑐𝑑 for 𝑘 ∈ ⟦1, 𝑑⟧ and 𝑠𝑑+1 = 0. In Equation (7.1), we are considering transition from 𝑟𝑖+1 to 𝑟𝑖
between times 𝑠𝑖+1 and 𝑠𝑖 (recall 𝑠𝑖+1 < 𝑠𝑖). This slightly odd labeling of time (and hence of the 𝑟
variables) comes from a time reversal in the Askey–Wilson process, which produces the contin-
uous dual Hahn process. For 𝑑 ∈ ℤ≥1, define 𝖢𝑑,𝑢,𝑣 ∶=

1

𝑑
𝖢𝑢,𝑣 where 𝖢𝑢,𝑣 is defined in Equation

(1.8). The following result is proved in Section 8.

Proposition 7.1. Assume that 𝑞, 𝐴, 𝐵, 𝐶, and 𝐷 satisfy Assumption 1.1 and are parameterized by
𝑁 and 𝑢, 𝑣 ∈ ℝ with 𝑢 + 𝑣 > 0; let 𝐻(𝑁)

𝑢,𝑣 be the random function in 𝐶([0, 1]) defined in Equation
(1.7) whose law 𝜇(𝑁)

𝑢,𝑣 is that of the diffusively scaled open ASEP height function stationary measure
with the above specified parameters. For 𝑑 ∈ ℤ≥1, let 𝑋⃗, 𝑐, and 𝑠 be as in Equation (1.9) and let
𝜙(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) denote the Laplace transform of 𝐻(𝑁)

𝑢,𝑣 defined in Equation (2.1) with 𝑐 = 0. Then, for all
𝑐 ∈ (0, 𝖢𝑑,𝑢,𝑣)

𝑑, we have the point-wise convergence of the open ASEP Laplace transform

lim
𝑁→∞

𝜙(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) = 𝜙𝑢,𝑣(𝑐, 𝑋⃗). (7.3)

Remark 7.2. The point-wise convergence in Equation (7.3) is only stated for 𝑐 ∈ (0, 𝖢𝑑,𝑢,𝑣)
𝑑.

Here we explain why. The Askey–Wilson process marginal and transition probability distribu-
tion involves a mixture of an absolutely continuous and discrete atomic part. The nature of the
atomic part depends on the number of parameters whose norm exceeds 1. By limiting the range of
the 𝑐𝑘, we limit which atoms can arise. If we permitted the 𝑐𝑘 to be larger, we would need to keep
track of additional groups of atoms as well as transition probabilities between them which would
increase the complexity of notation and require additional care. For our purposes, it is sufficient
that we have convergence on some open interval.
There is an alternative approach tominimize the contribution of atoms. (This possible approach

came out in discussions with Yizao Wang, after communicating a draft of our paper to him.) We
could utilize the more general formula in Corollary 2.2 for 𝜙(𝑁)(𝑐, 𝑐, 𝑋⃗) and choose 𝑐 and 𝑐 so
that −2𝑣 < 𝑠𝑘 + 𝑐 < 2𝑢 (the interval (−2𝑣, 2𝑢) is nonempty since 𝑢 + 𝑣 > 0). This avoids atoms
coming from the 𝑎 and 𝑐 terms in Equation (8.16) but may introduce atoms coming from the 𝑏
and 𝑑 terms in that equation. These atoms are located near−1 and it seems that their contribution
will disappear in our scaling limit. We do not pursue it here.
Let us briefly compare our proof below to the style of proof used in Bryc and Wesołowski

[18]. Therein, the authors used the fact that their limiting Laplace transform formula could
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2216 CORWIN and KNIZEL

be identified as the Laplace transform for a bona fide probability measure (this identification
is made in Bryc and Wang [15]). On account of this, the authors are able to apply a result
which generalizes [22] and shows that convergence of the Laplace transform on any open set
to a Laplace transform of some other probability measure implies weak convergence of the
underlying probability measures to that limiting measure. If we wanted to apply this exact
approach in our current situation, we would need to know a priori that 𝜙𝑢,𝑣(𝑐, 𝑋⃗) is the Laplace
transform for some probability measure. When we first posted this paper, such an identification
was an open problem, hence we came up with another approach. Since first posting this paper,
this fact has been established in Bryc et al. [14] whenmin(𝑢, 𝑣) > −1 (see also Barraquand and Le
Doussal [8]). Since the restriction on min(𝑢, 𝑣) > −1 does not cover the full range of 𝑢 + 𝑣 > 0,
we still provide our approach, which does not rely on the identification of the limit as the Laplace
transform of a probability measure. Our approach uses some probabilistic information about
the WASEP process, namely tightness and uniform control over exponential moments (both of
which follow from a nice coupling of the stationary measure with random walks) to show that
𝜙𝑢,𝑣(𝑐, 𝑋⃗) coincides on an open set with the Laplace transform of some sub(sub)sequential weak
limits. This identifies uniquely the weak limits along all subsubsequences as being the same, and
hence shows convergence of the original sequence of measures.

Using Proposition 7.1, we may now give the proof of Theorem 1.2 (5).

Proof of Theorem 1.2 (5). There are two things to show here. The first is that when 𝑢 + 𝑣 > 0, the
tight sequence of measures 𝜇(𝑁)

𝑢,𝑣 (i.e., the laws of 𝐻(𝑁)
𝑢,𝑣 (⋅) ∈ 𝐶([0, 1])) from Theorem 1.2 (1) has a

unique limit point. To show this, it suffices to show that the finite dimensional distributions of
𝐻(𝑁)

𝑢,𝑣 (⋅) converge weakly. The second is to show is that the Laplace transform of the limiting finite
dimensional distributions are given by 𝜙𝑢,𝑣(𝑐, 𝑋⃗) as claimed in Equation (1.10).
Fix any 𝑑 ∈ ℤ≥1 and 0 < 𝑋1 < ⋯ < 𝑋𝑑 ≤ 1, and let 𝑋(𝑁) = 𝑁−1⌊𝑁𝑋⌋. We will consider the

sequence of random vectors 𝐻(𝑁)
𝑢,𝑣 (𝑋⃗) ∶= (𝐻(𝑁)

𝑢,𝑣 (𝑋
(𝑁)
1 ), … ,𝐻(𝑁)

𝑢,𝑣 (𝑋
(𝑁)
𝑑

)) and use ℙ(𝑁) to denote the
law of the corresponding random vector. For 𝑐 ∈ ℂ𝑑, we let 𝐿(𝑁)(𝑐) ∶= ∫

ℝ𝑑 𝑒
𝑐⋅𝑥⃗ℙ(𝑁)(𝑑𝑥⃗) denote

the Laplace transform of ℙ(𝑁). Note that 𝐿(𝑁)(𝑐) = 𝜙(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) = ⟨𝑒−∑𝑑

𝑘=1 𝑐𝑘𝐻
(𝑁)
𝑢,𝑣 (𝑋

(𝑁)
𝑘

)⟩𝑁 .
Theorem 1.2 (1) shows that {ℙ(𝑁)}𝑁 is a tight sequence as 𝑁 → ∞. In particular, for any subse-

quence 𝑁𝑘, this implies that there exists a further subsubsequence 𝑁𝑘𝑗 along which the ℙ
(𝑁𝑘𝑗

)

converge weakly to a limit which we will denote by ℙ(∞). A priori, ℙ(∞) may depend on the
choice of subsequence and subsubsequence. We will show that it does not. This will imply that
the original sequence ℙ(𝑁) converges weakly to ℙ(∞) as well.
Proposition 7.1 shows that there exists an open interval 𝐼 ⊂ ℝ (e.g., 𝐼 = (0, 𝖢𝑢,𝑣) works)

so that lim𝑁→∞ 𝜙(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) = lim𝑁→∞ 𝐿(𝑁)(𝑐) = 𝜙𝑢,𝑣(𝑐, 𝑋⃗) for all 𝑐 ∈ 𝐼𝑑. This convergence, of

course, extends to the subsubsequence 𝑁𝑘𝑗 . We claim that the Laplace transform 𝐿(∞)(𝑐) ∶=

∫
ℝ𝑑 𝑒

𝑐⋅𝑥⃗ℙ(∞)(𝑑𝑥⃗) ofℙ(∞) is finite for all 𝑐 ∈ ℂ𝑑 and that for 𝑐 ∈ 𝐼𝑑, it agreeswith𝜙 so that𝐿(∞)(𝑐) =

𝜙𝑢,𝑣(𝑐, 𝑋⃗). Let us assume this claim for the moment. Then by analyticity of 𝐿(∞)(𝑐), we see that
the knowledge of 𝜙𝑢,𝑣(𝑐, 𝑋⃗) for 𝑐 ∈ 𝐼𝑑 uniquely (by uniqueness of analytic continuations) charac-
terizes the Laplace transform elsewhere, including on the imaginary axis. On account of this and
the Cramer–Wold device, we can uniquely characterize the law of ℙ(∞) from 𝜙𝑢,𝑣(𝑐, 𝑋⃗). Since the
same 𝜙 arises for any choice of subsubsequence𝑁𝑘𝑗 , this implies thatℙ

(∞) does not depend on the
choice of subsubsequence andhence thatℙ(𝑁) convergesweakly toℙ(∞), which has Laplace trans-
form 𝐿(∞)which coincideswith𝜙𝑢,𝑣(𝑐, 𝑋⃗) for 𝑐 ∈ 𝐼𝑑. Finally, note that we have been dealing above
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STATIONARY MEASURE FOR THE OPEN KPZ 2217

with convergence of (𝐻(𝑁)
𝑢,𝑣 (𝑋

(𝑁)
1 ), … ,𝐻(𝑁)

𝑢,𝑣 (𝑋
(𝑁)
𝑑

)). This also implies that (𝐻(𝑁)
𝑢,𝑣 (𝑋1), … ,𝐻(𝑁)

𝑢,𝑣 (𝑋𝑑))

converges weakly to the same limit since |𝐻(𝑁)
𝑢,𝑣 (𝑋

(𝑁)) − 𝐻(𝑁)
𝑢,𝑣 (𝑋)| < 𝑁−1∕2.

What remains from above is to prove the claim that 𝐿(∞)(𝑐) is finite for all 𝑐 ∈ ℂ𝑑 and that
𝐿(∞)(𝑐) = 𝜙𝑢,𝑣(𝑐, 𝑋⃗) for 𝑐 ∈ 𝐼𝑑. To prove the first part of this claim, we appeal to Equation (1.11)
(which follows from Theorem 1.2 (2) and (3)) which implies that if (𝐻𝑢,𝑣(𝑋1), … ,𝐻𝑢,𝑣(𝑋𝑑)) has
distribution ℙ(∞), then there exists a coupling of that random vector w with 𝐵−𝑣, a standard
Brownian motions of drift −𝑣, and with 𝐵𝑢, a standard Brownian motion of drift 𝑢, such that
𝐵−𝑣(𝑋𝑘) ≤ 𝐻𝑢,𝑣(𝑋𝑘) ≤ 𝐵𝑢(𝑋𝑘) for all 𝑘 ∈ ⟦1, 𝑑⟧. Owing to this and the Gaussian tails of Brownian
motion, it follows easily that the Laplace transform 𝐿(∞)(𝑐) is finite for all 𝑐 ∈ ℂ𝑑.
Finally, we claim that lim𝑁→∞ 𝐿(𝑁)(𝑐) = 𝐿(∞)(𝑐) for all 𝑐 ∈ ℂ𝑑. From this, it will immediately

follow that 𝐿(∞)(𝑐) = 𝜙𝑢,𝑣(𝑐, 𝑋⃗) for 𝑐 ∈ 𝐼𝑑. To show the claim it suffices to show the following: For
all 𝜀 > 0, there exists𝑀 > 0 such that for all 𝑁 ∈ ℤ≥1 ∪ {∞},

∫ℝ𝑑

𝟏{||𝑥⃗|| > 𝑀} 𝑒𝑐⋅𝑥⃗ ℙ(𝑁)(𝑑𝑥⃗) < 𝜀, (7.4)

where ||𝑥⃗|| = max(|𝑥1|, … , |𝑥𝑑|). By convergence of ℙ(𝑁) to ℙ(∞),

lim
𝑁→∞∫ℝ𝑑

𝟏{||𝑥⃗|| ≤ 𝑀} 𝑒𝑐⋅𝑥⃗ ℙ(𝑁)(𝑑𝑥⃗) = ∫ℝ𝑑
𝟏{||𝑥⃗|| ≤ 𝑀} 𝑒𝑐⋅𝑥⃗ ℙ(∞)(𝑑𝑥⃗)

for all 𝑀 > 0. Combining this with the error bound claimed in Equation (7.4) proves that
lim𝑁→∞ 𝐿(𝑁)(𝑐) = 𝐿(∞)(𝑐).
To prove Equation (7.4), we use Cauchy–Schwarz to show that

∫ℝ𝑑

𝟏{||𝑥⃗|| > 𝑀} 𝑒𝑐⋅𝑥⃗ ℙ(𝑁)(𝑑𝑥⃗) ≤
√

ℙ(𝑁)(||𝑥⃗|| > 𝑀)∫ℝ𝑑

𝑒2𝑐⋅𝑥⃗ ℙ(𝑁)(𝑑𝑥⃗).

By tightness, we know that for any 𝜀 > 0, there is some 𝑀 > 0 so that for all 𝑁 ∈ ℤ≥1 ∪ {∞},
ℙ(𝑁)(||𝑥⃗|| > 𝑀) < 𝜀. So, it suffices to show that the other term on the right-hand side stays
uniformly bounded in 𝑁. Notice that by repeated use of Hölder’s inequality, we can bound

∫ℝ𝑑
𝑒2𝑐⋅𝑥⃗ ℙ(𝑁)(𝑑𝑥⃗) ≤

𝑑∏
𝑘=1

(
∫ℝ 𝑒2𝑑𝑐𝑘𝑥𝑘 ℙ(𝑁)(𝑑𝑥𝑘)

)1∕𝑑

,

where we are writing ℙ(𝑁)(𝑑𝑥𝑘) for the marginal of ℙ(𝑁) in the 𝑥𝑘 coordinate. The integrals
on the right-hand side above can be rewritten in terms of the notation of Proposition 4.2
as 𝔼[𝑍(𝑁)

𝑢,𝑣 (𝑋𝑘)
2𝑑𝑐𝑘 ]. For 𝑐𝑘 > 0, we can bound 𝔼[𝑍(𝑁)

𝑢,𝑣 (𝑋𝑘)
2𝑑𝑐𝑘 ] ≤ 𝔼[𝑍(𝑁)

𝑢,𝑣 (𝑋𝑘)
𝑛
] + 1 where 𝑛 is

any integer, which is larger than 2𝑑𝑐𝑘; for 𝑐𝑘 < 0, we can similarly bound 𝔼[𝑍(𝑁)
𝑢,𝑣 (𝑋𝑘)

2𝑑𝑐𝑘 ] ≤
𝔼[𝑍(𝑁)

𝑢,𝑣 (𝑋𝑘)
𝑛
] + 1 where 𝑛 is any integer, which is smaller than 2𝑑𝑐𝑘. In either case, we can

uniformly bound 𝔼[𝑍(𝑁)
𝑢,𝑣 (𝑋𝑘)

𝑛] via the bound (4.2) in Proposition 4.2 (5). This proves Equation
(7.4). □

We close this section by recording one of the results proved above that generalizes Equation
(7.3) to all 𝑐 ∈ ℂ𝑑.

Lemma 7.3. For all 𝑐 ∈ ℂ𝑑, lim𝑁→∞ 𝜙(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) = 𝜙𝑢,𝑣(𝑐, 𝑋⃗).
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2218 CORWIN and KNIZEL

8 PROOF OF PROPOSITION 7.1

We start, in Section 8.1, with a heuristic explanation for the convergence in Proposition 7.1.
In Section 8.2, we introduce scalings of our Askey–Wilson process formulas in a manner fit-
ting for asymptotics. Section 8.3 contains precise bounds and asymptotic results involving these
scaled Askey–Wilson process formulas (these are proved later in Section 8.5). Section 8.4 puts
these bounds and asymptotics together to prove the convergence in Equation (7.3)—thus prov-
ing Proposition 7.1. The key technical input to the asymptotics performed in this section is the
𝑞-Pochhammer asymptotics from Proposition 2.3 (which are proved in Section 9).

8.1 Heuristic for the convergence (7.3)

Corollary 2.2 provides a formula, (2.1), for 𝜙(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) in terms of a ratio of expectations over the

Askey–Wilson process. In the numerator of this ratio, there is a product over 𝑑 + 1 terms, which
take the form (assume 𝑋𝑘 ∈ ℤ∕𝑁 for the moment)

(
cosh

(
𝑠𝑘∕
√
𝑁
)
+ 𝕐

𝑒−2𝑠𝑘∕
√
𝑁

)𝑁(𝑋𝑘−𝑋𝑘−1)
. (8.1)

As𝑁 → ∞, we are taking the 𝑠𝑘 to be fixed and positive, and likewise for the difference𝑋𝑘 − 𝑋𝑘−1.

As 𝑁 → ∞, we have that cosh(𝑠𝑘∕
√
𝑁) ≈ 1 +

𝑠2
𝑘

2𝑁
. The question is how does 𝕐

𝑒−2𝑠𝑘∕
√
𝑁 behave.

Recall that from Section 6.1, there are two parts to the support of the Askey–Wilson process 𝕐𝑠,
an absolutely continuous part of support S𝑐𝑠 = [−1, 1] and a discrete atomic part S𝑑𝑠 support above
1. In our scaling, the atomic part lives in a 𝑁−1 window above 1. Thus, writing 𝕐

𝑒−2𝑠∕
√
𝑁 = 1 −

𝕐̂(𝑁)
𝑠 ∕(2𝑁) and assuming that 𝕐̂(𝑁)

𝑠 is of order one, Equation (8.1) behaves (for 𝑁 large enough)

like 2𝑁(𝑋𝑘−𝑋𝑘−1) times 𝑒
1

4
(𝑠2−𝕐̂(𝑁)

𝑠 )(𝑋𝑘−𝑋𝑘−1). This is the origin of the  function in Equation (7.1).
There are a few issues complicating the above heuristic. Recall that in Equation (2.1), we are

considering theAskey–Wilson process𝕐𝑠 withmarginal distribution𝜋𝑠. Under our scalings,while
the discrete part of𝕐

𝑒−2𝑠𝑘∕
√
𝑁 does converge to a limit in a𝑁−1 window above 1, the absolutely con-

tinuous part does not stay in that window. In fact, it remains of full support in S𝑐 = [−1, 1] even
though the window is of order 𝑁−1 around 1. However, the  function has strong decay as the
𝕐
𝑒−2𝑠𝑘∕

√
𝑁 variable drops below a 𝑁−1 window of 1. Thus, we need to justify that the contribution

to the expectation coming from 𝕐
𝑒−2𝑠𝑘∕

√
𝑁 below this window is negligible in the large 𝑁 limit.

Furthermore, we need to determine what happens to 𝕐
𝑒−2𝑠𝑘∕

√
𝑁 when we only consider it in this

window. This leads to the continuous dual Hahn process that we have introduced in Section 6.2.
(The continuous dual Hahn process can be thought of as a tangent process to the Askey–Wilson
process.)Wewill see that themarginal distribution in this𝑁−1 window has a limit when compen-
sated by a suitable power of𝑁. The limit is no longer a probability measure, but rather of infinite
mass. However, the transition probabilities of the Askey–Wilson process converge to bona fide
transition probabilities.

8.2 Rewriting formulas to take asymptotics

Recall that 𝑞, 𝐴, 𝐵, 𝐶, and 𝐷 satisfy Assumption 1.1 and are parameterized by 𝑁 (through 𝑞 =

𝑒−2∕
√
𝑁) and 𝑢, 𝑣 ∈ ℝ with 𝑢 + 𝑣 > 0. In what follows, we will assume that our Askey–Wilson
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STATIONARY MEASURE FOR THE OPEN KPZ 2219

processes 𝕐 depend 𝑁, 𝑢, and 𝑣 through these parameters 𝑞, 𝐴, 𝐵, 𝐶, 𝐷. As 𝑁 changes, the law of
the process changes. Though this dependence will be implicit at times, it should not be forgotten.
Wewill assumehere and below that theAskey–Wilson process𝕐𝑠 is always takenwithmarginal

distribution 𝜋𝑠 for all 𝑠. Define the centered and scaled Askey–Wilson process

𝕐̂(𝑁)
𝑠 ∶= 2𝑁

(
1 − 𝕐𝑞𝑠

)
. (8.2)

Due to the factor 𝑞𝑠 = 𝑒−2𝑠∕
√
𝑁 , the process 𝕐̂(𝑁)

𝑠 involves a time reversal of 𝕐. Thus, its transition
probabilities involve a conjugation by the marginal distribution. In writing down the marginal
distribution and transition probabilities of 𝕐̂(𝑁), we distinguish the absolutely continuous and
discrete atomic part of the support andmeasure. This is important since there is a Jacobian factor,
which is present when the measure is absolutely continuous, though not when it is discrete.

Remark 8.1. This time reversal, which was also used in Bryc and Wang [16], is convenient
conceptually since it allows us to write out limiting formulas in terms of a process that moves
forward in time. It is not strictly necessary, though. We have opted to include it since it more
closely matches [16].

For any Borel 𝑉 ⊂ ℝ, denote the marginal probability that 𝕐̂(𝑁)
𝑠 ∈ 𝑉 by 𝜋̂(𝑁)

𝑠 (𝑉). This probabil-
ity measure can be written as the sum of an absolutely continuous part and a discrete atomic part.
We denote the density of the absolutely continuous part by 𝜋̂(𝑁),𝑐

𝑠 (𝑦) and the probability mass of
the discrete atomic part by 𝜋̂(𝑁),𝑑

𝑠 (𝑦). The support of 𝜋̂(𝑁),𝑐
𝑠 is Ŝ(𝑁),𝑐

𝑠 = Ŝ(𝑁),𝑐 ∶= [0, 4𝑁] and does
not depend on 𝑠. The support of the discrete atomic part is Ŝ(𝑁),𝑑

𝑠 ∶= {𝑦 ∈ ℝ ∶ 1 −
𝑦

2𝑁
∈ S𝑑𝑞𝑠 }where

S𝑑𝑞𝑠 is defined via Equation (6.6) with 𝐴, 𝐵, 𝐶, 𝐷, and 𝑞 scaled dependent on 𝑁 and 𝑢 and 𝑣 as in

the statement of Proposition 7.1. We will use 𝜋(𝑁),𝑐
𝑠 and 𝜋(𝑁),𝑑

𝑠 to denote 𝜋𝑐
𝑠 and 𝜋𝑑

𝑠 from Equation
(6.8) where𝐴, 𝐵, 𝐶, 𝐷, and 𝑞 are scaled dependent on𝑁 and 𝑢 and 𝑣 as noted above. Similarly, we
introduce a superscript (𝑁) for the transition probabilities defined in Equation (6.7).
For any 𝑠, the marginal distribution of 𝕐̂(𝑁)

𝑠 is specified by (𝑦 ∈ Ŝ(𝑁),𝑐 in the first formula and
𝑦 ∈ Ŝ(𝑁),𝑑

𝑡 in the second)

𝜋̂(𝑁),𝑐
𝑡 (𝑦) =

1

2𝑁
𝜋(𝑁),𝑐
𝑞𝑡

(
1 −

𝑦

2𝑁

)
, 𝜋̂(𝑁),𝑑

𝑡 (𝑦) = 𝜋(𝑁),𝑑
𝑞𝑡

(
1 −

𝑦

2𝑁

)
. (8.3)

Using the same convention as described below (6.7), for 𝑥 ∈ Ŝ(𝑁),𝑐 we write 𝜋̂(𝑁),𝑐,𝑐
𝑠,𝑡 (𝑥, 𝑦) for

the transition probability density supported on 𝑦 ∈ Ŝ(𝑁),𝑐 while 𝜋̂(𝑁),𝑐,𝑑
𝑠,𝑡 (𝑥, 𝑦) is the mass function

for 𝑦 ∈ Ŝ(𝑁),𝑑
𝑡 . Similarly, for 𝑥 ∈ Ŝ(𝑁),𝑑

𝑠 , we write 𝜋̂(𝑁),𝑑,𝑐
𝑠,𝑡 (𝑥, 𝑦) for the transition probability density

supported on 𝑦 ∈ Ŝ(𝑁),𝑐 while 𝜋̂(𝑁),𝑑,𝑑
𝑠,𝑡 (𝑥, 𝑦) is themass function for 𝑦 ∈ Ŝ(𝑁),𝑑

𝑡 . For all other values
of 𝑥 or 𝑦, we declare these functions to be zero. With this notation, we have

𝜋̂(𝑁),𝑐,𝑐
𝑠,𝑡 (𝑥, 𝑦) =

1

2𝑁
𝜋(𝑁),𝑐,𝑐
𝑞𝑡,𝑞𝑠

(
1 −

𝑦

2𝑁
, 1 −

𝑥

2𝑁

)
⋅
𝜋(𝑁),𝑐
𝑞𝑡

(
1 −

𝑦

2𝑁

)
𝜋(𝑁),𝑐
𝑞𝑠

(
1 −

𝑥

2𝑁

) (8.4)

𝜋̂(𝑁),𝑑,𝑐
𝑠,𝑡 (𝑥, 𝑦) =

1

2𝑁
𝜋(𝑁),𝑐,𝑑
𝑞𝑡,𝑞𝑠

(
1 −

𝑦

2𝑁
, 1 −

𝑥

2𝑁

)
⋅
𝜋(𝑁),𝑐
𝑞𝑡

(
1 −

𝑦

2𝑁

)
𝜋(𝑁),𝑑
𝑞𝑠

(
1 −

𝑥

2𝑁

) (8.5)
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2220 CORWIN and KNIZEL

𝜋̂(𝑁),𝑐,𝑑
𝑠,𝑡 (𝑥, 𝑦) = 𝜋(𝑁),𝑑,𝑐

𝑞𝑡,𝑞𝑠

(
1 −

𝑦

2𝑁
, 1 −

𝑥

2𝑁

)
⋅
𝜋(𝑁),𝑑
𝑞𝑡

(
1 −

𝑦

2𝑁

)
𝜋(𝑁),𝑐
𝑞𝑠

(
1 −

𝑥

2𝑁

) (8.6)

𝜋̂(𝑁),𝑑,𝑑
𝑠,𝑡 (𝑥, 𝑦) = 𝜋(𝑁),𝑑,𝑑

𝑞𝑡,𝑞𝑠

(
1 −

𝑦

2𝑁
, 1 −

𝑥

2𝑁

)
⋅
𝜋(𝑁),𝑑
𝑞𝑡

(
1 −

𝑦

2𝑁

)
𝜋(𝑁),𝑑
𝑞𝑠

(
1 −

𝑥

2𝑁

) . (8.7)

We need one last piece of notation. For 𝑋⃗, 𝑐, and 𝑠 as in Equation (1.9) and 𝑟 = (𝑟1, … , 𝑟𝑑+1)
define

(𝑁)(𝑟; 𝑐; 𝑋⃗) ∶= 𝟏𝑟∈ℝ𝑑+1≤4𝑁 ⋅ 2−𝑁
𝑑+1∏
𝑘=1

(
cosh

(
𝑠𝑘√
𝑁

)
+ 1 −

𝑟𝑘

2𝑁

)𝑁(𝑋(𝑁)
𝑘

−𝑋(𝑁)
𝑘−1

)

. (8.8)

Recall that 𝑋(𝑁) = 𝑁−1⌊𝑁𝑋⌋. Now, we can rewrite Equation (2.1) as in Equation (7.1):
𝜙(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) =

𝜙̃(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗)

𝜙̃(𝑁)
𝑢,𝑣 (0⃗, 𝑋⃗)

, 𝜙̃(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) ∶= 𝔼

[
𝑁𝑢+𝑣(𝑁)

(
(𝕐̂(𝑁)

𝑠1 , … , 𝕐̂(𝑁)
𝑠𝑑+1); 𝑐; 𝑋⃗

)]
, (8.9)

or more explicitly,

𝜙̃(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) = ∫ (𝑁)(𝑟; 𝑐; 𝑋⃗)

𝑑∏
𝑖=1

𝜋̂(𝑁)
𝑠𝑖+1,𝑠𝑖 (𝑟𝑖+1, 𝑑𝑟𝑖) ⋅ 𝑁

𝑢+𝑣𝜋̂(𝑁)
𝑠𝑑+1(𝑑𝑟𝑑+1). (8.10)

The inclusion of the factor 𝑁𝑢+𝑣 will be seen below as necessary to have 𝜙̃(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) converge to

a limit as 𝑁 → ∞ (in particular, it is required in Lemma 8.3 for the convergence of the marginal
distribution to a nontrivial limit). Since 𝜙(𝑁)

𝑢,𝑣 (𝑐, 𝑋⃗) is a ratio of such terms, its inclusion in both the
numerator and denominator does not change the ratio.

8.3 Lemmas for asymptotics and bounds

We provide the key technical results necessary to prove the point-wise convergence in Equa-
tion (7.3). The proofs of these lemmas are postponed until Section 8.5. We assume the scalings
in Proposition 7.1 and the notation introduced in Section 8.2.
Equation (8.10) is our starting point for asymptotics. In order to take 𝑁 → ∞ therein, we must

control the convergence of (𝑁) (in terms of a point-wise limit and dominating function) and the
convergence of the 𝕐̂ process. We start with the (𝑁) function.

Lemma 8.2. For every compact interval 𝐼 ⊂ ℝ, there exists a constant 𝐶 > 0 such that for all 𝑐 ∈ 𝐼𝑑

and all 𝑟 ∈ ℝ𝑑+1,

(𝑁)(𝑟; 𝑐; 𝑋⃗) ≤ 𝐶
𝑑+1∏
𝑘=1

𝑒
−(𝑋𝑘−𝑋𝑘−1)

𝑟𝑘
4
+
|𝑟𝑘 |
2𝑁 (8.11)
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STATIONARY MEASURE FOR THE OPEN KPZ 2221

where 𝑋⃗ and 𝑐 are as in Equation (1.9). For all 𝑟 (𝑁) ∈ ℝ𝑑+1 if lim𝑁→∞ 𝑟 (𝑁) = 𝑟,

lim
𝑁→∞

(𝑁)(𝑟 (𝑁); 𝑐; 𝑋⃗) = (𝑟; 𝑐; 𝑋⃗). (8.12)

The next four lemmas provide limits with quantified error bounds for the marginal and tran-
sition measures of 𝕐̂. These limits are written in terms of the continuous dual Hahn process
transition measures and family of marginal distributions from Definitions 6.7 and 6.2. The first
lemma deals with the continuous part 𝜋̂(𝑁),𝑐

𝑡 of the distribution of 𝕐̂𝑡, and the second with the
discrete part.

