
Co-dependence Aware Fuzzing for Dataflow-Based Big Data
Analytics

Ahmad Humayun
ahmad35@vt.edu

Virginia Tech

Blacksburg, Virginia, USA

Miryung Kim
miryung@cs.ucla.edu

University of California, Los Angeles

Los Angeles, California, USA

Muhammad Ali Gulzar
gulzar@cs.vt.edu

Virginia Tech

Blacksburg, Virginia, USA

ABSTRACT

Data-intensive scalable computing has become popular due to the

increasing demands of analyzing big data. For example, Apache

Spark and Hadoop allow developers to write dataflow-based appli-

cations with user-defined functions to process data with custom

logic. Testing such applications is difficult. (1) These applications

often take multiple datasets as input. (2) Unlike in SQL, there is

no explicit schema for these datasets and each unstructured (or

semi-structured) dataset is segmented and parsed at runtime. (3)

Dataflow operators (e.g., join) create implicit co-dependence con-

straints between the fields of multiple datasets. An efficient and

effective testing technique must analyze co-dependence among dif-

ferent regions of multiple datasets at the level of rows and columns

and orchestrate input mutations jointly on co-dependent regions.

We propose DepFuzz to increase the effectiveness and efficiency

of fuzz testing dataflow-based big data applications. The key insight

behind DepFuzz is twofold. It keeps track of which code segments

operate on which datasets, which rows, and which columns. By

analyzing the use of dataflow operators (e.g., join and groupByKey)

in tandem with the semantics of UDFs, DepFuzz generates test data

that subsequently reach hard-to-reach regions of the application

code. In real-world big data applications, DepFuzz finds 3.4× more

faults, achieving 29% more statement coverage in half the time as

Jazzer’s, a state-of-the-art commercial fuzzer for Java bytecode. It

outperforms prior DISC testing by exposing deeper semantic faults

beyond simpler input formatting errors, especially when multiple

datasets have complex interactions through dataflow operators.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Testing, Fuzzing, Data analytics, Provenance, Taint analysis

ACM Reference Format:

Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar. 2023. Co-

dependence Aware Fuzzing for Dataflow-Based Big Data Analytics. In Pro-

ceedings of the 31st ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616298

December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3611643.3616298

1 INTRODUCTION

Data-Intensive Scalable Computing (DISC) applications have be-

come a prevalent way to process large-scale data. DISC frameworks

like Hadoop MapReduce [2] and Apache Spark [3] offer APIs that

contain dataflow operators such as map, join, and groupByKey for

parallel data processing across thousands of machines. A typical

DISC application builds on a series of dataflow operators in con-

junction with user-defined functions (UDFs) that are passed as

arguments to the dataflow operators. Despite the widespread usage

of DISC applications, testing remains difficult due to their large

input size and the applications’ complex interactions with data.

Fuzzing is an effective software testing approach for many com-

plex programs [1, 7, 9, 17, 28, 32, 41, 49, 52]. Fuzzers make small

perturbations (mutations) to inputs to increase the likelihood of

exercising uncovered application logic. Such traditional fuzzing

may take a long time to generate meaningful inputs for DISC ap-

plications because a large input data has too many locations to mu-

tate. Therefore, it is necessary to identify which rows and columns

are worthwhile to mutate when a fuzzer attempts to reach a new

code location. Naive mutations cannot satisfy complex input con-

straints from mixing dataflow operators and user-defined functions.

For instance, join concatenates rows from two datasets that have

matching values in designated key columns. This introduces an

implicit equality constraint between the fields of multiple datasets.

Consequently, to exercise code inside the UDF func1 of map in

the code snippet dataset1.join(dataset2).map(func1), input

mutations must simultaneously operate on both datasets dataset1

and dataset2 to observe the co-dependence constraint i.e., there

must exist a row in dataset1 with the same key as the dataset2’s

first column in order for join to produce any data on which map can

apply func1. Mutations used in fuzz testing today fail to account

for such co-dependence and thus may not exercise application logic

beyond join. This problem is further exacerbated because, unlike

SQL, there is no explicitly defined schema to identify columns, and

the inputs for DISC applications are usually parsed on the fly.

We proposeDepFuzz, a fuzzer that performs co-dependence aware

row selection and column mutation while ensuring that constraints

amongmultiple datasets are observed. DepFuzz combines row-level

and column-level data tracking via taint analysis. In other words, it

identifies which rows and which columns from which dataset are

operated by individual lines of application code. This knowledge of

row-level provenance helps reduce data size for subsequent fuzzing

iterations, as DepFuzz retains only selected rows and mutates them,

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1050

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar

map

map

join

map

map

join

map

join

map

val airports_and_coords =

airports

.map(. . .)

val aflights_and_coords =

flights

.map(. . .)

.join (airports_and_coords)

.map (. . .)

val flights_and_distances =

flights

.map(. . .)

.join(airports_and_coords)

.map(. . .)

.join(aflights_and_coords)

.map(. . .)

.collect()

1

2 3

4 5

6 7

8

9

1

2

3

4

6

5

7
8

9

def dist(dep: Tuple[Float], arr: Tuple[Float]):

Float = {

. . .

// Fault: should be 1-a instead of .1-a

val c = 2*math.atan2(math.sqrt(a), math.sqrt(.1-a))

(6373.0 * c * 0.621371).toFloat

32556 , PG0371 , 08-22 07:25 , 08-22 09:50 , KRO , DME , Arrived

22019 , PG0240 , 09-03 15:00 , 09-03 02:50 , HMA , DME , Arrived

31522 , PG0338 , 09-03 08:55 , 09-03 10:20 , ARH , DME , Arrived

DME , Domodedovo Airport , 37.91 , 55.41 , Moscow

ARH , Talagi Airport , 40.72 , 64.60 , Moscow

HMA , Khanty Airport , 69.09 , 61.03 , Yekaterinburg

KRO , Kurgan Airport , 65.42 , 55.48 , Yekaterinburg

KRO , 32556

HMA , 22019

ARH , 31522

DME , (37.91 , 55.41)

ARH , (40.72 , 64.60)

HMA , (69.09 , 61.03)

KRO , (65.42 , 55.48)

DME , 32556

DME , 22019

DME , 31522

DME , (32556, (37.91 , 55.41))

DME , (22019, (37.91 , 55.41))

DME , (31522, (37.91 , 55.41))

KRO , (32556, (65.42 , 55.48))

HMA , (22019, (69.09 , 61.03))

ARH , (31522, (40.72 , 64.60))

32556 , (DME, 37.91 , 55.41)

22019 , (DME, 37.91 , 55.41)

31522 , (DME, 37.91 , 55.41)

32556 , (KRO, 65.42 , 55.48)

22019 , (HMA, 69.09 , 61.03)

31522 , (ARH, 40.72 , 64.60)

32556 , ((KRO, 65.42 , 55.48) , (DME, 37.91 , 55.41))

22019 , ((HMA, 69.09 , 61.03) , (DME, 37.91 , 55.41))

31522 , ((ARH, 40.72 , 64.60) , (DME, 37.91 , 55.41))

32556 , (KRO, DME, 1901.31)

22019 , (HMA, DME, 2165.32)

31522 , (ARH, DME, 528.17)

⨝ ⨝
⨝

1
2 3

4 5

6 7

8

9

(a) DISC Application in Spark (b) Directed Acyclic Graph (c) Data Processing

Flights.csv

Airports.csv

Figure 1: A DISC application with a fault in the UDF of step 9 , map: (a) code in Scala. (b) the corresponding dataflow graph, and

(c) an illustration of data manipulation in 9 steps. Blue and red colored texts are co-dependent regions identified by DepFuzz.

as opposed to the entire dataset during mutational fuzzing with-

out sacrificing code coverage. By inferring co-dependence relations

among different columns from multiple datasets, it increases the

chance of generatingmeaningful unstructured inputs that can reach

the later stages of the application after operations such as join and

co-group are used.

DepFuzz instruments the program under test by overriding

dataflow operators and UDF components to capture row-level,

column-level, and dataset-level provenance. This is done by imple-

menting dynamic taint tracking for UDFs and dataflow operators.

By leveraging co-dependence aware row selection and column mu-

tations, it generates inputs that can reach deeper regions (i.e., UDFs

in the later stages of dataflow operators).

