
FileScale: Fast and Elastic Metadata Management for
Distributed File Systems

Gang Liao∗
ByteDance Infrastructure System Lab

San Jose, California, USA
gangliao@bytedance.com

Daniel J. Abadi
University of Maryland

College Park, Maryland, USA
abadi@umd.edu

ABSTRACT

File systems that store metadata on a single machine or via a
shared-disk abstraction face scalability challenges, especially
in contexts demanding the management of billions of files.
Recent work has shown that employing shared-nothing, dis-
tributed database system (DDBMS) for metadata storage can
alleviate these scalability challenges without compromising
on high availability guarantees. However, for low-scale de-
ployments – where metadata can fit in memory on a single
machine – these DDBMS-based systems typically perform an
order of magnitude worse than systems that store metadata
in memory on a single machine. This has limited the impact
of these distributed database approaches, since they are only
currently applicable to file systems of extreme scale.
This paper describes FileScale, a three-tier architecture

that incorporates a DDBMS as part of a comprehensive ap-
proach to file system metadata management. In contrast to
previous approaches, FileScale performs comparably to the
single-machine architecture at a small scale, while enabling
linear scalability as the file system metadata increases1.

CCS CONCEPTS

• Computer systems organization → Cloud comput-

ing.

KEYWORDS

Distributed File System, Metadata Management, Elastic Com-
puting, Distributed Database

∗Work performed during PhD at University of Maryland, College Park
1The code is currently available at https://github.com/umd-dslam/FileScale

SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0387-4/23/11.

https://doi.org/10.1145/3620678.3624784

ACM Reference Format:

Gang Liao and Daniel J. Abadi. 2023. FileScale: Fast and Elastic
Metadata Management for Distributed File Systems. In ACM Sym-

posium on Cloud Computing (SoCC ’23), November 7–9, 2023, Santa

Cruz, CA, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/
10.1145/3620678.3624784

1 INTRODUCTION

As the data stored by organizations rapidly expands, both
the structured metadata and unstructured byte contents of
the files managed within file systems scale commensurately.
In general, it is easier to scale the unstructured data than
the structured data, since there is no requirement to perform
atomic transactions that update the unstructured bits across
multiple files. Therefore, unstructured data can simply be
placed in blocks that are partitioned across a shared-nothing
cluster of nodes (machines), and all operations over this data
can be done in parallel across this cluster, with little-to-no
coordination across nodes except for replication.

However, scaling the structured data is more challenging:
First, there is a requirement for atomic, isolated, and durable
transactions that may access data in multiple partitions. For
example, recursively deleting or changing the permissions
of a directory affect that directory and all its sub-directories,
and must occur atomically. Similarly, moving or copying
directories, may spanmultiple partitions, and alsomust occur
atomically and serializably. Second, metadata is repeatedly
accessed throughout file system requests for verifying paths,
checking permissions, and finding relevant data, and cannot
afford excessive delays for multi-node coordination.

The first generation of scalable file systems, such as GFS,
HDFS, Lustre, Ursa Minor, Farsite, and XtreemFS [19, 20, 28,
31, 45, 46], focused on scaling the unstructured data linearly,
but stored metadata in memory on a single machine. They
scaled to petabytes of data by using block sizes on the order
of megabytes or gigabytes, and limiting the number of unique
files and directories under management, so that information
about blocks, files and directories can fit in memory on the
metadata node. These restrictions are acceptable for data
processing and large scale analysis workloads, which typi-
cally involve large scans and prefer large block sizes anyway.
However, they are problematic for workloads that access

459

https://github.com/umd-dslam/FileScale
https://doi.org/10.1145/3620678.3624784
https://doi.org/10.1145/3620678.3624784
https://doi.org/10.1145/3620678.3624784
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620678.3624784&domain=pdf&date_stamp=2023-10-31

SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA Gang Liao and Daniel J. Abadi

data in smaller quantities. In addition, even those workloads
that use large blocks sizes are reaching the metadata limits
of existing scalable file systems with increasing frequency.
Furthermore, this single metadata server becomes a bot-

tleneck when it is overwhelmed by many concurrent client
requests, along with processing heartbeats from the increas-
ingly large numbers of block-store servers in the system [47].
It also becomes a single point of failure unless a fail-over
machine that has identical provisions of copious memory
and processing runs alongside it. Therefore, solutions that
remove the memory limitations by incorporating fast exter-
nal storage attached to the metadata node (e.g. [14, 21, 22,
34, 43, 44, 49, 52, 54]) will not be sufficient in the long run.
One approach to scaling metadata is to partition it, but

restrict atomicity and isolation guarantees to only those re-
quests that can be processed by a single partition. This is the
approach taken by HDFS’s federation option [5, 10] where
the file system namespace is statically partitioned across com-
pletely independent "NameNode" servers that store disjoint
partitions of file system metadata, with optional client-side
routing tables [11] or a routing layer [4, 8, 9, 38] that direct
metadata requests to the correct NameNode. Nonetheless,
preventing multi-partition requests limits the general appli-
cability of these approaches, and reduces the functionality of
the file system. In one case study, Facebook stated that they
needed "tens of HDFS clusters per datacenter to store analyt-
ics data", a situation that was "operationally inefficient" as
even "single data warehouse datasets are often large enough
to exceed a single HDFS cluster’s [metadata] capacity" [40].
Similarly, ByteDance ran into HDFS metadata scalability
problems, and likewise rejected HDFS federation due to the
lack of atomic transactions across namespaces [26].
An alternative approach is to store the metadata in a dis-

tributed database system (DDBMS) that manages the parti-
tioning, and guarantees atomicity, isolation, and durability of
all transactions — even those that span partitions [39, 42, 50]2.
These approaches have demonstrated that scalable DDBMSs
can successfully scale all aspects of file system metadata
management. However, performance and efficiency can be a
problem. When the file system logic is running outside of the
DDBMS, there are typically many round trips between the
file system logic and database layer for each file system re-
quest. These round trips can add up to substantial increased
latency, and reduced efficiency of system resources. In one
case, it was reported that it took 3 NameNodes and 2 data-
base servers to match the throughput that the single active
HDFS NameNode is able to achieve [39]. On the other hand,

2Although Colossus[29] and Giraffa [48] use scalable data stores
(BigTable [23] and HBase [2]), they do not support multi-partition requests
because they lack strongly consistent distributed transactions.

Proxy Layer

Database Layer

Caching Layer

Figure 1: System Architecture of FileScale.

building the file system logic into the DDBMS requires rip-
and-replace upgrades of existing file system technology and
has yet to be shown to be a generally applicable approach.
In this paper, we describe the design of FileScale, an

HDFS-based file system that replaces metadata management
in HDFS with a three-tiered distributed architecture that
incorporates a DDBMS at the lowest layer, along with dis-
tributed caching and routing functionality above it, so that
most requests can be served with asynchronous, batched
interactions with the DDBMS. This architecture enables a
simple drop-in upgrade of existing HDFS implementations
in which all interfaces — both internally and externally —
remain the same, and the performance on a single node is
nearly identical to the original HDFS implementation. How-
ever, as the metadata scales, the architecture partitions the
metadata over a shared-nothing cluster, achieving linear scal-
ability relative to performance on a single node.

2 HDFS BACKGROUND

HDFS is perhaps the most widely deployed distributed file
system today for machine learning and data analytics [18,
24, 53]. It uses a leader/follower architecture in which a
NameNode manages all file system metadata and regulates
data access on behalf of clients. Files are split into one or
more blocks, and these blocks are replicated across a set of
DataNodes in a shared-nothing architecture.
NameNode durability is implemented via a write-ahead

log called the EditLog. Recovery is performed by loading a
checkpoint called a FSImage and then replaying the EditLog
over this image file. This process can be time consuming.
Therefore, for improved high availability, HDFS allows for
the deployment of a hot-standby that continuously, asyn-
chronously, keeps the FSImagemerged with the EditLog, so
that it can take over with only minor delay when the primary
NameNode crashes or temporarily goes down.

460

FileScale: Fast and Elastic Metadata Management for Distributed File Systems SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA

inode2block

block-id id index

1073741825 16386 0
1073741826 16386 1
1073741827 16386 2
1073741828 16388 0
1073741829 16389 0

datablocks

block-id kbytes stamp replica

1073741825 131072 1001 1
1073741826 131072 1002 1
1073741827 45056 1003 1
1073741828 6.6 1004 1
1073741829 1628.2 1005 1

block2storage

block-id idx storage-id

1073741825 0 DS-e3d5de23
1073741826 0 DS-e3d5de23
1073741827 0 DS-08989547
1073741828 0 DS-dc8aa54e
1073741829 0 DS-dc8aa54e

inodes

id pid pname name access-time update-time header permission

16385 0 null / 0 1545261571024 0 1099511693805
16386 16385 / event_data 1545267685278 1545264231090 281474976710672 1099511693823
16387 16385 / dnn_model 0 1545267685104 0 1099511693805
16388 16386 /dnn_model graph.ckpt.pbtxt 1545267685125 1545267685125 281474976710672 1099511693823
16389 16386 /dnn_model model.ckpt.data0 1545267685224 1545267685224 281474976710672 1099511693823

Table 1: Data model in FileScale.