Lemma 8.3. For all 𝑡 ∈ ℝ and all 𝜂 > 1, there exists 𝑁0 ∈ ℤ≥1 and 𝐶, 𝜒 ∈ ℝ>0 such that for all
𝑁 > 𝑁0 and 𝑟 ∈ [0, 4𝑁],

𝑁𝑢+𝑣

√
1 −

𝑟
4𝑁

𝜋̂(𝑁),𝑐
𝑡 (𝑟) = 𝔭𝑐𝑡 (𝑟) ⋅ 𝑒

𝖤𝗋𝗋
(𝑁),𝑐
𝑡 (𝑟), (8.13)

where the error term satisfies

|||𝖤𝗋𝗋(𝑁),𝑐
𝑡 (𝑟)||| ≤ 𝐶𝑁−𝜒(1 +

√
𝑟)

𝜂
. (8.14)

For each fixed 𝑟 ∈ ℝ≥0, we have the point-wise convergence

lim
𝑁→∞

𝑁𝑢+𝑣 𝜋̂(𝑁),𝑐
𝑡 (𝑟) = 𝔭𝑐𝑡 (𝑟). (8.15)

The next lemma deals with the atomic part 𝜋̂(𝑁),𝑑
𝑡 of 𝕐̂𝑡. We show that the locations andmasses

of the finitelymany atoms have limits as𝑁 → ∞ and that thosematchwith𝔭𝑑𝑡 fromDefinition 6.2.
Recall from Section 8.2 that we write 𝜋(𝑁),𝑑

𝑡 to denote the atomic measure 𝜋𝑑
𝑡 from Equation

(6.8). In light ofEquations (6.8) and (6.3), for any Borel set 𝑉 ⊂ ℝ

𝜋(𝑁),𝑑
𝑡 (𝑉) =

∑
𝑦∈𝑉∩S𝑑(𝑎,𝑏,𝑐,𝑑,𝑞)

𝐴𝑊𝑑(𝑦; 𝑎, 𝑏, 𝑐, 𝑑, 𝑞)

where 𝑞 = 𝑒−2∕
√
𝑁 and

𝑎 = 𝑞𝑣+𝑡∕2, 𝑏 = −𝑞1+𝑡∕2, 𝑐 = 𝑞𝑢−𝑡∕2, 𝑑 = −𝑞1−𝑡∕2. (8.16)

If 𝑡 ∈ (−2, 2), then |𝑏|, |𝑑| < 1. Since 𝑎𝑐 = 𝑞𝑢+𝑣 < 1, it follows that at most one of |𝑎| or |𝑐| can
exceed 1.
When 𝑢 − 𝑡∕2 < 0, |𝑐| > 1 and the set of atoms in 𝜋(𝑁),𝑑

𝑡 are given by

𝐮(𝑁),𝑢
𝑗 (𝑡) ∶=

1
2

(
𝑞𝑢+𝑗−𝑡∕2 + 𝑞−(𝑢+𝑗−𝑡∕2)

)
, 𝑗 ∈ ⟦0, … ⌊−𝑢 + 𝑡∕2⌋⟧.

Similarly, when 𝑣 + 𝑡∕2 < 0, |𝑎| > 1 and thus based on the discussion prior to Equation (6.4),
we conclude that the set of atoms in 𝜋(𝑁),𝑑

𝑡 are given by

𝐯(𝑁),𝑣
𝑗 (𝑡) ∶=

1
2

(
𝑞𝑣+𝑗+𝑡∕2 + 𝑞−(𝑣+𝑗+𝑡∕2)

)
, for 𝑗 ∈ ⟦0, ⌊−𝑣 − 𝑡∕2⌋⟧.
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2222 CORWIN and KNIZEL

These account for all of the atoms in S𝑑(𝑎, 𝑏, 𝑐, 𝑑, 𝑞). Finally, let us denote

𝐮̂(𝑁),𝑢
𝑗 (𝑡) ∶= −2𝑁

(
𝐮(𝑁),𝑢
𝑗 (𝑡) − 1

)
, 𝐯̂(𝑁),𝑣

𝑗 (𝑡) ∶= −2𝑁
(
𝐯(𝑁),𝑣
𝑗 (𝑡) − 1

)
. (8.17)

The support, Ŝ(𝑁),𝑑
𝑡 , of 𝜋̂(𝑁),𝑑

𝑡 is the union of these atoms. At most one type of atoms, either from
𝑢 or 𝑣, will appear for a given 𝑡. As 𝑞 varies with𝑁, the number and type of atoms remains fixed.

Lemma 8.4. Assume 𝑡 ∈ (−2, 2). The location and masses of the (finitely many) atoms of 𝜋̂(𝑁),𝑑
𝑡

converge to those of 𝔭𝑑𝑡 (recall Equation (6.9)). Explicitly, when 𝑣 + 𝑡∕2 < 0, the atoms of 𝜋̂(𝑁),𝑑
𝑡 are

at 𝐯̂(𝑁),𝑣
𝑗 (𝑡) for 𝑗 ∈ ⟦0, … ⌊−𝑣 − 𝑡∕2⌋⟧ and

lim
𝑁→∞

𝐯̂(𝑁),𝑣
𝑗 (𝑡) = 𝐯𝑣𝑗 (𝑡) ∶= −4(𝑣 + 𝑗 + 𝑡∕2)

2
. (8.18)

Similarly, when 𝑢 − 𝑡∕2 < 0, the atoms of 𝜋̂(𝑁),𝑑
𝑡 are at 𝐮̂(𝑁),𝑢

𝑗 (𝑡) for 𝑗 ∈ ⟦0, … ⌊𝑢 − 𝑡∕2⌋⟧ and
lim
𝑁→∞

𝐮̂(𝑁),𝑢
𝑗 (𝑡) = 𝐮𝑢𝑗 (𝑡) ∶= −4(𝑢 + 𝑗 + 𝑡∕2)

2
. (8.19)

There exists 𝐶, 𝜒 ∈ ℝ>0 such that for all𝑁 ∈ ℤ≥1 and all atoms

𝑁𝑢+𝑣𝜋̂(𝑁),𝑑
𝑡 (𝐯̂(𝑁),𝑣

𝑗 (𝑡)) = 𝔭𝑑𝑡 (𝐯
𝑣
𝑗 (𝑡)) ⋅ 𝑒

𝖤𝗋𝗋
(𝑁),𝑑
𝑡 (𝐯𝑣𝑗 (𝑡)),

𝑁𝑢+𝑣𝜋̂(𝑁),𝑑
𝑡 (𝐮̂(𝑁),𝑢

𝑗 (𝑡)) = 𝔭𝑑𝑡 (𝐮
𝑢
𝑗 (𝑡)) ⋅ 𝑒

𝖤𝗋𝗋
(𝑁),𝑑
𝑡 (𝐮𝑢𝑗 (𝑡))

where the error terms satisfy

|||𝖤𝗋𝗋(𝑁),𝑑
𝑡 (𝐯𝑣𝑗 (𝑡))

|||, |||𝖤𝗋𝗋(𝑁),𝑑
𝑡 (𝐮𝑢𝑗 (𝑡))

||| ≤ 𝐶𝑁−𝜒. (8.20)

In particular,

lim
𝑁→∞

𝑁𝑢+𝑣𝜋̂(𝑁),𝑑
𝑡 (𝐯̂(𝑁),𝑣

𝑗 (𝑡)) = 𝔭𝑑𝑡 (𝐯
𝑣
𝑗 (𝑡)),

lim
𝑁→∞

𝑁𝑢+𝑣𝜋̂(𝑁),𝑑
𝑡 (𝐮̂(𝑁),𝑢

𝑗 (𝑡)) = 𝔭𝑑𝑡 (𝐮
𝑢
𝑗 (𝑡)). (8.21)

The next two lemmas dealwith the transition probabilities for 𝕐̂. The first of these lemmas deals
with the continuous part of the transition probabilitywhile the second dealswith the discrete part.

Lemma 8.5. For all real 𝑠 < 𝑡 and 𝜂 > 1, there exists 𝑁0 ∈ ℤ≥1 and 𝐶, 𝜒 ∈ ℝ>0 such that for all
𝑁 > 𝑁0, the following bounds hold:

(1) For all𝑚, 𝑟 ∈ Ŝ(𝑁),𝑐 = [0, 4𝑁]√
1 −

𝑟
4𝑁

𝜋̂(𝑁),𝑐,𝑐
𝑠,𝑡 (𝑚, 𝑟) = 𝔭𝑐,𝑐𝑠,𝑡 (𝑚, 𝑟) ⋅ 𝑒𝖤𝗋𝗋

(𝑁),𝑐,𝑐
𝑠,𝑡 (𝑚,𝑟),
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STATIONARY MEASURE FOR THE OPEN KPZ 2223

where the error term satisfies

|||𝖤𝗋𝗋(𝑁),𝑐,𝑐
𝑠,𝑡 (𝑚, 𝑟)||| ≤ 𝐶𝑁−𝜒(1 +

√
𝑚)

𝜂
+ 𝐶𝑁−𝜒(1 +

√
𝑟)

𝜂
. (8.22)

For each fixed𝑚, 𝑟 ∈ ℝ, we have the point-wise convergence

lim
𝑁→∞

𝜋̂(𝑁),𝑐,𝑐
𝑠,𝑡 (𝑚, 𝑟) = 𝔭𝑐,𝑐𝑡 (𝑚, 𝑟). (8.23)

(2) If 𝑠, 𝑡 ∈ (−2, 2) and 𝑣 + 𝑠∕2 < 0, so that Ŝ(𝑁),𝑑
𝑠 is entirely composed of 𝑣 atoms 𝐯̂(𝑁),𝑣

𝑗 (𝑠) for 𝑗 ∈⟦0, ⌊−𝑣 − 𝑠∕2⌋⟧, see Equation (8.17), then for each 𝑗 ∈ ⟦0, ⌊−𝑣 − 𝑠∕2⌋⟧, and all 𝑟 ∈ Ŝ(𝑁),𝑐 =
[0, 4𝑁]

𝜋̂(𝑁),𝑑,𝑐
𝑠,𝑡

(
𝐯̂(𝑁),𝑣
𝑗 (𝑠), 𝑟

)
= 𝔭𝑑,𝑐𝑠,𝑡

(
𝐯𝑣
𝑘
(𝑠), 𝑟

)
⋅ 𝑒𝖤𝗋𝗋

(𝑁),𝑑,𝑐
𝑠,𝑡 (𝐯𝑣

𝑘
(𝑠),𝑟)

where the error term satisfies

|||𝖤𝗋𝗋(𝑁),𝑑,𝑐
𝑠,𝑡 (𝐯𝑣

𝑘
(𝑠), 𝑟)||| ≤ 𝐶𝑁−𝜒(1 +

√
𝑟)

𝜂
. (8.24)

In particular, for each fixed 𝑗 ∈ ⟦0, ⌊−𝑣 − 𝑠∕2⌋⟧ and 𝑟 ∈ ℝ≥0,

lim
𝑁→∞

𝜋̂(𝑁),𝑑,𝑐
𝑠,𝑡

(
𝐯̂(𝑁),𝑣
𝑗 (𝑠), 𝑟

)
= 𝔭𝑑,𝑐𝑠,𝑡

(
𝐯𝑣
𝑘
(𝑠), 𝑟

)
. (8.25)

(3) If 𝑠, 𝑡 ∈ (−2, 2) and 𝑢 − 𝑠∕2 < 0, so that Ŝ(𝑁),𝑑
𝑠 is entirely composed of 𝑢 atoms 𝐮̂(𝑁),𝑢

𝑗 (𝑠) for 𝑗 ∈⟦0, ⌊−𝑢 + 𝑠∕2⌋⟧, see Equation (8.17), then for each 𝑗 ∈ ⟦0, ⌊−𝑢 + 𝑠∕2⌋⟧ and all 𝑟 ∈ Ŝ(𝑁),𝑐 =
[0, 4𝑁]

𝜋̂(𝑁),𝑑,𝑐
𝑠,𝑡

(
𝐮̂(𝑁),𝑢
𝑗 (𝑠), 𝑟

)
= 𝔭𝑑,𝑐𝑠,𝑡

(
𝐮𝑢𝑗 (𝑠), 𝑟

)
= 0.

Lemma 8.6. The locations and masses of the (finitely many) atoms of the transition probability
distributions 𝜋̂(𝑁),𝑑,𝑑

𝑠,𝑡 and 𝜋̂(𝑁),𝑐,𝑑
𝑠,𝑡 converge to those of𝔭𝑑,𝑑𝑠,𝑡 and𝜋

𝑐,𝑑
𝑠,𝑡 . For all 𝑠, 𝑡 ∈ [0, 𝖢𝑢,𝑣)with 𝑠 < 𝑡

(1) If 𝑣 + 𝑠∕2 < 0, then for all 𝑗 ∈ ⟦0, ⌊−𝑣 − 𝑠∕2⌋⟧, the discrete support of
𝜋̂(𝑁),𝑑,𝑑
𝑠,𝑡 (𝐯̂(𝑁),𝑣

𝑗 (𝑠), ⋅) coincides with the set of points 𝐯̂(𝑁),𝑣
𝑘

(𝑡)
for 𝑘 ∈ ⟦0, ⌊−𝑣 − 𝑡∕2⌋⟧ (if 𝑣 + 𝑡∕2 > 0 then there are no atoms) and the masses satisfy the

following bound: There exists 𝐶, 𝜒 ∈ ℝ>0 such that for all 𝑁 ∈ ℤ≥1, all 𝑗 ∈ ⟦0, ⌊−𝑣 − 𝑠∕2⌋⟧,
and all 𝑘 ∈ ⟦0, ⌊−𝑣 − 𝑡∕2⌋⟧

𝜋̂(𝑁),𝑑,𝑑
𝑠,𝑡

(
𝐯̂(𝑁),𝑣
𝑗 (𝑠), 𝐯̂(𝑁),𝑣

𝑘
(𝑡)
)
= 𝔭𝑑,𝑑𝑠,𝑡

(
𝐯𝑣𝑗 (𝑠), 𝐯

𝑣
𝑘
(𝑡)
)
⋅ 𝑒𝖤𝗋𝗋

(𝑁),𝑑,𝑑
𝑠,𝑡 (8.26)

where the error term satisfies ||||𝖤𝗋𝗋(𝑁),𝑑,𝑑
𝑠,𝑡

|||| ≤ 𝐶𝑁−𝜒. (8.27)

In particular,

lim
𝑁→∞

𝜋̂(𝑁),𝑑,𝑑
𝑠,𝑡

(
𝐯̂(𝑁),𝑣
𝑗 (𝑠), 𝐯̂(𝑁),𝑣

𝑘
(𝑡)
)
= 𝔭𝑑,𝑑𝑠,𝑡

(
𝐯𝑣𝑗 (𝑠), 𝐯

𝑣
𝑘
(𝑡)
)
.
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2224 CORWIN and KNIZEL

(2) If 𝑢 − 𝑠∕2 < 0, then for all 𝑗 ∈ ⟦0, ⌊−𝑢 + 𝑠∕2⌋⟧, the discrete support of
𝜋̂(𝑁),𝑑,𝑑
𝑠,𝑡 (𝐮̂(𝑁),𝑢

𝑗 (𝑠), ⋅) is the set of points 𝐮̂(𝑁),𝑢
𝑘

(𝑡) for 𝑘 ∈ ⟦0, 𝑗⟧ and the masses satisfy the fol-
lowing bound: There exists 𝐶, 𝜒 ∈ ℝ>0 such that for all𝑁 ∈ ℤ≥1, all 𝑗 ∈ ⟦0, ⌊−𝑢 − 𝑠∕2⌋⟧, and
all 𝑘 ∈ ⟦0, 𝑗⟧

𝜋̂(𝑁),𝑑,𝑑
𝑠,𝑡

(
𝐮̂(𝑁),𝑢
𝑗 (𝑠), 𝐮̂(𝑁),𝑢

𝑘
(𝑡)
)
= 𝔭𝑑,𝑑𝑠,𝑡

(
𝐮𝑢𝑗 (𝑠), 𝐮

𝑢
𝑘
(𝑡)
)
⋅ 𝑒𝖤𝗋𝗋

(𝑁),𝑑,𝑑
𝑠,𝑡 (8.28)

where the error term satisfies

||||𝖤𝗋𝗋(𝑁),𝑑,𝑑
𝑠,𝑡

|||| ≤ 𝐶𝑁−𝜒. (8.29)

In particular,

lim
𝑁→∞

𝜋̂(𝑁),𝑑,𝑑
𝑠,𝑡

(
𝐮̂(𝑁),𝑢
𝑗 (𝑠), 𝐮̂(𝑁),𝑢

𝑘
(𝑡)
)
= 𝔭𝑑,𝑑𝑠,𝑡

(
𝐮𝑢𝑗 (𝑠), 𝐮

𝑢
𝑘
(𝑡)
)
.

(3) If 𝑣 + 𝑠∕2 < 0 and𝑚 ∈ Ŝ(𝑁),𝑑 = [0, 4𝑁], then the measure 𝜋̂(𝑁),𝑐,𝑑
𝑠,𝑡 (𝑚, ⋅) has no discrete atomic

part. If 𝑢 − 𝑠∕2 < 0 and 𝑚 ∈ Ŝ(𝑁),𝑑 = [0, 4𝑁], then the measure 𝜋̂(𝑁),𝑐,𝑑
𝑠,𝑡 (𝑚, ⋅) has discrete

support equal to the set of points 𝐮̂(𝑁),𝑢
𝑘

(𝑡) for 𝑘 ∈ ⟦0, ⌊−𝑢 + 𝑠∕2⌋⟧ and the masses satisfy the
following bound: There exists 𝐶, 𝜒 ∈ ℝ>0 such that for all 𝑁 ∈ ℤ≥1, all 𝑚 ∈ Ŝ(𝑁),𝑑 = [0, 4𝑁]
and all 𝑘 ∈ ⟦0, ⌊−𝑢 + 𝑠∕2⌋⟧,

𝜋̂(𝑁),𝑐,𝑑
𝑠,𝑡

(
𝑚, 𝐮̂(𝑁),𝑢

𝑘
(𝑡)
)
= 𝔭𝑐,𝑑𝑠,𝑡

(
𝑚,𝐮𝑢

𝑘
(𝑡)
)
⋅ 𝑒

𝖤𝗋𝗋
𝑐,𝑑
𝑠,𝑡

(
𝑚,𝐮𝑢

𝑘
(𝑡)
)

where the error term satisfies

||||𝖤𝗋𝗋𝑐,𝑑𝑠,𝑡 (𝑚,𝐮𝑢
𝑘
(𝑡)
)|||| ≤ 𝐶𝑁−𝜒.

Remark 8.7. Lemmas 8.5 and 8.6 prove convergence of the transition probabilities for 𝕐̂(𝑁) to those
of 𝕋, and Lemmas 8.3 and 8.4 prove the convergence of the their state spaces (in addition to the
convergence of a family of marginal distributions). This implies that as Markov processes on the
time interval [0, 𝖢𝑢,𝑣), 𝕐̂

(𝑁)
𝑠 converges in finite-dimensional distributions to 𝕋𝑠. Of course, our

results prove precise error bounds on the convergence of the transition probabilities too.

8.4 Proof of Proposition 7.1

Recall 𝜙̃𝑢,𝑣(𝑐, 𝑋⃗) from Equation (7.1).

Lemma 8.8. For 𝑐 ∈ (0, 𝖢𝑑,𝑢,𝑣)
𝑑, 𝜙̃𝑢,𝑣(𝑐, 𝑋⃗), 𝜙̃𝑢,𝑣(0⃗, 𝑋⃗) ∈ (0,∞).

Proof. We show that 𝜙̃𝑢,𝑣(𝑐, 𝑋⃗) ∈ (0,∞) for 𝑐 ∈ (0, 𝖢𝑑,𝑢,𝑣)
𝑑 since 𝜙̃𝑢,𝑣(0⃗, 𝑋⃗) ∈ (0,∞) follows sim-

ilarly. For 𝑐 ∈ (0, 𝖢𝑑,𝑢,𝑣)
𝑑, 𝑠𝑘 ∶= 𝑐𝑘 +⋯+ 𝑐𝑑 ∈ [0, 𝖢𝑢,𝑣) for all 𝑘 ∈ ⟦1, 𝑑 + 1⟧. The support of the

integrand defining 𝜙̃𝑢,𝑣(𝑐, 𝑋⃗) is 𝑠1 × ⋯ × 𝑠𝑑+1 (see Definition 6.2). For fixed 𝑢 and 𝑣, there exists
a constant 𝐿 < 0 such that for all 𝑠 ∈ [0, 𝖢𝑢,𝑣), the support 𝑠 is lower bounded by 𝐿. This follows

 10970312, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22174 by C

olum
bia U

niversity L
ibraries, W

iley O
nline L

ibrary on [02/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



STATIONARY MEASURE FOR THE OPEN KPZ 2225

immediately from the definition of𝑠 as the union of𝑐
𝑠 = (0,∞)with𝑑

𝑠 , a finite number of neg-
ative discrete atoms, whose locations vary continuously with 𝑠. Owing to this lower bound and
the ordering of the 𝑋𝑘 variables, there exists a constant 𝐶 > 0 such that for all 𝑐 ∈ (0, 𝖢𝑑,𝑢,𝑣)

𝑑

𝜙̃𝑢,𝑣(𝑐, 𝑋⃗) ≤ 𝐶 ∫ℝ 𝑒
−

(1−𝑋𝑑)

4
𝑟
𝔭0(𝑑𝑟). (8.30)

We used (𝑟; 𝑐; 𝑋⃗) ≤ 𝐶𝑒
−

(1−𝑋𝑑)

4
𝑟𝑑+1 for 𝑟 ∈ 𝑠1 × ⋯ × 𝑠𝑑+1 , and then Lemma 6.9 to integrate out

the variables 𝑟1, … , 𝑟𝑑.
We claim that the integral on the right-hand side of Equation (8.30) is finite. The atoms in 𝔭0

have a finite contribution to the integral on the right-hand side of Equation (8.30), so it remains
to control the integral on (0,∞). In that case, the measure 𝔭0(𝑑𝑟) can be written as 𝔭𝑐0(𝑟)𝑑𝑟 where
the density function 𝔭𝑐0(𝑟) is given in Definition 6.2. Using the asymptotic behavior of the gamma
function for small (9.1) and large (9.2) imaginary parts, we see that for any fixed 𝑢, 𝑣 with 𝑢 + 𝑣 >
0, there exists a constant 𝐶 > 0 such that

𝐶−1𝑓(𝑟) ≤ 𝔭𝑐0(𝑟) ≤ 𝐶𝑓(𝑟) where 𝑓(𝑟) ∶=

{
𝑟1∕2 𝑟 ≥ 1

𝑟𝑢+𝑣−1 𝑟 ∈ (0, 1)
. (8.31)

Substituting this into the right-hand side of Equation (8.30) and using the integrability of 𝑟−1∕2

at 0, and the decay coming from 𝑒
−

(1−𝑋𝑑)

4
𝑟 at infinity, we find that the right-hand side of Equation

(8.30) is finite.
Turning to the positivity of 𝜙̃𝑢,𝑣(𝑐, 𝑋⃗) for 𝑐 ∈ (0, 𝖢𝑑,𝑢,𝑣)

𝑑,

𝜙̃𝑢,𝑣(𝑐, 𝑋⃗) ≥ (2⃗; 𝑐; 𝑋⃗) ∫
[1,2]𝑑+1

𝑑∏
𝑖=1

𝔭𝑐,𝑐𝑠𝑖+1,𝑠𝑖 (𝑟𝑖+1, 𝑟𝑖)𝑑𝑟𝑖 ⋅ 𝔭
𝑐
𝑠𝑑+1(𝑟𝑑+1)𝑑𝑟𝑑+1. (8.32)

The inequality follows from the definition of 𝜙̃𝑢,𝑣(𝑐, 𝑋⃗) and the positivity of the integrand therein
in conjunction with the lower bound (𝑟; 𝑐; 𝑋⃗) ≥ (2⃗; 𝑐; 𝑋⃗) for 𝑟 ∈ [1, 2]𝑑+1 and the fact that on
[1, 2], the transition and marginal distributions are absolutely continuous. There exists 𝐶 > 0, so
that (2⃗; 𝑐; 𝑋⃗) ≥ 𝐶 for 𝑐 ∈ (0, 𝖢𝑑,𝑢,𝑣)

𝑑.
It remains to show that the integral in the final line of Equation (8.32) over [1, 2]𝑑+1 is strictly

positive for any 𝑐 ∈ (0, 𝖢𝑑,𝑢,𝑣)
𝑑. Our assumption on 𝑐 ∈ (0, 𝖢𝑑,𝑢,𝑣)

𝑑 implies that 𝑠𝑘 − 𝑠𝑘+1 = 𝑐𝑘 > 0.
Using this and the explicit formulas for the marginal and transition density functions (see Def-
initions 6.2 and 6.7), we see that for all 𝑐 ∈ (0, 𝖢𝑑,𝑢,𝑣)

𝑑, there exists a constant 𝐶 > 0 such that
𝔭𝑐,𝑐𝑠𝑖 ,𝑠𝑖+1 (𝑟𝑖, 𝑟𝑖+1), 𝔭

𝑐
𝑠𝑑+1(𝑟𝑑+1) ≥ 𝐶 for all 𝑟 ∈ [1, 2]𝑑+1. □

Turning to the proof of Proposition 7.1, by Lemma 8.8, we see that in order to prove 𝜙(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) →

𝜙𝑢,𝑣(𝑐, 𝑋⃗), it suffices to show that 𝜙̃(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) → 𝜙̃𝑢,𝑣(𝑐, 𝑋⃗) for 𝑐 ∈ (0, 𝖢𝑑,𝑢,𝑣)

𝑑 for all 𝑘 ∈ ⟦1, 𝑑⟧, and
for 𝑐 = 0⃗. We will just deal with the first case, since the second case where 𝑐 = 0⃗ follows similarly.
The idea in the proof is to use the convergence lemmas in Section 8.3 to show point-wise and dom-
inated convergence of the integrand in𝜙(𝑁)

𝑢,𝑣 (𝑐, 𝑋⃗) to that of𝜙𝑢,𝑣(𝑐, 𝑋⃗). There is a bit of bookkeeping
since the measures we consider have mixed discrete and absolutely continuous support.
In the definition of 𝜙̃(𝑁)

𝑢,𝑣 (𝑐, 𝑋⃗), we can insert a multiplicative factor 1 as
∏𝑑+1

𝑖=1 (𝟏𝑟𝑖≥0 + 𝟏𝑟𝑖<0).
Expanding leads to 2𝑑+1 terms, each one corresponding to a choice of whether we integrate over
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2226 CORWIN and KNIZEL

the continuous part of 𝜋̂(𝑁) when 𝑟𝑖 ≥ 0 or the atomic part when 𝑟𝑖 < 0. Explicitly,

𝜙̃(𝑁)
𝑢,𝑣 (𝑐, 𝑋⃗) =

∑
𝐼⊂⟦1,𝑑+1⟧

∑
𝑟𝐼

∫𝑟𝐽 
(𝑁)(𝑟; 𝑐; 𝑋⃗)

𝑑∏
𝑖=1

𝜋̂
(𝑁),𝑎𝑖+1,𝑎𝑖
𝑠𝑖+1,𝑠𝑖 (𝑟𝑖+1, 𝑟𝑖) × 𝑁𝑢+𝑣𝜋̂

(𝑁),𝑎𝑑+1
𝑠𝑑+1 (𝑟𝑑+1). (8.33)

Here 𝐽 is the complement of 𝐼 in ⟦1, 𝑑 + 1⟧; the sum over 𝑟𝐼 is an |𝐼|-fold summation over 𝑟𝑖 ∈
Ŝ(𝑁),𝑑
𝑠𝑖 for 𝑖 ∈ 𝐼; the integral over 𝑟𝐽 is really a |𝐽|-fold integral as the 𝑟 variables with indices in
𝐽 vary in Ŝ(𝑁),𝑐 = [0, 4𝑁] (note, we have suppressed the

∏
𝑗∈𝐽 𝑑𝑟𝑗 symbols); and the variables 𝑎𝑖

take values in the set of symbols {𝑐, 𝑑} with 𝑎𝑖 = 𝑑 when 𝑖 ∈ 𝐼 and 𝑎𝑖 = 𝑐 when 𝑖 ∈ 𝐽.
As𝑁 varies, the number of atoms in the atomic parts of 𝜋̂(𝑁) does not change (i.e., Ŝ(𝑁),𝑑

𝑠 is inde-
pendent of𝑁). Therefore, the form of the decomposition (8.33) remains stable with𝑁. Moreover,
𝜙̃𝑢,𝑣(𝑐, 𝑋⃗) admits the same form of decomposition. Thus, in order to show the convergence of 𝜙̃(𝑁)

to 𝜙̃, it suffices to show that for any choice of 𝐼, the corresponding sum over the 𝑟𝐼 and integral
in the remaining 𝑟𝐽 variables in Equation (8.33) converges to its proposed limit. The sum over 𝑟𝐼
can be indexed in terms of the labels of the elements chosen from each Ŝ(𝑁),𝑑

𝑠𝑖 . By labels, we mean
that for each 𝑖 ∈ 𝐼, we may identify 𝑟𝑖 ∈ Ŝ(𝑁),𝑑

𝑠𝑖 by a label 𝓁𝑖 such that 𝑟𝑖 = 𝑥𝑢
𝓁𝑖
(𝑠𝑖) or 𝑟𝑖 = 𝑥𝑣

𝓁𝑖
(𝑠𝑖)

(depending on whether we are dealing with 𝑢 or 𝑣 atoms). For each choice of 𝐼, there are a finite
number of choices of labels {𝓁𝑖}𝑖∈𝐼 . If for every choice of 𝐼 and every choice of labels, we can prove
convergence of the remaining integral in the 𝑟𝐽 variables, then we will have achieved our goal of
proving the point-wise limit in Equation (7.3).
Lemmas 8.4 and 8.6 show that the locations and masses of the atoms of the 𝜋̂(𝑁) measures

converge as 𝑁 → ∞ to those of the 𝔭 measures and Lemmas 8.3 and 8.5 show the point-wise
convergence of the densities of the absolute continuous parts of the 𝜋̂(𝑁) measures to those of the
𝔭 measures. Equation (8.12) in Lemma 8.2 shows how (𝑁) converges point-wise to . In light of
these results, it follows that for each choice of 𝐼 and labels {𝓁𝑖}𝑖∈𝐼 , the integrand in Equation (8.33)
converges point-wise to its proposed limit. To show convergence of the integral itself, it suffices to
demonstrate a dominating function and then use the Lebesgue dominated convergence theorem.
We will assume below that 𝑋𝑑 < 1. When 𝑋𝑑 = 1, the functions (𝑁) and  do not depend

on 𝑟𝑑+1 and thus we can integrate out the 𝑟𝑑+1 variable. Since ∫ 𝜋̂(𝑁)
𝑠𝑑+1,𝑠𝑑+1(𝑟𝑑, 𝑑𝑟𝑑)𝜋̂

(𝑁)
𝑠𝑑+1(𝑑𝑟𝑑+1) =

𝜋̂(𝑁)
𝑠𝑑 (𝑑𝑟𝑑), the formula for 𝜙̃ reduces to a similar one but with one fewer variable, which can be

bounded in the same manner as below.
Since Ŝ(𝑁),𝑑

𝑠 has a uniform lower bound as 𝑠 varies, and Ŝ(𝑁),𝑐
𝑠 = [0, 4𝑁], we can use Equation

(8.11) of Lemma 8.2 to show that there exist 𝑐, 𝐶 > 0 such that

(𝑁)(𝑟; 𝑐; 𝑋⃗) ≤ 𝐶𝑒−𝑐(𝑟1+⋯𝑟𝑑+1) (8.34)

as the 𝑟𝑘 vary over the Ŝ
(𝑁)
𝑠𝑘 for 𝑘 ∈ ⟦1, 𝑑 + 1⟧. Using this bound along with Lemmas 8.3–8.6, we

arrive at the following bound: Fix 𝜂 = 3∕2, then there exists 𝑁0 ∈ ℤ≥1 and 𝑐, 𝑐′, 𝐶, 𝐶′, 𝜒 ∈ ℝ>0

such that for all𝑁 > 𝑁0, all 𝑟𝑖 ∈ Ŝ(𝑁),𝑑
𝑠𝑖 with 𝑖 ∈ 𝐼 and all 𝑟𝑗 ∈ Ŝ(𝑁),𝑐 = [0, 4𝑁] for 𝑗 ∈ 𝐽, we have||||||(𝑁)(𝑟; 𝑐; 𝑋⃗)

𝑑∏
𝑖=1

𝜋̂
(𝑁),𝑎𝑖+1,𝑎𝑖
𝑠𝑖+1,𝑠𝑖 (𝑟𝑖+1, 𝑟𝑖) ⋅ 𝑁

𝑢+𝑣𝜋̂
(𝑁),𝑎𝑑+1
𝑠𝑑+1 (𝑟𝑑+1)

||||||
≤ 𝐶𝑒−𝑐(𝑟1+⋯𝑟𝑑+1)

∏
𝑗∈𝐽

𝑒𝐶𝑁
−𝜒(1+

√
𝑟𝑗)

𝜂
𝑑∏
𝑖=1

𝔭
𝑎𝑖+1,𝑎𝑖
𝑠𝑖+1,𝑠𝑖 (𝑟𝑖+1, 𝑟𝑖) ⋅ 𝔭

𝑎𝑑+1
𝑠𝑑+1 (𝑟𝑑+1)

≤ 𝐶′𝑒−𝑐
′(𝑟1+⋯𝑟𝑑+1)

𝑑∏
𝑖=1

𝔭
𝑎𝑖+1,𝑎𝑖
𝑠𝑖+1,𝑠𝑖 (𝑟𝑖+1, 𝑟𝑖) ⋅ 𝔭

𝑎𝑑+1
𝑠𝑑+1 (𝑟𝑑+1) (8.35)
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STATIONARY MEASURE FOR THE OPEN KPZ 2227

For the first inequality, we used Equation (8.34) along with the bounds from Lemmas 8.3 and
8.5; the second inequality uses 𝑒−𝑐𝑟𝑒𝐶𝑁−𝜒(1+

√
𝑟)
𝜂 ≤ 𝐶′𝑒−𝑐

′𝑟 for a large enough 𝐶′ > 0 and a small
enough 𝑐′ > 0.
The point of Equation (8.35) is that it now provides us with an 𝑁-independent dominating

function. If we can show that for each 𝐼 ⊂ ⟦1, 𝑑 + 1⟧,
∑
𝑟𝐼

∫𝑟𝐽 𝐶
′𝑒−𝑐

′(𝑟1+⋯𝑟𝑑+1)
𝑑∏
𝑖=1

𝔭
𝑎𝑖+1,𝑎𝑖
𝑠𝑖+1,𝑠𝑖 (𝑟𝑖+1, 𝑟𝑖) ⋅ 𝔭

𝑎𝑑+1
𝑠𝑑+1 (𝑟𝑑+1) < ∞ (8.36)

we will be done owing to the point-wise convergence we have already shown.
Let us first consider Equation (8.36) with 𝐼 such that 𝑑 + 1 ∈ 𝐼. In that case, the 𝑟𝑑+1 variable

is summed over the finite number of atoms in 𝑑
0 , each of which has a finite mass. Thus, for such

terms in Equation (8.36), we can bound 𝔭𝑎𝐼(𝑑+1)𝑠𝑑+1 (𝑟𝑑+1) ≤ 𝐶. All of the other terms 𝔭𝑎𝑖+1,𝑎𝑖𝑠𝑖+1,𝑠𝑖 (𝑟𝑖+1, 𝑟𝑖)

are either densities ormasses of probabilitymeasures. Owing to this and the fact that 𝑒−𝑐′𝑟 is upper
bounded by a constant for 𝑟 ∈ 𝑠, it immediately follows that the sum over 𝑟𝐼 and integral over 𝑟𝐽
is likewise bounded by a constant.
For 𝐼 such that 𝑑 + 1 ∉ 𝐼, the 𝑟𝑑+1 variable is integrated over 𝑐 = (0,∞). The term 𝔭

𝑎𝑑+1
𝑠𝑑+1 (𝑟𝑑+1)

now represents the density of that infinite measure. As in the previous paragraph, we may inte-
grate/sum out all of the other variables 𝑟1, … , 𝑟𝑑 at the cost of a constant factor. Thus, we are
left to bound ∫ ∞

0
𝑒−𝑐

′𝑟𝔭𝑐0(𝑟)𝑑𝑟 < ∞, which is done precisely as in the proof of Lemma 8.8. This
shows that the right-hand side of Equation (8.35) is a dominating function, completing the proof
of Proposition 7.1.