To evaluate DepFuzz, we use 17 DISC applications and measure

(1) statement coverage, (2) fault detection capability, and (3) fuzzing

speed-up. To assess fault detection capability, we inject faults at

different depths in terms of the program’s joint dataflow and control

flow graph. We evaluate DepFuzz against two baseline techniques:

Jazzer [24], a coverage-guided greybox fuzzer for Java bytecode

based on LibFuzzer [45]; and BigFuzz [52], a greybox fuzzer for

DISC applications. Comparison against Jazzer and BigFuzz serves

to assess the overall benefit in terms of fault detection and speed-

up, when orchestrating input mutations across multiple datasets

by identifying co-dependence constraints. DepFuzz achieves 87%

statement coverage, which is 29% and 13% more than Jazzer and

BigFuzz. It also obtains coverage 2.1× and 1.3× faster than Jazzer

and BigFuzz, respectively. Since faults appearing in earlier stages

tend to be easier to find (e.g., due to ill-formatted inputs) than those

faults appearing in later processing stages, we evenly distribute

injected faults in all dataflow operators for fairness. The average

depth of a fault found byDepFuzz is 3.7 operators deep compared to

2.8 and 2.6 by Jazzer and BigFuzz, respectively. Our contributions

are as follows:

• We present a new fuzz testing approach that leverages rich

provenance information to increase mutational fuzzing’s

effectiveness and efficiency for DISC applications. This is the

first test generation approach that extracts co-dependence

constraints at the level of rows, columns, and datasets fully

automatically without requiring an explicit schema from a

user.

• Our evaluation includes an extensive comparison against

two baselines on 17 different benchmark programs for 24

hours each. The results show DepFuzz reaches previously

uncovered code faster, finds faults faster, and reaches deeper

code locations of later stages than existing fuzzers.

• DepFuzz is built on extended dynamic taint tracking and

analysis of dataflow operators. It has comprehensive support

for Apache Spark-based DISC applications written in Scala,

and its key idea generalizes to other dataflow-based big data

applications such as Google’s MapReduce or Apache Hadoop.

DepFuzz is publicly available at https://github.com/SEED-

VT/DepFuzz [20]

2 MOTIVATING EXAMPLE

This section motivates DepFuzz with a concrete example. Suppose

a data analyst computes the distance traveled by airplanes for each

flight in 2017 from two input datasets: flights contains millions

1051

Co-dependence Aware Fuzzing for Dataflow-Based Big Data Analytics ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Flights Dataset:
Int,String,String,String,String,String,String

20199,PG0320,08-09 06:55,08-09 09:15,MRV,PEE

Airports Dataset:
String,String,String,Float,Float,String

TOF,Bogashevo Airport,Tomsk,85.21,56.38,Krasnoyarsk

Duration:
24h

Figure 2: A sample configuration file required by BigFuzz.

The file contains schemas and seed inputs for the flights

and airports dataset, and a user-specified time cut-off for

the fuzzing campaign.

of flights flown worldwide in 2017 and airports contains the geo-

graphic location of airports. The top two boxes in Figure 1 (c) show

sample rows from each dataset. The flights dataset has a flight ID,

the departure and landing times, the departure and arrival airport

codes, and the flight status, all separated by commas. The airport

dataset maps airport codes to their airport name, longitude and lat-

itude coordinates, and the corresponding city. Figure 1 (a) shows a

DISC application written in Spark. It consists of dataflow operators,

such as map and join, where some dataflow operators, such as map,

take a user-defined function (UDF) as an argument. For example,

the 9 map takes a UDF that computes distance using the Haversine

formula, shown in the expanded text box.

In 1 , the analyst extracts the airport code and longitude and lati-

tude values from airport. From flights, she selects the departure

and arrival airport codes and the flight ID, as the first column and

the second column in 2 and 3 , respectively. She uses join in 4

and 5 to join the arrival and departure airports with their longitude

and latitude coordinates. 8 joins the two data streams using a flight

ID. 9 applies the dist function on the pairs of latitude-longitude

tuples to compute the Haversine distance.

While writing the Haversine formula, she mistakenly writes

sqrt(.1-a) instead of sqrt(1-a) (text box for 9 in Figure 1 (a)).

This error is hard-to-spot and subtle and causes NaN exceptions.

Limitations of Existing Fuzzers. To reveal such errors, suppose

that she runs a commercially used, coverage-guided greybox fuzzer,

Jazzer [24]. After a 24-hour fuzzing campaign, even with cover-

age guidance, Jazzer cannot produce an input to reach code be-

yond custom parsing logic at 2 , where it persistently triggers the

same ArrayOutOfBoundsException. Jazzer achieves a maximum

statement coverage of 27%. Due to a lack of schema and a lack

of awareness of co-dependent regions, it continues to generate

random strings for the two datasets that cannot pass beyond the

parsing stage (i.e., map at 2).

Similarly, BigFuzz [52] requires an input schema (as shown

in Figure 2) to apply schema-aware mutations such as changing

the numerical value, changing integers to float, adding/removing

columns, or changing the delimiter. These mutations help BigFuzz

avoid some trivial parsing errors. Although BigFuzz achieves 98%

statement coverage in 24 hours, it is still unable to trigger the

fault in 9 , because to pass beyond join at 8 , the three columns

(column 0 of airports and columns 4 and 5 of flights) must have

the same value to satisfy co-dependence constraints to exercise the

UDF of map at 9 . Since Jazzer and BigFuzz mutate all columns

independently of each other, this three-way constraint is highly

unlikely to be satisfied by their mutations.

Flights dataset:
-17252,P*34,4GJn50:0k0G,Zu:CSO.9-,D)N,D)N,A]i%e(

-17252,PG04,09-o0’gc:k7,zq-j01:55",D)N,D)N,]ZTed

Airports dataset:
D)N,SYhkutkl:irp7rS,Gap/ns4,1.64E9,1.30E9,JUSg3sk+

Figure 3: A test case generated by DepFuzz that causes a NaN

exception in the program in Figure 1

Benefits of DepFuzz. Suppose that the data analyst uses DepFuzz

to generate new test inputs. She does not need to provide an explicit

schema and simply provides the current dataset to DepFuzz. At

the end of 24 hours, DepFuzz generates new inputs as shown in

Figure 3, leading to a NaN error, reaching the faulty line inside the

corresponding UDF of map at 9 .

DepFuzz detects the two sets of co-dependent regions (high-

lighted in blue and red in Figure 3) and mutates them such that

they can still satisfy the implicit constraints imposed by the three

join operators (4 , 5 , and 8). The rows in blue (i.e., -17252) must

be equal since 8 performs a self-join. The red cells (i.e., D)N) are

co-dependent by equality due to join 4 and 5 . Close inspection

of the application execution on this input shows that variable c is

faulty at 9 in Figure 1 (b). The developer spots this error on the sec-

ond last line and replaces sqrt(.1-a) to sqrt(1-a) in accordance

with the Haversine formula.

DepFuzz

Dataset 1

Dataset 3

Dataset 2

DISC App. Operator Col Row Dataset

Join4 4 0 0

Join4 0 3 1

Join5 5 0 0

Join5 0 4 1

DISC App.

+ Taint Analysis

+Co-Dependence Monitors

High-quality

Concise Seed Input

Co-dependency Between

Input Regions

Phase I

Phase II

Phase III
(D0,col(4),row(0))

(D1,col(0),row(3))

(D0,col(5),row(0))

(D1,col(0),row(4))

Test Result

I1 ✓
I2 𝙭
… …

In
p

u
ts

O
u

tp
u

t

Phase IV

Fuzzing Campaign

Figure 4: Workflow of DepFuzz.

3 APPROACH

The key contribution of DepFuzz is to detect co-dependent regions

across multiple datasets and orchestrate input mutations on the co-

dependent regions accordingly. In this section, we formally define

co-dependence and provide details of how DepFuzz detects them.

DepFuzz consists of four phases as shown in Figure 4. Phase I

automatically instruments a given DISC application to enable fine-

grained taint analysis at the level of rows, columns, and dataset IDs.

This allows it to track data provenance through dataflow operators

and UDFs to capture co-dependence relationships. Phase II executes

this instrumented program on the entire dataset to capture co-

dependence constraints among multiple input datasets. Phase III

leverages this provenance tracking capability to select a precise

subset of rows from each dataset to use as seeds for subsequent

fuzzing iterations. Phase IV then initiates a fuzzing campaign with

the selected rows from Phase III and applies co-dependence aware

mutations to expose deeper faults. After reaching a user-specified

time limit, DepFuzz outputs a set of test inputs.

Formalizing Input Co-dependence. Co-dependence is a depen-

dency created between multiple input regions by an operation (e.g.,

a dataflow operator or a binary operation that affects control flow

in UDFs) that operates on such input regions. An input region is

1052

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar

data.filter { row =>

if(row.t_depart.time.after(13:00))

return true

else

return false

}

.join(…)

.map(…)

.reduceByKey(…)

.map(…)

f_id t_depart t_land from to

32556 , 08-22 07:25 , 08-22 09:50 , KRO , DME

22019 , 09-23 05:00 , 09-23 02:50 , HMA , DME

31522 , 10-03 08:55 , 10-03 10:20 , ARH , DME

54522 , 05-15 16:55 , 05-16 14:22 , LHE , IAD

(a) The first three rows (shown in red) are dropped by the filter

condition (shown in green) and therefore do not influence any code

beyond the filter operation

(b) Co-dependence monitors are attached to each branch in the JDU

Graph.

data.monitoredFilter { row =>

if(monitoredPredicate(row.t_depart.time.after(13:00)))

return true

else

return false

}

.monitoredJoin(…)

.map(…)

.monitoredReduceByKey(…)

.map(…)

Figure 5: The red color rows do not participate in the join

operation since the filter operation removed them earlier.

a contiguous sequence of bytes in an input dataset. We formalize

co-dependence as follows. Given a DISC application, we define its

dataflow graph (DFG) with two types of vertices: operators and

datanodes, similar to the traditional DFG representation [27]. In

the case of DISC applications, Operators are functions in a program

that operate on data (e.g., join() dataflow operator or == in UDFs).