3 SYSTEM ARCHITECTURE
FileScale is designed to serve as a drop-in replacement for
HDFS, maintaining an identical client API, and intercepting
communication with the HDFS NameNode and redirecting it
to FileScale’s more scalable, distributed NameNode imple-
mentation. FileScale uses a three-tiered architecture that
implement routing, caching, and stable storage of metadata.
The high level architectural design of FileScale is illus-

trated in Figure 1. When a client 1 makes a request, a proxy
server 2 receives the request and routes it to a NameNode
based on requested �le paths. The NameNode 3 functions
as a cache of a subset of metadata. If the metadata relevant to
the request is currently in the cache of the NameNode that
receives it, it can respond immediately. Otherwise, either the
relevant data is brought into cache, or 4 this request is for-
warded and processed as a transaction in the database layer.
The results of the request are then returned to the client,
which typically contain locations of DataNodes where the
raw data is stored. The DataNode 5 code in FileScale is
identical to the DataNode code in HDFS. The following sec-
tions 4, 5 and 6 provide more detail on each layer.

4 DATABASE LAYER
FileScale stores all �le system metadata in a DDBMS that
is partitioned and replicated across a shared-nothing cluster.
Metadata operations are performed as atomic transactions
over the DDBMS. FileScale uses a modular architecture
such that any ACID-compliant SQL DDBMS could be used.
The metadata component of most �le system commands can
be transformed into a series of simple INSERT, UPDATE, or
SELECT statements over the database system. However re-
cursive operations are more complicated. FileScale requires
that the DDBMS either directly supports recursive opera-
tions, or otherwise supports generic stored procedures so

that these recursive operations can be implemented inside
the DDBMS without paying an additional round trip to the
DDBMS for each recursive step of the operation. Both of
these options typically require some new code to be added
to be able to support a new DDBMS. The codebase currently
supports VoltDB [17] and Apache Ignite [3].
File systems typically store metadata as a tree of inodes

with a root corresponding to the root directory, and children
corresponding to directories and �les located in the parent
directory. Files are leaves of this tree (i.e. they have no chil-
dren) and they point to data block references from which
the data associated with this �le can be read. In HDFS this
entire tree is stored in the memory of the NameNode.

FileScale transforms the inode tree into a relational schema
that contains 14 tables. This includes tables for the two main
entities: inodes and datablocks, along with several rela-
tionship tables such as mappings from inodes to blocks, and
blocks to storage locations (DataNodes). Table 1 shows a sim-
pli�ed version of the FileScale schema. The pid and pname
attributes of the inodes table enables the reconstruction of
the parent-child relationships from the original tree.

Recent work that scales metadata management in �le sys-
tems by storing data in database systems or LSMs do not store
the full path within an inode tuple. Instead, parents and chil-
dren are referred to by their unique inode IDs [39, 43, 44, 54].
This approach has two advantages: (1) space savings and
(2) faster rename operations (only the root of the renamed
branch needs to be modi�ed). In contrast, FileScale not only
stores full path names in each inode tuple, but even makes
the path (pname, name) the primary key. This approach yields
a di�erent set of advantages. First, it improves modularity
since it requires less support for recursion in the underlying
database system. By storing full paths in the inodes, simple
WHERE clauses containing pre�x matching operations on

461

SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA Gang Liao and Daniel J. Abadi

the full path can be used to directly �nd all nodes that are
part of a particular branch. This avoids a recursive traversal
of the inode tree. Second, there is no need to maintain an
in-memory mapping between inode IDs and paths, since the
paths themselves are the IDs. Although storing full paths re-
quires more space, FileScale’s horizontal scalability makes
the additional storage requirements less problematic. Re-
names in FileScale are implemented by performing the
above described pre�x matching in a WHERE clause.
All tables that have 1:n relationships with the inodes

table, such as datablocks, are partitioned based on their
association with inodes, in order to maximize locality. The
remaining (small) tables are replicated across the cluster.