8.5 Proof of lemmas in Section 8.3

8.5.1 Proof of Lemma 8.2

To prove Equation (8.11), we show that

(𝑁)(𝑟; 𝑐; 𝑋⃗) = 𝟏𝑟∈ℝ𝑑+1≤4𝑁 ⋅
𝑑+1∏
𝑘=1

(
1 + sinh2

(
𝑠𝑘

2
√
𝑁

)
−

𝑟𝑘

4𝑁

)𝑁(𝑋(𝑁)
𝑘

−𝑋(𝑁)
𝑘−1

)

≤
𝑑+1∏
𝑘=1

exp

(
𝑁(𝑋(𝑁)

𝑘
−𝑋(𝑁)

𝑘−1
)

4𝑁

(
4𝑁 sinh2

(
𝑠𝑘

2
√
𝑁

)
− 𝑟𝑘

))

≤ 𝐶
𝑑+1∏
𝑘=1

𝑒
−(𝑋(𝑁)

𝑘
−𝑋(𝑁)

𝑘−1
)
𝑟𝑘
4 ≤ 𝐶

𝑑+1∏
𝑘=1

𝑒
−(𝑋𝑘−𝑋𝑘−1)

𝑟𝑘
4
+
|𝑟𝑘 |
2𝑁 .

The first equality is by the definition of (𝑁)(𝑟; 𝑐; 𝑋⃗) and the hyperbolic trigonometric identity
cosh(𝑥)+1

2
= 1 + sinh2(

𝑥

2
). The next inequality uses that (1 + 𝑥)𝑎 ≤ 𝑒𝑎𝑥 for 𝑎 ∈ ℤ≥0 and 𝑥 ∈ ℝ≥−1.

In particular, we take 𝑎 = 𝑁(𝑋(𝑁)
𝑘

− 𝑋(𝑁)
𝑘−1

) and 𝑥 = sinh2(
𝑠𝑘

2
√
𝑁
) −

𝑟𝑘

4𝑁
. The sinh2 is always non-

negative and due to the indicator function 𝟏𝑟∈ℝ𝑑+1≤4𝑁 wemay assume that
𝑟𝑘

4𝑁
≤ 1. After applying the

inequality, we drop the indicator function. The next inequality relies on the fact that𝑁 sinh2(
𝑠𝑘

2
√
𝑁
)

 10970312, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22174 by C

olum
bia U

niversity L
ibraries, W

iley O
nline L

ibrary on [02/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2228 CORWIN and KNIZEL

can be bounded above by a constant provided that the 𝑠𝑘 vary in a compact set (which follows from
the assumption on the 𝑐 ∈ 𝐼𝑑). The constant 𝐶 will depend on the set 𝐼. The final inequality uses
the fact that |𝑋(𝑁)

𝑘
− 𝑋𝑘| ≤ 𝑁−1, whichmeans thatwe can replace the𝑋(𝑁)

𝑘
by their limiting values

𝑋𝑘 at the cost of introducing the factor |𝑟𝑘|∕2𝑁 in the exponential.
Owing to the triangle inequality, to prove Equation (8.12), it suffices to show that

lim
𝑁→∞

(𝑁)(𝑟; 𝑐; 𝑋⃗) = (𝑟; 𝑐; 𝑋⃗), lim
𝑁→∞

|||(𝑁)(𝑟(𝑁); 𝑐; 𝑋⃗) − (𝑁)(𝑟; 𝑐; 𝑋⃗)||| = 0. (8.37)

The first limit in Equation (8.37) follows immediately from Taylor expansion of the sinh function
and the convergence of (1 + 𝑥∕𝑁)

𝑁 to 𝑒𝑥 and 𝑋(𝑁)
𝑘

to 𝑋𝑘.
The second limit in Equation (8.37), will make use of two elementary inequali-

ties. The first is that for all 𝑎1, … , 𝑎𝑑+1, 𝑏1, … , 𝑏𝑑+1 ∈ ℝ bounded in absolute value by
𝑀 ∈ ℝ>0, |∏𝑑+1

𝑘=1 𝑎𝑘 −
∏𝑑+1

𝑘=1 𝑏𝑘| ≤ 𝑀𝑑∑𝑑+1
𝑘=1 |𝑎𝑘 − 𝑏𝑘|. We apply this inequality with 𝑎(𝑁)

𝑘
=(

1 + sinh2
(

𝑠𝑘

2
√
𝑁

)
−

𝑟(𝑁)
𝑘

4𝑁

)𝑁(𝑋(𝑁)
𝑘

−𝑋(𝑁)
𝑘−1

)

and 𝑏(𝑁)
𝑘

=

(
1 + sinh2

(
𝑠𝑘

2
√
𝑁

)
−

𝑟𝑘

4𝑁

)𝑁(𝑋(𝑁)
𝑘

−𝑋(𝑁)
𝑘−1

)

. For

𝑋⃗, 𝑠 fixed, it is easy to see that we can find some 𝑀 large enough so that |𝑎(𝑁)
𝑘
|, |𝑏(𝑁)

𝑘
| ≤ 𝑀 for

all 𝑘 ∈ ⟦1, 𝑑 + 1⟧ and all 𝑁 ∈ ℤ≥1. Thus, it suffices to show that lim𝑁→∞ |𝑎(𝑁)
𝑘

− 𝑏(𝑁)
𝑘
| = 0.

Notice that 𝑎(𝑁)
𝑘

can be written in the form (1 + 𝑎̃(𝑁)
𝑘

∕𝐿)
𝐿
where 𝐿 = 𝑁(𝑋𝑘 − 𝑋𝑘−1). There

exists some compact interval 𝐼 such that 𝑎̃(𝑁)
𝑘

∈ 𝐼 for all 𝑁 ∈ ℤ≥1. Likewise 𝑏(𝑁)
𝑘

can be
written in the same form in terms of 𝑏̃(𝑁)

𝑘
and we can find some compact interval 𝐼 so

that 𝑏̃(𝑁)
𝑘

∈ 𝐼 for all 𝑁 ∈ ℤ≥1 as well. The convergence lim𝑁→∞ |𝑟(𝑁) − 𝑟| = 0 implies that
lim𝑁→∞ |𝑎̃(𝑁)

𝑘
− 𝑏̃(𝑁)

𝑘
| = 0. To finish the proof, we use the following elementary inequality: For

any compact interval 𝐼 ⊂ ℝ, there exists a constant 𝐶 > 0 such that for all 𝐿 large enough and
𝑎̃, 𝑏̃ ∈ 𝐼, |(1 + 𝑎̃∕𝐿)

𝐿
− (1 + 𝑏̃∕𝐿)

𝐿| ≤ 𝐶|𝑎̃ − 𝑏̃|. This implies the second limit in Equation (8.37)
and completes the proof.

8.5.2 Notation for asymptotics

Recall±[𝜅; 𝑧] from Equations (2.3) and (2.4). For 𝑘,𝑁 ∈ ℤ≥1 and 𝑧1, … , 𝑧𝑘 ∈ ℂ, define

±
𝑁[𝑧1, … , 𝑧𝑘] =

𝑘∑
𝑖=1

±[
2√
𝑁
, 𝑧𝑖]. (8.38)

Here we have fixed that 𝜅 =
2√
𝑁
, in which case 𝑞 = 𝑒−𝜅.

Setting𝑚 = 1 in Proposition 2.3 shows that for 𝑞 = 𝑒−𝜅 and 𝑧 ∈ ℂ,

log(±𝑞𝑧; 𝑞)∞ = ±[𝜅; 𝑧] + 𝖤𝗋𝗋±1 [𝜅; 𝑧] (8.39)

where 𝖤𝗋𝗋±1 [𝜅; 𝑧] satisfies Equation (2.7). For 𝑘,𝑁 ∈ ℤ≥1 and 𝑧1, … , 𝑧𝑘 ∈ ℂ, define

𝖤±𝑁[𝑧1, … , 𝑧𝑘] =
𝑘∑
𝑖=1

𝖤𝗋𝗋±1 [
2√
𝑁
, 𝑧𝑖]. (8.40)
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STATIONARY MEASURE FOR THE OPEN KPZ 2229

8.5.3 Proof of Lemma 8.3

For 𝑟 ∈ ℝ≥0, lim𝑁→∞ 𝖤𝗋𝗋
(𝑁),𝑐
𝑡 (𝑟) = 0, so Equation (8.15) follows from Equation (8.14). It remains

to prove Equation (8.14). We proceed in three steps. In step 1, we write down 𝜋̂(𝑁),𝑐
𝑡 (𝑟). In step 2,

we further rewrite 𝜋̂(𝑁),𝑐
𝑡 (𝑟) in terms of a limiting term and error terms as in Section 8.5. In step 3,

we control the error terms using the bounds in Proposition 2.3.
Step 1. For 𝑟 ∈ Ŝ(𝑁),𝑐 = [0, 4𝑁], in light of Equations (6.2), (6.8), and (8.3), we have

𝜋̂(𝑁),𝑐
𝑡 (𝑟) = 𝜋̂(𝑁),𝑐

𝑡;𝑣,1,𝑢,1(𝑟) (8.41)

where we define

𝜋̂(𝑁),𝑐
𝑡;𝑣,𝑣,𝑢,𝑢̃(𝑟) ∶=

1

8𝜋𝑁
√

𝑟

4𝑁

√
1 −

𝑟

4𝑁

×

(
𝑞, −𝑞𝑣+𝑣+𝑡, 𝑞𝑣+𝑢, −𝑞𝑣+𝑢̃, −𝑞𝑢+𝑣, 𝑞𝑣+𝑢̃, −𝑞𝑢+𝑢̃−𝑡

)
∞
|||(𝑞𝑖√𝑁𝜃𝑟

)
∞

|||2
(𝑞𝑣+𝑣+𝑢+𝑢̃)∞

|||
(
𝑞
𝑣+𝑡∕2+𝑖

√
𝑁

𝜃𝑟
2 , −𝑞

𝑣+𝑡∕2+𝑖
√
𝑁

𝜃𝑟
2 , 𝑞

𝑢−𝑡∕2+𝑖
√
𝑁

𝜃𝑟
2 , −𝑞

𝑢̃−𝑡∕2+𝑖
√
𝑁

𝜃𝑟
2 ,

)
∞

|||2
(8.42)

and where we have used the notation (suppressing the 𝑁 dependence above)

𝜃𝑟 = 𝜃(𝑁)
𝑟 ∶= arccos

(
1 −

𝑟
2𝑁

)
. (8.43)

Observe that if we send 𝑟 ↦ 4𝑁 − 𝑟, then 𝜃𝑟 ↦ 𝜋 − 𝜃𝑟 and thus also 𝑞
𝑖
√
𝑁

𝜃𝑟
2 ↦ −𝑞

𝑖
√
𝑁

𝜃𝑟
2 and

𝑞𝑖
√
𝑁𝜃𝑟 ↦ 𝑞𝑖

√
𝑁𝜃𝑟 . These transformations imply that 𝜋̂(𝑁),𝑐

𝑡;𝑣,𝑣,𝑢,𝑢̃(𝑟) transforms under this change of
variables by swapping the tilde and nontilde variables:

𝜋̂(𝑁),𝑐
𝑡;𝑣,𝑣,𝑢,𝑢̃(4𝑁 − 𝑟) = 𝜋̂(𝑁),𝑐

𝑡;𝑣,𝑣,𝑢̃,𝑢(𝑟). (8.44)

In light of this transformation, we will now consider the asymptotics behavior of 𝜋̂(𝑁),𝑐
𝑡;𝑣,𝑣,𝑢,𝑢̃(𝑟)

for 𝑟 ∈ [0, 2𝑁]. We will show (generalizing Equation 8.13) that, provided 𝑢 + 𝑣 > 0 and 𝑢̃ + 𝑣 > 0,
𝑟 ∈ [0, 2𝑁]

𝑁𝑢+𝑣

√
1 −

𝑟
4𝑁

𝜋̂(𝑁),𝑐
𝑡;𝑣,𝑣,𝑢,𝑢̃ = 𝔭𝑐𝑡;𝑣,𝑢(𝑟) ⋅ 𝑒

𝖤𝗋𝗋
(𝑁),𝑐
𝑡;𝑣,𝑣,𝑢,𝑢̃(𝑟)

where the error term satisfies the bound|||𝖤𝗋𝗋(𝑁),𝑐
𝑡;𝑣,𝑣,𝑢,𝑢̃(𝑟)

||| ≤ 𝐶𝑁−𝜒(1 +
√
𝑟)

𝜂
. (8.45)

as in Equation (8.14) and where 𝔭𝑐𝑡;𝑣,𝑢 = 𝔭𝑐𝑡 is given in Definition 6.2 (and does not depend on 𝑣 or
𝑢̃). By combining this bound, the transformation (8.44) and the growth bound (8.31) on 𝔭𝑐𝑡 we can
easily deduce that Equation (8.13) also holds for 𝑟 ∈ [2𝑁, 4𝑁]with the claimed error bound (8.14).
Thus, we focus the rest of this proof on demonstrating (8.45) under the restriction 𝑟 ∈ [0, 2𝑁].
Step 2. By Taylor expanding around 𝑟 = 0, we can write√

𝑁𝜃(𝑁)
𝑟 =

√
𝑟 + 𝖤𝜃𝑁(𝑟), (8.46)
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2230 CORWIN and KNIZEL

where 𝖤𝜃𝑁(𝑟) is the remainder. With this and Equation (8.39), we rewrite Equation (8.42) as

log

[√
1 −

𝑟
4𝑁

𝜋̂(𝑁),𝑐
𝑡;𝑣,𝑣,𝑢,𝑢̃(𝑟)

]
= − log

[
8𝜋𝑁

√
𝑟
4𝑁

]
+𝑁(

√
𝑟) + 𝖤𝑁(𝑟) + 𝖤𝑁(𝑟). (8.47)

In the above formula, for 𝑎 ∈ ℝ≥0, we have defined

𝑁(𝑎) ∶=+
𝑁[1, 𝑣 + 𝑢, 𝑣 + 𝑢̃, 𝑖𝑎, −𝑖𝑎] +−

𝑁[𝑣 + 𝑣 + 𝑡, 𝑣 + 𝑢̃, 𝑢 + 𝑣, 𝑢 + 𝑢̃ − 𝑡]

−+
𝑁

[
𝑣 + 𝑢 + 𝑣 + 𝑢̃, 𝑣 +

𝑡
2
+ 𝑖

𝑎
2
, 𝑣 +

𝑡
2
− 𝑖

𝑎
2
, 𝑢 −

𝑡
2
+ 𝑖

𝑎
2
, 𝑢 −

𝑡
2
− 𝑖

𝑎
2

]
−−

𝑁

[
𝑣 +

𝑡
2
+ 𝑖

𝑎
2
, 𝑣 +

𝑡
2
− 𝑖

𝑎
2
, 𝑢̃ −

𝑡
2
+ 𝑖

𝑎
2
, 𝑢̃ −

𝑡
2
− 𝑖

𝑎
2

]
. (8.48)

Here 𝖤𝑁(𝑟) comes from the Taylor expansion (8.46) and is given by

𝖤𝑁(𝑟) ∶= 𝑁

(√
𝑟 + 𝖤𝜃𝑁(𝑟)

)
−𝑁

(√
𝑟
)
. (8.49)

Define the function 𝑁(𝑎) exactly as in Equation (8.48), except with the symbol replaced by 𝖤𝑁 ,
as in Equation (8.40). 𝖤𝑁(𝑟) comes from Proposition 2.3 and is

𝖤𝑁(𝑟) = 𝑁
(√

𝑟 + 𝖤𝜃𝑁(𝑟)
)
= 𝑁

(√
𝑁𝜃(𝑁)

𝑟

)
. (8.50)

The first two terms on the right-hand side of Equation (8.47) can be simplified considerably
using the explicit expressions for ±[𝜅; 𝑧] from Equations (2.3) and (2.4). In particular, when
𝑁(

√
𝑟) is expanded, all of the terms that have a prefactor 𝜋2 coming from Equations (2.3) and

(2.4) end up canceling out. Combining the remaining terms, we find that

− log

[
8𝜋𝑁

√
𝑟
4𝑁

]
+𝑁(

√
𝑟) =

log

⎡⎢⎢⎢⎢⎢⎣
Γ(𝑣 + 𝑢 + 𝑣 + 𝑢̃)

Γ(𝑣 + 𝑢)Γ(𝑣 + 𝑢̃)

|||||Γ
(
𝑢 −

𝑡

2
+ 𝑖

√
𝑟

2
, 𝑣 +

𝑡

2
+ 𝑖

√
𝑟

2

)|||||
2

8𝜋
√
𝑟 ⋅

||||Γ(𝑖√𝑟
)||||

2

⎤⎥⎥⎥⎥⎥⎦
− (𝑣 + 𝑢) log(𝑁).

RecallingEquation (8.41), it follows by taking 𝑣 = 𝑢̃ = 1 in the above formula andusing Γ(𝑣+𝑢+2)

Γ(𝑣+𝑢)
=

(𝑣 + 𝑢)(𝑣 + 𝑢 + 1) that (recall also the formula in Definition 6.2 for 𝔭𝑐𝑡 )

log

[
𝑁𝑢+𝑣

√
1 −

𝑟
4𝑁

𝜋̂(𝑁),𝑐
𝑡 (𝑟)

]
= log

[
𝔭𝑐𝑡 (𝑟)

]
+ 𝖤𝑁(𝑟) + 𝖤𝑁(𝑟). (8.51)

Similarly, using Equation (8.44), we see that

log

[
𝑁2

√
1 −

𝑟
4𝑁

𝜋̂(𝑁),𝑐
𝑡 (4𝑁 − 𝑟)

]
= log

[
𝔭𝑐𝑡 (𝑟)

]
+ 𝖤′𝑁 (𝑟) + 𝖤′𝑁 (𝑟) (8.52)
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STATIONARY MEASURE FOR THE OPEN KPZ 2231

where 𝖤′𝑁 (𝑟) and 𝖤′𝑁 (𝑟) are defined exactly as 𝖤𝑁(𝑟) and 𝖤𝑁(𝑟) are above but with (𝑣, 𝑢) and
(𝑣, 𝑢̃) swapped.
Step 3. It remains to bound for 𝑟 ∈ [0, 2𝑁] the two error terms 𝖤𝑁(𝑟) and 𝖤𝑁(𝑟) in Equation

(8.51) and 𝖤′𝑁 (𝑟) and 𝖤′𝑁 (𝑟) in Equation (8.52). The analysis is exactly the same in both cases so
we will just focus on the first set of error terms. To be precise, in this step, we will show that for
all 𝜂 > 1, there exists 𝑁0 ∈ ℤ≥1 and 𝐶, 𝜒 > 0 such that for all 𝑁 > 𝑁0 and 𝑟 ∈ [0, 2𝑁]

|||𝖤𝑁(𝑟)|||, |||𝖤𝑁(𝑟)||| ≤ 𝐶𝑁−𝜒(1 +
√
𝑟)

𝜂
. (8.53)

From this and Equation (8.51), the desired bound in Equation (8.14) immediately follows. Thus
we will show Equation (8.53). In demonstrating those bounds, we will also need to control 𝖤𝜃𝑁(𝑟),
so we start with that.
Bounding |𝖤𝜃𝑁(𝑟)|. For 𝑟 ∈ [0, 2𝑁],

√
𝑁𝜃(𝑁)

𝑟 ≤
√

𝜋2

8
𝑟 and 𝖤𝜃𝑁(𝑟) ≥ 0. (8.54)

The first inequality in Equation (8.54) is equivalent to the inequality

arccos(1 − 𝑥∕2) ≤
√

𝜋2

8
𝑥 for 𝑥 ∈ [0, 2] (8.55)

which can easily be shown by matching the values at 𝑥 = 0 and 𝑥 = 2 of both sides and then
showing that the derivative of the difference strictly decreases (hence the difference is strictly
concave). The second inequality in Equation (8.54) is equivalent to arccos(1 − 𝑥∕2) −

√
𝑥 ≥ 0 for

𝑥 ∈ [0, 2] and is also shown by taking derivatives.
Now we claim that for all 𝜂 > 1, there exists 𝑁0 ∈ ℤ≥1 and 𝐶, 𝜒 > 0 such that for all 𝑁 > 𝑁0

and 𝑟 ∈ Ŝ(𝑁),𝑐 = [0, 2𝑁],

𝖤𝜃𝑁(𝑟) log(𝑁) ≤ 𝐶𝑁−𝜒(1 +
√
𝑟)

𝜂
. (8.56)

Note that by Equation (8.54), 𝖤𝜃𝑁(𝑟) ≥ 0. Changing variables 𝑥 = 𝑟∕𝑁, Equation (8.56) reduces this
to

arccos
(
1 −

𝑥
2

)
−
√
𝑥 ≤ 𝐶(1 +

√
𝑁𝑥)

𝜂

𝑁𝜒+1∕2 log(𝑁)
for 𝑥 ∈ [0, 2]. (8.57)

We split the demonstration of Equation (8.57) into two cases. Let 𝑥𝑁 be such that
(1+

√
𝑁𝑥𝑁)

𝜂−1

𝑁𝜒 log(𝑁)
= 1.

Then, since (1+
√
𝑁𝑥)

𝜂−1

𝑁𝜒 log(𝑁)
≥ 1 for 𝑥 ∈ [𝑥𝑁, 2], we have on that interval that

arccos
(
1 −

𝑥
2

)
−
√
𝑥 ≤ 𝐶

√
𝑥 ≤ 𝐶

1 +
√
𝑁𝑥√

𝑁

(1 +
√
𝑁𝑥)𝜂−1

𝑁𝜒 log(𝑁)
≤ 𝐶(1 +

√
𝑁𝑥)𝜂

𝑁𝜒+1∕2 log(𝑁)

where in the first inequality, we can take 𝐶 =
√
𝜋2∕8 − 1 owing to Equation (8.55). We do not

require anything on the value of 𝜒. This shows Equation (8.57) for 𝑥 ∈ [𝑥𝑁, 2].
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2232 CORWIN and KNIZEL

Tuning to the case of 𝑥 ∈ [0, 𝑥𝑁], observe that 𝑥𝑁 goes to zero as 𝑁 grows and 𝑥𝑁 ≤
𝑁

2𝜒

𝜂−1
−1

log(𝑁)
2

𝜂−1 . Provided that 𝜒 <
𝜂−1

2
(so 𝑥𝑁 goes to zero as a power law in𝑁), for 𝑥 ∈ [0, 𝑥𝑁],

we canuse Taylor expansionwith remainder to show that there exists𝑁0 ∈ ℤ≥1 and𝐶 ∈ ℝ>0 such
that for all 𝑁 > 𝑁0 and 𝑥 ∈ [0, 𝑥𝑁], arccos(1 −

𝑥

2
) −

√
𝑥 ≤ 𝐶𝑥3∕2. From this, we see that all that

is left is to show that on the interval 𝑥 ∈ [0, 𝑥𝑁], 𝑥3∕2 ≤ 𝐶
(1+

√
𝑁𝑥)𝜂

𝑁𝜒+1∕2 log(𝑁)
. Clearly, this is true when

𝑥 = 0 (where both sides are zero). If we can show that the derivatives are likewise ordered on
𝑥 ∈ [0, 𝑥𝑁], then the above inequality will immediately follow. Calculating those derivatives, we

find that showing their ordering reduces to showing that 𝑥 ≤ (1+
√
𝑁𝑥)𝜂−1

𝑁𝜒 log(𝑁)
, which easily follows

from Taylor expansion with remainder on (1 +
√
𝑁𝑥)𝜂−1. Thus, we have shown Equation (8.56).

Bounding |𝖤𝑁(𝑟)|. Recall that 𝑁(𝑟) is defined inEquation (8.50) (the function𝑁(𝑎) is defined
exactly as in Equation (8.48), except with the symbol replaced by 𝖤𝑁 , as in Equation (8.40)) as
a sum of many terms of the form 𝖤𝗋𝗋±1 [𝜅, 𝑧] for 𝜅 =

2√
𝑁
and for various choices of the variable

𝑧. Some of the assignments of the variable 𝑧 depend on 𝑟 while others do not (though may still
depend on other variables like 𝑢, 𝑣, 𝑡). We refer to the former terms as Type (1) and the later as
Type (2). For Type (2) terms, we see from Equation (2.7) in Proposition 2.3 that for any 𝑧 fixed
and 𝑏 ∈ (0, 1), we can find a 𝜅0 > 0 and a 𝐶 > 0 so that for all 𝜅 < 𝜅0 (or equivalently we can find
𝑁0 ∈ ℤ≥1 so that for all 𝑁 > 𝑁0),

|𝖤𝗋𝗋±1 [𝜅, 𝑧]| ≤ 𝐶(𝜅 + 𝜅𝑏) ≤ 𝐶′𝑁−𝑏∕2.

From this, we see that the contribution of Type (2) terms to |𝖤𝑁(𝑟)| satisfies the bound in Equation
(8.53).
Now, let us consider how Type (1) terms contributes to |𝖤𝑁(𝑟)|. These terms take the form

𝖤𝗋𝗋±1 [𝜅, 𝑧] for either 𝑧 = 𝑧𝑐(𝑟) = 𝑐 ± 𝑖
√
𝑁

𝜃(𝑁)
𝑟

2
with some fixed real 𝑐 (e.g. ,𝑐 = 0 or 𝑐 = 𝑢 −

𝑡

2
) or

𝑧 = ±𝑖
√
𝑁𝜃(𝑁)

𝑟 . Call the first type of term Type (1a) and the second Type (1b). Observe that for
𝑟 ∈ [0, 2𝑁], 𝜃(𝑁)

𝑟 ∈ [0, 𝜋∕2]. This means that
√
𝑁𝜃(𝑁)

𝑟 ∈ [0,
𝜋

𝜅
]. For Type (1a) terms, this range is

further divided by 2 and hence |Im(𝑧)| ≤ 𝛼

𝜅
for 𝛼 = 𝜋∕2. Since this 𝛼 < 𝜋, we can apply equation*

(2.7) from Proposition 2.3 to show that for any 𝑏 ∈ (0, 1) and 𝜀 ∈ (0, 1∕2), there exists 𝐶, 𝜅0 > 0
such that for all 𝜅 < 𝜅0 and 𝑟 ∈ [0, 2𝑁]

|||𝖤𝗋𝗋±1 [𝜅, 𝑧]||| ≤ 𝐶
(
𝜅(1 + |𝑧|)2 + 𝜅𝑏(1 + |𝑧|)1+2𝑏+𝜀) (8.58)

where 𝑧 = 𝑐 ± 𝑖
√
𝑁

𝜃(𝑁)
𝑟

2
. For the Type (1b) terms, observe that it is only 𝖤𝗋𝗋+1 that arises in 𝖤𝑁(𝑟).