A comprehensive list of trackable operators is shown in Table 1.

Datanodes represent data that propagate from one operator to an-

other (i.e., input and output of an operator). Thus, we define a DISC

application’s DFG, � , as

� = ⟨$ ∪ #, �⟩

where $ = {>1, >2, ..., >=} is a set of operators, # = {=1, =2, ..., =<}

is a set of datanodes. � ⊆ ($ × #) ∪ (# ×$) is a set of directed

edges connecting operators with datanodes. An atomic unit of

this DFG has three nodes and two edges i.e., an operator with

an incoming edge from an input datanode and an outgoing edge

to an output datanode. Furthermore, a datanode = holds data in

the form of a byte sequence 1112 ...1: . Let � (=) be the set of all

possible subsequences of the byte sequence in a datanode =, i.e.,

{11, 12, ..., 1112, ..., 11 ...1: }. Input datasets of DISC applications are

defined as (, a set of initial datanodes which are external inputs to

the DFG. We combine regions in input datasets in (′, a union of

� (=) across all input datanodes.

(′ =
⋃

∀=∈(

� (=)

1 case class TaintedString(value: String , t: Taints){

2 // A Tainted String class

3 def concat(other: String): TaintedString =

4 return new TaintedString(value.concat(other), t)

5

6 def concat(other: TaintedString): TaintedString =

7 return new TaintedString(

8 value.concat(x.value),

9 union(t,x.t)

10)

11 ... // more overloaded operators

Figure 6: Taint analysis enabled String type in Scala

Finally, we characterize co-dependency among input regions as a

set of tuples, �

� = {(>, ') | ' ⊆ (′,∀> ∈ $}

The first element, > , is an operator in the dataflow graph; and the

second element, ', is a subset of the regions in the input datasets

that are co-dependent due to operator > . Let � (>) be the incoming

data to an operator > . Since co-dependence can only occur between

regions of the original datasets, we must extract ' from � (>), which

can be any arbitrary byte sequence in the incoming datanode of

operator > . To extract such information, we define monitors that

are concretely explained in Section 3.1.

"> : � (>) → P((′)

where P((′) is the powerset of (′. A monitor,"> , is an operator-

specific function that takes � (>) as input and outputs a set of byte

sequences (i.e., input regions) from the original input datasets con-

sidered co-dependentw.r.t. given operator. The precise logic behind

this mapping depends on the semantics of the operators, which we

capture using dynamic tainting in DepFuzz. Take for example a

== operation in a.substr(0,5) == b.substr(0,5). The monitor,

"==, should yield {a.substr(0,5), b.substr(0,5)}, resulting

in a co-dependence tuple (==, {a.substr(0,5), b.substr(0,5)

}). Table 1 lists concrete examples of operators, their monitors" ,

and the respective mutation strategies.

3.1 Phase I: Enabling Fine-Grained Taint
Analysis

Phase I instruments a given input program to enable taint analysis

and to capture co-dependence information.

Enabling taint analysis via instrumentation. DepFuzz uses taint

analysis to identify precise columns and rows in the input datasets

contributing towards a specific intermediate output or a final out-

put. DepFuzz first replaces primitive data types with equivalent

tainted types. The tainted data type is a tuple of an original type and

a list of offsets representing taints, (Value[T], List[Offset]).

DepFuzz overrides all APIs of the original data type with taint-

enabled equivalent versions to propagate their taints. For example,

concat in tstr1.concat(tstr2) concatenates two tainted strings,

tstr1 and tstr2, and attaches a new taint with the union on the

two corresponding taints. Figure 6 shows the implementation of

concat in TaintedString. DepFuzz provides an instrumented ver-

sion of data loading APIs that read the input datasets in tainted

types instead of primitive types. Similarly, we instrument APIs for

Int, Float, Double and Boolean. Apache Spark’s textFile API

1053

Co-dependence Aware Fuzzing for Dataflow-Based Big Data Analytics ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

val dataset1 = fileWithTaint("classes")
val dataset2 = fileWithTaint("rooms")
dataset1

.map(s => s.split(regex=",|:"))

.map {
(code,title,name,section) =>

val key = code.concat(s":$section")
return (key, title)

}
dataset2

.map(s => s.split(","))

.join(dataset1)

Data

Taint

(Dataset ID,Column,Row)

CS365:Algorithms,John Smith,S1 (0, 0, 0)

CS365:Algorithms,Jane Doe,S2 (0, 0, 1)

CS563:Advanced OS,Jack Joe,S1 (0, 0, 2)

Data Taint

CS365:S1,Room 234 (1,0,0)

CS365:S2,Room 121 (1,0,1)

CS563:S1,Room 404 (1,0,2)
Data Taint Data Taint Data Taint Data Taint

CS365 (0,0,0) Algorithms (0,1,0) John Smith (0,2,0) S1 (0,3,0)

CS365 (0,0,1) Algorithms (0,1,1) Jane Doe (0,2,1) S2 (0,3,1)

CS563 (0,0,2) Advanced OS(0,1,2) Jack Joe (0,2,2) S1 (0,3,2)

Data Taint Data Taint

CS365:S1 (0,0,0) | (0,3,0) Algorithms (0,1,0)

CS365:S2 (0,0,1) | (0,3,1) Algorithms (0,1,1)

CS563:S1 (0,0,2) | (0,3,2) Advanced OS (0,1,2) Data Taint Data Taint

CS365:S1 (1,0,0) Room 234 (1,1,0)

CS365:S2 (1,0,1) Room 121 (1,1,1)

CS563:S1 (1,0,2) Room 404 (1,1,2)

Data Taint Data Taint

CS365:S1 (1,0,0) | (0,0,0) | (0,3,0) Room 234 (1,1,0)

CS365:S2 (1,0,1) | (0,0,1) | (0,3,1) Room 121 (1,1,1)

CS563:S1 (1,0,2) | (0,0,2) | (0,3,2) Room 404 (1,1,2)

Dataset1 Dataset2

Figure 7: Taint propagation through a simple dataflow program. Yellow colored highlighted text is the provenance of red

colored text at the bottom left table.

reads each row as a String, while the taint-analysis equivalent

version reads each row as a TaintedString with a row offset and

a dataset ID.

Taint propagation at the level of rows, columns, and datasets. Ran-

domly mutating the entire row will likely mutate non-participating

regions in the input. In Figure 1, the second, third, fourth, and sev-

enth columns in the first dataset are never used by the application

code. DepFuzz implements an extended taint analysis at the level

of a dataset ID, a column offset, and a row offset i.e.,(Value[T],

List[(DatasetID, ColOffset, RowOffset)]. For example, in

Figure 7, CS363:Advanced OS, Jack Joe, S1 has a taint [0,0,2]

meaning the data is from the first dataset, the first column, and the

third row. To reduce the storage overhead of attaching a tainted

object,DepFuzz encodes the three offsets into a single 32-bit integer.

Co-dependence monitors. In order to associate taints at the level

of branches and dataflow operators,DepFuzz injects co-dependence

monitors at each dataflow operator and at each branch predicate

within UDFs, as shown in Figure 5. For example, this process re-

places a dataflow operator join with monitoredJoin and replaces

if(p) with if(monitoredPredicate(p)) within UDFs. This co-

dependence monitor injection enables DepFuzz to identify which

rows and columns from which datasets directly influence individ-

ual branching decisions. Branches in a DISC application include

both an explicit control predicate from an if statement or a for

loop in user-defined functions and implicit branches from dataflow

operators (e.g., join and filter).

3.2 Phase II: Fine-Grained Taint Tracking

DepFuzz runs the instrumented, taint-analysis enabled version

from Phase I on the original datasets. Figure 7 shows how data is

tracked through the execution of a taint-enabled program.

Co-Dependence detection. Dataflow operators and UDFs pose im-

plicit and explicit co-dependence constraints. For instance, join

enforces an implicit constraint that, for each output row, the keys

of the two joining datasets must be equal. Similarly, if(airporta

== airportb) imposes an explicit constraint that the airporta

and airportb (derived from specific rows and columns of input

datasets) are equal. Co-dependence also arises between the rows

of the same dataset. For example, aggregation operators such as

reduceByKey and groupByKey result in co-dependence where one

or more rows must have the same key to have an output row

with the same key. Our insight is that while random mutations

are unlikely to satisfy co-dependence constraints by chance, coor-

dinated mutations to specific row and column offsets that respect

co-dependency constraints are likely to reach deeper code.