Recalling from Proposition 2.3 that the bound (2.7) on 𝖤𝗋𝗋+𝑚[𝜅, 𝑧] holds with |Im(𝑧)| < 2𝛼

𝜅
(for

𝛼 ∈ (0, 𝜋)) we see that Equation (8.58) holds when ± is restricted to + and 𝑧 = 𝑐 ± 𝑖
√
𝑁𝜃(𝑁)

𝑟 .
It just remains to massage the bound in Equation (8.58) into the claimed form. To do this, note

that for Type (1) choices of 𝑧 = 𝑧(𝑟), with 𝑟 ∈ [0, 2𝑁], we have that |𝑧(𝑟)| ≤ 𝑐 + 𝐶
√
𝑟 for some

choices of 𝑐, 𝐶 > 0. This implies that for any 𝑏 ∈ (0, 1) and 𝜀 ∈ (0, 1∕2), there exists 𝐶 > 0 such
that for all 𝑟 ∈ [0, 2𝑁],

|||𝖤𝗋𝗋±1 [𝜅, 𝑧𝑐(𝑟)]||| ≤ 𝐶
(
𝑁−1∕2(1 +

√
𝑟)2 + 𝑁−𝑏∕2(1 +

√
𝑟)1+2𝑏+𝜀

)
.
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STATIONARY MEASURE FOR THE OPEN KPZ 2233

The second term on the right-hand side above is already of the form 𝐶𝑁−𝜒(1 +
√
𝑟)𝜂 where 𝜂 can

be taken arbitrarily close to 1 by turning 𝑏 and 𝜀 close to zero, and where 𝜒 = 𝑏∕2. The first term
𝑁−1∕2(1 +

√
𝑟)2 can also be put in this form since for a large enough constant 𝐶 > 0,

𝑁−1∕2(1 +
√
𝑟)2 = 𝑁−1∕2(1 +

√
𝑟)2−𝜂(1 +

√
𝑟)𝜂 ≤ 𝐶𝑁

−
𝜂−1

2 (1 +
√
𝑟)𝜂

where the inequality uses that 1 +
√
𝑟 ≤ 𝐶′𝑁1∕2 for some suitably large constant 𝐶′ > 0. Taking

𝜒 =
𝜂−1

2
puts this bound in the form 𝐶𝑁−𝜒(1 +

√
𝑟)𝜂. Therefore, we conclude that the contribu-

tion of Type (1) terms to |𝖤𝑁(𝑟)| satisfies the bound in Equation (8.53). Combining this with the
previous conclusion for Type (2) terms, we arrive at the bound in Equation (8.53) on |𝖤𝑁(𝑟)|.
Bounding |𝖤𝑁(𝑟)|. Recall that 𝖤𝑁(𝑟) is defined in Equation (8.49) in terms of 𝑁(𝑎) defined

in Equation (8.48). From Equation (8.48), we see that𝑁(
√
𝑟 + 𝖤𝜃𝑁(𝑟)) −𝑁(

√
𝑟) involves many

cancellations. All of the terms in Equation (8.48), which do not depend on the argument 𝑎 imme-
diately cancel when taking this difference. Recalling the definition of ±[𝜅, 𝑧] from Equations
(2.3) and (2.4), we also see that the terms in those functions involving 𝜋2 do not depend on the
𝑧 argument and hence also cancel upon taking a difference. Let us take an accounting of which
terms remain. From+, we need to account for (1) the (𝑧 − 1

2
) log(𝜅) terms and (2) the log[ Γ(𝑧)√

2𝜋
]

terms, while from−, we need only account for (3) the (𝑧 − 1

2
) log(2) terms. Let us consider each

of these types of term separately and show how their contributions can be bounded by expressions
of the form of the right-hand side of Equation (8.53).

Type (1) terms contribute to𝑁(
√
𝑟 + 𝖤𝜃𝑁(𝑟)) −𝑁(

√
𝑟) expressions of the form 𝑖

𝖤𝜃𝑁(𝑟)

2
log(𝜅).

Since 𝜅 =
2√
𝑁
, the magnitude of such terms is proportional to 𝖤𝜃𝑁(𝑟) log(𝑁). The bound we estab-

lished in Equation (8.56) implies that the contribution to |𝖤𝑁(𝑟)| of Type (1) terms can be bounded
by𝐶𝑁−𝜒(1 +

√
𝑟)𝜂 provided𝜒 is small enough. This is precisely of the form of the right-hand side

of Equation (8.53). Note that Type (3) terms which arise from − involve 𝖤𝜃𝑁(𝑟) log(2). Since for
𝑁 ≥ 2, log(2) ≤ log(𝑁), the argument above immediately controls those terms by𝐶𝑁−𝜒(1 +

√
𝑟)𝜂

as well.
All that remains is to control the contribution to |𝖤𝑁(𝑟)| from the Type (2) terms coming from

log[
Γ(𝑧)√
2𝜋
] in +. These contributions are of the form log[Γ(𝑧′𝑐(𝑟))] − log[Γ(𝑧𝑐(𝑟))] where 𝑧′𝑐(𝑟) =

𝑐 ± 𝑖
√
𝑟+𝖤𝜃𝑁(𝑟)

2
and 𝑧𝑐(𝑟) = 𝑐 ± 𝑖

√
𝑟

2
(case (1)), or 𝑧′𝑐(𝑟) = 𝑐 ± 𝑖(

√
𝑟 + 𝖤𝜃𝑁(𝑟)) and 𝑧𝑐(𝑟) = 𝑐 ± 𝑖

√
𝑟

(case (2)). The proof in both cases is identical (just the constants change), so we focus on the
first case. Similarly, the argument we present works just as well for ± = + and ± = −, so we will
just address the + case. We claim that for any 𝑐 ∈ ℝ fixed, there exists 𝑁0 ∈ ℤ≥1 and 𝐶, 𝜒 > 0
such that for all 𝑁 > 𝑁0 and 𝑟 ∈ Ŝ(𝑁),𝑐 = [0, 4𝑁]

||| log[Γ(𝑧′𝑐(𝑟))] − log[Γ(𝑧𝑐(𝑟))]
||| ≤ 𝐶𝑁−𝜒(1 +

√
𝑟)𝜂. (8.59)

Wewill show this separately for 𝑟 ∈ [𝑟0, 4𝑁] and for 𝑟 ∈ [0, 𝑟0], where 𝑟0 is specifiedmomentarily.
The purpose of this split is that for large 𝑟, we can use the asymptotic behavior of the Gamma
function in the imaginary direction. For small 𝑟, we can use the uniform continuity of the gamma
function provided 𝑐 ∉ ℤ≤0. If 𝑐 ∈ ℤ≤0, we need to account for the divergence from the pole, but
after doing that we can still show the desired bound. We proceed with this argument now.
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2234 CORWIN and KNIZEL

Observe that by the fundamental theorem of calculus, for 𝑟 > 0,

log[Γ(𝑧′𝑐(𝑟))] − log[Γ(𝑧𝑐(𝑟))] = ∫

√
𝑟+𝖤𝜃𝑁(𝑟)

2√
𝑟

2

𝜕𝑦 log[Γ(𝑐 + 𝑖𝑦)]𝑑𝑦 = ∫

√
𝑟+𝖤𝜃𝑁(𝑟)

2√
𝑟

2

𝑖𝜓(𝑐 + 𝑖𝑦)𝑑𝑦 (8.60)

where in the second equality uses the Cauchy–Riemann equation to write 𝜕𝑦 log[Γ(𝑐 + 𝑖𝑦)] =
𝑖𝜓(𝑐 + 𝑖𝑦) where 𝜓 is the digamma function. Thus,

||| log[Γ(𝑧′𝑐(𝑟))] − log[Γ(𝑧𝑐(𝑟))]
||| ≤ 𝖤𝜃𝑁(𝑟)

2
sup

𝑦∈

[√
𝑟

2
,

√
𝑟+𝖤𝜃𝑁(𝑟)

2

] |𝜓(𝑐 + 𝑖𝑦)|. (8.61)

It follows from the asymptotic expansion for the digamma function in Ref. [26, eq. (5.11.2)] or
Magnus et al. [40, page 18] that any 𝑐 there exists 𝐶, 𝑦0 > 0 such that for |𝑦| > 𝑦0, |𝜓(𝑐 + 𝑖𝑦)| ≤
𝐶 log(|𝑦|). Let 𝑟0 = 4𝑦20 (so that

√
𝑟0

2
= 𝑦0). Thus there exists 𝐶, 𝐶′ > 0 such that for 𝑟 > 𝑟0,

||| log[Γ(𝑧′𝑐(𝑟))] − log[Γ(𝑧𝑐(𝑟))]
||| ≤ 𝐶𝖤𝜃𝑁(𝑟) log[|𝑧′𝑐(𝑟)|] ≤ 𝐶′𝖤𝜃𝑁(𝑟) log(𝑁)

where the second inequality comes from the fact that for 𝑟 ∈ Ŝ(𝑁),𝑐 = [0, 4𝑁], we can bound|𝑧′𝑐(𝑟)| ≤ 𝐶′′ log(𝑁) for some 𝐶′′ > 0. Now we may appeal to Equation (8.56) to bound the
right-hand side above by 𝐶𝑁−𝜒(1 +

√
𝑟)𝜂 as desired in Equation (8.59).

It remains to demonstrate Equation (8.59) when 𝑟 ∈ [0, 𝑟0]. First assume that 𝑐 ∉ ℤ≤0. For 𝑧 in
any compact set away fromℤ≤0, analyticity implies that |𝜓(𝑧)| is uniformly continuous. Combin-
ing this observation with Equation (8.61), we find that | log[Γ(𝑧′𝑐(𝑟))] − log[Γ(𝑧𝑐(𝑟))]| ≤ 𝐶𝖤𝜃𝑁(𝑟).
Again, owing to Equation (8.56), we may bound this above by 𝐶𝑁−𝜒(1 +

√
𝑟)𝜂 as desired in

Equation (8.59).
For the case when 𝑐 ∈ ℤ≤0, we must appeal to the behavior of 𝜓(𝑧) near its poles ℤ≤0. As in

Magnus et al. [40, page 14], we have that for 𝑧 in a vertical strip with real part in [𝑐 − 1∕2, 𝑐 + 1∕2],
the function 𝜓(𝑧) = −(𝑧 − 𝑐)−1 + 𝜓𝑐(𝑧) where 𝜓𝑐(𝑧) is analytic in the strip. This and Equation
(8.60) imply

log(Γ(𝑧′𝑐(𝑟))) − log(Γ(𝑧𝑐(𝑟))) = ∫

√
𝑟+𝖤𝜃𝑁(𝑟)

2√
𝑟

2

(
−𝑦−1 + 𝜓𝑐(𝑐 + 𝑖𝑦)

)
𝑑𝑦.

This shows that there exists a constant 𝐶 > 0 such that

||| log(Γ(𝑧′𝑐(𝑟))) − log(Γ(𝑧𝑐(𝑟)))
||| ≤ 𝐶 log

(√
𝑟+𝖤𝜃𝑁(𝑟)√

𝑟

)
+ 𝐶𝖤𝜃𝑁(𝑟).

The second term 𝖤𝜃𝑁(𝑟)| is bounded by appealing to Equation (8.56). For the first,
log

(√
𝑟+𝖤𝜃𝑁(𝑟)√

𝑟

)
= log

(
1 +

𝖤𝜃𝑁(𝑟)√
𝑟

)
≤ 𝖤𝜃𝑁(𝑟)√

𝑟
≤ 𝐶′ ⋅

𝑟

𝑁
,

for some constants 𝐶, 𝐶′ > 0. Since 𝑟 ∈ [0, 𝑟0], for any choice of 𝜂 > 1 and 𝜒 < 1, there is a con-
stant 𝐶 > 0 such that 𝑟

𝑁
≤ 𝐶𝑁−𝜒(1 +

√
𝑟)𝜂 . This bound is of the form of Equation (8.59). Putting

 10970312, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22174 by C

olum
bia U

niversity L
ibraries, W

iley O
nline L

ibrary on [02/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



STATIONARY MEASURE FOR THE OPEN KPZ 2235

together the cases considered above, we have shown that Equation (8.59) holds. This completes
the proof of Equation (8.53) for |𝖤𝑁(𝑟)| and hence completes Step 3 and the proof of Lemma 8.3.
8.5.4 Proof of Lemma 8.4

The convergence of the location of the atoms in Equations (8.18) and (8.19) follows immediately
from Equation (8.17) by Taylor expanding in 𝑁. The convergence of the masses of these atoms
in Equation (8.21) follows immediately from the bounds in Equation (8.20). Thus, our problem
reduces to showing Equation (8.20). We will deal with the case when 𝑣 + 𝑡∕2 < 0, since the other
case of 𝑢 − 𝑡∕2 < 0 proceeds exactly in the samemanner. FromEquation (6.5), we canwrite down
the weights of the atoms as (recall the parametrization for 𝑎, 𝑏, 𝑐, 𝑑 from Equation (8.16))

𝜋̂(𝑁),𝑑
𝑡 (𝐯̂(𝑁),𝑣

0 (𝑡)) =

(
𝑞−2𝑣−𝑡, −𝑞𝑢+1−𝑡, −𝑞1+𝑢, 𝑞2

)
∞

(−𝑞1−𝑣, 𝑞𝑢−𝑣−𝑡, −𝑞1−𝑣−𝑡, 𝑞2+𝑣+𝑢)∞
,

𝜋̂(𝑁),𝑑
𝑡 (𝐯̂(𝑁),𝑣

𝑗 (𝑡))

𝜋̂(𝑁),𝑑
𝑡 (𝐯̂(𝑁),𝑣

0 (𝑡))
=

(
𝑞2𝑣+𝑡, −𝑞𝑣+1+𝑡, 𝑞𝑣+𝑢, −𝑞𝑣+1

)
𝑗
⋅
(
1 − 𝑞2𝑣+2𝑗+𝑡

)
(𝑞, −𝑞𝑣, 𝑞1−𝑢+𝑣+𝑡, −𝑞𝑣+𝑡)𝑗 ⋅ (1 − 𝑞2𝑣+𝑡)

⋅
(
𝑞−𝑣−𝑢−1

)𝑗
,

(8.62)

where 𝑗 ∈ ⟦1, −𝑣 − 𝑡∕2⟧. Since 𝑣 + 𝑡∕2 < 0 and 𝑢 + 𝑣 > 0, there is no chance of division by zero
in the above formulas.
Recalling the notation fromEquations (8.38) and (8.40), Proposition 2.3 with𝑚 = 1 yields (here

(±
𝑁 + 𝖤±𝑁)[⋯] ∶= ±

𝑁[⋯] + 𝖤±𝑁[⋯])

log
(
𝑁𝑢+𝑣𝜋̂(𝑁),𝑑

𝑡 (𝐯̂(𝑁),𝑣
0 (𝑡))

)
= (𝑢 + 𝑣) log𝑁 + (+

𝑁 + 𝖤+𝑁)[−2𝑣 − 𝑡, 2]

− (+
𝑁 + 𝖤+𝑁)[𝑢 − 𝑣 − 𝑡, 2 + 𝑣 + 𝑢] + (−

𝑁 + 𝖤−𝑁)[𝑢 + 1 − 𝑡, 𝑢 + 1]

− (−
𝑁 + 𝖤−𝑁)[1 − 𝑣, 1 − 𝑣 − 𝑡]. (8.63)

Simplifying the terms, the 𝑁 dependence drops and

+
𝑁[−2𝑣 − 𝑡, 2] −+

𝑁[𝑢 − 𝑣 − 𝑡, 2 + 𝑣 + 𝑢] +−
𝑁[𝑢 + 1 − 𝑡, 𝑢 + 1]

−−
𝑁[1 − 𝑣, 1 − 𝑣 − 𝑡] + (𝑢 + 𝑣) log𝑁 = log

[
𝔭𝑑𝑡 (𝐯

𝑣
0 (𝑡))

]
, (8.64)

where 𝔭𝑑𝑡 (𝐯
𝑣
0 (𝑡)) is given in Definition 6.2.

Since 𝑢, 𝑣, and 𝑡 are fixed, it follows from Equation (2.7) that the four error terms in Equation
(8.63) can be bounded in absolute value by 𝐶𝑁−𝜒 for some 𝐶 > 0 and any 𝜒 ∈ (0, 1∕2) (recall that
𝜅 = 2𝑁−1∕2). Combining this observation with Equation (8.64) proves Equation (8.20) for 𝑗 = 0.
In the same manner, we can bound the asymptotic behavior of the other 𝑗 ∈ ⟦1, −𝑣 − 𝑡∕2⟧

masses. In order to do this, we must take into account the additional multiplicative terms, all of
which are of the form 1 − 𝑞𝑎, 1 + 𝑞𝑎, or 𝑞𝑎 for some choices of real 𝑎. We use the following error
bound: for 𝑎 ∈ ℝ, if we write

1 − 𝑞𝑎

1 − 𝑞
= 𝑎 ⋅ 𝑒𝖤

1
𝑁(𝑎),

1 + 𝑞𝑎

1 + 𝑞
= 𝑒𝖤

2
𝑁(𝑎), 𝑞𝑎 = 𝑒𝖤

2
𝑁(𝑎) (8.65)
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2236 CORWIN and KNIZEL

then there exist constants 𝐶𝑎 > 0 such that

|||𝖤1𝑁(𝑎)|||, |||𝖤2𝑁(𝑎)|||, |||𝖤3𝑁(𝑎)||| ≤ 𝐶𝑎𝑁
−1∕2. (8.66)

Applying these bounds to the formula for 𝜋̂(𝑁),𝑑
𝑡 (𝐯̂(𝑁),𝑣

𝑗 (𝑡)) in Equation (8.62) and rewriting the

additional factors multiplying 𝜋̂(𝑁),𝑑
𝑡 (𝐯̂(𝑁),𝑣

𝑗 (𝑡)) in the form of 1 − 𝑞𝑎, 1 + 𝑞𝑎 and 𝑞𝑎 for various
choices of 𝑎, we see that(

𝑞2𝑣+𝑡, −𝑞𝑣+1+𝑡, 𝑞𝑣+𝑢, −𝑞𝑣+1
)
𝑗

(
1 − 𝑞2𝑣+2𝑗+𝑡

)
(𝑞, −𝑞𝑣, 𝑞1−𝑢+𝑣+𝑡, −𝑞𝑣+𝑡)𝑗(1 − 𝑞2𝑣+𝑡)

(
𝑞−𝑣−𝑢−1

)𝑗
=

(𝑣 + 𝑗 + 𝑡∕2) ⋅ [2𝑣 + 𝑡, 𝑣 + 𝑢]𝑗

(𝑣 + 𝑡∕2) ⋅ 𝑗![1 − 𝑢 + 𝑣 + 𝑡]𝑗
𝑒𝖤

𝑀𝑗
𝑁

where |𝖤𝑀𝑗

𝑁 | ≤ 𝐶𝑁−1∕2 for some constant 𝐶 > 0. Recognizing that

Γ(𝑢 − 𝑣 − 𝑡, 2 + 𝑣 + 𝑢)

Γ(−2𝑣 − 𝑡)
⋅
(𝑣 + 𝑗 + 𝑡∕2) ⋅ [2𝑣 + 𝑡, 𝑣 + 𝑢]𝑗

(𝑣 + 𝑡∕2) ⋅ 𝑗![1 − 𝑢 + 𝑣 + 𝑡]𝑗
= 𝔭𝑑𝑡 (𝐯

𝑣
𝑗 (𝑡)),

we arrive at Equation (8.20), thus completing the proof of Lemma 8.4.

8.5.5 Proof of Lemma 8.5

There are three parts to this lemma.
Part 1. Observe that Equation (8.23) immediately follows from Equation (8.22). It remains to

prove the bound (8.22). The proof of this result very closely follows that of Lemma 8.3. From
Equation (8.4), it follows that for𝑚, 𝑟 ∈ Ŝ(𝑁),𝑐 = [0, 4𝑁],

𝜋̂(𝑁),𝑐,𝑐
𝑠,𝑡 (𝑚, 𝑟) =

1
2𝑁

𝜋(𝑁),𝑐,𝑐
𝑞𝑡,𝑞𝑠

(
1 −

𝑟

2𝑁
, 1 −

𝑚

2𝑁

)
⋅
𝜋̂(𝑁),𝑐
𝑡 (𝑟)

𝜋̂(𝑁),𝑐
𝑠 (𝑚)

. (8.67)

Lemma 8.3 controls 𝜋̂(𝑁),𝑐
𝑡 (𝑟) and 𝜋̂(𝑁),𝑐

𝑠 (𝑚). Thus, we need only to control

𝜋(𝑁),𝑐,𝑐
𝑞𝑡,𝑞𝑠

(
1 −

𝑟

2𝑁
, 1 −

𝑚

2𝑁

)
.

It is useful to factorize this in order to utilize certain symmetries. Define

𝑓(𝑁),𝑐
𝑡;𝑢,𝑢̃ (𝑟) ∶=

||||(−𝑞𝑢̃+𝑡∕2+𝑖√𝑁𝜃𝑟∕2, 𝑞𝑢+𝑡∕2+𝑖
√
𝑁𝜃𝑟∕2

)
∞

||||
2

,

𝑔(𝑁),𝑐
𝑠;𝑢,𝑢̃ (𝑚) ∶=

||||(𝑞𝑖√𝑁𝜃𝑚; 𝑞
)
∞

||||
2

||||(−𝑞𝑢̃+𝑠∕2+𝑖√𝑁𝜃𝑚∕2, 𝑞𝑢+𝑠∕2+𝑖
√
𝑁𝜃𝑚∕2

)
∞

||||
2
,
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STATIONARY MEASURE FOR THE OPEN KPZ 2237

ℎ(𝑁),𝑐
𝑠,𝑡;𝑢,𝑢̃(𝑚, 𝑟) ∶=

1

4𝜋𝑁
√

𝑚

𝑁

√
1 −

𝑚

4𝑁

×

(
𝑞, −𝑞𝑢+𝑢̃+𝑠, 𝑞𝑡−𝑠

)
∞

(−𝑞𝑢+𝑢̃+𝑡)∞

1||||(𝑞(𝑡−𝑠)∕2+𝑖√𝑁(𝜃𝑟+𝜃𝑚)∕2, 𝑞(𝑡−𝑠)∕2+𝑖
√
𝑁(−𝜃𝑟+𝜃𝑚)∕2

)
∞

||||
2
,

where we used the notation from Equation (8.43) (suppressing the 𝑁 dependence above) that

𝜃𝑎 = 𝜃(𝑁)
𝑎 ∶= arccos

(
1 −

𝑎
2𝑁

)
.

Defining

𝜋(𝑁),𝑐,𝑐
𝑞𝑡,𝑞𝑠,𝑢,𝑢̃(𝑥, 𝑦) ∶= 2𝑁𝑓(𝑁),𝑐

𝑡;𝑢,𝑢̃ (2𝑁(1 − 𝑥)) ⋅ 𝑔
(𝑁),𝑐
𝑠;𝑢,𝑢̃ (2𝑁(1 − 𝑦)) ⋅ ℎ

(𝑁),𝑐
𝑠,𝑡;𝑢,𝑢̃(2𝑁(1 − 𝑥), 2𝑁(1 − 𝑦))

it follows from Equation (6.2) that

𝜋(𝑁),𝑐,𝑐
𝑞𝑡,𝑞𝑠

(
1 −

𝑟

2𝑁
, 1 −

𝑚

2𝑁

)
= 𝜋(𝑁),𝑐,𝑐

𝑞𝑡,𝑞𝑠;𝑢,1

(
1 −

𝑟

2𝑁
, 1 −

𝑚

2𝑁

)
.

Observe that if we send 𝑚 ↦ 4𝑁 − 𝑟, then 𝜃𝑟 ↦ 𝜋 − 𝜃𝑟 and thus also 𝑞
𝑖
√
𝑁

𝜃𝑟
2 ↦ −𝑞

𝑖
√
𝑁

𝜃𝑟
2 and

𝑞𝑖
√
𝑁𝜃𝑟 ↦ 𝑞𝑖

√
𝑁𝜃𝑟 . These transformations imply that

𝑓(𝑁),𝑐
𝑡;𝑢,𝑢̃ (4𝑁 − 𝑟) = 𝑓(𝑁),𝑐

𝑡;𝑢̃,𝑢 (𝑟), 𝑔(𝑁),𝑐
𝑠;𝑢,𝑢̃ (4𝑁 −𝑚) = 𝑔(𝑁),𝑐

𝑠;𝑢̃,𝑢 (𝑚). (8.68)

As in the proof of Lemma 8.3, by using the transformation (8.68), it will suffice to consider the
asymptotics behavior of these 𝑓 and 𝑔 functions just for𝑚 ∈ [0, 2𝑁] and 𝑟 ∈ [0, 2𝑁].
Using the notation from Equation (8.43) and the notation from Section 8.5, we may write

log

[√
1 −

𝑚
4𝑁

⋅
1
2𝑁

⋅ 𝜋(𝑁),𝑐,𝑐
𝑞𝑡,𝑞𝑠;𝑢,𝑢̃

(
1 −

𝑟

2𝑁
, 1 −

𝑚

2𝑁

)]
=

− log

[
4𝜋𝑁

√
𝑟
𝑁

]
+𝑁;𝑢,𝑢̃(

√
𝑚,
√
𝑟) + 𝖤𝑁;𝑢,𝑢̃(𝑚, 𝑟) + 𝖤𝑁;𝑢,𝑢̃(𝑚, 𝑟). (8.69)

The function𝑁,𝑢,𝑢̃(𝑎, 𝑏) is defined for 𝑎, 𝑏 ∈ ℝ≥0 by

𝑁,𝑢,𝑢̃(𝑎, 𝑏) ∶= 𝑓
𝑁;𝑢,𝑢̃(𝑎, 𝑏) +𝑔

𝑁;𝑢,𝑢̃(𝑎, 𝑏) +ℎ
𝑁;𝑢,𝑢̃(𝑎, 𝑏) (8.70)

where

𝑓
𝑁;𝑢,𝑢̃(𝑎, 𝑏) ∶= +

𝑁

[
𝑢 +

𝑡

2
+ 𝑖

𝑏

2
, 𝑢 +

𝑡

2
− 𝑖

𝑏

2

]
+−

𝑁

[
𝑢̃ +

𝑡

2
+ 𝑖

𝑏

2
, 𝑢̃ +

𝑡

2
− 𝑖

𝑏

2

]
,

𝑔
𝑁;𝑢,𝑢̃(𝑎, 𝑏) ∶= +

𝑁[𝑖𝑎, −𝑖𝑎] −+
𝑁

[
𝑢 +

𝑠

2
+ 𝑖

𝑏

2
, 𝑢 +

𝑡

2
− 𝑖

𝑏

2

]
−−

𝑁

[
𝑢̃ +

𝑠

2
+ 𝑖

𝑏

2
, 𝑢̃ +

𝑠

2
− 𝑖

𝑏

2

]
,

ℎ
𝑁;𝑢,𝑢̃(𝑎, 𝑏) ∶= +

𝑁[1, 𝑡 − 𝑠] +−
𝑁[𝑢 + 𝑢̃ + 𝑠] −−

𝑁[𝑢 + 𝑢̃ + 𝑡]−

+
𝑁

[
𝑡−𝑠

2
+ 𝑖

𝑎+𝑏

2
,
𝑡−𝑠

2
− 𝑖

𝑎+𝑏

2
,
𝑡−𝑠

2
+ 𝑖

𝑎−𝑏

2
,
𝑡−𝑠

2
− 𝑖

𝑎−𝑏

2

]
.
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2238 CORWIN and KNIZEL

The error term 𝖤𝑁;𝑢,𝑢̃(𝑚, 𝑟) is defined as

𝖤𝑁;𝑢,𝑢̃(𝑚, 𝑟) ∶= 𝖤
,𝑓
𝑁;𝑢,𝑢̃(𝑚, 𝑟) + 𝖤

,𝑔
𝑁;𝑢,𝑢̃(𝑚, 𝑟) + 𝖤,ℎ

𝑁;𝑢,𝑢̃(𝑚, 𝑟),

where, for ∙ ∈ {𝑓, 𝑔, ℎ} we have

𝖤,∙
𝑁;𝑢,𝑢̃(𝑚, 𝑟) ∶= ∙

𝑁;𝑢,𝑢̃

(√
𝑚 + 𝖤𝜃(𝑚),

√
𝑟 + 𝖤𝜃(𝑟)

)
−∙

𝑁;𝑢,𝑢̃(
√
𝑚,
√
𝑟).

Similarly, we define the error term

𝖤𝑁,𝑢,𝑢̃(𝑚, 𝑟) ∶= 𝑁;𝑢,𝑢̃

(√
𝑚 + 𝖤𝜃𝑁(𝑚),

√
𝑟 + 𝖤𝜃𝑁(𝑟)

)
,

where 𝑁;𝑢,𝑢̃(𝑎, 𝑏) is defined exactly as in Equation (8.70), except with the symbol replaced by
𝖤𝑁 , as in Equation (8.40).
Next we use Equation (8.68) and the arguments from Lemma 8.3 to get an analogue of Equa-

tion (8.53), that is, for all 𝜂 > 1, there exists 𝑁0 ∈ ℤ≥1 and 𝐶, 𝜒 > 0 such that for all 𝑁 > 𝑁0 and
𝑚, 𝑟 ∈ Ŝ(𝑁),𝑐 = [0, 4𝑁], and ∙ ∈ {𝑓, 𝑔}

|||𝖤,∙
𝑁;𝑢,𝑢̃(𝑚, 𝑟)|||, |||𝖤𝑁;𝑢,𝑢̃(𝑚, 𝑟)||| ≤ 𝐶𝑁−𝜒(1 +

√
𝑚)𝜂 + 𝐶𝑁−𝜒(1 +

√
𝑟)𝜂.

We can also prove such a bound for 𝖤,ℎ
𝑁;𝑢,𝑢̃(𝑚, 𝑟) directly by using Proposition 2.3 (since 𝑡 − 𝑠 > 0

we use the part of the proposition which assumes the condition that dist(Re(𝑧), ℤ≤0) > 𝑟 for some
𝑟 > 0).
Using the explicit formulas for± from Equations (2.3) and (2.4), when 𝑢̃ = 1wemay simplify

the above calculation to see that

− log

[
4𝜋𝑁

√
𝑟
𝑁

]
+𝑁,𝑢,1(

√
𝑚,
√
𝑟)

= log

⎡⎢⎢⎢⎢⎢⎣

|||||Γ
(
𝑢 +

𝑠

2
+ 𝑖

√
𝑚

2
,
𝑡−𝑠

2
+ 𝑖

√
𝑚+

√
𝑟

2
,
𝑡−𝑠

2
+ 𝑖

√
𝑚−

√
𝑟

2

)|||||
2

8𝜋 ⋅
√
𝑟 ⋅ Γ(𝑡 − 𝑠)

|||||Γ
(
𝑢 +

𝑡

2
+ 𝑖

√
𝑟

2
, 𝑖
√
𝑚

)|||||
2

⎤⎥⎥⎥⎥⎥⎦
. (8.71)

There is a 4𝜋 factor on the left-hand side above versus 8𝜋 on the right-hand side. This extra factor
of two comes from an imbalance between the second order expansion in the +

𝑁 and −
𝑁 . From

Lemma 8.3, we may write

log

⎡⎢⎢⎢⎣
√

1 −
𝑟

4𝑁
𝜋̂(𝑁),𝑐
𝑡 (𝑟)√

1 −
𝑚

4𝑁
𝜋̂(𝑁),𝑐
𝑠 (𝑚)

⎤⎥⎥⎥⎦ = log

[
𝔭𝑐𝑡 (𝑟)

𝔭𝑐𝑠(𝑚)

]
+ 𝖤𝗋𝗋

(𝑁),𝑐
𝑡 (𝑟) − 𝖤𝗋𝗋

(𝑁),𝑐
𝑠 (𝑚)

where the error terms 𝖤𝗋𝗋
(𝑁),𝑐
𝑡 (𝑟) and 𝖤𝗋𝗋

(𝑁),𝑐
𝑠 (𝑚) are controlled by the bounds in Equation (8.14).

In light of Equation (8.67), we may combine this with Equations (8.71) and (8.69) to conclude that
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STATIONARY MEASURE FOR THE OPEN KPZ 2239

(recall Definition 6.7)

log

(√
1 −

𝑟
4𝑁

𝜋̂(𝑁),𝑐,𝑐
𝑠,𝑡 (𝑚, 𝑟)

)

= log

⎡⎢⎢⎢⎢⎢⎣

|||||Γ
(
𝑢 +

𝑠

2
+ 𝑖

√
𝑚

2

)
Γ

(
𝑡−𝑠

2
+ 𝑖

√
𝑚+

√
𝑟

2

)
Γ

(
𝑡−𝑠

2
+ 𝑖

√
𝑚−

√
𝑟

2

)|||||
2

8𝜋 ⋅
√
𝑟 ⋅ Γ(𝑡 − 𝑠)

|||||Γ
(
𝑢 +

𝑡

2
+ 𝑖

√
𝑟

2

)
Γ
(
𝑖
√
𝑚
)|||||

2

𝔭𝑐𝑡 (𝑟)

𝔭𝑐𝑠(𝑚)

⎤⎥⎥⎥⎥⎥⎦
+ 𝖤𝑁;𝑢,1(𝑚, 𝑟) + 𝖤𝑁;𝑢,1(𝑚, 𝑟) + 𝖤𝗋𝗋

(𝑁),𝑐
𝑡 (𝑟) − 𝖤𝗋𝗋

(𝑁),𝑐
𝑠 (𝑚)

= log
[
𝔭𝑐,𝑐𝑠,𝑡 (𝑚, 𝑟)

]
+ 𝖤𝗋𝗋

(𝑁),𝑐,𝑐
𝑠,𝑡 (𝑚, 𝑟),

where 𝖤𝗋𝗋
(𝑁),𝑐,𝑐
𝑠,𝑡 (𝑚, 𝑟) ∶= 𝖤𝑁;𝑢,1(𝑚, 𝑟) + 𝖤𝑁;𝑢,1(𝑚, 𝑟) + 𝖤𝗋𝗋

(𝑁),𝑐
𝑡 (𝑟) − 𝖤𝗋𝗋

(𝑁),𝑐
𝑠 (𝑚). The simplifica-

tion which produces 𝔭𝑐,𝑐𝑠,𝑡 (𝑚, 𝑟) above can be verified by appealing to the explicit formula for
𝔭𝑐,𝑐𝑠,𝑡 (𝑚, 𝑟) from Definition 6.7.

Combining Equation (8.5) with Equation (8.14) in Lemma 8.3 (that |𝖤𝗋𝗋(𝑁),𝑐
𝑡 (𝑟)| ≤ 𝐶𝑁−𝜒(1 +√

𝑟)𝜂 and likewise with 𝑟 replaced by𝑚), we see that 𝖤𝗋𝗋
(𝑁),𝑐,𝑐
𝑠,𝑡 (𝑚, 𝑟) is likewise bound in absolute

value by 𝐶𝑁−𝜒(1 +
√
𝑚)𝜂 + 𝐶𝑁−𝜒(1 +

√
𝑟)𝜂, which completes the proof of Equation (8.22) and

hence part 1 of this lemma.
Part 2. Since Equation (8.25) follows from Equation (8.24), it remains to prove Equation (8.24).
We may rewrite Equation (8.5) as

𝜋̂(𝑁),𝑑,𝑐
𝑠,𝑡

(
𝐯̂(𝑁),𝑣
𝑗 (𝑠), 𝑟

)
= 𝜋(𝑁),𝑐,𝑑

𝑞𝑡,𝑞𝑠

(
1 −

𝑟

2𝑁
, 𝐯(𝑁),𝑣

𝑗 (𝑠)
)
⋅

𝜋̂(𝑁),𝑐
𝑡 (𝑟)

𝜋̂(𝑁),𝑑
𝑠 (𝐯̂(𝑁),𝑣

𝑗 (𝑠))
, (8.72)

where 𝑟 ∈ Ŝ(𝑁),𝑐 = [0, 4𝑁] and 𝐯(𝑁),𝑣
𝑗 (𝑠), for 𝑗 ∈ ⟦0, ⌊−𝑣 − 𝑠∕2⌋⟧, constitutes all of the atoms in

S(𝑁),𝑑
𝑠 . (Recall that 𝐯̂(𝑁),𝑣

𝑗 (𝑠) and 𝐯(𝑁),𝑣
𝑗 (𝑠) are related by Equation 8.17.) For 𝑟 ∈ Ŝ(𝑁),𝑐, we may use

Equation (6.7) to rewrite, for Borel 𝑉 ⊂ ℝ,

𝜋(𝑁)
𝑞𝑡,𝑞𝑠

(
1 −

𝑟

2𝑁
, 𝑉
)
= 𝐴𝑊

(
𝑉; 𝑞

𝑣+
𝑠

2 , −𝑞
1+

𝑠

2 , 𝑞
𝑡−𝑠

2
+𝑖
√
𝑁

𝜃𝑟
2 , 𝑞

𝑡−𝑠

2
−𝑖
√
𝑁

𝜃𝑟
2

)
. (8.73)

Based on the discussion about atoms in Section 6.1, we observe that as long as 1 + 𝑠

2
> 0 and

𝑡−𝑠

2
> 0 (both of which necessarily hold since we have assumed 𝑠 < 𝑡 and 𝑠, 𝑡 ∈ (−2, 2)), the only

atoms are those coming from the 𝑞
𝑣+

𝑠

2 term. This term has absolute value exceeding 1 and hence
we see that the atoms of this measure are precisely 𝐯(𝑁),𝑣

𝑗 (𝑠) for 𝑗 ∈ ⟦0, ⌊−𝑣 − 𝑠∕2⌋⟧.
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2240 CORWIN and KNIZEL

By Equation (6.5), the weight 𝜋(𝑁),𝑐,𝑑
𝑞𝑡,𝑞𝑠

(1 −
𝑟

2𝑁
, 𝐯(𝑁),𝑣

0 (𝑠)) at 𝐯(𝑁),𝑣
0 (𝑠) is(

𝑞−2𝑣−𝑠, −𝑞
1+𝑡∕2+𝑖

√
𝑁

𝜃𝑟
2 , −𝑞

1+𝑡∕2−𝑖
√
𝑁

𝜃𝑟
2 , 𝑞𝑡−𝑠

)
∞(

−𝑞1−𝑣, 𝑞
−𝑣+𝑡∕2−𝑠+𝑖

√
𝑁

𝜃𝑟
2 , 𝑞

−𝑣+𝑡∕2−𝑠−𝑖
√
𝑁

𝜃𝑟
2 , −𝑞𝑣+𝑡+1

)
∞

, (8.74)

while, for 𝑗 ∈ ⟦1, ⌊−𝑣 − 𝑠∕2⌋⟧, the weights at 𝐯(𝑁),𝑣
𝑗 (𝑠) are

𝜋(𝑁),𝑐,𝑑
𝑞𝑡,𝑞𝑠

(
1 −

𝑟

2𝑁
, 𝐯(𝑁),𝑣

𝑗 (𝑠)
)
= 𝜋(𝑁),𝑐,𝑑

𝑞𝑡,𝑞𝑠

(
1 −

𝑟

2𝑁
, 𝐯(𝑁),𝑣

0 (𝑠)
)
×𝑀𝑗

where the additional multiplicative factor𝑀𝑗 is defined as(
𝑞2𝑣+𝑠, −𝑞1+𝑣+𝑠, 𝑞

𝑣+𝑡∕2+𝑖
√
𝑁

𝜃𝑟
2 , 𝑞

𝑣+𝑡∕2−𝑖
√
𝑁

𝜃𝑟
2

)
𝑗

(
1 − 𝑞2𝑣+2𝑗+𝑠

)
(
𝑞, −𝑞𝑣, 𝑞

1+𝑣+𝑠−𝑡∕2+𝑖
√
𝑁

𝜃𝑟
2 , 𝑞

1+𝑠+𝑣−𝑡∕2−𝑖
√
𝑁

𝜃𝑟
2

)
𝑗

(1 − 𝑞2𝑣+𝑠)

⋅
(
−𝑞−𝑣−𝑡

)𝑗
. (8.75)

In Equations (8.74) and (8.75), there are no instances of division by zero. This would arise in Equa-
tion (8.74), if −𝑣 + 𝑡∕2 − 𝑠 ∈ ℤ≤0 and in Equation (8.75), if 1 + 𝑣 + 𝑠 − 𝑡∕2 + 𝑗 − 1 = 0 for 𝑗 ∈⟦1, ⌊−𝑣 − 𝑠∕2⌋⟧, or if 2𝑣 + 𝑠 = 0. However, since 𝑣 + 𝑠∕2 < 0 and that 𝑠 < 𝑡, none of these occur.
Using notation from Section 8.5, we may rewrite Equation (8.74) as

log
[
𝜋(𝑁),𝑐,𝑑
𝑞𝑡,𝑞𝑠

(
1 −

𝑟

2𝑁
, 𝐯(𝑁),𝑣

0 (𝑠)
)]

= 𝑁(
√
𝑟) + 𝖤𝑁(𝑟) + 𝖤𝑁(𝑟). (8.76)

The function𝑁(𝑎) is now (compared to the proof of Lemma 8.3) defined for 𝑎 ∈ ℝ≥0 as

𝑁(𝑎) ∶=+
𝑁[−2𝑣 − 𝑠, 𝑡 − 𝑠] +−

𝑁

[
1 +

𝑡
2
+ 𝑖

𝑎
2
, 1 +

𝑡
2
− 𝑖

𝑎
2

]
−+

𝑁

[
−𝑣 +

𝑡
2
− 𝑠 + 𝑖

𝑎
2
, −𝑣 +

𝑡
2
− 𝑠 − 𝑖

𝑎
2

]
−−

𝑁[1 − 𝑣, 𝑣 + 𝑡 + 1]. (8.77)

The error term 𝖤𝑁(𝑟) ∶= 𝑁(
√
𝑟 + 𝖤𝜃(𝑟)) −𝑁(

√
𝑟). The error term 𝖤𝑁(𝑟) ∶= 𝑁(√𝑟 + 𝖤𝜃𝑁(𝑟)),

where 𝑁(𝑎) is defined as in Equation (8.77), except with the replaced by 𝖤𝑁 .
Using the explicit formulas for± from Equations (2.3) and (2.4), we may simplify

𝑁(
√
𝑟) = log

⎡⎢⎢⎢⎢⎣
|||Γ
(

𝑡

2
− 𝑠 − 𝑣 +

𝑖
√
𝑟

2

)|||2
Γ(−2𝑣 − 𝑠, 𝑡 − 𝑠)

⎤⎥⎥⎥⎥⎦
. (8.78)

From Lemmas 8.3 and 8.4, we may write

log

⎡⎢⎢⎢⎣
√

1 −
𝑟

4𝑁
𝜋̂(𝑁),𝑐
𝑡 (𝑟)

𝜋̂(𝑁),𝑑
𝑠

(
𝐯̂(𝑁),𝑣
𝑗 (𝑠)

) ⎤⎥⎥⎥⎦ = log

[
𝔭𝑐𝑡 (𝑟)

𝔭𝑑𝑠 (𝐯
𝑣
𝑗 )

]
+ 𝖤𝗋𝗋

(𝑁),𝑐
𝑡 (𝑟) − 𝖤𝗋𝗋

(𝑁),𝑑
𝑠 (𝐯𝑣0 (𝑠)),
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STATIONARY MEASURE FOR THE OPEN KPZ 2241

where 𝖤𝗋𝗋
(𝑁),𝑐
𝑡 (𝑟) and 𝖤𝗋𝗋

(𝑁),𝑑
𝑠 (𝐯𝑣0 (𝑠)) are controlled by Equations (8.14) and (8.20). In light of Equa-

tion (8.72), wemay combine this with Equations (8.78) and (8.76) to conclude (with Definition 6.7)
that

log

[√
1 −

𝑟
4𝑁

𝜋̂(𝑁),𝑑,𝑐
𝑠,𝑡 (𝐯̂(𝑁),𝑣

0 (𝑠), 𝑟)

]
= log

[
𝔭𝑑,𝑐𝑠,𝑡 (𝐯

𝑣
0 , 𝑟)

]
+ 𝖤𝗋𝗋

(𝑁),𝑑,𝑐
𝑠,𝑡 (𝐯𝑣0 (𝑠), 𝑟),

where 𝖤𝗋𝗋
(𝑁),𝑑,𝑐
𝑠,𝑡 (𝐯𝑣0 (𝑠), 𝑟) ∶= 𝖤𝑁(𝑟) + 𝖤𝑁(𝑟) + 𝖤𝗋𝗋

(𝑁),𝑐
𝑡 (𝑟) − 𝖤𝗋𝗋

(𝑁),𝑑
𝑠 (𝐯𝑣0 (𝑠)). Just as in the proof of

Lemma8.3, since Proposition 2.3 can be applied directly,we can show that for all 𝜂 > 1, there exists
𝑁0 ∈ ℤ≥1 and 𝐶, 𝜒 > 0 such that for all 𝑁 > 𝑁0 and 𝑟 ∈ Ŝ(𝑁),𝑐 = [0, 4𝑁], |𝖤𝗋𝗋(𝑁),𝑑,𝑐

𝑠,𝑡 (𝐯𝑣0 (𝑠), 𝑟)| ≤
𝐶𝑁−𝜒(1 +

√
𝑟)𝜂. This completes the proof of Equation (8.24) and hence part 2 of this lemmawhen

𝑗 = 0.
When 𝑗 ∈ ⟦1, ⌊−𝑣 − 𝑠∕2⌋⟧, we must consider𝑀𝑗 in Equation (8.75). We claim that

𝑀𝑗 =

[
2𝑣 + 𝑠, 𝑣 +

𝑡

2
+ 𝑖

√
𝑟

2
, 𝑣 +

𝑡

2
− 𝑖

√
𝑟

2

]
𝑗

(2𝑣 + 2𝑗 + 𝑠)[
1, 1 + 𝑣 + 𝑠 −

𝑡

2
+ 𝑖

√
𝑟

2
, 1 + 𝑣 + 𝑠 −

𝑡

2
− 𝑖

√
𝑟

2

]
𝑗

(2𝑣 + 𝑠)

(−1)𝑗 ⋅ 𝑒𝖤
𝑀𝑗
𝑁 (𝑟) (8.79)

where 𝖤
𝑀𝑗

𝑁 (𝑟) satisfies the following bound: For all 𝜂 > 1, there exists𝑁0 ∈ ℤ≥1 and𝐶, 𝜒 > 0 such
that for all 𝑁 > 𝑁0 and 𝑟 ∈ Ŝ(𝑁),𝑐 = [0, 4𝑁],

|||𝖤𝑀,𝑗
𝑁 (𝑟)||| ≤ 𝐶𝑁−𝜒(1 +

√
𝑟)𝜂. (8.80)

If we combine the above claim with our already established result for 𝑗 = 0, we may use
Definition 6.7 to match our formula with that of 𝔭𝑑,𝑐𝑠,𝑡 (𝑥

𝑢
𝑗 , 𝑟) so as to conclude that

log

[√
1 −

𝑟
4𝑁

𝜋̂(𝑁),𝑑,𝑐
𝑠,𝑡 (𝐯̂(𝑁),𝑣

𝑗 (𝑠), 𝑟)

]
= log

[
𝔭𝑑,𝑐𝑠,𝑡 (𝐯

𝑣
𝑗 , 𝑟)

]
+ 𝖤𝗋𝗋

(𝑁),𝑑,𝑐
𝑠,𝑡 (𝐯𝑣𝑗 (𝑠), 𝑟)

where 𝖤𝗋𝗋
(𝑁),𝑑,𝑐
𝑠,𝑡 (𝐯𝑣𝑗 (𝑠), 𝑟) ∶= 𝖤𝗋𝗋

(𝑁),𝑑,𝑐
𝑠,𝑡 (𝐯𝑣0 (𝑠), 𝑟) + 𝖤

𝑀𝑗

𝑁 (𝑟) is bounded in absolute value
by 𝐶𝑁−𝜒(1 +

√
𝑟)𝜂. This shows Equation (8.24) and hence part 2 of the lemma for

𝑗 ∈ ⟦1, ⌊−𝑣 − 𝑠∕2⌋⟧.
It remains to demonstrate Equation (8.79) with the error bound (8.80). All of the terms in𝑀𝑗

which involve 1 − 𝑞𝑎, 1 + 𝑞𝑎, or 𝑞𝑎 for real 𝑎 can be controlled via Equations (8.65) and (8.66), just
as in the proof of Lemma 8.4. The only terms in𝑀𝑗 , which are not controlled by these bounds are
those involving 𝑖

√
𝑁𝜃𝑟∕2. To deal with those terms, we make use of a more general version of the

first growth bound above: there exists a constant 𝐶 > 0 such that for all 𝑧 ∈ ℂ
1−𝑞𝑧

1−𝑞
= 𝑧 ⋅ 𝑒𝖤

4
𝑁(𝑧)

where the error bound satisfies |𝖤4𝑁(𝑧)| ≤ 𝐶𝑁−1∕2(1 + |𝑧|). By combining this bound with the
control on 𝜃𝑟 demonstrated earlier in Step 2 of the proof of Lemma 8.3, we claim the following
bound: for 𝑎 ∈ ℝ,

1 − 𝑞𝑎+𝑖
√
𝑁𝜃𝑟∕2

1 − 𝑞
= (𝑎 + 𝑖

√
𝑟∕2) ⋅ 𝑒𝖤

4
𝑁(𝑎,𝑟) (8.81)
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2242 CORWIN and KNIZEL

where 𝖤4𝑁(𝑎, 𝑟) satisfies the bound that for any fixed 𝑎 and for all 𝜂 > 1, there exists𝑁0 ∈ ℤ≥1 and
𝐶, 𝜒 > 0 such that for all𝑁 > 𝑁0 and 𝑟 ∈ Ŝ(𝑁),𝑐 = [0, 4𝑁], |𝖤4𝑁(𝑎, 𝑟)| ≤ 𝐶𝑁−𝜒(1 +

√
𝑟)𝜂. Combin-

ing this boundwith Equation (8.81), we can deduce that Equation (8.80) holds and hence complete
the proof of this part of the lemma.
Part 3.We may explicitly write 𝜋̂(𝑁),𝑑,𝑐

𝑠,𝑡 (𝐮̂(𝑁),𝑢
𝑗 (𝑠), 𝑟) exactly as in Equation (8.72) except with 𝑢

replacing 𝑣 there. This formula involves the measure 𝜋(𝑁)
𝑞𝑡,𝑞𝑠

(1 −
𝑟

2𝑁
, 𝑉) defined on Borel 𝑉 ⊂ ℝ,

and Equation (8.73) provides a formula for this measure in terms of the Askey–Wilson measure.
We are concerned presently with the atomic part of this measure. However, inspection of the
𝑎, 𝑏, 𝑐, 𝑑 parameters of that measure reveals that as long as 𝑣 + 𝑠

2
> 0, 1 + 𝑠

2
> 0, and 𝑡−𝑠

2
> 0, this

measure has no atomic part. Our assumption in this part is that 𝑢 −
𝑠

2
< 0. If 𝑣 + 𝑠

2
≤ 0 as well,

this would imply that 𝑢 + 𝑣 < 0, which violates our assumption that 𝑢 + 𝑣 > 0. Thus, there is no
atomic part and so 𝜋̂(𝑁),𝑑,𝑐

𝑠,𝑡 (𝐮̂(𝑁),𝑢
𝑗 (𝑠), 𝑟) = 0. This completes the proof of this part and hence the

entire lemma.

8.5.6 Proof of Lemma 8.6

For parts 1 and 2 of this lemma, let us rewrite Equation (8.7) so that for 𝑥 ∈ Ŝ(𝑁),𝑑
𝑠 and 𝑦 ∈ Ŝ(𝑁),𝑑

𝑡

𝜋̂(𝑁),𝑑,𝑑
𝑠,𝑡 (𝑥, 𝑦) = 𝜋(𝑁),𝑑,𝑑

𝑞𝑡,𝑞𝑠

(
1 −

𝑦

2𝑁
, 1 −

𝑥

2𝑁

)
⋅
𝜋̂(𝑁),𝑑
𝑡 (𝑦)

𝜋̂(𝑁),𝑑
𝑠 (𝑥)

. (8.82)

Part 1. Since we have assumed that 𝑣 + 𝑠∕2 < 0, Ŝ(𝑁),𝑑
𝑠 equals the set of 𝐯̂(𝑁),𝑣

𝑗 (𝑠) such that

𝑗 ∈ ⟦0, ⌊−𝑣 − 𝑠∕2⌋⟧. There are three possibilities for Ŝ(𝑁),𝑑
𝑡 : (1) If 𝑣 + 𝑡∕2 < 0, then Ŝ(𝑁),𝑑

𝑡 equals
the set of 𝐯̂(𝑁),𝑣

𝑘
(𝑡) such that 𝑘 ∈ ⟦0, ⌊−𝑣 − 𝑡∕2⌋⟧; (2) if 𝑣 + 𝑡∕2 > 0 and 𝑢 − 𝑡∕2 > 0, then Ŝ(𝑁),𝑑

𝑡

is empty; (3) if 𝑣 + 𝑡∕2 > 0 and 𝑢 − 𝑡∕2 < 0, then Ŝ(𝑁),𝑑
𝑡 contains 𝑢-atoms 𝐮̂(𝑁),𝑢

𝑘
(𝑡). However, this

third possibility is excluded since the condition 𝑣 + 𝑠∕2 implies that 𝑢 > 0 and by our assumption
that 𝑡 < 𝖢𝑢,𝑣, it follows that 𝑢 − 𝑡∕2 > 0 (recall when 𝑢 > 0, 𝖢𝑢,𝑣 = min(2𝑢, 2) so 𝑡 < 𝖢𝑢,𝑣 means
𝑡 < 2𝑢). The case of empty support Ŝ(𝑁),𝑑

𝑡 requires no further argument, so from here on out we
assume that we are in the first case where 𝑣 + 𝑡∕2 < 0.
In Lemma 8.4, we have already controlled the convergence of the discretemarginal distribution

masses. So, recalling that 𝐯̂(𝑁),𝑣
𝑘

(𝑡) and 𝐯(𝑁),𝑣
𝑘

(𝑡) are related by Equation (8.17), our problem now
reduces to studying the behavior of 𝜋(𝑁),𝑑,𝑑

𝑞𝑡,𝑞𝑠
. We may use Equation (6.7) to rewrite, for any Borel

subset 𝑉 ⊂ ℝ,

𝜋(𝑁)
𝑞𝑡,𝑞𝑠

(
𝐯(𝑁),𝑣
𝑘

(𝑡), 𝑉
)
= 𝐴𝑊

(
𝑉; 𝑞

𝑣+
𝑠

2 , −𝑞
1+

𝑠

2 , 𝑞
𝑡−𝑠

2
+𝑣+𝑘+

𝑡

2 , 𝑞
𝑡−𝑠

2
−(𝑣+𝑘+

𝑡

2
)
)
. (8.83)

We will analyze the probability masses in Equation (8.83) when 𝑉 = {𝐯(𝑁),𝑣
𝑗 (𝑠)} for 𝑗 ∈⟦0, ⌊−𝑣 − 𝑠∕2⌋⟧. The support of the measure 𝜋(𝑁)

𝑞𝑡,𝑞𝑠
(𝐯(𝑁),𝑣

𝑘
(𝑡), 𝑉)may actually include more atoms

that just this set, namely coming from the fact that 𝑞
𝑡−𝑠

2
+𝑣+𝑘+

𝑡

2 may have absolute value exceeding
1. We do not, however, need to consider these atoms since in Equation (8.82), we are restricting
ourselves to having the first variable 𝑥 ∈ Ŝ(𝑁),𝑑

𝑠 , which does not include these additional atoms.
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STATIONARY MEASURE FOR THE OPEN KPZ 2243

We use Equation (6.5) to write out these masses. The weight at 𝐯(𝑁),𝑣
0 (𝑠) is

𝜋(𝑁),𝑑,𝑑
𝑞𝑡,𝑞𝑠

(
𝐯(𝑁),𝑣
𝑘

(𝑡), 𝐯(𝑁),𝑣
0 (𝑠)

)
=

(
𝑞−2𝑣−𝑠, −𝑞𝑣+𝑘+1+𝑡, 𝑞𝑡−𝑠, −𝑞1−𝑣−𝑘

)
∞(

−𝑞1−𝑣, 𝑞𝑘+𝑡−𝑠, 𝑞−2𝑣−𝑘−𝑠, −𝑞𝑣+𝑡+1
)
∞

while, for 𝑗 ∈ ⟦1, ⌊−𝑣 − 𝑠∕2⌋⟧, the weights at 𝐯(𝑁),𝑣
𝑗 (𝑠) are

𝜋(𝑁),𝑑,𝑑
𝑞𝑡,𝑞𝑠

(
𝐯(𝑁),𝑣
𝑘

(𝑡), 𝐯(𝑁),𝑣
𝑗 (𝑠)

)
= 𝜋(𝑁),𝑑,𝑑

𝑞𝑡,𝑞𝑠

(
𝐯(𝑁),𝑣
𝑘

(𝑡), 𝐯(𝑁),𝑣
0 (𝑠)

)
×𝑀𝑗

where the additional multiplicative factor𝑀𝑗 is defined as

𝑀𝑗 ∶=

(
𝑞2𝑣+𝑠, −𝑞1+𝑣+𝑠, 𝑞2𝑣+𝑘+𝑡, 𝑞−𝑘

)
𝑗

(
1 − 𝑞2𝑣+2𝑗+𝑠

)(
𝑞, −𝑞𝑣, 𝑞1−𝑘−𝑡+𝑠, 𝑞1+2𝑣+𝑘+𝑠

)
𝑗
(1 − 𝑞2𝑣+𝑠)

⋅
(
−𝑞−𝑣−𝑡

)𝑗
.

The analysis of these formulas follows the same approach as the earlier lemmas, for exam-
ple part 2 of Lemma 8.5. In fact, since all exponents are real, the analysis and control of error
terms is even simpler. As such, we just record the limiting expressions, which arise from applying
Proposition 2.3. Observe that

lim
𝑁→∞

𝜋(𝑁),𝑑,𝑑
𝑞𝑡,𝑞𝑠

(
𝐯(𝑁),𝑣
𝑘

(𝑡), 𝐯(𝑁),𝑣
0 (𝑠)

)
=

Γ(𝑘 + 𝑡 − 𝑠, −2𝑣 − 𝑘 − 𝑠)

Γ(−2𝑣 − 𝑠, 𝑡 − 𝑠)

lim
𝑁→∞

𝑀𝑗 =
[2𝑣 + 𝑠, 2𝑣 + 𝑘 + 𝑡, −𝑘]𝑗(2𝑣 + 2𝑗 + 𝑠)

[1, 1 − 𝑘 − 𝑡 + 𝑠, 1 + 2𝑣 + 𝑘 + 𝑠]𝑗(2𝑣 + 𝑠)
(−1)𝑗.

Putting these expressions together with our knowledge of the asymptotic behavior of
𝜋̂(𝑁),𝑑
𝑡 (𝐯̂(𝑁),𝑣

𝑘
(𝑡)) and 𝜋̂(𝑁),𝑑

𝑠 (𝐯̂(𝑁),𝑣
𝑗 (𝑠)), we readily confirm the expansion (8.26) and error bound

(8.27).
Part 2. Since we have assumed that 𝑢 − 𝑠∕2 < 0, Ŝ(𝑁),𝑑

𝑠 equals the set of 𝐮̂(𝑁),𝑢
𝑗 (𝑠) such that

𝑗 ∈ ⟦0, ⌊−𝑢 + 𝑠∕2⌋⟧. Since 𝑠 < 𝑡, it follows that 𝑢 − 𝑡∕2 < 0 as well thus Ŝ(𝑁),𝑑
𝑡 equals the set

of 𝐮̂(𝑁),𝑢
𝑘

(𝑡) such that 𝑘 ∈ ⟦0, ⌊−𝑢 + 𝑡∕2⌋⟧. As we will see, the transition mass from 𝐮̂(𝑁),𝑢
𝑗 (𝑠) to

𝐮̂(𝑁),𝑢
𝑘

(𝑡) is zero when 𝑗 < 𝑘.
In Lemma 8.4, we have already controlled the convergence of the discretemarginal distribution

masses. So, recalling that 𝐯̂(𝑁),𝑣
𝑘

(𝑡) and 𝐯(𝑁),𝑣
𝑘

(𝑡) are related by Equation (8.17), our problem now
reduces to studying the behavior of 𝜋(𝑁),𝑑,𝑑

𝑞𝑡,𝑞𝑠
. We may use Equation (6.7) to rewrite, for any Borel

subset 𝑉 ⊂ ℝ,

𝜋(𝑁)
𝑞𝑡,𝑞𝑠

(
𝐮(𝑁),𝑢
𝑘

(𝑡), 𝑉
)
= 𝐴𝑊

(
𝑉; 𝑞

𝑣+
𝑠

2 , −𝑞
1+

𝑠

2 , 𝑞
𝑡−𝑠

2
+𝑢+𝑘−

𝑡

2 , 𝑞
𝑡−𝑠

2
−(𝑢+𝑘−

𝑡

2
)
)
. (8.84)

Atoms in theAskey–Wilsonmeasure on the right-hand side of Equation (8.84) arise when argu-
ments exceed 1 in absolute value. Since 𝑢 − 𝑠∕2 < 0, it follows (since 𝑢 + 𝑣 > 0) that 𝑣 + 𝑠∕2 > 0

so |𝑞𝑣+ 𝑠

2 | < 1. Likewise, since we have assumed that 𝑠 > −2, | − 𝑞
1+

𝑠

2 | < 1. The fourth argument

necessarily satisfies |𝑞 𝑡−𝑠

2
−(𝑢+𝑘−

𝑡

2
)| because for 𝑘 ∈ ⟦0, ⌊−𝑢 +

𝑡

2
⌋⟧, we have that 𝑡 − 𝑠 − 𝑢 +

𝑠

2
−

𝑘 ≥ 𝑡−𝑠

2
> 0. The absolute value of the third argument |𝑞 𝑡−𝑠

2
+𝑢+𝑘−

𝑡

2 | can exceed 1 if 𝑢 + 𝑘 −
𝑠

2
< 0.
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2244 CORWIN and KNIZEL

In that case, this term will contribute atoms at 𝐮(𝑁),𝑢
𝑘+𝑖

(𝑠) for 𝑖 ∈ ⟦0, ⌊−𝑢 +
𝑠

2
− 𝑘⌋⟧, which is a

subset of Ŝ(𝑁),𝑑
𝑠 . For all other elements in Ŝ(𝑁),𝑑

𝑠 , there will be no atom in this transition probability.
It remains to compute themasses of the atoms in theAskey–Wilson process (8.83) at𝐮(𝑁),𝑢

𝑘+𝑖
(𝑠) for

𝑖 ∈ ⟦0, ⌊−𝑢 +
𝑠

2
− 𝑘⌋⟧. For this we use Equation (6.5), noting that in this case, we have to switch

the 𝑎 and 𝑐 arguments in the formula for the masses. This yields

𝜋(𝑁),𝑑,𝑑
𝑞𝑡,𝑞𝑠

(
𝐮(𝑁),𝑢
𝑘

(𝑡), 𝐮(𝑁),𝑢
𝑘

(𝑠)
)
=

(
𝑞−2𝑢−2𝑘+𝑠, −𝑞𝑣+1+𝑠, 𝑞𝑣−𝑢−𝑘+𝑡, −𝑞1−𝑢−𝑘+𝑡

)
∞(

𝑞𝑣−𝑢−𝑘+𝑠, −𝑞1−𝑢−𝑘+𝑠, 𝑞−2𝑢−2𝑘+𝑡, −𝑞𝑣+𝑡+1
)
∞

,

while for 𝑖 ∈ ⟦1, ⌊−𝑢 +
𝑠

2
− 𝑘⌋⟧

𝜋(𝑁),𝑑,𝑑
𝑞𝑡,𝑞𝑠

(
𝐮(𝑁),𝑢
𝑘

(𝑡), 𝐮(𝑁),𝑢
𝑘+𝑖

(𝑠)
)
= 𝜋(𝑁),𝑑,𝑑

𝑞𝑡,𝑞𝑠

(
𝐮(𝑁),𝑢
𝑘

(𝑡), 𝐮(𝑁),𝑢
𝑘

(𝑠)
)
×𝑀𝑖

where the additional multiplicative factor𝑀𝑖 is defined as

𝑀𝑖 =

(
𝑞2𝑢+2𝑘−𝑠, 𝑞𝑣+𝑢+𝑘, −𝑞𝑢+1+𝑘, 𝑞𝑡−𝑠

)
𝑖

(
1 − 𝑞2𝑢+2𝑘+2𝑖−𝑠

)(
𝑞, 𝑞𝑢−𝑣+1+𝑘−𝑠, −𝑞𝑢+𝑘−𝑠, 𝑞2𝑢+2𝑘−𝑡+1

)
𝑖

(
1 − 𝑞2𝑢+2𝑘−𝑠

) ⋅ (−𝑞−𝑣−2𝑡+𝑠)𝑖 .
The analysis of these formulas follows the same approach as the earlier lemmas, for example
part 2 of Lemma 8.5. In fact, since all exponents are real, the analysis and control of error terms
is even simpler. As such, we just record the limiting expressions, which arise from applying
Proposition 2.3. Observe that

lim
𝑁→∞

𝜋(𝑁),𝑑,𝑑
𝑞𝑡,𝑞𝑠

(
𝐮(𝑁),𝑢
𝑘

(𝑡), 𝐮(𝑁),𝑢
𝑘

(𝑠)
)
=

Γ(𝑣 − 𝑢 − 𝑘 + 𝑠)Γ(−2𝑢 − 2𝑘 + 𝑡)

Γ(−2𝑢 − 2𝑘 + 𝑠)Γ(𝑣 − 𝑢 − 𝑘 + 𝑡)

and that

lim
𝑁→∞

𝑀𝑖 =
[2𝑢 + 2𝑘 − 𝑠, 𝑣 + 𝑢 + 𝑘, 𝑡 − 𝑠]𝑖(2𝑢 + 2𝑘 + 2𝑖 − 𝑠)

[1, 𝑢 − 𝑣 + 1 + 𝑘 − 𝑠, 2𝑢 + 2𝑘 − 𝑡 + 1]𝑗(2𝑢 + 2𝑘 − 𝑠)
(−1)𝑖.