Exactly how taints are transformed into co-dependence con-

straints depends on the monitored dataflow operator type. For ex-

ample, for join, the key columns of the two participating datasets

must be the same (equality). For an if condition if(column0 >

column5), the co-dependence is a "greater than" relationship.

Once the instrumented application’s execution on the original

datasets completes, DepFuzz consolidates co-dependence infor-

mation, documenting each monitor’s relative position in terms of

dataflow operator depth and the list of taints containing offsets at

the level of rows, columns, and dataset IDs. For example, in Figure 1,

join 4 has a depth of two and forms a co-dependence between col-

umn 5 of flights and column 0 of airports which act as the keys

for the join. Note that DepFuzz can detect transitive co-dependence

when there are overlapping constraints across multiple operators.

For example, Figure 1 has a three-way co-dependence among three

input regions since airports column 0 overlaps with join 5 .

3.3 Phase III: Row Selection for Data Size
Reduction

To speed up fuzzing, DepFuzz identifies a small subset of data rows

that retain the same branch coverage as the original dataset. This

reduces large-scale datasets to a set of seed inputs that are small

enough for iterative fuzzing. Because the original input data may

be very large with millions of rows, this step significantly reduce

the scope of potential locations to mutate, increasing efficiency. For

each branch,DepFuzz reduces the original input datasets to a subset

of rows reaching that particular branch. It then consolidates the

corresponding rows for all branches. Figure 5 (a) shows an example

of how row selection creates a smaller, effective seed. A filter

operator removes all flights departing before 13:00 on a given day.

Therefore, the rows highlighted in red will not influence any code

1054

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar

Table 1: Summary of how each class of operators produces co-dependent regions in the input dataset. For simplicity, we use

row[1].col[3] as a human-readable representation of input byte region 18 , ...1 9 , where 0 < 8 < 9 < B8I4 (30C0B4C)

Operator Class Sample Operators Example of Identified Constraint Mutation strategy

Fusions

data1.join(data2)

data1.intersection(data2)

data1.cogroup(data2)

"9>8= ({30C01, 30C02}).

Possible output of"9>8= :

{data1.row[1].col[3], data2.row[23].col[0]}

{data1.row[31].col[3], data2.row[52].col[0]}

Co-dependence tuples:

(== , {data1.row[1].col[3], data2.row[23].col[0]})

(== , {data1.row[31].col[3], data2.row[52].col[0]})

Any mutation applied to data1.row[1].col[3]

must also be applied to data2.row[23].col[0].

If no rows with matching keys exists, select a

row from data1 and copy data1.col[3] to

data2.col[0].

Aggregations

data.aggregateByKey(udf)

data.reduceByKey(udf)

data.groupByKey()

data.countByKey()

"A43D24�~ 4~ ({30C0}).

Possible output of"A43D24�~ 4~ :

{data.row[2].col[2],

data.row[43].col[2],

data.row[63].col[2]}

Co-dependence tuple:

(== , {data.row[2].col[2],

data.row[43].col[2],

data.row[63].col[2]})

Any mutation applied to data[row=2,col=2]

must also be applied to data[row=43,col=2].

Duplicate rows and apply same mutation to

key columns of duplicates.

Filters data.filter(col0 > col5)

"5 8;C4A ({30C0}).

Possible output of"5 8;C4A :

{data.row[23].col[0], data2.row[23].col[5]}

{data.row[31].col[0], data2.row[31].col[5]}

Co-dependence tuples:

(> , {data1.row[23].col[0], data2.row[23].col[5]})

(> , {data1.row[31].col[3], data2.row[31].col[5]})

Any mutation applied to data.col[0] and

data.col[5] must ensure that there is a

true and false row for the predicate.

UDF Operators

if(a.contains(b))

if(a != b)

if(a > b)

"2>=C08=B ({0, 1}).

Possible output of"2>=C08=B :

{data.row[1].col[0], data2.row[1].col[2]}

Co-dependence tuples:

(2>=C08=B , {data1.row[1].col[0], data2.row[1].col[2]})

Any mutation applied to data.col[0] and

data.col[2] must ensure that string a

contains b for some mutations. It must also

ensure it occasionally creates inputs that

violate this.

beyond the first filter. DepFuzz thus retains only the green row

in the seed input for subsequent fuzzing iterations.

3.4 Phase IV: Co-Dependence Aware Mutation

Phase IV performs a grey-box fuzzing campaign by designing new

mutations that target various co-dependence types. The output of

DepFuzz is a list of errors and test inputs revealing those errors. Dif-

ferent from standard grey-box fuzzing, DepFuzz prioritizes where

to apply input mutations based on fine-grained taint tracking at

the level of rows, columns, and datasets. DepFuzz designs a novel

input mutation strategy that maintains co-dependency. Based on

the co-dependent constraints, we categorize dataflow operators

into four classes: Fusions, Aggregations, Filters, and UDF Operators.

Table 1 summarizes mutation strategies for each class of operator.

• For fusion operators like join, DepFuzz applies the same set

of mutations on the key columns of the two joining datasets

to ensure equality. In Figure 1 (c), whenDepFuzzmutates KRO

in row 0 of the flights dataset, it applies the samemutations

to KRO in row 3 of airports, ensuring a non-empty output

for join.

• For aggregation operators like reduceByKey, DepFuzz dupli-

cates a row and applies the same set of mutations on the key

column of those rows, ensuring at least 2 rows in each out-

put group. Suppose if reduceByKey is applied on the fourth

column of flights in Figure 1. DepFuzz duplicates a row

>1 times and applies the same mutation on the key of the

original and duplicated rows.

• For filter operators like filter, DepFuzz applies mutation

on the columns used in the filtering predicate. In case of

filter(data.col[0]) > data.col[1], DepFuzz can cre-

ate at least one row where this predicate can be true or at

least one row where this predicate is false.

• For UDF operators like map and flatMap that take UDFs

as arguments, DepFuzz handles control predicates in user-

defined functions similar to filter. For example, in the case

of a.contains(b),DepFuzz identifies the provenance of the

strings a and b as data.col[0] and data.col[3] respec-

tively.DepFuzz then enforces the true path for this condition

by embedding b in a during the mutation process.

4 EVALUATION RESULTS

We evaluate DepFuzz on four criteria: code coverage, fault detec-

tion, fault depth, and testing speed, transcribed into the research

questions below.

RQ1:What isDepFuzz’s test coverage compared to baseline fuzzers?

RQ2:Howmany errors can DepFuzz detect compared to baselines?

RQ3: Can DepFuzz detect errors located in deeper code regions?

RQ4: How much overhead does DepFuzz’s instrumentation incur?

RQ5: Does DepFuzz achieve code coverage faster than baselines?

Benchmarks. Existing dataflow benchmarks like TPC-DS [5] or

Big Data Benchmark [4] are purely performance benchmarks writ-

ten in SQL and therefore do not contain UDFs and non-relational

dataflow operators. In contrast, the subject programs introduced

by prior work on fuzzing in DISC only operate on a single dataset,

omitting an entire class of operators related to real-world multiple

1055

Co-dependence Aware Fuzzing for Dataflow-Based Big Data Analytics ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 2: Subject programs used in DepFuzz’s evaluation. All programs represent real-world DISC use cases and are adopted

from prior work. The data and code characteristics of benchmark programs are also shown.

ID Program Description Datasets# of

Opt.

Max

Depth

Total

Rows

Operators Used

P1 Webpage Segmentation [10, 15] Find overlapping UI components on a webpage 2 9 6 1M map, groupByKey, join, filter

P2 Customer Rewards [8] Find the top-3 customers w.r.t purchase history 2 9 8 2M map, groupByKey, join, filter, sortBy

P3 Flight Distance [6] Compute distance travelled by a given flight 2 9 5 500K map, join

P4 Bus Delays [35] Identify bus routes that are delayed frequently 2 9 8 2M flatMap, join, reduceByKey, filter

P5 Commute Type [19] Identify the transportation type used on a trip 2 4 4 1M map, mapValues aggregateByKey

P6 WordCount [19] Find the frequency of words 1 2 2 1M map, flatMap, reduceByKey

P7 Delivery Faults [36] Identify vendor sets leading to faulty deliveries 1 5 5 1M map, groupByKey, filter

P8 ExternalCall [52] Find the frequency of words 1 3 3 1M map, flatMap, reduceByKey, filter

P9 FindSalary [52] Total income of individuals earning ≤ $300 weekly 1 4 4 1M map, filter, reduce

P10 StudentGrade [52] List of classes with more than 5 failing students 1 4 4 1M map,reduceByKey, filter

P11 MovieRating [19] Total number of movies with rating ≥ 4 1 3 3 1M map,reduceByKey, filter

P12 InsideCircle [52] Check whether the point (x,y) is in a circle 1 2 2 1M map,filter

P13 MapString [52] String mapping 1 1 1 1M map

P14 NumberSeries [52] Find the numbers whose 3n+1 series’ length is 25 1 3 3 1M map,filter

P15 AgeAnalysis [52] Total number of people with different age ranges 1 3 3 1M map,filter

P16 IncomeAggregation [19] Average income per age range in a district 1 5 5 1M map, mapValues filter, reduceByKey

P17 LoanType [52] The count of loan type within a region 1 2 2 1M map

dataset analytics. Therefore, we evaluate DepFuzz on 17 unique

big data applications accumulated from nearly all publicly avail-

able prior work on DISC testing [19, 52], DISC debugging [48],

and real-world DISC use cases [6, 8, 10, 15, 35, 36]. Collectively,

our benchmark programs comprise (1) a variety of dataflow opera-

tors transformation (flatMap, map), fusion (join), and aggregation

(reduce, group) operators, (2) UDFs, which are integral to DISC

applications, and (3) both single and multiple input datasets, which

are critical for practical data analysis.