Putting these expressions together with our knowledge of the asymptotic behavior of
𝜋̂(𝑁),𝑑
𝑡 (𝐮̂(𝑁),𝑢

𝑘
(𝑡)) and 𝜋̂(𝑁),𝑑

𝑠 (𝐮̂(𝑁),𝑢
𝑘+𝑖

(𝑠)), we readily confirm the expansion (8.28) and error bound
(8.29).
Part 3. First consider the case when 𝑢 − 𝑡∕2 < 0. In this case, the discrete support of the mea-

sure 𝜋̂(𝑁),𝑐,𝑑
𝑠,𝑡 (𝑚, ⋅) is given by Ŝ(𝑁),𝑑

𝑡 , which equals the set of 𝐮̂(𝑁),𝑢
𝑘

(𝑡) such that𝑘 ∈ ⟦0, ⌊−𝑢 + 𝑡∕2⌋⟧.
We may rewrite Equation (8.6) as

𝜋̂(𝑁),𝑐,𝑑
𝑠,𝑡

(
𝑚, 𝐮̂(𝑁),𝑢

𝑘
(𝑡)
)
=

1
2𝑁

⋅ 𝜋(𝑁),𝑑,𝑐
𝑞𝑡,𝑞𝑠

(
𝐮(𝑁),𝑢
𝑘

(𝑡), 1 −
𝑚

2𝑁

)
⋅
𝜋̂(𝑁),𝑑
𝑡

(
𝐮̂(𝑁),𝑢
𝑘

(𝑡)
)

𝜋̂(𝑁),𝑐
𝑠 (𝑚)

. (8.85)

We have already studied the behavior of the marginal distribution terms on the right-hand side
above, thus we focus now on 𝜋(𝑁),𝑑,𝑐

𝑞𝑡,𝑞𝑠
(𝐮(𝑁),𝑢

𝑘
(𝑡), 1 −

𝑚

2𝑁
). In Equation (8.84), we rewrote this in

terms of the Askey–Wilson process. The density of the absolutely continuous part of that measure
is given in Equation (6.2) and using that expression andmimicking the asymptotic analysis in the
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STATIONARY MEASURE FOR THE OPEN KPZ 2245

proof of Lemma 8.5, we show that√
1 −

𝑚

4𝑁

2𝑁
⋅ 𝜋(𝑁),𝑑,𝑐

𝑞𝑡,𝑞𝑠

(
𝐮(𝑁),𝑢
𝑘

(𝑡), 1 −
𝑚

2𝑁

)

=

|||Γ
(
𝑢 +

𝑠

2
+ 𝑖

√
𝑚

2
, 𝑢 + 𝑗 −

𝑠

2
+ 𝑖

√
𝑚

2
, −𝑢 − 𝑗 + 𝑡 −

𝑠

2
+ 𝑖

√
𝑚

2

)|||2
8𝜋 ⋅

√
𝑚 ⋅ Γ(𝑣 + 𝑢 + 𝑗, 𝑣 − 𝑢 − 𝑗 + 𝑡, 𝑡 − 𝑠) ⋅

||||Γ(𝑖√𝑚
)||||

2
⋅ 𝑒𝖤𝗋𝗋

(𝑁),𝑑,𝑐
𝑠,𝑡 (𝑚,𝐮𝑢

𝑘
(𝑡))

and that for all 𝜂 > 1, there exists 𝑁0 ∈ ℤ≥1 and 𝐶, 𝜒 ∈ ℝ>0 such that for all 𝑁 > 𝑁0 and all
𝑚 ∈ Ŝ(𝑁),𝑐 = [0, 4𝑁]

|||𝖤𝗋𝗋(𝑁),𝑑,𝑐
𝑠,𝑡 (𝑚, 𝐮𝑢

𝑘
(𝑡))||| ≤ 𝐶𝑁−𝜒(1 +

√
𝑚)𝜂.

In light of Equation (8.85), combining the above error bound with our bounds on
𝜋̂(𝑁),𝑑
𝑡 (𝐮̂(𝑁),𝑢

𝑘
(𝑡)) and 𝜋̂(𝑁),𝑐

𝑠 (𝑚) from Lemmas 8.4 and 8.3, we arrive at the claimed result from

the lemma. Note that the factor of
√

1 −
𝑚

4𝑁
cancels with a corresponding factor coming from our

application of Lemma 8.3 and that the matching to 𝔭𝑐,𝑑𝑠,𝑡 (𝑚, 𝐮𝑢
𝑘
(𝑡)) can be seen from Definition 6.7.

Now let us turn to the case when 𝑣 + 𝑡∕2 < 0. In this case, the discrete support of the mea-
sure 𝜋̂(𝑁),𝑐,𝑑

𝑠,𝑡 (𝑚, ⋅) is given by Ŝ(𝑁),𝑑
𝑡 , which equals the set of 𝐯̂(𝑁),𝑣

𝑘
(𝑡) such that 𝑘 ∈ ⟦0, ⌊−𝑣 −

𝑡∕2⌋⟧. We may rewrite Equation (8.6) as in Equation (8.85) with 𝑢 replaced by 𝑣. Focusing on
𝜋(𝑁),𝑑,𝑐
𝑞𝑡,𝑞𝑠

(𝐯(𝑁),𝑣
𝑘

(𝑡), 1 −
𝑚

2𝑁
), we see that the explicit expression for this include 𝑞−𝑘 inside the 𝑞-

Pochhammer symbols in the numerator. This implies that the numerator is zero. By inspect, the
denominator is nonzero. This implies that 𝜋̂(𝑁),𝑐,𝑑

𝑠,𝑡 (𝑚, 𝐮̂(𝑁),𝑢
𝑘

(𝑡)) is identically zero, completing the
proof of part 3 and hence the lemma.

9 ASYMPTOTICS OF (±𝒒𝒛; 𝒒)∞: PROOF OF PROPOSITION 2.3

Throughout, we will use the notation 𝑠 = 𝜎 + 𝑖𝑡 and let Arg(s) ∈ [−𝜋, 𝜋] denote the argument of
the complex number 𝑠.

9.1 Preliminaries from analytic number theory

9.1.1 Gamma function

For 𝑠 ∈ ℂ with Re(𝑠) > 1 define the gamma function as

Γ(𝑠) ∶= ∫
∞

0
𝑒−𝑥𝑥𝑠−1𝑑𝑥.

This can be meromorphically continuated with

simple poles at ℤ≤0 and Res𝑠=−𝑘[Γ(𝑠)] =
(−1)𝑘

𝑘!
for 𝑘 ∈ ℤ≤0. (9.1)
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2246 CORWIN and KNIZEL

The Euler reflection formula shows that Γ(1 − 𝑠)Γ(𝑠) =
𝜋

sin(𝜋𝑠)
. For 𝑠 = 𝜎 + 𝑖𝑡, Rademacher [47,

(21.51)] shows that:

Lemma 9.1. For any compact 𝐾 ⊂ ℝ and 𝜀 > 0, there exists 𝑡0 > 0 such that for all 𝜎 ∈ 𝐾 and 𝑡
with |𝑡| > 𝑡0, ||||||

||Γ(𝑠)||√
2𝜋|𝑡|𝜎−1∕2𝑒−𝜋|𝑡|∕2 − 1

|||||| < 𝜀. (9.2)

9.1.2 Zeta and eta functions

(See Magnus et al. [40, Sections 1.3–1.4].) The Riemann zeta function 𝜁(𝑠) is defined for Re(𝑠) > 1
as

𝜁(𝑠) ∶=
∞∑
𝑛=1

1
𝑛𝑠

and is the 𝑧 = 1 specialization of the Hurwitz zeta function 𝜁(𝑠, 𝑧), which is defined for Re(𝑠) > 1
and Re(𝑧) > 0 as

𝜁(𝑠, 𝑧) ∶=
∞∑
𝑛=0

1

(𝑛 + 𝑧)𝑠
. (9.3)

Still assuming Re(𝑠) > 1 and Re(𝑧) > 0, the Hurwitz zeta function admits an integral representa-
tion as

𝜁(𝑠, 𝑧) =
1

Γ(𝑠) ∫
∞

0

𝑒−𝜌𝑧𝜌𝑠−1

1 − 𝑒−𝜌
𝑑𝜌. (9.4)

As functions of 𝑠, both 𝜁(𝑠) and 𝜁(𝑠, 𝑧) can be meromorphically extended to the complex plane
and yield meromorphic functions having simple poles only at 𝑠 = 1 with residues

Res𝑠=1[𝜁(𝑠)] = Res𝑠=1[𝜁(𝑠, 𝑧)] = 1. (9.5)

We will use of the following evaluation formulas for the zeta function

𝜁(2) =
𝜋2

6
, 𝜁(0, 𝑧) =

1
2
− 𝑧, (9.6)

as well various derivatives and limits

𝑑𝜁(𝑠, 𝑧)

𝑑𝑠

||||𝑠=0 = log

[
Γ(𝑧)√
2𝜋

]
, 𝜁′(0) = −

1
2
log(2𝜋),

lim
𝑠→1

𝜁(𝑠, 𝑧) −
1

𝑠 − 1
= −𝜓(𝑧), lim

𝑠→1
𝜁(𝑠) −

1
𝑠 − 1

= −𝜓(1).

(9.7)

Above we have used the digamma function 𝜓(𝑧) =
Γ′(𝑧)

Γ(𝑧)
whose evaluation 𝜓(1) = −𝛾 is given by

the Euler–Mascheroni constant 𝛾.
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STATIONARY MEASURE FOR THE OPEN KPZ 2247

Finally, the Dirichlet eta function 𝜂(𝑠) is defined for Re(𝑠) > 0 as

𝜂(𝑠) ∶=
∞∑
𝑛=1

(−1)𝑛−1

𝑛𝑠
,

and is related to the zeta function via

𝜂(𝑠) = (1 − 21−𝑠)𝜁(𝑠). (9.8)

From this, one sees that the eta function is an entire function (the 1 − 21−𝑠 factor cancels the
first-order pole of the zeta function at 𝑠 = 1).

9.1.3 Bernoulli polynomials

The Bernoulli polynomials {𝐵𝑛(𝑥)}𝑛∈ℤ≥0 are be defined via the generating function expression

𝑡𝑒𝑡𝑥

𝑒𝑡 − 1
=

∞∑
𝑛=0

𝐵𝑛(𝑥)
𝑡𝑛

𝑛!
.

In particular,𝐵𝑛(𝑥) is a degree𝑛 polynomial in𝑥with the first fewpolynomials given by𝐵0(𝑥) = 1,
𝐵1(𝑥) = 𝑥 −

1

2
, 𝐵2(𝑥) = 𝑥2 − 𝑥 +

1

6
, and so on. We recall some results we will need from Apostol

[2, Sections 12.11–12.12]. The Bernoulli polynomials satisfy

𝐵𝑛(1 − 𝑥) = (−1)𝑛𝐵𝑛(𝑥) and 𝐵𝑛(𝑥 + 1) − 𝐵𝑛(𝑥) = 𝑛𝑥𝑛−1, (9.9)

which implies that, through taking 𝑥 = 0, 𝐵𝑛(1) = 𝐵𝑛(0) for 𝑛 ∈ ℤ≥2 and 𝐵1(1) =
1

2
= −𝐵1(0).

The Bernoulli numbers are defined as 𝐵𝑛 ∶= 𝐵𝑛(0). Besides 𝐵1 = −
1

2
, all other odd indexed

Bernoulli numbers are 0.
In terms of the Bernoulli polynomials, we have that for 𝑛 ∈ ℤ≥0

𝜁(−𝑛, 𝑧) = −
𝐵𝑛+1(𝑧)

𝑛 + 1
, and 𝜁(−𝑛) = (−1)𝑛

𝐵𝑛+1
𝑛 + 1

. (9.10)

9.1.4 Asymptotics of 𝜁(𝑠) and 𝜁(𝑠, 𝑧)

We will need the following asymptotic result for the Riemann zeta function, which can be found
in Rademacher [47, Section 43]. For 𝜎 ∈ [0, 1], the bound proven below is suboptimal, though
sufficient for our purposes. The Lindelöf function 𝜇(𝜎) determines the optimal growth exponent.
The Lindelöf hypothesis posits that 𝜇(1∕2) = 0, though this is far from proved.We use 𝜇̃(𝜎) below
to represent an upper bound on this exponent as 𝜎 varies.
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2248 CORWIN and KNIZEL

Lemma 9.2. For any compact 𝐾 ⊂ ℝ, there exists a 𝐶, 𝑡0 > 0 such that |𝜁(𝑠)| ≤ 𝐶|𝑡|𝜇̃(𝜎) for all
𝑠 = 𝜎 + 𝑖𝑡 with 𝜎 ∈ 𝐾 and |𝑡| > 𝑡0. Here 𝜇̃(𝜎) is defined by

𝜇̃(𝜎) =

⎧⎪⎨⎪⎩
0 for 𝜎 ≥ 1,
1−𝜎

2
for 𝜎 ∈ [0, 1],

1

2
− 𝜎 for 𝜎 ≤ 0.

Next, we prove a simple bound on the Hurwitz zeta function.

Lemma 9.3. For all 𝜎0 > 1, there exists a 𝐶 > 0 such that for all 𝑠 with 𝜎 > 𝜎0 and all 𝑧 ∈ ℂ with
Re(𝑧) > 0, we have

|𝜁(𝑠, 𝑧)| ≤ 𝐶𝑒|Arg(𝑧)⋅𝑡|.
Proof. From Equation (9.3) and the triangle inequality, |𝜁(𝑠, 𝑧)| ≤ ∑∞

𝑛=0 |(𝑛 + 𝑧)−𝑠|. Note that|(𝑛 + 𝑧)−𝑠| = |𝑛 + 𝑧|−𝜎𝑒Arg(𝑛+𝑧)⋅𝑡. Since Re(𝑧) > 0, |𝑛 + 𝑧| > |𝑛|, and |Arg(𝑛 + 𝑧)| < |Arg(𝑧)|.
Thus we can further bound |𝜁(𝑠, 𝑧)| ≤ ∑∞

𝑛=0 |𝑛|−𝜎𝑒|Arg(𝑧)⋅𝑡| ≤ 𝐶𝑒|Arg(𝑧)⋅𝑡| where the constant𝐶 can
be taken as 1 + 𝜁(𝜎0). □

Controlling |𝜁(𝑠, 𝑧)| when Re(𝑠) ≤ 1 is considerably hard. It will be important to demonstrate
bounds in that case which contain the 𝑧 dependence on the subleading polynomial terms. Such
bounds are provided below as Proposition 9.5. In the proof of the proposition, we will make use
of an integral formulas for 𝜁(𝑠, 𝑧). There are many related formulas available in the literature (cf.
Magnus et al. [40, Section 1.4]).We could not find a precise statement of the formula in Lemma9.4,
thus we prove it here.

Lemma 9.4. For 𝑠 = 𝜎 + 𝑖𝑡 ∉ ℤ≤0, |Arg(𝑧)| < 𝜋 and 𝑑 ∈ (0, 1) with 𝜎 + 𝑑 ∉ ℤ≤0,

𝜁(𝑠, 𝑧) =
1
2𝑧𝑠

+
𝑧1−𝑠

𝑠 − 1
+

𝑧−𝑠

2𝜋𝑖Γ(𝑠)

𝑑+𝑖∞

∫
𝑑−𝑖∞

Γ(−𝑢, 𝑢 + 𝑠)𝑧−𝑢𝜁(−𝑢)𝑑𝑢

−
𝑧−𝑠

Γ(𝑠)

⌊−(𝜎+𝑑)⌋∑
𝑘=0

Γ(𝑘 + 𝑠)𝜁(𝑘 + 𝑠)
(−1)𝑘𝑧𝑘+𝑠

𝑘!
, (9.11)

(Recall Γ(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)) where the summation in 𝑘 is dropped if 𝜎 + 𝑑 > 0.

Proof. We will make use of the following formula [46, (3.3.9)]:

1
2𝜋𝑖

𝑐+𝑖∞

∫
𝑐−𝑖∞

Γ(𝑠, 𝑎 − 𝑠)𝑥−𝑠𝑑𝑠 =
Γ(𝑎)

(1 + 𝑥)𝑎
, (9.12)

which is valid so long as Re(𝑎) > 𝑐 > 0 and |Arg(𝑥)| < 𝜋.
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STATIONARY MEASURE FOR THE OPEN KPZ 2249

Start by assuming 𝜎 > 1, |Arg(𝑧)| < 𝜋, and 𝑐 ∈ (1, 𝜎). Then from the definition of 𝜁(𝑠, 𝑧) (this
formula appears as in Paris [45, (2.1)])

𝑧𝑠𝜁(𝑠, 𝑧) = 1 +
∞∑
𝑛=1

(
1 +

𝑛
𝑧

)−𝑠
= 1 +

1

Γ(𝑠)

∞∑
𝑛=1

1
2𝜋𝑖

𝑐+𝑖∞

∫
𝑐−𝑖∞

Γ(𝑦, 𝑠 − 𝑦)
(𝑛
𝑧

)−𝑦
𝑑𝑦

= 1 +

𝑐+𝑖∞

∫
𝑐−𝑖∞

Γ(𝑦, 𝑠 − 𝑦)𝑧𝑦𝜁(𝑦)𝑑𝑦

2𝜋𝑖Γ(𝑠)
= 1 +

−𝑐+𝑖∞

∫
−𝑐−𝑖∞

Γ(−𝑢, 𝑠 + 𝑢)𝑧−𝑢𝜁(−𝑢)𝑑𝑢

2𝜋𝑖Γ(𝑠)

=
1
2
+

𝑧
𝑠 − 1

+

𝑑+𝑖∞

∫
𝑑−𝑖∞

Γ(−𝑢, 𝑠 + 𝑢)𝑧𝑢𝜁(−𝑢)𝑑𝑢

2𝜋𝑖Γ(𝑠)
,

for 𝑑 ∈ (0, 1). The first equality is by the definition of the Hurwitz zeta function; the second is
by Equation (9.12); the third is from interchanging the summation and integration (justified by
Fubini) and appealing to the definition of the zeta function (we assume𝜎 > 𝑐 > 1here); the fourth
equality is the simple change of variables 𝑢 = −𝑦; and the final equality follows from shifting
the contour of integration to the right from −𝑐 + 𝑖ℝ to 𝑑 + 𝑖ℝ for 𝑑 ∈ (0, 1). In this shifting, we
encounter two poles, one at 𝑢 = −1 (from 𝜁(−𝑢)) and one at 𝑢 = 0 (from Γ(−𝑢)). The first two
terms in the final line come from evaluating these residues, see Equations (9.1) and (9.5). To justify
shifting the contours, we must show that the integrand decays sufficiently fast for |Im(𝑢)| large.
Using the bounds from Lemmas 9.1 and 9.2, we can prove uniformly in the strip between−𝑐 + 𝑖ℝ
and 𝑑 + 𝑖ℝ, exponential decay like 𝑒(|Arg(𝑧)|−𝜋)|Im(𝑢)| (recall that |Arg(𝑧)| < 𝜋) as |Im(𝑢)|→ ∞.
We have shown that for |Arg(𝑧)| < 𝜋, 𝜎 > 1, and any 𝑑 ∈ (0, 1),

𝜁(𝑠, 𝑧) =
1
2𝑧𝑠

+
𝑧1−𝑠

𝑠 − 1
+

𝑧−𝑠

2𝜋𝑖Γ(𝑠)

𝑑+𝑖∞

∫
𝑑−𝑖∞

Γ(−𝑢, 𝑢 + 𝑠)𝑧−𝑢𝜁(−𝑢)𝑑𝑢. (9.13)

By Equation (9.7), it follows that 𝜁(𝑠, 𝑧) − 𝑧1−𝑠

𝑠 − 1
is an entire function. For a fixed value of 𝑑 ∈

(0, 1), the integral in Equation (9.13) is analytic in 𝑠 provided 𝜎 + 𝑑 > 0. By analytic continuation,
the formula (9.13) actually holds for all 𝜎 > −𝑑.
In order to extend to a formula for 𝜎 ≤ −𝑑, we will need to make some contour deformations

and account for some residues.
Our aim is now to establish a formula for 𝑠 = 𝜎 + 𝑖𝑡 when 𝜎 < −𝑑. For the moment, let us

assume that 𝑡 ≠ 0 and let us fix some 𝑑 ∈ (0, 1) and assume that 𝜎 < −𝑑 and that 𝜎 + 𝑑 ∉ ℤ≤0.
Fix some 𝜎̃ < −𝑑 and let 𝜀0 = |𝑡|∕2 (which is nonzero by our temporary assumption) and 𝜀1 =
(⌈−𝜎̃⌉ + 𝜎̃)∕2. By Cauchy’s theoremwithout changing the value of the integral, we can deform to
the contour 𝐶:

𝐶 = [𝑑 − 𝑖∞, 𝑑 − 𝑖(𝑡 + 𝜀0)] ∪ [𝑑 − 𝑖(𝑡 + 𝜀0), 𝜀1 − 𝜎̃ − 𝑖(𝑡 + 𝜀0)]

∪ [𝜀1 − 𝜎̃ − 𝑖(𝑡 + 𝜀0), 𝜀1 − 𝜎̃ − 𝑖(𝑡 − 𝜀0)]

∪ [𝜀1 − 𝜎̃ − 𝑖(𝑡 − 𝜀0), 𝑑 − 𝑖(𝑡 − 𝜀0)] ∪ [𝑑 − 𝑖(𝑡 − 𝜀0), 𝑑 + 𝑖∞].
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2250 CORWIN and KNIZEL

The purpose of this deformation is that the integral is now analytic in 𝑠 provided that 𝜎 ≥ 𝜎̃. Let
us now assume that 𝜎 = 𝜎̃. To reach a final formula, we will deform 𝐶 back to the original con-
tour 𝑑 + 𝑖ℝ. In doing so, we cross poles from the Γ(𝑢 + 𝑠) term. These occur when 𝑢 + 𝑠 = −𝑘
for 𝑘 ∈ {0, 1, … , ⌊−(𝜎 + 𝑑)⌋}. Taking into account the residues and the direction of the contours
yields Equation (9.11) when 𝑡 ≠ 0. Provided that 𝑠 ∉ ℤ≤0, we can use continuity of both side of
Equation (9.11) in 𝑡 to extend to 𝑡 = 0. □

We come to our main bound on the Hurwitz zeta function.

Proposition 9.5. For any noninteger 𝜎 < 0 and 𝑑 ∈ (0, 1∕2) chosen such that 𝑑 + 𝜎 ∉ ℤ≤0, there
exists 𝐶 > 0 such that for all 𝑧 ∈ ℂ with |Arg(𝑧)| < 𝜋 and all 𝑠 ∈ ℂ with 𝑠 = 𝜎 + 𝑖𝑡,

|𝜁(𝑠, 𝑧)| ≤ 𝐶
(
𝑒|Arg(𝑧)⋅𝑡|(|𝑧|−𝜎 + (1 + |𝑡|)−1|𝑧|1−𝜎 + |𝑡|1∕2−𝜎|𝑧|−𝑑−𝜎)

+max(1, |𝑡|1∕2−𝜎) ⌊−(𝜎+𝑑)⌋∑
𝑘=0

|𝑧|𝑘), (9.14)

where the summation in 𝑘 is dropped if 𝜎 + 𝑑 > 0.
For any 𝑡0 > 0, 𝑎 < 𝑏, and 𝑧 ∈ ℂ with |Arg(𝑧)| < 𝜋, there exists a constant 𝐶 > 0 and 𝑐 < 𝜋∕2

such that for all 𝑠 ∈ ℂ with 𝜎 ∈ (𝑎, 𝑏) and |𝑡| ≥ 𝑡0,

|𝜁(𝑠, 𝑧)| ≤ 𝐶𝑒𝑐|𝑡|. (9.15)

Proof. We focus on proving Equation (9.14). The proof of the bound (9.15) is simpler and proceeds
in much the same manner (and thus is not provided here).
In this proof when we write 𝑥 ≲ 𝑦, wemean that 𝑥 ≤ 𝐶𝑦 for some constant, whichmay depend

on 𝑑 and 𝜎, but nothing else. In turn, when we say that “𝑥 is bounded by 𝑦,” we mean that 𝑥 ≲ 𝑦
and when we say that “𝑥 is bounded,” we mean that 𝑥 is bounded by a constant. We also will
make use of Lemmas 9.1 and 9.2 to deduce bounds when the imaginary part of the argument of
the gamma or zeta function is small or large. For the rest of this proof, let 𝑡0 be such that the bound
in Lemma 9.1 holds for 𝜀 = 1∕2, and such that the bound in Lemma 9.2 holds for some constant
𝐶 as specified in the lemma. We will use 𝑡0 as the cutoff between small and large.
This proof relies on the integral representation for 𝜁(𝑠, 𝑧) given in Lemma 9.4. The hardest term

to bound in that representation is the contour integral. Let us address the other terms first. For
the first two terms in the 𝜁(𝑠, 𝑧) representation in Lemma 9.4, we find that

|||| 1
2𝑧𝑠
|||| ≲ 𝑒Arg(𝑧)⋅𝑡|𝑧|−𝜎 and

||||| 𝑧
1−𝑠

𝑠 − 1

||||| ≲ 𝑒−Arg(𝑧)⋅𝑡(1 + |𝑡|)−1|𝑧|1−𝜎,
where, in both terms, we have used the fact that |𝑧𝑠| = |𝑧|𝜎𝑒−Arg(𝑧)⋅𝑡, and in the second inequality,
we use that for 𝑠 with negative real part, |1∕(1 − 𝑠)| < 𝐶(1 + |𝑡|)−1 for some constant 𝐶. Since
𝑒Arg(𝑧)⋅𝑡 and 𝑒−Arg(𝑧)⋅𝑡 are both bounded by 𝑒|Arg(𝑧)⋅𝑡|, we find that the contribution of these two
terms is upper bounded by the first two terms in the right-hand side of Equation (9.14).
The 𝜁(𝑠, 𝑧) representation in Lemma 9.4 also involves terms indexed by 𝑘 ∈ {0, … , ⌊−(𝜎 + 𝑑)⌋}.

Taking absolute values, these terms contribute a constant times |Γ(𝑠)|−1 ⋅ |Γ(𝑘 + 𝑠)| ⋅ |𝜁(𝑘 +
𝑠)||𝑧|𝑘. For large 𝑡, appealing to the asymptotics of Lemmas 9.1 and 9.2, we can show that the
expression above is bounded by |𝑡|1∕2−𝜎|𝑧|𝑘 whereas for 𝑡 small, since we have assumed that 𝑠
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STATIONARY MEASURE FOR THE OPEN KPZ 2251

(and hence also 𝑠 + 𝑘) is not inℤ≥0, the expression is bounded by |𝑧|𝑘. These bounds produce the
final terms in Equation (9.14).
All that remains is to control the contour integral term in Equation (9.11). Taking the absolute

value inside of the integral, we are left to control

|||| 𝑧−𝑠

2𝜋𝑖Γ(𝑠)

||||
∞

∫
−∞

|Γ(−𝑑 − 𝑖𝑟, 𝑑 + 𝜎 + 𝑖(𝑟 + 𝑡))| ⋅ |𝑧−𝑑−𝑖𝑟| ⋅ |𝜁(−𝑑 − 𝑖𝑟)𝑑𝑟|. (9.16)

The rest of this proof is devoted to showing that Equation (9.16) is bounded by the right-hand
side of Equation (9.14). This is elementary, though requires the analysis of a number of cases and
the use of the bounds from Lemmas 9.1 and 9.2 for large imaginary parts of the gamma and zeta
functions, as well as constant bounds on the gamma and zeta functions for small imaginary parts
(for the gamma function, this is where 𝑑 + 𝜎 ∉ ℤ≤0 is important).
We split our analysis of Equation (9.16) into two cases — |𝑡| ≤ 𝑡0 and |𝑡| > 𝑡0.
Case 1: |𝑡| ≤ 𝑡0. Using Lemma 9.1 and the analyticity of 1∕Γ(𝑠), we bound the prefactor|||| 𝑧−𝑠

2𝜋𝑖Γ(𝑠)

|||| ≲ |𝑧|−𝜎𝑒Arg(𝑧)⋅𝑡 ≲ |𝑧|−𝜎𝑒|Arg(𝑧)⋅𝑡| (9.17)

Using this and |𝑧−𝑑−𝑖𝑟| = |𝑧|−𝑑𝑒Arg(𝑧)⋅𝑟 inside the integrand of Equation (9.16) yields
(9.16) ≲ (𝐼) × (𝐼𝐼), where (𝐼) ∶= |𝑧|−𝜎−𝑑 ⋅ 𝑒Arg(𝑧)⋅𝑡 and

(𝐼𝐼) ∶=

∞

∫
−∞

|Γ(−𝑑 − 𝑖𝑟, 𝑑 + 𝜎 + 𝑖(𝑟 + 𝑡))| ⋅ 𝑒Arg(𝑧)⋅𝑟 ⋅ |𝜁(−𝑑 − 𝑖𝑟) 𝑑𝑟|.
We claim that (𝐼𝐼) ≲ 1. Assume this claim for the moment. Since 𝑑 ∈ (0, 1∕2), |𝑧|−𝜎−𝑑 ≤ (|𝑧|−𝜎 +|𝑧|1−𝜎). Thus (𝐼) × (𝐼𝐼) ≲ 𝑒|Arg(𝑧)|(|𝑧|−𝜎 + |𝑧|1−𝜎) which is, itself, bounded by the right-hand side
of Equation (9.14) as desired.
To bound (𝐼𝐼) ≲ 1, we split the integral into |𝑟| ≤ 𝑡0 and |𝑟| > 𝑡0. In the first case, since the

integrands can be bounded by constants, the total contribution is likewise bounded by a constant.
In the second case, to estimate the integral over |𝑟| > 𝑡0, we may use of Lemmas 9.1 and 9.2 for
the gamma and zeta functions. The integrand in (𝐼𝐼) is thus bounded up to a constant factor by|𝑟|𝜎+𝑑− 1

2 𝑒
−

𝜋

2
(|𝑟|+|𝑟+𝑡|)+Arg(𝑧)⋅𝑟. Since 𝜎 < 0 and 𝑑 ∈ (0, 1∕2), 𝜎 + 𝑑 −

1

2
< 0 and hence |𝑟|𝜎+𝑑− 1

2 ≲ 1

for |𝑟| > 𝑡0. Since |Arg(𝑧)| < 𝜋 and |𝑡| ≤ 𝑡0, for 𝑟 large enough, −
𝜋

2
(|𝑟| + |𝑟 + 𝑡|) + Arg(𝑧) ⋅ 𝑟 <

−𝛿𝑟 for some 𝛿 > 0. Thus the integral in (𝐼𝐼) can be bounded by a constant as claimed.
Case 2: |𝑡| > 𝑡0. We proceed in a similar, albeit more involved, manner as in case 1. In place of

the bound (9.17) we get (using Lemma 9.1 to control the behavior of |1∕Γ(𝑠)|) that|||| 𝑧−𝑠

2𝜋𝑖Γ(𝑠)

|||| ≲ |𝑧|−𝜎𝑒Arg(𝑧)⋅𝑡|𝑡|−𝜎+1∕2𝑒𝜋|𝑡|∕2.
As opposed to in case 1, we do not want to throw away the possible decay that 𝑒Arg(𝑧)⋅𝑡 can provide.
Instead, we write this as 𝑒Arg(𝑧)⋅𝑡 = 𝑒|Arg(𝑧)⋅𝑡| ⋅ 𝑒Arg(𝑧)⋅𝑡−|Arg(𝑧)⋅𝑡|. The first term goes with (𝐼) below,
while the second term goes with (𝐼𝐼). Using |𝑧−𝑑−𝑖𝑟| = |𝑧|−𝑑𝑒Arg(𝑧)⋅𝑟, we see that

(9.16) ≲ (𝐼) × (𝐼𝐼) where (𝐼) ∶= |𝑧|−𝜎−𝑑 ⋅ 𝑒|Arg(𝑧)⋅𝑡| ⋅ |𝑡|−𝜎+1

2 and
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2252 CORWIN and KNIZEL

F IGURE 2

(𝐼𝐼) ∶= 𝑒
Arg(𝑧)⋅𝑡−|Arg(𝑧)⋅𝑡|+𝜋

2
|𝑡| ∞

∫
−∞

𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧)𝑑𝑟.

with

𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧) = |Γ(−𝑑 − 𝑖𝑟, 𝑑 + 𝜎 + 𝑖(𝑟 + 𝑡))|𝑒Arg(𝑧)⋅𝑟|𝜁(−𝑑 − 𝑖𝑟)|
We claim that (𝐼𝐼) ≲ 1. Assuming this we see that (𝐼) ⋅ (𝐼𝐼) is bounded by the right-hand side in
Equation (9.14). Thus, it remains to show that (𝐼𝐼) ≲ 1.
In order to bound (𝐼𝐼), we split the integral depending on the size of 𝑟 and 𝑟 + 𝑡. Assume

that 𝑡 > 𝑡0 (the case 𝑡 < −𝑡0 is completely analogous and involve the primed regions in the
figure; we will not repeat the argument in that case though). We define six regions in the (𝑡, 𝑟)
plane:𝐴 = {(𝑡, 𝑟) ∶ 𝑡 > 𝑡0, 𝑟 > 𝑡0},𝐵 = {(𝑡, 𝑟) ∶ 𝑡 > 𝑡0, |𝑟| ≤ 𝑡0, 𝑟 + 𝑡 > 𝑡0},𝐶 = {(𝑡, 𝑟) ∶ 𝑡 > 𝑡0, |𝑟| ≤
𝑡0, |𝑟 + 𝑡| ≤ 𝑡0}, 𝐷 = {(𝑡, 𝑟) ∶ 𝑡 > 𝑡0, 𝑟 < −𝑡0, 𝑟 + 𝑡 > 𝑡0}, 𝐸 = {(𝑡, 𝑟) ∶ 𝑡 > 𝑡0, 𝑟 < −𝑡0, |𝑟 + 𝑡| ≤ 𝑡0},
𝐹 = {(𝑡, 𝑟) ∶ 𝑡 > 𝑡0, 𝑟 < −𝑡0, 𝑡 + 𝑟 < −𝑡0}. For 𝑡 given, wewrite (𝐼𝐼)𝐴 to denote the expression given
above for (𝐼𝐼) subject to the additional restriction that (𝑟, 𝑟 + 𝑡) ∈ 𝐴 (and likewise for𝐵, 𝐶, 𝐷, 𝐸, 𝐹).
For a fixed 𝑡 in each region 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, we may upper bound the integrand 𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧)

defining (𝐼𝐼) either by constants if the imaginary part of the argument of the gamma or zeta
function is small, or by the asymptotics given in Lemmas 9.1 and 9.2 if the imaginary part of
the argument of the gamma or zeta function are large. We can then estimate the contribution of
each region to the integral. Depending on whether 𝑡 ∈ (𝑡0, 2𝑡0] or 𝑡 > 2𝑡0, the integral in 𝑟 will
encounter a different set of regions. We consider these two cases. (Figure 2)
Case 2.a: 𝑡 ∈ (𝑡0, 2𝑡0]. Here (𝐼𝐼) = (𝐼𝐼)𝐴 + (𝐼𝐼)𝐵 + (𝐼𝐼)𝐶 + (𝐼𝐼)𝐸 + (𝐼𝐼)𝐹 . On regions 𝐵, 𝐶, and

𝐸, the integrand 𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧) ≲ 1 and since the domain of integration for 𝑟 in these regions

 10970312, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22174 by C

olum
bia U

niversity L
ibraries, W

iley O
nline L

ibrary on [02/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



STATIONARY MEASURE FOR THE OPEN KPZ 2253

is bounded, it follows that (𝐼𝐼)𝐵, (𝐼𝐼)𝐶, (𝐼𝐼)𝐸 ≲ 1. Regions 𝐴 and 𝐹 involve unbounded integrals

and require close inspection. On region 𝐴, 𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧) ≲ |𝑟 + 𝑡|𝑑+𝜎− 1

2 𝑒
−

𝜋

2
(|𝑟|+|𝑟+𝑡|)+Arg(𝑧)⋅𝑟.

We already encountered such an integral in case 1, when bounding (𝐼𝐼) there. Since 𝜎 < 0

and 𝑑 ∈ (0, 1∕2), 𝜎 + 𝑑 −
1

2
< 0 and hence |𝑟 + 𝑡|𝜎+𝑑− 1

2 ≲ 1. Since |Arg(𝑧)| < 𝜋 and 𝑡 ∈ (𝑡0, 2𝑡0],
for 𝑟 large enough, −𝜋

2
(|𝑟| + |𝑟 + 𝑡|) + Arg(𝑧) ⋅ 𝑟 < −𝛿𝑟 for some 𝛿 > 0. Since 𝑡 ∈ (𝑡0, 2𝑡0], the

prefactor 𝑒Arg(𝑧)⋅𝑡−|Arg(𝑧)⋅𝑡|+𝜋

2
|𝑡| in front of the integral in (𝐼𝐼) is also bounded by a constant.

Thus, (𝐼𝐼)𝐴 ≲ 1 as desired. The 𝐹 region follows similarly, as the integrand 𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧) ≲|𝑟 + 𝑡|𝑑+𝜎− 1

2 𝑒
−

𝜋

2
(|𝑟|+|𝑟+𝑡|)+Arg(𝑧)⋅𝑟. In both of these cases of region 𝐴 and 𝐹, we have used the fact

that 𝑡 ∈ (𝑡0, 2𝑡0] to bound the term 𝑒
∓

𝜋

2
𝑡 in the prefactor by a constant. In the next case, this will

not be true.
Case 2.b: 𝑡 > 2𝑡0. Now (𝐼𝐼) = (𝐼𝐼)𝐴 + (𝐼𝐼)𝐵 + (𝐼𝐼)𝐷 + (𝐼𝐼)𝐸 + (𝐼𝐼)𝐹 . As in case 2.a, for (𝑟, 𝑟 +

𝑡) ∈ 𝐴, 𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧) ≲ |𝑟 + 𝑡|𝑑+𝜎− 1

2 𝑒
−

𝜋

2
(|𝑟|+|𝑟+𝑡|)+Arg(𝑧)⋅𝑟. The term |𝑟 + 𝑡|𝑑+𝜎− 1

2 ≲ 1, and the
𝑒
−

𝜋

2
(|𝑟|+|𝑟+𝑡|)+Arg(𝑧)⋅𝑟

≲ 𝑒
−

𝜋

2
𝑡−𝛿⋅𝑟 for some 𝛿 > 0. This implies that the integral of 𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧)

over 𝑟 such that (𝑟, 𝑟 + 𝑡) ∈ 𝐴 is bounded by a constant times 𝑒−𝜋𝑡∕2. This cancels the 𝑒𝜋|𝑡|∕2 pref-
actor outside the integral in (𝐼𝐼). What is left is bounded by a constant times 𝑒Arg(𝑧)⋅𝑡−|Arg(𝑧)⋅𝑡| and
since Arg(𝑧) ⋅ 𝑡 − |Arg(𝑧) ⋅ 𝑡| ≤ 0, we conclude that (𝐼𝐼)𝐴 ≲ 1.

In region𝐵, the integrand𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧) ≲ |𝑟 + 𝑡|𝑑+𝜎− 1

2 𝑒
−

𝜋

2
|𝑟+𝑡|+Arg(𝑧)⋅𝑟. Since 𝑟 + 𝑡 > 𝑡0 in this

region, and since the 𝑟-variable is integrated from −𝑡0 to 𝑡0, the contribution of the integral of
𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧) for 𝑟 in this region is bounded by a constant time 𝑒−𝜋𝑡∕2. Again, this cancels the
𝑒𝜋|𝑡|∕2 prefactor outside the integral in (𝐼𝐼) and thus (𝐼𝐼)𝐵 ≲ 1. Bounding the integral in regions
𝐷, 𝐸, and 𝐹 is more subtle.
Let us start by addressing (𝐼𝐼)𝐷 . Here,

𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧) ≲ |𝑟 + 𝑡|𝑑+𝜎− 1

2 𝑒
−

𝜋

2
(|𝑟|+|𝑟+𝑡|)+Arg(𝑧)⋅𝑟

.

Since 𝑟 ∈ (−𝑡 + 𝑡0, −𝑡0), |𝑟| = −𝑟, and |𝑟 + 𝑡| = 𝑟 + 𝑡. Also, since 𝑑 + 𝜎 −
1

2
< 0, |𝑟 + 𝑡|𝑑+𝜎− 1

2 is
bounded by a constant. Thus, the upper bound on the integrand 𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧) reduces to
𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧) ≲ 𝑒

−
𝜋

2
𝑡
𝑒Arg(𝑧)⋅𝑟. Themagnitude of the integral ∫ −1

−𝑡+1
𝑒Arg(𝑧)⋅𝑟𝑑𝑟 depends on the sign

of Arg(𝑧). If Arg(𝑧) > 0, then the exponential 𝑒Arg(𝑧)⋅𝑟 decays and the integral is bounded by a con-
stant. In this case, the prefactor to the integral in (𝐼𝐼) is 𝑒

𝜋

2
𝑡, which cancels the just demonstrated

𝑒
−

𝜋

2
𝑡 behavior of the integral. Thus, when Arg(𝑧) > 0, (𝐼𝐼)𝐷 ≲ 1. If Arg(𝑧) < 0, then the expo-

nential 𝑒Arg(𝑧)⋅𝑟 grows and the integral is hence bounded by 𝑒−Arg(𝑧)⋅𝑡. Combining this with the
prefactor in (𝐼𝐼) shows that when Arg(𝑧) < 0, (𝐼𝐼)𝐷 ≲ 𝑒−|Arg(𝑧)⋅𝑡| ≲ 1 since 𝑡 > 𝑡0.
Controlling the integral in region𝐸works similarly.Here𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧) ≲ 𝑒

−
𝜋

2
|𝑟|+Arg(𝑧)⋅𝑟. Since

here 𝑟 ∈ (−𝑡 − 𝑡0, −𝑡 + 𝑡0), we can bound the integral of 𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧) on this region by a con-
stant times 𝑒−

𝜋

2
𝑡
𝑒−Arg(𝑧)⋅𝑡. Putting this together with the prefactors in (𝐼𝐼) shows that (𝐼𝐼)𝐸 ≲

𝑒−|Arg(𝑧)⋅𝑡| ≲ 1 since 𝑡 > 2𝑡0.

In region 𝐹, 𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧) ≲ |𝑟 + 𝑡|𝑑+𝜎− 1

2 𝑒
−

𝜋

2
(|𝑟|+|𝑟+𝑡|)+Arg(𝑧)⋅𝑟. Since 𝑟 < −𝑡 − 𝑡0, |𝑟| + |𝑟 +

𝑡| = −2𝑟 − 𝑡 and since 𝑑 + 𝜎 −
1

2
< 0, |𝑟 + 𝑡|𝑑+𝜎− 1

2 ≲ 1. Thus,

𝐹𝐼𝐼(𝑟; 𝑑, 𝜎, 𝑡, 𝑧) ≲ 𝑒
(𝜋+Arg(𝑧))⋅𝑟+ 𝜋

2
𝑡
.
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2254 CORWIN and KNIZEL

We can bound the integral of this over the range 𝑟 ∈ (−∞,−𝑡 − 𝑡0) by a constant times
𝑒
−(𝜋+Arg(𝑧))⋅𝑡+ 𝜋

2
𝑡
= 𝑒

−Arg(𝑧)⋅𝑡− 𝜋

2
𝑡. Combining this with the prefactors in (𝐼𝐼), we find that (𝐼𝐼)𝐹 ≲

𝑒−|Arg(𝑧)⋅𝑡| ≲ 1 since 𝑡 > 2𝑡0. Thus, we have shown that (𝐼𝐼) ≲ 1, which implies the desired bound
(9.14) and hence completes the proof of the proposition. □

9.1.5 Jacobi theta function

Jacobi theta functions (see Rademacher [47, Chapter 10]) are defined in the following way for
complex 𝜈, 𝜌 with Im(𝜌) > 0 ∶

𝜃1(𝜈|𝜌) = 1
𝑖

∞∑
𝑘=−∞

(−1)𝑘𝑒𝜋𝑖𝜌(𝑘+1∕2)
2
𝑒𝜋𝑖𝜈(2𝑘+1), 𝜃2(𝜈|𝜌) = ∞∑

𝑘=−∞

𝑒𝜋𝑖𝜌(𝑘+1∕2)
2
𝑒𝜋𝑖𝜈(2𝑘+1),

𝜃3(𝜈|𝜌) = ∞∑
𝑘=−∞

𝑒𝜋𝑖𝜌𝑘
2
𝑒2𝑘𝜋𝑖𝜈, 𝜃4(𝜈|𝜌) = ∞∑

𝑘=−∞

(−1)𝑘𝑒𝜋𝑖𝜌𝑘
2
𝑒2𝑘𝜋𝑖𝜈.

For every value of 𝜌 in this half-plane, the functions are entire functions of 𝜈. Note that 𝜃1(𝜈|𝜌)
is an odd function in 𝜈 and all others are even. We also need the following identities [47, (78.32),
(78.33), (79.7), (79.9) ]:

𝜃1(𝜈|𝜌) = −𝑖𝑒𝜋𝑖𝜌∕4 ⋅ 𝑒𝜋𝑖𝜈 ⋅
(
𝑒2𝜋𝑖𝜌, 𝑒2𝜋𝑖(𝜌+𝜈), 𝑒−2𝜋𝑖𝜈; 𝑒2𝜋𝑖𝜌

)
∞
,

𝜃2(𝜈|𝜌) = 𝑒𝜋𝑖𝜌∕4 ⋅ 𝑒𝜋𝑖𝜈 ⋅
(
𝑒2𝜋𝑖𝜌, −𝑒2𝜋𝑖(𝜌+𝜈), −𝑒−2𝜋𝑖𝜈; 𝑒2𝜋𝑖𝜌

)
∞
,

𝜃1
(
𝜈

𝜌

||| − 1

𝜌

)
= −𝑖

√
𝜌

𝑖
⋅ 𝑒𝑖𝜋𝜈

2∕𝜌 ⋅ 𝜃1(𝜈|𝜌),
𝜃4
(
𝜈

𝜌

||| − 1

𝜌

)
=
√

𝜌

𝑖
⋅ 𝑒𝑖𝜋𝜈

2∕𝜌 ⋅ 𝜃2(𝜈|𝜌),
with the principal value of the square root. Using the 𝜃1 identity,

(𝑒−𝜅𝑧; 𝑒−𝜅)∞ =

√
2𝜋

𝜅
exp

(
𝜅

8
−

𝜅𝑧

2
+

𝜅𝑧2

2

)
(𝑒−𝜅; 𝑒−𝜅)∞

(
𝑒−𝜅(1−𝑧); 𝑒−𝜅

)
∞

⋅ 𝜃1
(
𝑧||| 2𝜋𝑖𝜅 ). (9.18)

Similarly, using the identities involve 𝜃4 and 𝜃2 we find that

(−𝑒−𝜅𝑧; 𝑒−𝜅)∞ =

√
2𝜋

𝜅
exp

(
𝜅

8
−

𝜅𝑧

2
+

𝜅𝑧2

2

)
(𝑒−𝜅; 𝑒−𝜅)∞

(
−𝑒−𝜅(1−𝑧); 𝑒−𝜅

)
∞

⋅ 𝜃4
(
𝑧||| 2𝜋𝑖𝜅 ). (9.19)
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STATIONARY MEASURE FOR THE OPEN KPZ 2255

9.1.6 Theta function bounds

Lemma 9.6. For all 𝛼 ∈ (0, 𝜋) there exist 𝐶, 𝑐, 𝜅0 > 0 such that for all 𝜅 ∈ (0, 𝜅0) and all 𝜈 ∈ ℂ
with |Im(𝜈)| ≤ 𝛼

𝜅

||||𝜃1
(
𝜈
||||2𝜋𝑖𝜅

)
𝑒𝜋

2∕(2𝜅)

2 sin(𝜋𝜈)
− 1
|||| , ||||𝜃4

(
𝜈
||||2𝜋𝑖𝜅

)
− 1
|||| ≤ 𝐶 ⋅ 𝑒

−
𝑐

𝜅 . (9.20)

Proof. We can rewrite theta functions in the following way [47, (76.2)]:

𝜃1(𝜈|𝜌) = 2
∞∑
𝑘=0

(−1)𝑘𝑒(𝑘+1∕2)
2
𝜋𝑖𝜌 sin ((2𝑘 + 1)𝜋𝜈),

𝜃4(𝜈|𝜌) = 1 + 2
∞∑
𝑘=1

(−1)𝑘𝑒𝑘
2𝜋𝑖𝜌 cos (2𝑘𝜋𝜈).

Chebyshev polynomial of the first kind 𝑇𝑘(𝑥) and the second kind 𝑈𝑘(𝑥) with 𝑥 ∈ [−1, 1] are
defined in the following way (see Koekoek and Swarttouw [36, Section 1.8.2]): For 𝑥 = cos(𝜈),
𝑇𝑘(𝑥) ∶= cos(𝑘𝜈) and 𝑈𝑘(𝑥) ∶=

sin((𝑘+1)𝜈)

sin(𝜈)
. Their coefficients are explicitly given by

𝑇𝑘(𝑥) =
𝑘
2

⌊𝑘∕2⌋∑
𝑛=0

(−1)𝑘

𝑘 − 𝑛

(𝑘 − 𝑛
𝑛

)
(2𝑥)𝑘−2𝑛, 𝑈𝑘(𝑥) =

⌊𝑘∕2⌋∑
𝑛=0

(−1)𝑛
(𝑘 − 𝑛

𝑛

)
(2𝑥)𝑘−2𝑛.

Inserting the Chebyshev polynomials into these expressions, we arrive at

𝜃1(𝜈|𝜌)
2𝑒𝜋𝑖𝜌∕4 sin(𝜋𝜈)

− 1 = 2
∞∑
𝑘=1

(−1)𝑘𝑒𝜋𝑖𝜌(𝑘
2+𝑘)𝑈2𝑘(cos(𝜋𝜈)), and

𝜃4(𝜈|𝜌) − 1 = 2
∞∑
𝑘=1

(−1)𝑘𝑒𝜋𝑖𝜌𝑘
2
𝑇2𝑘(cos(𝜋𝜈)). (9.21)

We now claim that with 𝑥 = cos(𝜋𝜈), for all 𝜈 ∈ ℂ

|𝑈𝑘(𝑥)|, |𝑇𝑘(𝑥)| ≤ (1 +
√
5)𝑘+1√
5

⋅ max
(| cos(𝜋𝜈)|, 2−1)𝑘. (9.22)

To see this, consider the case |𝑥| ≥ 1∕2 and |𝑥| < 1∕2 separately. When |𝑥| ≥ 1∕2

|𝑈𝑘(𝑥)|, |𝑇𝑘(𝑥)| ≤ |2𝑥|𝑘 ⌊𝑘∕2⌋∑
𝑛=0

(𝑘 − 𝑛
𝑛

)
= |2𝑥|𝑘𝐹(𝑘 + 1),

where 𝐹(𝑘 + 1) is the Fibonacci number. When |𝑥| < 1∕2,

|𝑈𝑘(𝑥)|, |𝑇𝑘(𝑥)| ≤ |2𝑥|𝑘−2⌊𝑘∕2⌋ ⌊𝑘∕2⌋∑
𝑛=0

(𝑘 − 𝑛
𝑛

) ≤ 𝐹(𝑘 + 1).
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2256 CORWIN and KNIZEL

Putting these together,we see that |𝑈𝑘(𝑥)|, |𝑇𝑘(𝑥)| ≤ 𝐹(𝑘 + 1)max (|2𝑥|, 1)𝑘. Since the Fibonacci
number 𝐹(𝑘 + 1) equals the nearest integer to (1+

√
5)𝑘+1

2𝑘+1
√
5
, multiplying this by 2 clearly yields an

upper bound on 𝐹(𝑘 + 1) and combined with our earlier bounds on |𝑈𝑘(𝑥)| and |𝑇𝑘(𝑥)|we arrive
at Koekoek and R. Swarttouw (9.22).
Inserting Equation (9.22) into Equation (9.21), we find that

|||| 𝜃1(𝜈|𝜌)
2𝑒𝜋𝑖𝜌∕4 sin(𝜋𝜈)

− 1
|||| ≤ 2(1 +

√
5)√

5

∞∑
𝑘=1

𝑒𝜋𝑖𝜌(𝑘
2+𝑘)(1 +

√
5)2𝑘 ⋅ max (| cos(𝜋𝜈)|, 2−1)2𝑘,

||||𝜃4(𝜈|𝜌) − 1
|||| ≤ 2(1 +

√
5)√

5

∞∑
𝑘=1

𝑒𝜋𝑖𝜌𝑘
2
(1 +

√
5)2𝑘 ⋅ max (| cos(𝜋𝜈)|, 2−1)2𝑘.

Since 𝜌 = 2𝜋𝑖∕𝜅, it follows that 𝑒𝜋𝑖𝜌 = 𝑒−2𝜋
2∕𝜅 < 1. Thus for 𝑘 ∈ ℤ≥1, we can bound

𝑒𝜋𝑖𝜌(𝑘
2+𝑘), 𝑒𝜋𝑖𝜌𝑘

2 ≤ 𝑒𝜋𝑖𝜌𝑘. This shows that for some 𝐶 > 0,|||| 𝜃1(𝜈|𝜌)
2𝑒𝜋𝑖𝜌∕4 sin(𝜋𝜈)

− 1
|||| , ||||𝜃4(𝜈|𝜌) − 1

|||| (9.23)

≤ 𝐶𝑒
−

2𝜋2

𝜅 ⋅ max (| cos(𝜋𝜈)|, 2−1)2 ∞∑
𝑘=0

𝑒
−

2𝜋2

𝜅
𝑎𝑘
(1 +

√
5)2𝑘 ⋅ max (| cos(𝜋𝜈)|, 2−1)2𝑘.

Observe that | cos(𝜋𝜈)| ≤ 𝑒|Im(𝜋𝜈)|. We have assumed that |Im(𝜈)| ≤ 𝛼

𝜅
with 𝛼 ∈ (0, 𝜋) and thus it

follows that there exists some 𝑐 > 0 such that

𝑒
−

2𝜋2

𝜅 ⋅ max (| cos(𝜋𝜈)|, 2−1)2 ≤ 𝑒
−

𝑐

𝜅 .

Plugging this bound into Equation (9.23) yields Equation (9.20) and hence the lemma. □

9.1.7 Mellin transform

For a function 𝑓(𝑥) on (0, +∞), and 𝑠 ∈ ℂ, define

𝐹(𝑠) = 𝑀[𝑓; 𝑠] ∶=

∞

∫
0

𝑓(𝑥)𝑥𝑠−1𝑑𝑥,

The largest open strip −∞ ≤ 𝑎 < Re(𝑠) ≤ 𝑏 ≤ ∞ in which the integral converges is called the
fundamental strip or the strip of analyticity of 𝑀[𝑓; 𝑠]. Note that if 𝑔 is defined by the relation
𝑓(𝑥) = 𝑔(− log 𝑥),

∞

∫
0

𝑥𝑠−1𝑔(− log 𝑥)𝑑𝑥 =

∞

∫
−∞

𝑒−𝑡𝑠𝑔(𝑡)𝑑𝑡 = 𝑀[𝑓; 𝑠].

Therefore, all basic properties of the Mellin transform follow from those of the Laplace trans-
form. The following inversion formula can be found as Bertrand et al. [10, Theorem 11.2.1.1] (other
similar statements abound).
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STATIONARY MEASURE FOR THE OPEN KPZ 2257

Proposition 9.7. Assume that the function 𝐹(𝑠) is analytic in the strip (𝑎, 𝑐) and satisfies |𝐹(𝑠)| ≤
𝐾 ⋅ |𝑠|−2 for some 𝐾 > 0. Then, for 𝑏 ∈ (𝑎, 𝑐),

𝑓(𝑥) =
1
2𝜋𝑖

𝑏+𝑖∞

∫
𝑏−𝑖∞

𝐹(𝑠)𝑥−𝑠𝑑𝑠

is a continuous function of the variable 𝑥 ∈ (0;∞) and does not depend on the choice of 𝑏.
Furthermore, 𝐹(𝑥) = 𝑀[𝑓; 𝑠], and we then say that 𝑓(𝑥) is the inverse Mellin transform of 𝐹(𝑠).

9.2 Proof of Proposition 2.3

The following is the key to being able to use the above derived asymptotics on special function to
access 𝑞-Pochhammer asymptotics.

Lemma 9.8. For all 𝑐 > 1, 𝜅 > 0, Re(𝑧) > 0, we have that

log (𝑒−𝜅𝑧; 𝑒−𝜅) = −
1
2𝜋𝑖

𝑐+𝑖∞

∫
𝑐−𝑖∞

Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)
𝑑𝑠
𝜅𝑠

, (9.24)

log (−𝑒−𝜅𝑧; 𝑒−𝜅) = −
1
2𝜋𝑖

𝑐+𝑖∞

∫
𝑐−𝑖∞

(2−𝑠 − 1)Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)
𝑑𝑠
𝜅𝑠

(9.25)

Proof. Our goal is to show that log(𝑒−𝜅𝑧; 𝑒−𝜅) and log(−𝑒−𝜅𝑧; 𝑒−𝜅) are the inverse Mellin trans-
forms of the corresponding functions on the right-hand side of Equation (9.24). To do this, we
compute the Mellin transforms of the left-hand sides in Equation (9.24) and then show that they
can be inverted.
For 𝑎 ∈ ℂ with |𝑎| < 1 and 𝑞 ∈ (0, 1), we may write

− log(𝑎; 𝑞)∞ = −
∞∑
𝑘=0

log(1 − 𝑎𝑞𝑘) =
∞∑
𝑘=0

∞∑
𝑛=1

(𝑎𝑞𝑘)𝑛

𝑛
=

∞∑
𝑛=1

𝑎𝑛

𝑛

∞∑
𝑘=0

𝑞𝑛𝑘 =
∞∑
𝑛=1

𝑎𝑛

𝑛(1 − 𝑞𝑛)
. (9.26)

The interchange of the order of summations is possible due to Fubini’s theorem since for each
𝑞 ∈ (0, 1), there exists 𝐶 = 𝐶(𝑞) > 0 such that

∞∑
𝑛=1

|||| 𝑎𝑛

𝑛(1 − 𝑥𝑛)

|||| ≤ 𝐶
∞∑
𝑛=1

|𝑎𝑛| < ∞.

Let 𝑓1(𝑥) = − log((𝑒−𝜅𝑧; 𝑒−𝜅)∞). For Re(𝑧) > 0 and Re(𝑠) > 1,

𝑀[𝑓1; 𝑠] = −

∞

∫
0

log ((𝑒−𝜅𝑧; 𝑒−𝜅)∞)𝜅𝑠−1𝑑𝜅 =

∞

∫
0

∞∑
𝑛=1

(𝑒−𝜅𝑧)𝑛

𝑛(1 − 𝑒−𝑛𝜅)
𝜅𝑠−1𝑑𝜅

=

∞

∫
0

∞∑
𝑛=1

1

𝑛𝑠+1
𝑒−𝜌𝑧𝜌𝑠−1

(1 − 𝑒−𝜌)
𝑑𝜌 =

∞∑
𝑛=1

1

𝑛𝑠+1

∞

∫
0

𝑒−𝜌𝑧𝜌𝑠−1

(1 − 𝑒−𝜌)
𝑑𝜌 = Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧).

(9.27)
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2258 CORWIN and KNIZEL

The first equality in Equation (9.27) is by the definition of the Mellin transform. The second
equality in Equation (9.27) uses Equation (9.26) with 𝑎 = 𝑒−𝜅𝑧 and 𝑞 = 𝑒−𝜅. The third equality
in Equation (9.27) comes from the change of variables 𝜅 = 𝜌∕𝑛. The fourth equality in Equation
(9.27) is valid because

∞∑
𝑛=1

1

𝑛Re(𝑠)+1

∞

∫
0

|||| 𝑒−𝜌𝑧𝜌𝑠−1(1 − 𝑒−𝜌)
𝑑𝜌
|||| ≤ 𝐶

∞∑
𝑛=1

1

𝑛Re(𝑠)+1
< ∞.

The constant term 𝐶 > 0 above comes from bounding the integral: Since Re(𝑠) > 1, the behavior
near 𝜌 = 0 is like 𝜌Re(𝑠)−2, which is integrable since Re(𝑠) > 1; and near 𝜌 = ∞, the integrand
decays exponentially because Re(𝑧) > 0. The final equality in Equation (9.27) uses Equation (9.4)
for 𝜁(𝑠, 𝑧).
A similar computation for 𝑓2(𝑥) = − log((−𝑒−𝜅𝑧; 𝑒−𝜅)∞), yields

𝑀[𝑓2; 𝑠] = −

∞

∫
0

log ((−𝑒−𝜅𝑧; 𝑒−𝜅)∞)𝜅𝑠−1𝑑𝜅 =
∞∑
𝑛=1

(−1)𝑛

𝑛𝑠+1

∞

∫
0

𝑒−𝜌𝑧𝜌𝑠−1

(1 − 𝑒−𝜌)
𝑑𝜌

= −Γ(𝑠)𝜂(𝑠 + 1)𝜁(𝑠, 𝑧) = (2−𝑠 − 1)Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧).