The complete list of subject programs is shown in Table 2. For ex-

ample, P7 [36] identifies the type of transportation used to perform

the daily commutes i.e., bus, car, or walk. It consolidates informa-

tion on trips from two datasets to find the starting and destination

zip codes, the distance traveled for the trip, and the time it took to

cover this distance. Another program P2 is inspired by a commer-

cial case study of Apache Spark [8]. It analyzes customer purchase

history and rewards eligible customers (more than three instances

of $100 spending in the current year) with coupons valued propor-

tionally to spending. This is a multi-dataset program that joins the

customer information table with the purchase history table. Overall,

the benchmark programs’ size is comparable to real-world industry

DISC applications [50], which are in the order of hundreds of LOC

but closed-sourced.

Baselines. We compareDepFuzz against two baselines: (1) a state-

of-art schema-aware DISC application fuzzer, BigFuzz [52]; and (2)

the most advanced commercial-grade coverage guided fuzzer for

the JVM, Jazzer [24], developed in part by Google. We compare

against these baselines because they are the state-of-the-art fuzzers

for DISC applications and JVM-based applications, respectively. We

use scoverage [43] to monitor Scala statement coverage of the

applications. We provide BigFuzz with a seed input constructed by

randomly sampling a row from the dataset, along with a schema of

the dataset as in the original paper. For Jazzer, we write interfacing

code that converts the random byte stream generated by Jazzer

into formatted datasets expected by the DISC application.

Evaluation Environment. We run each tool for up to 24 hours,

which is a standard experimental setting for fuzzing benchmarks,

and measure statement coverage (%), cumulative error detection

(%), and error depth (# of operators) in the dataflow graph of the

benchmark programs. We perform these experiments on a 13-node

cluster computing environment with 112 cores at 3.10GHz, 52TB

storage, and 832GB memory. We run our experiments on Apache

Spark 3.0 and HDFS 2.7.

4.1 Test Coverage Against Baseline

Figure 8 shows how cumulative statement coverage increases through-

out the 24-hour fuzzing campaign with DepFuzz and the two

baselines. Y-axis represents the percentage of statement coverage

achieved, and the X-axis represents the time elapsed in seconds.

DepFuzz significantly outperforms baselines for programs ingest-

ing multiple input datasets and containing fusion, aggregation, and

filter operators) such as P1-P5. For programs that ingest only a sin-

gle dataset (i.e., P6-P17),DepFuzz shows slightly better performance

on average in terms of coverage.

Program P1’s seventh operator is join, where each dataset’s

key is a concatenation of three columns. Since there are six co-

dependent columns related by this equality and both baseline fuzzers

mutate each of the six columns independently of the others, they

fail to generate even a single input with matching keys to pass

this join. Even with its schema-aware mutations, BigFuzz only

achieves 28% coverage. Similarly, Jazzer struggles to push beyond

20% coverage with its byte-level mutations. DepFuzz manages to

capture the co-dependence between six columns created by join. It

immediately satisfies the constraints early in the fuzzing campaign

through tailored mutations for fusion operators. DepFuzz achieves

99% coverage within 24 hours of fuzzing.

In P7, we observe a drastic increase in statement coverage in

the first iteration of DepFuzz, compared to the baselines. This

program uses an aggregation operator, groupByKey, followed by

filter that requires a minimum number of rows with the same

key to exercise the code after filter. Mutations that randomly

1056

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar

10
0

10
2

10
4

0

20

40

60

80

100

S
ta
te
m
en
t
C
o
v
er
ag
e
(%
) P1

10
0

10
2

10
4

0

20

40

60

80

100

P2

10
0

10
2

10
4

0

20

40

60

80

100

P3

10
0

10
2

10
4

0

20

40

60

80

100

P4

10
0

10
2

10
4

0

20

40

60

80

100

P5

10
0

10
2

10
4

0

20

40

60

80

100

P6

10
0

10
2

10
4

0

20

40

60

80

100

S
ta
te
m
en
t
C
o
v
er
ag
e
(%
) P7

10
0

10
2

10
4

0

20

40

60

80

100

P8

10
0

10
2

10
4

0

20

40

60

80

100

P9

10
0

10
2

10
4

0

20

40

60

80

100

P10

10
0

10
2

10
4

0

20

40

60

80

100

P11

10
0

10
2

10
4

0

20

40

60

80

100

P12

10
0

10
2

10
4

0

20

40

60

80

100

Time (s)

S
ta
te
m
en
t
C
o
v
er
ag
e
(%
) P13

10
0

10
2

10
4

0

20

40

60

80

100

Time (s)

P14

10
0

10
2

10
4

0

20

40

60

80

100

Time (s)

P15

10
0

10
2

10
4

0

20

40

60

80

100

Time (s)

P16

10
0

10
2

10
4

0

20

40

60

80

100

Time (s)

P17

DepFuzz BigFuzz Jazzer

Figure 8: Statement coverage of three tools on 17 benchmark programs during 24 hours

duplicate any row are unaware of the aggregation’s key column.

Thus, baseline fuzzers do not generate the required rows to pass

through filter. DepFuzz identifies the groupByKey along with

the input column that influences the key. It then duplicates input

rows to satisfy the joint constraint imposed by aggregation and

filter.DepFuzz’s superior performance in P2-P4 can be attributed

to similar reasons.

DepFuzz also performs better for single dataset applications P6-

P17 that do not have any fusion operators (due to only one input

dataset), and their average dataflow operator depth is only three.

DepFuzz performs 140K fewer but more effective fuzzing iterations

than baselines on average due to the higher algorithmic complexity

of applying co-dependent mutations. The baseline Jazzer performs

better in P16 because some statements in the program are only

reachable on one specific input value. The chances of reaching such

statements (e.g., stmt1 in if(45<x<60){stmt1}) are purely ran-

dom. Thus, the technique with a higher number of iterations is

more likely to reach these statements. In P16, Jazzer performs

twice as many iterations as DepFuzz, which increases its likeli-

hood of arbitrarily changing the input row from 90024,28,10990

to 90024,46,10990, achieving additional statement coverage. In a

24-hour fuzzing campaign, DepFuzz achieves 29% higher coverage

than Jazzer and 13% higher coverage than BigFuzz.

To answer RQ5, we evaluate how quickly DepFuzz achieves

coverage compare to baselines by performing curve fitting with

~ =<G as the objective function on the cumulative coverage graphs

since the gradient of this line represents the average rate of gain

of coverage over the course of the entire campaign. We find that

DepFuzz is 1.3× faster than BigFuzz and 2.1× faster than Jazzer

in terms of the coverage increase rate.

4.2 Fault Detection

We measure the fault detection capability of DepFuzz compared

to the baselines. For this experiment, in each subject program, we

inject one fault at each depth of a dataflow graph and then record

the number of faults. We define a fault’s depth as the number of

dataflow operators an input row has to go through before reaching

a faulty statement. For example, if a fault is seeded in a UDF 5 ,

where 5 is an argument to =Cℎ dataflow operator, the fault is seeded

at depth =. For example, the fault in 9 -Figure 1 has a depth of five

because there are five dataflow operators before the faulty code. We

count only the faults triggered from correctly-formatted inputs, as

Jazzer generates a massive number of ill-formatted inputs that all

lead to parsing errors such as ArrayIndexOutOfBound exception

from split(",")[k] due to missing kCℎ column in input data.

Parsing errors are caused by processing ill-formatted inputs in

a program. These errors normally appear in the first operation

of a DISC application that takes a raw, unstructured input and

parses it into individual data fields and their types e.g., keys and

1057

Co-dependence Aware Fuzzing for Dataflow-Based Big Data Analytics ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

F
au
lt
s
D
et
ec
te
d
(%
)

(c) Total Average

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

Time (s)

(b) Single Dataset Average

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

(a) Multi Dataset Average

DepFuzz Jazzer BigFuzz

Figure 9: Cumulative number of faults detected during 24 hours averaged across 17 programs. (b) shows the average for P5-P17

which ingest a single dataset, and (c) shows average for P1-P4 which take multiple datasets as input.

10
1

10
2

10
3

10
4

1

2

3

4

5

6

7

8

Time (s)

D
at
afl
o
w
D
ep
th

DepFuzz BigFuzz Jazzer # of Faults: 35 19 8

Figure 10: Depth vs Time for all faults detected by DepFuzz

and baselines.
⊗

denotes centroids of each tool. DepFuzz has

more points near the top left corner, which means it detects

deeper faults faster than baselines.DepFuzz findsmore faults

than baselines.

values, similar to the first map applied on dataset1 and dataset2

in Figure 7. These errors do not appear if the input data format

conforms to the program’s parsing logic.We evaluate fault detection

on two levels: 1) the total number of unique faults detected and 2)

the depth within the dataflow graph at which a fault is detected.

Note that each dataflow operator takes a UDF as an argument.

Fault Injection. We manually inject faults into the subject pro-

grams by randomly replacing arithmetic operators, binary opera-

tors, and constants [26]. For example, sqrt(1-a) becomes sqrt(.1-a)

after injecting a fault, which can lead to NaN error. Similarly, replac-

ing operators like + with / will inject a division-by-zero error. Prior

work on Apache Spark recognizes the presence of such faults in

real-world DISC applications [19]. We also add faults by employ-

ing a range check that throws RuntimeException if a particular

column value falls within a narrow range. For example, a faulty

program throws an exception if a string value in a column starts

with "&%".

Fault injection is widely used in practice to evaluate new testing

techniques. Automated fault injection tools such as LAVA [14] and

Apocalypse [44] devise a set of principles that mimic properties

of real-world faults. When injecting faults, we also follow these

principles, which are as follows.

• Rare: The injected faults manifest for only a small fraction

of possible inputs. We inject a fault that is triggered if the

first column starts with the characters "&%". The number of

inputs that can trigger this fault is ≈ 256
18. Assuming all

inputs are equally likely, the probability of randommutations

triggering this fault is ≈ 0.00002, assuming the row length

of 20 ASCII characters. Note that this is an overestimate

since, depending on where the fault is injected, several other

control flow and data flow criteria will need to be met for

the execution to reach the injected fault, further restricting

the space of inputs that can trigger this fault.

• Uncorrelated: Finding one injected fault neither increases nor

decreases the likelihood of finding any other faults.

• Reproducible: The faults are deterministic and reproducible

in that a single input can prove the existence of a fault.

• Fair: The faults are injected in locations that can be feasibly

reached by an automated technique. For example, no fault

is guarded by a branch that requires solving an infeasible

mathematical problem, such as factoring a large integer into

its constituent primes.

In total, we inject 45 faults across 17 benchmark programs. Since the

location of a fault may favor certain techniques, we ensure fairness

in fault injection by injecting a fault at each data processing step

in every program.

Fault Detection. Figure 9 shows the cumulative average number

of faults detected on the subject programs. We report a summary of

all detected program faults in Table 3. In Figure 9, the Y-axis repre-

sents the percentage of cumulative faults detected, and the X-axis

represents the fuzzing duration.DepFuzz outperforms baseline tech-

niques in terms of fault detection. For example, the majority of the

inputs produced by Jazzer have an insufficient number of columns,

which leads to data parsing errors (i.e., ArrayIndexOutOfBound ex-

ception) after the split operation. Similarly, in P1, BigFuzz spends

over 50% of its iterations triggering the same four parsing faults

in the first UDF, causing only NumberFormatException. Table 3

lists the total faults detected by DepFuzz, BigFuzz, and Jazzer.

On average, DepFuzz finds 3.4× more faults than Jazzer and 84%

more faults than BigFuzz due to co-dependence aware mutations.

DepFuzz’s strengths in fault detection are noticeable in P1-P4 and

P7, where co-dependence aware mutations help DepFuzz go past

the fusion operators and reach deeper dataflow operators.

Detecting Deeper Program Faults. We stratify the injected faults

by their dataflow operator depth. Figure 10 shows a scatter plot that

1058

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar

Table 3: Running time of the original subject program and

the instrumented program with taint analysis along with

total errors detected by each tool.

Program Application Execution Time Faults Detected

Original Instrumented Overhead DepFuzz BigFuzz Jazzer

P1 9.4 36.2 3.9 7 0 0

P2 15.6 149.2 9.6 3 0 0

P3 54.8 768.4 14.0 3 2 0

P4 11.2 27.8 2.5 1 1 0

P5 17.4 174.2 10.0 1 1 0

P6 7.0 13.0 1.9 1 1 0

P7 7.0 17.6 2.5 1 0 0

P8 7.0 12.8 1.8 2 2 1

P9 5.8 6.6 1.1 2 2 1

P10 6.8 12.0 1.8 3 2 3

P11 6.6 12.0 1.8 4 1 0

P12 4.8 5.8 1.2 1 1 0

P13 5.0 5.6 1.1 1 1 1

P14 5.0 6.0 1.2 2 2 2

P15 5.0 5.8 1.2 1 1 0

P16 6.8 8.0 1.2 1 1 0

P17 4.8 6.0 1.2 1 1 0

Total Faults Detected 35 19 8

visualizes the depth of the faults across 17 programs. The top of the

plot represents deeper, hard-to-reach faults, whereas the bottom

represents faults in the initial phases of the application.

The scatter plot shows that, overall, DepFuzz finds faults that

reside at a deeper dataflow depth. In P1, for instance, DepFuzz

finds a total of 7 faults across three different dataflow depths (3, 4,

and 6), whereas both BigFuzz and Jazzer are unable to find any.

The plot also shows that DepFuzz is consistently faster at finding

deep faults than baselines. For example, in P3, the deepest bug is

triggered by BigFuzz a little over an hour into the fuzzing campaign,

whereasDepFuzz finds it within the first minute. Although the time

difference is smaller for single dataset programs (P6-P17), a similar

pattern can be observed. For example, in P14, DepFuzz finds the

deepest bug within the first two minutes, whereas BigFuzz takes

over 13 minutes. Figure 10 also shows the centroids with
⊗

for each

tool. The size of
⊗

represents the number of detected faults. Note

that the gaps between the centroids are larger than they appear due

to the log-scaled x-axis. On average, the deepest faults detected by

DepFuzz are 1.1 operators deeper than BigFuzz and 0.9 operators

deeper compared to Jazzer.

4.3 DepFuzz’s Instrumentation Overhead

DepFuzz enables dynamic taint analysis in a trial execution (i.e.,

running an instrumented program on the original input data) to

identify co-dependence relationships. Note that this is a one-time

overhead for the first run and is not a recurring overhead for each

fuzzing iteration because its goal is to infer co-dependence con-

straints from existing data.

Table 3 shows the time difference between an instrumented run

and an uninstrumented run on the original input datasets. For in-

stance, in program P1, the trial execution for dynamic taint analysis

takes 36.2 seconds, whereas the original program takes 9.4 seconds

to process the same amount of data. This overhead is higher in

programs with multiple datasets, aggregator operators, and fusion

operators, P1-P5, as they introduce complex dependencies among

columns and rows. These co-dependences are represented in dense

taint objects (i.e., RoaringBitmaps [11]). Across the 17 programs,

the first instrumented run’s overhead is 1.1× to 14× of the first

uninstrumented run. Note that this overhead is a one-time upfront

cost and the rest of the fuzzing loop does not require running an

instrumented version with taint monitors; therefore, in the long

run, the cost of using DepFuzz becomes negligible compared to

many hours of fuzz testing. DepFuzz’s runtime overhead is on par

with other taint analysis approaches on DISC applications [46].

5 RELATED WORK

Fuzzing has gained popularity in industry and academia recently

due to its black-box nature and ease of adoption [38]. A common

challenge in fuzzing is generating structurally valid inputs. Zest [40]

attempts to generate valid inputs using parametric generators. Big-

Fuzz [52] uses framework abstraction to reduce fuzz testing latency.

However, BigFuzz is a simple random fuzzer and cannot iden-

tify co-dependent regions in the input. Symbolic execution tech-

niques [19, 29, 30, 37] exist for testing DISC applications. However,

they cannot easily generate constraints that respect co-dependence

relationships within multiple datasets, created by the complex in-

teraction between dataflow operators and UDFs. Random testing

bears similarity to fuzz testing [13, 33, 39, 42]. Randoop [39] and

EvoSuite [16] generate test suites for the program under test to

cause program crashes.

The closest line of work to ours is taint-based fuzzing. At a high

level, all taint analysis techniques attempt to isolate regions within

an input critical to mutate. For example, Bekrar et. al. [7] propose

taint-based fuzzing that identifies input regions to focus mutations.