The last equality uses Equation (9.8).
Having computed the Mellin transform for 𝑓1 and 𝑓2, we now verify that they can be inverted

using Proposition 9.7. We must check analyticity and the quadratic decay estimate. Due to the
analyticity of Γ(𝑠), 𝜁(𝑠), and 𝜁(𝑠, 𝑧), the analyticity of these Mellin transforms holds for Re(𝑠) > 1.
Now we argue that there is quadratic decay. To apply Proposition 9.7, it suffices to have this

decay on any vertical strip. Fix 𝑎 = 1 and any 𝑐 > 1. We claim that there exists a constant 𝐾 > 0
such that for all 𝑠 ∈ ℂ with Re(𝑠) ∈ (𝑎, 𝑐) and all 𝑧 ∈ ℂ with Re(𝑧) > 0, |Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)| ≤
𝐾|𝑠|−2. This follows by appealing to the gamma function decay bound in Lemma 9.1, the bound-
edness of 𝜁(𝑠 + 1) for Re(𝑠) ∈ (𝑎, 𝑐), and the bound on |𝜁(𝑠, 𝑧)| from Lemma 9.3. With this, we can
invert the Mellin transform of 𝑓1 and thus prove the desired formula. The case for 𝑓2 is similar
since the factor (2−𝑠 − 1) is bounded by a constant provided Re(𝑠) ∈ (𝑎, 𝑐). □

9.2.1 Proof of Proposition 2.3: Asymptotics of (𝑒−𝜅𝑧; 𝑒−𝜅)∞

Wewill first consider the casewhenRe(𝑧) ≥ 1∕2. This is addressed in three steps. Then, in a fourth
step, we will use the functional identity (9.18) to address the case when Re(𝑧) < 1∕2. In the fifth
and final step, we will combine these two bounds into a common bound.
Step 1.We start with the representation for (𝑒−𝜅𝑧; 𝑒−𝜅)∞ from Lemma 9.8 and shift the contour

of integration to the left of zero, picking up some residues. We claim the following formula: For
any noninteger 𝑎 < 0,

− log(𝑒−𝜅𝑧; 𝑒−𝜅)∞ =
1
2𝜋𝑖

𝑎+𝑖∞

∫
𝑎−𝑖∞

Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)𝜅−𝑠𝑑𝑠 +
𝓁=1∑
𝓁=⌈𝑎⌉Res𝑠=𝓁[Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)𝜅−𝑠].

(9.28)
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STATIONARY MEASURE FOR THE OPEN KPZ 2259

The starting point for this is Equation (9.24) where the contour has real part 𝑐 > 1. The idea is
to shift the contour to the left until it lies on a vertical line with real part 𝑎 < 0. In doing this,
we encounter poles at 𝑠 = 1, 0, −1, … , ⌈𝑎⌉whose residues must be accounted for. The summation
in Equation (9.28) is precisely the contribution of those residues. To justify the deformation, we
use Lemmas 9.1 and 9.2 with Equation (9.15) from Proposition 9.5 to show that for 𝑧 fixed with
Re(𝑧) > 0, there exists some 𝜀 > 0 and𝐶 > 0 such that for all 𝑠with Re(𝑠) = 𝜎 ∈ [𝑎, 𝑐] and |𝑡| > 1,|Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)𝜅−𝑠| ≤ 𝐶𝑒−𝜀|𝑡|.
Step 2. Next, we compute the residues in Equation (9.28). In order to do that this, we make

use of the following Taylor series expansions. We first address the residue at 𝑠 = 0. By using the
results in Equation (9.7), we see that around 𝑠 = 0

Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)𝜅−𝑠 =
1

𝑠2
Γ(𝑠 + 1) ⋅ (𝑠𝜁(𝑠 + 1)) ⋅ 𝜁(𝑠, 𝑧) ⋅ 𝜅−𝑠 =

= (
1

2
− 𝑧)𝑠−2 +

((
𝑧 −

1

2

)
log 𝜅 + log

[
Γ(𝑧)√
2𝜋

])
𝑠−1 +⋯ ,

where⋯ here represents lower order terms in 𝑠. From this expansion, it immediately follows that
the residue at 𝑠 = 0 is (𝑧 − 1

2
) log 𝜅 + log[

Γ(𝑧)√
2𝜋
]. Turning to the residue at 𝑠 = 1, from Equation

(9.6), we have that

Res
𝑠=1

[Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)𝜅−𝑠] =
Γ(1)𝜁(2)

𝜅
⋅ Res
𝑠=1

[𝜁(𝑠, 𝑧)] =
𝜋2

6𝜅
.

The residue at 𝑠 = −𝑛 for 𝑛 ∈ ℤ≥1 is evaluated by Equations (9.1) and (9.10) as

Res
𝑠=−𝑛

[Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)𝜅−𝑠] = Res
𝑠=−𝑛

[Γ(𝑠)] ⋅ 𝜁(−𝑛 + 1)𝜁(−𝑛, 𝑧) ⋅ 𝜅𝑛 =
𝐵𝑛𝐵𝑛+1(𝑧)

𝑛(𝑛 + 1)!
⋅ 𝜅𝑛.

Recall that Bernoulli numbers are zero for odd integers. Combining these deductions,we conclude
for Re(𝑧) > 0 and noninteger 𝑎 < 0, we have

− log(𝑒−𝜅𝑧; 𝑒−𝜅)∞ =
1
2𝜋𝑖

𝑎+𝑖∞

∫
𝑎−𝑖∞

Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)𝜅−𝑠𝑑𝑠

+
𝜋2

6𝜅
+

(
𝑧 −

1
2

)
log 𝜅 + log

[
Γ(𝑧)√
2𝜋

]
+
⌊−𝑎⌋∑
𝑛=1

𝐵𝑛+1(𝑧)𝐵𝑛
𝑛(𝑛 + 1)!

𝜅𝑛. (9.29)

Recall 𝑚 ∈ ℤ≥1 in the statement of Proposition 2.3. For any 𝑎 ∈ (−𝑚,−𝑚 + 1), we may com-
pare the right-hand sides of Equations (9.29) and (2.5) to see that the error term 𝖤𝗋𝗋+𝑚[𝜅, 𝑧] in
Equation (2.5) is precisely given by

𝖤𝗋𝗋+𝑚[𝜅, 𝑧] =
−1
2𝜋𝑖

𝑎+𝑖∞

∫
𝑎−𝑖∞

Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)𝜅−𝑠𝑑𝑠. (9.30)

Therefore, our problem reduces to bounding the absolute value of the above integral. Fix some
𝑎 ∈ (−𝑚,−𝑚 + 1). To estimate |𝖤𝗋𝗋+𝑚[𝜅, 𝑧]|, we bring the absolute value inside the integral and
utilize the bounds given in Propositions 9.2 and 9.5. Using the notation 𝑠 = 𝑎 + 𝑖𝑡, we will divide
the integral into small |𝑡| and large |𝑡|. On account of the just mentioned lemma and propositions,

 10970312, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22174 by C

olum
bia U

niversity L
ibraries, W

iley O
nline L

ibrary on [02/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2260 CORWIN and KNIZEL

for all 𝑑 ∈ (0, 1∕2) such that 𝑎 + 𝑑 ∉ ℤ≤0, there exists a 𝑡0 > 0 and 𝐶 > 0 such that for all 𝑡 < 𝑡0
and 𝑧 ∈ ℂ with Re(𝑧) ≥ 1∕2,

||Γ(𝑎 + 𝑖𝑡)𝜁(𝑎 + 𝑖𝑡 + 1)𝜁(𝑎 + 𝑖𝑡, 𝑧)||
≤ 𝐶

(
𝑒|Arg(𝑧)⋅𝑡|(|𝑧|1−𝑎 + |𝑡|1∕2−𝑎|𝑧|−𝑑−𝑎) + |𝑧|−𝑑−𝑎), (9.31)

while for all 𝑡 > 𝑡0 and 𝑧 ∈ ℂ with Re(𝑧) ≥ 1∕2,

||Γ(𝑎 + 𝑖𝑡)𝜁(𝑎 + 𝑖𝑡 + 1)𝜁(𝑎 + 𝑖𝑡, 𝑧)|| ≤ 𝐶𝑒
−

𝜋

2
|𝑡|

×
(
𝑒|Arg(𝑧)⋅𝑡|(|𝑧|−𝑎 + (1 + |𝑡|)−1|𝑧|1−𝑎 + |𝑡|1∕2−𝑎|𝑧|−𝑑−𝑎) + |𝑡|1∕2−𝑎|𝑧|−𝑑−𝑎), (9.32)

In deriving the above, we made some simplifications from the bound in Proposition 9.5. For|𝑡| ≤ 𝑡0, we bounded max(1, |𝑡|1∕2−𝑎) ≤ 𝐶 while for |𝑡| ≥ 𝑡0, we bounded max(1, |𝑡|1∕2−𝑎) ≤
𝐶|𝑡|1∕2−𝑎 where 𝐶 > 0 depends on 𝑎 and 𝑡0. Since we are presently assuming that Re(𝑧) ≥ 1∕2
(and hence |𝑧| ≥ 1∕2) we find a constant only dependent on 𝑎 and 𝑡0 such that for |𝑡| ≤ 𝑡0,|𝑧|−𝑎 + (1 + |𝑡|)−1|𝑧|1−𝑎 ≤ 𝐶|𝑧|1−𝑎 and likewise find 𝐶 > 0 only dependent on 𝑑 + 𝑎 such that∑⌊−𝑑−𝑎⌋

𝑘=0 |𝑧|𝑘 ≤ 𝐶|𝑧|−𝑑−𝑎.
With the 𝑡0 above, we may bound |𝖤𝗋𝗋+𝑚[𝜅, 𝑧]| ≤ (𝜋)−1𝜅−𝑎(𝐈 + 𝐈𝐈) where

𝐈 = ∫
𝑡0

0

||Γ(𝑎 + 𝑖𝑡)𝜁(𝑎 + 𝑖𝑡 + 1)𝜁(𝑎 + 𝑖𝑡, 𝑧)||𝑑𝑡,
𝐈𝐈 = ∫

∞

𝑡0

||Γ(𝑎 + 𝑖𝑡)𝜁(𝑎 + 𝑖𝑡 + 1)𝜁(𝑎 + 𝑖𝑡, 𝑧)||𝑑𝑡.
Estimating 𝐈 from Equation (9.31) is done easily since 𝑡 < 𝑡0 and |𝑧| ≥ 1∕2. Themain contribution
is from the term |𝑧|1−𝑎 and all other terms can be bounded by it. Thus, we find that there exists
𝐶 > 0 depending on 𝑎 and 𝑡0 such that 𝐈 ≤ 𝐶|𝑧|1−𝑎. To control 𝐈𝐈 requires a bit more. Let us recall
two facts. The first is an immediate consequence of the gamma function integral formula: For any
𝛼 > −1 and any 𝜀 > 0,

∫
∞

0
𝑒−𝜀𝑡𝑡𝛼𝑑𝑡 = 𝜀−𝛼−1Γ(𝛼 + 1). (9.33)

The second is that for all Re(𝑧) ≥ 1∕2, there exists a 𝐶 > 0 such that 𝜋

2
− |Arg(𝑧)| ≥ 𝐶|𝑧|−1. With

these facts, we may show that there exists 𝐶 > 0 depending only on 𝑎 such that

∫
∞

𝑡0

𝑒
−(

𝜋

2
−Arg(𝑧))|𝑡|(|𝑧|−𝑎 + (1 + |𝑡|)−1|𝑧|1−𝑎 + |𝑡|1∕2−𝑎|𝑧|−𝑑−𝑎)𝑑𝑡 ≤ 𝐶

(|𝑧|1−𝑎 + |𝑧| 32−2𝑎−𝑑).
To derive this inequality, we first extended the integration to (0,∞), and then used Equation (9.33)
with 𝜀 =

𝜋

2
− Arg(𝑧) ≥ 𝐶|𝑧|−1. Similarly, we find that

∫
∞

𝑡0

𝑒
−

𝜋

2
|𝑡||𝑡|1∕2−𝑎|𝑧|−𝑑−𝑎𝑑𝑡 ≤ 𝐶|𝑧|−𝑑−𝑎.
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STATIONARY MEASURE FOR THE OPEN KPZ 2261

Thus, in light of Equation (9.32) and the above bounds, we have shown that

𝐈𝐈 ≤ 𝐶

(|𝑧|1−𝑎 + |𝑧| 32−2𝑎−𝑑 + |𝑧|−𝑑−𝑎),
and combining this with the earlier bound on 𝐈,we see that there exists 𝐶 > 0 dependent only on
𝑎 and 𝑑 such that

|𝖤𝗋𝗋+𝑚[𝜅, 𝑧]| ≤ 𝐶𝜅−𝑎
(|𝑧|1−𝑎 + |𝑧| 32−2𝑎−𝑑 + |𝑧|−𝑑−𝑎) ≤ 𝐶𝜅−𝑎

(|𝑧|1−𝑎 + |𝑧| 32−2𝑎−𝑑).
Since we were allowed to take 𝑎 ∈ (−𝑚,−𝑚 + 1) arbitrary, and 𝑑 ∈ (0, 1∕2) provided 𝑎 + 𝑑 ∉
ℤ≤0, we may try to optimize the right-hand side above. Let 𝑏 = −𝑎 ∈ (𝑚 − 1,𝑚). Then, we have
shown that for any 𝜀 ∈ (0, 1∕2) and any 𝑏 ∈ (𝑚 − 1,𝑚), there exists 𝐶 > 0 such that

|𝖤𝗋𝗋+𝑚[𝜅, 𝑧]| ≤ 𝐶𝜅𝑏
(|𝑧|1+𝑏 + |𝑧|1+2𝑏+𝜀) ≤ 𝐶𝜅𝑏|𝑧|1+2𝑏+𝜀. (9.34)

This completes the proof of the proposition when Re(𝑧) ≥ 1∕2. Notice that there is no restriction
on Im(𝑧) assumed here (in accordance with the statement of the proposition).
Step 4.We will now make use of the functional identity (9.18) to relate the Re(𝑧) < 1∕2 behav-

ior to the Re(𝑧) ≥ 1∕2 result we have proven already above. The two Pochhammer symbols,
(𝑒−𝜅; 𝑒−𝜅)∞ and (𝑒−𝜅(1−𝑧); 𝑒−𝜅)∞, which arise on the right-hand side of Equation (9.18) are both
of the form (𝑒−𝜅𝑧̃; 𝑒−𝜅)∞ for 𝑧̃ = 1 and 1 − 𝑧, respectively. In both cases (in the second case, due
to the assumption that Re(𝑧) < 1∕2), we have that Re(𝑧̃) ≥ 1∕2, hence the result we have proved
above can be applied. In particular, for any𝑚 ∈ ℤ≥1, recalling+[𝜅, 𝑧] from Equation (2.3),

− log(𝑒−𝜅(1−𝑧); 𝑒−𝜅)∞ =

−+[𝜅, 1 − 𝑧] +
𝑚−1∑
𝑛=1

𝐵𝑛+1(1 − 𝑧)𝐵𝑛
𝑛(𝑛 + 1)!

𝜅𝑛 + 𝖤𝗋𝗋+𝑚[𝜅, 1 − 𝑧].

− log (𝑒−𝜅; 𝑒−𝜅)∞ =

−+[𝜅, 1] +
𝑚−1∑
𝑛=1

𝐵𝑛+1(1)𝐵𝑛
𝑛(𝑛 + 1)!

𝜅𝑛 + 𝖤𝗋𝗋+𝑚[𝜅, 1].

(9.35)

Recall that from Equation (9.9), we have 𝐵𝑛+1(1 − 𝑧) = (−1)𝑛+1𝐵𝑛+1(𝑧) and that, in particular,
𝐵𝑛+1 = 𝐵𝑛+1(1) = 0 for 𝑛 even. Thus, we may replace 𝐵𝑛+1(1 − 𝑧)𝐵𝑛 by −𝐵𝑛+1(𝑧)𝐵𝑛 (when 𝑛 is
even, both sides are zero). Also observe that the product 𝐵𝑛+1𝐵𝑛 = 0 for all 𝑛 except 𝑛 = 1. By the
Euler reflection equation, log[Γ(1−𝑧)√

2𝜋
] = − log[2 sin(𝜋𝑧)] − log[

Γ(𝑧)√
2𝜋
]. Plugging this into Equation

(9.18), we find that we can write

log (𝑒−𝜅𝑧; 𝑒−𝜅)∞ = +[𝜅, 𝑧] −
𝑚−1∑
𝑛=1

𝐵𝑛+1(𝑧)𝐵𝑛
𝑛(𝑛 + 1)!

𝜅𝑛 + 𝖤𝗋𝗋+𝑚[𝜅, 𝑧]

where

𝖤𝗋𝗋+𝑚[𝜅, 𝑧] ∶=
𝑚−1∑
𝑛=1

𝐵𝑛+1(1)𝐵𝑛
𝑛(𝑛 + 1)!

𝜅𝑛 +
𝜅
8
−

𝜅𝑧
2

+
𝜅𝑧2

2
+ 𝖤𝗋𝗋+𝑚(𝜅, 1) + 𝖤𝗋𝗋+𝑚(𝜅, 1 − 𝑧)

+ log

[
𝜃1

(
𝑧
||||2𝜋𝑖𝜅

)
𝑒𝜋

2∕(2𝜅)

2 sin(𝜋𝑧)

]
.
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2262 CORWIN and KNIZEL

This provides an explicit formula for the error term 𝖤𝗋𝗋+𝑚[𝜅, 𝑧] in Equation (2.5). The first bound
in Lemma 9.6 shows that for any 𝛼 ∈ (0, 𝜋), there exist 𝐶, 𝑐, 𝜅0 > 0 such that for all 𝜅 ∈ (0, 𝜅0) and
all 𝑧 ∈ ℂ with |Im(𝑧)| < 𝛼

𝜅

||||||log
(
𝜃1

(
𝑧
||||2𝜋𝑖𝜅

)
𝑒𝜋

2∕(2𝜅)

2 sin(𝜋𝑧)

)|||||| ≤ log

(
1 + 𝐶 ⋅ 𝑒

−
𝑐

𝜅

)
≤ 𝐶 ⋅ 𝑒

−
𝑐

𝜅 .

The two terms 𝖤𝗋𝗋+𝑚(𝜅, 1) and 𝖤𝗋𝗋
+
𝑚(𝜅, 1 − 𝑧)were bounded in the first three steps of this proof, see

Equation (9.34). The summation involving Bernoulli numbers has only one nonzero term when
𝑛 = 1 and is proportional to 𝜅. Thus, to summarize so far, we have shown that for any 𝛼 ∈ (0, 𝜋),
𝜀 ∈ (0, 1∕2) and 𝑏 ∈ (𝑚 − 1,𝑚), there exist 𝐶, 𝑐, 𝜅0 > 0 such that for all 𝜅 ∈ (0, 𝜅0) and all 𝑧 ∈ ℂ
with |Im(𝑧)| < 𝛼

𝜅

|𝖤𝗋𝗋+𝑚[𝜅, 𝑧]| ≤ 𝐶

(
𝜅 + 𝜅|1 − 2𝑧|2 + 𝜅𝑏|1 − 𝑧|1+2𝑏+𝜀 + 𝜅𝑏 + 𝑒

−
𝑐

𝜅

)
.

For each 𝑏, provided 𝜅 is small enough, we can bound 𝑒
−

𝑐

𝜅 ≤ 𝜅𝑏. Since Re(𝑧) < 1∕2, it follows
that there exist a constant 𝐶, which depends on 𝑏 such that 1 ≤ 𝐶|1 − 𝑧|1+2𝑏+𝜀. Thus, we can
simplify our bound to the following: For any 𝛼 ∈ (0, 𝜋), 𝜀 ∈ (0, 1∕2), and 𝑏 ∈ (𝑚 − 1,𝑚), there
exist 𝐶, 𝑐, 𝜅0 > 0 such that for all 𝜅 ∈ (0, 𝜅0) and all 𝑧 ∈ ℂ with |Im(𝑧)| < 𝛼

𝜅

|𝖤𝗋𝗋+𝑚[𝜅, 𝑧]| ≤ 𝐶
(
𝜅 + 𝜅|1 − 2𝑧|2 + 𝜅𝑏|1 − 𝑧|1+2𝑏+𝜀). (9.36)

Step 5. In this final step, we combine the bound (9.34) shown in Step 3 for all Re(𝑧) ≥ 1∕2
with the bound just shown at the end of Step 4, in Equation (9.36) which holds for Re(𝑧) < 1∕2
(with some additional condition on the imaginary part). Notice that if Re(𝑧) ≥ 1∕2, then there
exists a constant 𝐶 such that |𝑧| ≤ 𝐶(1 + |𝑧|), and similarly, if Re(𝑧) < 1∕2, then there exists a
constant 𝐶 such that |1 − 2𝑧| ≤ 𝐶(1 + |𝑧|). Making these replacements in the respective bounds
(9.34) and (9.36) immediately leads to the error bound claimed in Equation (2.7) for 𝖤𝗋𝗋+𝑚[𝜅, 𝑧].
This completes the proof of the asymptotics of log(𝑞𝑧; 𝑞)∞ provided |Im(𝑧)| < 𝛼

𝜅
. We will extend

this asymptotic to |Im(𝑧)| < 2𝛼

𝜅
using the result for log(−𝑞𝑧; 𝑞)∞. To avoid confusion, we defer

this until the end of the proof of the log(−𝑞𝑧; 𝑞)∞ asymptotics.

9.2.2 Proof of Proposition 2.3: Asymptotics of (−𝑞𝑧; 𝑞)∞

Comparing the formula (9.24) for (𝑞𝑧; 𝑞)∞ to the formula (9.25) for (−𝑞𝑧; 𝑞)∞, the only difference
is the inclusion of the factor 2−𝑠 − 1 in the later. This will have very minor effect on the argument,
as compared to our earlier study of the asymptotics of (𝑞𝑧; 𝑞)∞ in Section 9.2. As such, we just
summarize the outcome of each of the five steps from that proof, subject to inclusion now of the
multiplicative factor 2−𝑠 − 1. As a sixth and final step, we include the extension of the log(𝑞𝑧; 𝑞)∞
asymptotic to only assume |Im(𝑧)| < 2𝛼

𝜅
.
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STATIONARY MEASURE FOR THE OPEN KPZ 2263

Step 1. Assume that Re(𝑧) ≥ 1∕2. Under this condition, we may use Equation (9.25) and decay
estimates to show, as in Equation (9.28), that for noninteger 𝑎 < 0,

− log(−𝑒−𝜅𝑧; 𝑒−𝜅)∞ =
1
2𝜋𝑖

𝑎+𝑖∞

∫
𝑎−𝑖∞

(2−𝑠 − 1)Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)𝜅−𝑠𝑑𝑠

+
𝓁=1∑
𝓁=⌈𝑎⌉Res𝑠=𝓁[(2

−𝑠 − 1)Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)𝜅−𝑠]. (9.37)

Step 2.Wecompute the residues inEquation (9.37). Notice that around 𝑠 = 0, we have 2−𝑠 − 1 =
−𝑠 log(2) +⋯. From this, we see that around 𝑠 = 0,

(2−𝑠 − 1)Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)𝜅−𝑠 =
(𝑧 −

1

2
) log 2

𝑠
+⋯

where the ⋯ represent lower order terms. Hence the residue at 𝑠 = 0 is (𝑧 − 1

2
) log 2. At 𝑠 =

1, the factor 2−𝑠 − 1 is simply evaluated to −
1

2
and hence the residue there becomes −

𝜋2

12𝜅
.

Finally, for the residues at −𝑛 for 𝑛 ∈ ℤ≥1, the 2−𝑠 − 1 factor contributes a new multiplica-
tive factor 2𝑛 − 1 to the residue. Thus, Equation (9.29) is replaced by (recall −[𝜅, 𝑧] from
Equation (2.4))

− log(𝑒−𝜅𝑧; 𝑒−𝜅)∞ =
1
2𝜋𝑖

𝑎+𝑖∞

∫
𝑎−𝑖∞

(2−𝑠 − 1)Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)𝜅−𝑠𝑑𝑠

−−[𝜅, 𝑧] +
⌊−𝑎⌋∑
𝑛=1

(2𝑛 − 1)
𝐵𝑛+1(𝑧)𝐵𝑛
𝑛(𝑛 + 1)!

𝜅𝑛. (9.38)

Step 3. We fix 𝑚 ∈ ℤ≥1 and let 𝑎 ∈ (−𝑚,−𝑚 + 1). Comparing the right-hand sides of Equa-
tions (9.38) and (2.6), we see that the error term 𝖤𝗋𝗋−𝑚[𝜅, 𝑧] in Equation (2.6) is precisely given
by

𝖤𝗋𝗋−𝑚[𝜅, 𝑧] =
−1
2𝜋𝑖

𝑎+𝑖∞

∫
𝑎−𝑖∞

(2−𝑠 − 1)Γ(𝑠)𝜁(𝑠 + 1)𝜁(𝑠, 𝑧)𝜅−𝑠𝑑𝑠.

Bounding the absolute value of the error term |𝖤𝗋𝗋−𝑚[𝜅, 𝑧]| proceeds quite similar to that of|𝖤𝗋𝗋−𝑚[𝜅, 𝑧]| in Equation (9.30). Since along our integration contour, Re(𝑠) = 𝑎, it follows that
we can bound |2−𝑠 − 1| ≤ 2−𝑎 + 1, which can be absorbed into the constant 𝐶. Thus, we arrive
as the same bound as in Equation (9.34). In particular, we see that for any 𝜀 ∈ (0, 1∕2) and
𝑏 ∈ (𝑚 − 1,𝑚), there exists a constant 𝐶 > 0 such that

|𝖤𝗋𝗋−𝑚[𝜅, 𝑧]| ≤ 𝐶𝜅𝑏|𝑧|1+2𝑏+𝜀. (9.39)

This result still assumes that Re(𝑧) ≥ 1∕2.
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2264 CORWIN and KNIZEL

Step 4. We now return to Re(𝑧) < 1∕2 and use Equation (9.19) to deduce the asymptotics in
that regime from those derived above for Re(𝑧) ≥ 1∕2. Since Re(1 − 𝑧) ≥ 1∕2, we may conclude
from the results of Steps 1–3 above that for any𝑚 ∈ ℤ≥1,

− log(−𝑒−𝜅(1−𝑧); 𝑒−𝜅)∞ = −−[𝜅, 1 − 𝑧] +
𝑚−1∑
𝑛=1

(2𝑛 − 1)
𝐵𝑛+1(1 − 𝑧)𝐵𝑛

𝑛(𝑛 + 1)!
𝜅𝑛 + 𝖤𝗋𝗋−𝑚[𝜅, 1 − 𝑧].

Combining this with the asymptotics of − log(𝑒−𝜅; 𝑒−𝜅)∞ in Equation (9.35) and the form of the
right-hand sides of Equation (2.6) in (2.6) yields

log (−𝑒−𝜅𝑧; 𝑒−𝜅)∞ = −[𝜅, 𝑧] −
𝑚−1∑
𝑛=1

(2𝑛 − 1)
𝐵𝑛+1(𝑧)𝐵𝑛
𝑛(𝑛 + 1)!

𝜅𝑛 + 𝖤𝗋𝗋−𝑚[𝜅, 𝑧]

where 𝖤𝗋𝗋−𝑚[𝜅, 𝑧] is given by

𝖤𝗋𝗋−𝑚[𝜅, 𝑧] =
𝑚−1∑
𝑛=1

𝐵𝑛+1(1)𝐵𝑛
𝑛(𝑛 + 1)!

𝜅𝑛 +
𝜅
8
−

𝜅𝑧
2

+
𝜅𝑧2

2
+ 𝖤𝗋𝗋+⌊−𝑑⌋[𝜅, 1] + 𝖤𝗋𝗋−⌊−𝑑⌋[𝜅, 1 − 𝑧]

+ log
(
𝜃4
(
𝑧||| 2𝜋𝑖𝜅 )).

We may now invoke the second bound in Lemma 9.6, which shows that for any 𝛼 ∈ (0, 𝜋), there
exists 𝐶, 𝑐, 𝜅0 > 0 such that for all 𝜅 ∈ (0, 𝜅0) and all 𝑧 ∈ ℂ with |Im(𝑧)| < 𝛼

𝜅|||||log
(
𝜃4

(
𝑧
||||2𝜋𝑖𝜅

))||||| ≤ log

(
1 + 𝐶 ⋅ 𝑒

−
𝑐

𝜅

)
≤ 𝐶 ⋅ 𝑒

−
𝑐

𝜅 .

The term 𝖤𝗋𝗋+𝑚(𝜅, 1)was bounded in Section 9.2 whereas 𝖤𝗋𝗋
−
𝑚(𝜅, 1 − 𝑧) has been already bounded

in the first three steps of this proof, see Equation (9.39). Thus, in the same manner as in
Section 9.2, we conclude that: For any 𝛼 ∈ (0, 𝜋), 𝜀 ∈ (0, 1∕2), and 𝑏 ∈ (𝑚 − 1,𝑚), there exist
𝐶, 𝑐, 𝜅0 > 0 such that for all 𝜅 ∈ (0, 𝜅0) and all 𝑧 ∈ ℂ with |Im(𝑧)| < 𝛼

𝜅
(again, this is assuming

Re(𝑧) < 1∕2)

|𝖤𝗋𝗋−𝑚[𝜅, 𝑧]| ≤ 𝐶
(
𝜅 + 𝜅|1 − 2𝑧|2 + 𝜅𝑏|1 − 𝑧|1+2𝑏+𝜀).

Step 5. The synthesis of the Re(𝑧) ≥ 1∕2 and Re(𝑧) < 1∕2 bounds on the error are precisely the
same as above, hence the proof is complete.
Step 6. The fact that the bound on 𝖤𝗋𝗋+𝑚[𝜅, 𝑧] holds with |Im(𝑧)| < 2𝛼

𝜅
follows from Equation

(2.7) for 𝖤𝗋𝗋±𝑚[𝜅, 𝑧]with |Im(𝑧)| < 𝛼

𝜅
by using the transformation (2.8). To see this, consider 𝑧with

Im(𝑧) ∈ [
𝛼

𝜅
,
2𝛼

𝜅
) (the negative imaginary case is the same). Then,

log(𝑞𝑧; 𝑞)∞ = log(−𝑞
𝑧−

𝜋

𝜅
𝑖
; 𝑞)∞

= −[𝜅, 𝑧 −
𝜋
𝜅
𝑖] −

𝑚−1∑
𝑛=1

(2𝑛 − 1)
𝐵𝑛+1(𝑧 −

𝜋

𝜅
𝑖)𝐵𝑛

𝑛(𝑛 + 1)!
𝜅𝑛 + 𝖤𝗋𝗋−𝑚[𝜅, 𝑧 −

𝜋
𝜅
𝑖].
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STATIONARY MEASURE FOR THE OPEN KPZ 2265

Comparing this to Equation (2.5) shows that

𝖤𝗋𝗋+𝑚[𝜅, 𝑧] = −[𝜅, 𝑧 −
𝜋
𝜅
𝑖] −+[𝜅, 𝑧]

+
𝑚−1∑
𝑛=1

⎛⎜⎜⎝
𝐵𝑛+1(𝑧)𝐵𝑛
𝑛(𝑛 + 1)!

𝜅𝑛 − (2𝑛 − 1)
𝐵𝑛+1(𝑧 −

𝜋

𝜅
𝑖)𝐵𝑛

𝑛(𝑛 + 1)!
𝜅𝑛
⎞⎟⎟⎠ + 𝖤𝗋𝗋−𝑚[𝜅, 𝑧 −

𝜋
𝜅
𝑖].

For Im(𝑧) ∈ [
𝛼

𝜅
,
2𝛼

𝜅
), we have that Im[𝑧 −

𝜋

𝜅
𝑖] ∈ [

𝛼−𝜋

𝜅
,
2𝛼−𝜋

𝜅
), which is contained in (−

𝛽

𝜅
,
𝛽

𝜅
) for

some 𝛽 ∈ (0, 𝜋). Thus we can apply the bound (2.7) to control 𝖤𝗋𝗋−𝑚[𝜅, 𝑧 −
𝜋

𝜅
𝑖]. All of the other

terms are also easily controlled (for the Gamma function, use the asymptotics from Lemma 9.1)
and doing so, we verify that Equation (2.7) holds for 𝖤𝗋𝗋+𝑚[𝜅, 𝑧]. The reason why we cannot do
the same extension of the range of imaginary part for 𝖤𝗋𝗋−𝑚[𝜅, 𝑧] is that in replicating that above
argument, we encounter+[𝜅, 𝑧 −

𝜋

𝜅
𝑖] −−[𝜅, 𝑧] and the first termmay have singularities from

the Gamma function.
Note that the above argument works for obtaining a bound on 𝖤𝗋𝗋±𝑚[𝜅, 𝑧] for 𝑧 with

dist(Re(𝑧), ℤ≤0) > 𝑟 for any 𝑟 > 0 since we will avoid the singularities from the Gamma function.
This implies the final claim of the proposition.
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