TaintScope [49] and BuzzFuzz [17] isolate regions of the input inside

a sensitive library and system calls. PATA [32] performs path-aware

taint analysis to mitigate the problems of over-tainting and under-

tainting by employing path information. Although these techniques

isolate critical input regions, none target DISC applications and

none can discover underlying co-dependence relations by analyzing

dataflow operators and UDFs. The inputs to DISC applications are

very large and consist of multiple datasets; so existing taint tracking

at a byte-level is also inefficient. DepFuzz addresses these problems

by handling multiple datasets and by tracking taints at the level of

dataset IDs, columns, and rows from unstructured inputs.

The idea of triggering hard-to-reach regions of the program has

been seen frequently in the literature. FairFuzz [28] is a targeted

mutation strategy that avoids mutating input regions that trigger

rare branches, similar to how DepFuzz analyzes the use of fusion

operators to co-mutate certain regions. However, FairFuzz uses

coverage feedback and a simple masking strategy to freeze contigu-

ous input regions. AFLFast [9] prioritizes inputs that trigger rare

paths in the code. AFLFast instruments program binary and per-

form runtime coverage analysis. Both FairFuzz and AFLFast are not

suitable for DISC applications because they do not analyze dataflow

operator usages and internal UDF semantics to infer co-dependent

input regions in large datasets. Neither perform provenance-aware

duplication to resolve aggregations, which are extremely common

1059

Co-dependence Aware Fuzzing for Dataflow-Based Big Data Analytics ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

in DISC applications. Driller [47] switches to using symbolic execu-

tion to resolve a difficult branch that AFL fails to pass, causing it to

inherit the limitations of symbolic execution. Steelix [31] attempts

to produce a single input passing a difficult-to-hit branch in the

code and employs source-level instrumentation similar to DepFuzz.

Steelix is not suitable for DISC applications with large inputs due

to a lack of fine-grained data tracking.

TaintStream [51] implements cell-level provenance for Apache

Spark in the context of Policy Enforcement. DepFuzz also tracks

provenance at the cell level. However, TaintStream requires ex-

tending the original dataset with tags, whereas DepFuzz’s cell

level tracking is fully automatic and does not require converting

the original dataset. DepFuzz’s taint analysis is similar to that of

FlowDebug [48], as they both instrument primitive data types and

application code and do not require any modifications to the origi-

nal datasets to enable taint analysis. However, FlowDebug concerns

taint analysis only and does not generate test data nor does it iden-

tify co-dependency constraints among input datasets. Furthermore,

existing data provenance techniques [12, 21–23, 34] perform taint

analysis only at the row level, support only a single dataset, and

do not support tracking at the column (cell) level. Spark-specific

data provenance solutions also exist, such as Titian [25], but it is

limited to row-level data provenance for only a single input dataset.

BigSift [18] is an extension of delta debugging for DISC applications

but its isolation works at the level of rows, not the level of dataset

IDs, rows, and columns, unlike DepFuzz.

6 CONCLUSION

Traditional fuzzing is ineffective for DISC applications due to re-

quirements to handle unstructured inputs, a lack of schema, the

inability to handle multiple datasets, and their large input size. In

this work, we introduceDepFuzz, a technique that uses fine-grained

provenance tracking to infer complex co-dependence constraints

created by dataflow operators and user-defined functions. The key

insight behind DepFuzz is to orchestrate co-dependence aware mu-

tations on multiple input datasets in concert. DepFuzz increases

code coverage fast, finds more defects, and finds defects that are

hard to find—29% higher statement coverage, 2.1× faster, and trig-

gering faults that are 0.9 operators deeper than the ones found by

the state of the art commercial fuzzer for JVM.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation under

grant numbers 2106420, 1764077, 1956322, 1460325, 2106383 and

2106404. It is also supported in part by funding from Amazon and

Samsung. We want to thank the anonymous reviewers for their

constructive feedback that helped improve the work.

REFERENCES
[1] 2021. American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/. Accessed: 2021-12-

14.
[2] 2022. Apache Hadoop. https://hadoop.apache.org/. Accessed: 2021-12-14.
[3] 2022. Apache Spark. https://spark.apache.org/. Accessed: 2021-12-14.
[4] Accessed: 2022-09-01. Big Data Benchmark. https://amplab.cs.berkeley.edu/

benchmark/
[5] Accessed: 2022-09-01. TPC-DS Version 2 and Version 3. https://www.tpc.org/

tpcds/default5.asp
[6] Accessed: 2023-01-10. Demonstration Database.

https://postgrespro.com/community/demodb.

[7] Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. 2012. A Taint
Based Approach for Smart Fuzzing. In 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation. 818–825. https://doi.org/10.1109/
ICST.2012.182

[8] Alexander Boyce and Mathieu Leger. Accessed: 2023-01-10. Stateful
Streaming with Apache Spark: How to Update Decision Logic at Run-
time. https://www.databricks.com/session_eu20/stateful-streaming-with-
apache-spark-how-to-update-decision-logic-at-runtime

[9] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2019. Coverage-
Based Greybox Fuzzing as Markov Chain. IEEE Transactions on Software Engi-
neering 45, 5 (2019), 489–506. https://doi.org/10.1109/TSE.2017.2785841

[10] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. 2008. A Graph-Theoretic
Approach to Webpage Segmentation. In Proceedings of the 17th International
Conference on World Wide Web (Beijing, China) (WWW ’08). Association for
Computing Machinery, New York, NY, USA, 377–386. https://doi.org/10.1145/
1367497.1367549

[11] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. 2015. Better bitmap
performance with Roaring bitmaps. Software: Practice and Experience 46, 5 (April
2015), 709–719. https://doi.org/10.1002/spe.2325

[12] Zaheer Chothia, John Liagouris, Frank McSherry, and Timothy Roscoe. 2016.
Explaining Outputs in Modern Data Analytics. Proc. VLDB Endow. 9, 12 (Aug.
2016), 1137–1148. https://doi.org/10.14778/2994509.2994530

[13] Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: an
automatic robustness tester for Java. Software: Practice and Ex-
perience 34, 11 (2004), 1025–1050. https://doi.org/10.1002/spe.602
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.602

[14] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,
Wil Robertson, Frederick Ulrich, and Ryan Whelan. 2016. LAVA: Large-Scale
Automated Vulnerability Addition. In 2016 IEEE Symposium on Security and
Privacy (SP). 110–121. https://doi.org/10.1109/SP.2016.15

[15] Fariza Fauzi, Jer-Lang Hong, and Mohammed Belkhatir. 2009. Webpage Seg-
mentation for Extracting Images and Their Surrounding Contextual Information.
In Proceedings of the 17th ACM International Conference on Multimedia (Beijing,
China) (MM ’09). Association for Computing Machinery, New York, NY, USA,
649–652. https://doi.org/10.1145/1631272.1631379

[16] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-Oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (Szeged, Hungary) (ESEC/FSE ’11). Association for Computing Machinery,
New York, NY, USA, 416–419. https://doi.org/10.1145/2025113.2025179

[17] Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based directed whitebox
fuzzing. In 2009 IEEE 31st International Conference on Software Engineering. 474–
484. https://doi.org/10.1109/ICSE.2009.5070546

[18] Muhammad Ali Gulzar, Matteo Interlandi, Xueyuan Han, Mingda Li, Tyson
Condie, and Miryung Kim. 2017. Automated Debugging in Data-Intensive Scal-
able Computing. In Proceedings of the 2017 Symposium on Cloud Computing (Santa
Clara, California) (SoCC ’17). Association for Computing Machinery, New York,
NY, USA, 520–534. https://doi.org/10.1145/3127479.3131624

[19] Muhammad Ali Gulzar, Shaghayegh Mardani, Madanlal Musuvathi, and Miryung
Kim. 2019. White-Box Testing of Big Data Analytics with Complex User-Defined
Functions. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Machinery, New
York, NY, USA, 290–301. https://doi.org/10.1145/3338906.3338953

[20] Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar. 2023. DepFuzz
Tool for "Co-dependence Aware Fuzzing for Dataflow-Based Big Data Analytics".
https://doi.org/10.1145/3580412

[21] R. Ikeda, J. Cho, C. Fang, S. Salihoglu, S. Torikai, and J. Widom. 2012. Provenance-
Based Debugging and Drill-Down in Data-Oriented Workflows. In 2012 IEEE
28th International Conference on Data Engineering. 1249–1252. https://doi.org/
10.1109/ICDE.2012.118

[22] Robert Ikeda, Hyunjung Park, and Jennifer Widom. 2011. Provenance for gen-
eralized map and reduce workflows. In In Proc. Conference on Innovative Data
Systems Research (CIDR).

[23] R. Ikeda, A. Das Sarma, and J. Widom. 2013. Logical provenance in data-oriented
workflows?. In 2013 IEEE 29th International Conference on Data Engineering (ICDE).
877–888. https://doi.org/10.1109/ICDE.2013.6544882

[24] Code Intelligence. 2022. Jazzer. https://github.com/CodeIntelligenceTesting/
jazzer.

[25] Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar, Se-
unghyun Yoo, Miryung Kim, Todd Millstein, and Tyson Condie. 2015. Titian:
Data provenance support in spark. In Proceedings of the VLDB Endowment In-
ternational Conference on Very Large Data Bases, Vol. 9. NIH Public Access, 216.
https://doi.org/10.1007/s00778-017-0474-5

[26] René Just. 2014. The Major Mutation Framework: Efficient and Scalable Mutation
Analysis for Java. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis (San Jose, CA, USA) (ISSTA 2014). Association for Comput-
ing Machinery, New York, NY, USA, 433–436. https://doi.org/10.1145/2610384.

1060

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar

2628053
[27] Kavi, Buckles, and Bhat. 1986. A Formal Definition of Data Flow Graph Models.

IEEE Trans. Comput. C-35, 11 (1986), 940–948. https://doi.org/10.1109/TC.1986.
1676696

[28] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: A Targeted Mutation Strat-
egy for Increasing Greybox Fuzz Testing Coverage. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (Mont-
pellier, France) (ASE ’18). Association for Computing Machinery, New York, NY,
USA, 475–485. https://doi.org/10.1145/3238147.3238176

[29] Kaituo Li, Christoph Reichenbach, Yannis Smaragdakis, Yanlei Diao, and
Christoph Csallner. 2013. SEDGE: Symbolic example data generation for dataflow
programs. In 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 235–245. https://doi.org/10.1109/ASE.2013.6693083

[30] Nan Li, Yu Lei, Haider Riaz Khan, Jingshu Liu, and Yun Guo. 2016. Applying
Combinatorial Test Data Generation to Big Data Applications. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering
(Singapore, Singapore) (ASE ’16). Association for Computing Machinery, New
York, NY, USA, 637–647. https://doi.org/10.1145/2970276.2970325

[31] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: Program-State Based Binary Fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn,
Germany) (ESEC/FSE 2017). Association for Computing Machinery, New York,
NY, USA, 627–637. https://doi.org/10.1145/3106237.3106295

[32] J. Liang, M. Wang, C. Zhou, Z. Wu, Y. Jiang, J. Liu, Z. Liu, and J. Sun. 2022. PATA:
Fuzzing with Path Aware Taint Analysis. In 2022 2022 IEEE Symposium on Security
and Privacy (SP) (SP). IEEE Computer Society, Los Alamitos, CA, USA, 154–170.
https://doi.org/10.1109/SP46214.2022.9833594

[33] Yu Lin, Xucheng Tang, Yuting Chen, and Jianjun Zhao. 2009. A Divergence-
Oriented Approach to Adaptive Random Testing of Java Programs. In 2009
IEEE/ACM International Conference on Automated Software Engineering. 221–232.
https://doi.org/10.1109/ASE.2009.13

[34] Dionysios Logothetis, Soumyarupa De, and Kenneth Yocum. 2013. Scalable
Lineage Capture for Debugging DISC Analytics. In Proceedings of the 4th Annual
Symposium on Cloud Computing (Santa Clara, California) (SOCC ’13). Association
for Computing Machinery, New York, NY, USA, Article 17, 15 pages. https:
//doi.org/10.1145/2523616.2523619

[35] Ehsan Mazloumi, Graham Currie, and Geoffrey Rose. 2010. Using GPS Data to
Gain Insight into Public Transport Travel Time Variability. Journal of Transporta-
tion Engineering 136, 7 (2010), 623–631. https://doi.org/10.1061/(ASCE)TE.1943-
5436.0000126

[36] Farhad Nabhani and Alireza Shokri. 2009. Reducing the delivery lead time in a
food distribution SME through the implementation of six sigma methodology.
Journal of Manufacturing Technology Management 20, 7 (Sept. 2009), 957–974.
https://doi.org/10.1108/17410380910984221

[37] Christopher Olston, Shubham Chopra, and Utkarsh Srivastava. 2009. Gener-
ating Example Data for Dataflow Programs. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data (Providence, Rhode
Island, USA) (SIGMOD ’09). Association for Computing Machinery, New York,
NY, USA, 245–256. https://doi.org/10.1145/1559845.1559873

[38] Alessandro Orso and Gregg Rothermel. 2014. Software Testing: A Research
Travelogue (2000–2014). In Future of Software Engineering Proceedings (Hyderabad,
India) (FOSE 2014). Association for Computing Machinery, New York, NY, USA,
117–132. https://doi.org/10.1145/2593882.2593885

[39] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-Directed Random
Testing for Java. In Companion to the 22nd ACM SIGPLAN Conference on Object-
Oriented Programming Systems and Applications Companion (Montreal, Quebec,
Canada) (OOPSLA ’07). Association for Computing Machinery, New York, NY,
USA, 815–816. https://doi.org/10.1145/1297846.1297902

[40] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic Fuzzing with Zest. In Proceedings of the 28th ACM SIG-
SOFT International Symposium on Software Testing and Analysis (Beijing, China)
(ISSTA 2019). Association for ComputingMachinery, New York, NY, USA, 329–340.
https://doi.org/10.1145/3293882.3330576

[41] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: Fuzzing by
Program Transformation. In 2018 IEEE Symposium on Security and Privacy (SP).
697–710. https://doi.org/10.1109/SP.2018.00056

[42] I. S. Wishnu B. Prasetya. 2014. T3, a Combinator-Based Random Testing Tool for
Java: Benchmarking. In Future Internet Testing, Tanja E.J Vos, Kiran Lakhotia, and
Sebastian Bauersfeld (Eds.). Springer International Publishing, Cham, 101–110.
https://doi.org/10.1007/978-3-319-07785-7_7

[43] Roch, Grzegorz Slowikowski, Roland Tritsch, Sam, and Chris Kipp. 2022. scover-
age. https://github.com/scoverage. Accessed: 2022-01-10.

[44] Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt, and Yu Hu. 2018. Bug
Synthesis: Challenging Bug-Finding Tools with Deep Faults. In Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Lake Buena Vista,
FL, USA) (ESEC/FSE 2018). Association for Computing Machinery, New York, NY,
USA, 224–234. https://doi.org/10.1145/3236024.3236084

[45] Kostya Serebryany. Accessed: 2023-01-29. LibFuzzer – a library for coverage-
guided Fuzz Testing. https://llvm.org/docs/LibFuzzer.html

[46] Dongdong She, Yizheng Chen, Abhishek Shah, Baishakhi Ray, and Suman Jana.
2020. Neutaint: Efficient Dynamic Taint Analysis with Neural Networks. In 2020
IEEE Symposium on Security and Privacy (SP). 1527–1543. https://doi.org/10.1109/
SP40000.2020.00022

[47] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting fuzzing through selective symbolic execution.. In
NDSS, Vol. 16. 1–16.

[48] Jason Teoh, Muhammad Ali Gulzar, and Miryung Kim. 2020. Influence-Based
Provenance for Dataflow Applications with Taint Propagation. In Proceedings
of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC
’20). Association for Computing Machinery, New York, NY, USA, 372–386. https:
//doi.org/10.1145/3419111.3421292

[49] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A Checksum-
Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detection. In
2010 IEEE Symposium on Security and Privacy. 497–512. https://doi.org/10.1109/
SP.2010.37

[50] Guoqing Harry Xu, Margus Veanes, Michael Barnett, Madan Musuvathi, Todd
Mytkowicz, Ben Zorn, Huan He, and Haibo Lin. 2019. Niijima: Sound and
Automated Computation Consolidation for Efficient Multilingual Data-Parallel
Pipelines. In Proceedings of the 27th ACM Symposium on Operating Systems Prin-
ciples (Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing Ma-
chinery, New York, NY, USA, 306–321. https://doi.org/10.1145/3341301.3359649

[51] Chengxu Yang, Yuanchun Li, Mengwei Xu, Zhenpeng Chen, Yunxin Liu, Gang
Huang, and Xuanzhe Liu. 2021. TaintStream: Fine-Grained Taint Tracking for
Big Data Platforms through Dynamic Code Translation. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021).
Association for Computing Machinery, New York, NY, USA, 806–817. https:
//doi.org/10.1145/3468264.3468532

[52] Qian Zhang, Jiyuan Wang, Muhammad Ali Gulzar, Rohan Padhye, and Miryung
Kim. 2021. BigFuzz: Efficient Fuzz Testing for Data Analytics Using Framework
Abstraction. In Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering (Virtual Event, Australia) (ASE ’20). Association
for Computing Machinery, New York, NY, USA, 722–733. https://doi.org/10.
1145/3324884.3416641

Received 2023-02-02; accepted 2023-07-27

1061

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Phase I: Enabling Fine-Grained Taint Analysis
	3.2 Phase II: Fine-Grained Taint Tracking
	3.3 Phase III: Row Selection for Data Size Reduction
	3.4 Phase IV: Co-Dependence Aware Mutation

	4 Evaluation Results
	4.1 Test Coverage Against Baseline
	4.2 Fault Detection
	4.3 DepFuzz's Instrumentation Overhead

	5 Related Work
	6 conclusion
	References