5 CACHING LAYER
In theory, purpose-building a newDDBMS that can be naively
integrated with FileScale would yield optimal performance.
In practice, however, it is well-known that purpose-building
anything for a speci�c application yields big performance
bene�ts in the short term, but generally fails to keep up
with technology developments as research progresses. In
general it is preferable to use commodity components that
can be switched out and replaced with newer and more ad-
vanced versions as they become available. This is especially
important in the context of FileScale in which the DDBMS
performs multi-partition transactions. Multi-partition trans-
actions are notoriously challenging to perform with high
performance and high isolation and consistency guarantees
simultaneously and research in this area is currently very
active with new developments being made on an ongoing
basis. FileScale is thus designed to use o�-the-shelf dis-
tributed database systems instead of using a purpose-built
native system.
However, the downside of building on top of an external

system is the overhead involved in forming and sending a
request to the external system and receiving, parsing, and
processing the response. FileScale must thus be designed
to avoid excessive calls to the database. This is done via im-
plementing a cache layer in each NameNode’s memory that
enables a copy of a set of metadata objects (such as inodes)
to be stored in local memory, which can be accessed directly
by metadata operations and thereby avoid communication
with the database system upon a cache hit. Updates to meta-
data stored inside a FileScale cache are not propagated to
the underlying database system until an event occurs that
requires propagation, such as an expiration, periodic �ush,
or distributed transaction. Thus, the database layer lags be-
hind the cache layer, and up-to-date access to records in the
database layer may require synchronization activities with
the cache layer prior to serving those accessed records.

5.1 Object Cache
The mappings of �les to blocks and blocks to DataNodes in
HDFS’s namespace are implemented as a light-weight hash
table in HDFS whose primary goal is to optimize memory
usage within the NameNode [1] so that the entire metadata
can �t in memory. In contrast, in FileScale, these mappings
are stored in an object cache in which no assumption is made
that all data �ts in memory.
An important advantage of HDFS’s assumption that all

metadata �ts in memory on the NameNode is that this meta-
data can be given a permanent location in memory that can
be directly referenced by other metadata. For example, in
HDFS, the children of a directory inode (the �les and direc-
tories stored inside it) can be stored as an in-memory list of
direct pointers to the location of the inodes for these children.
In order to resolve a complete path, HDFS simply needs to
start at the root, and follow the series of direct pointers from
root to the next child, and from there to the next child, etc.
In contrast, in FileScale’s cache-based design, metadata

cannot live in a permanent location in memory, since each
cached object may be evicted according to the cache eviction
algorithm. Therefore, each object is given a globally unique
identi�er, and references to objects, such as the children of
a directory, are done via specifying the identi�er instead of
via a direct pointer. A separate lookup must occur to �nd the
current location of the identi�ed object in memory.
Although the extra lookups can cause increased latency,

they can often be performed in parallel, which ends up in la-
tency savings rather than costs. For example, each metadata
operation in a �le system must resolve path components
recursively to validate the entire path and check user permis-
sions and quota con�guration. The direct pointer approach
requires a search at each level of the path being validated to
�nd the next child in the path. This is implemented in HDFS
via a binary search within the list of children of a directory.
The process of traversing these pointer connections is thus
fundamentally a sequential operation. FileScale eliminates
the need for this search at each level since the reference
to the child is derived directly from the path name of the
child. For example, to resolve the path (/tmp/logs/data),
separate hash lookups for </>, </tmp>, </tmp/logs>, and
</tmp/logs/data> are performed separately and in paral-
lel instead of traversing the tree. This resolution technique
is faster than the pointer-based traversal technique for long
paths (because of its parallel execution) or paths with fat
directories (because of its avoidance of the binary search).
These di�erences will be explored further in Section 7.2.3.

5.2 Durability
Since updates are not necessarily immediately propagated to
the DBMS, the cache layer implements a write-ahead logging

462

FileScale: Fast and Elastic Metadata Management for Distributed File Systems SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA

DBDBDB

LOG

Enable Logging

Database as a Service

LOG LOG LOG

Logging as a Service

1

2 3

4 5 6 7

NameNode

1. CLIENT: Create a file (ID=7) 2. LOG: Create a file (ID=7)

3. DB: Insert a Tuple (ID=7)

Snapshot

4. DB: Checkpointing

Enable C
heckpointing

Transactions

Figure 2: Work�ow of �le-create metadata operation.

mechanism based on an extension of HDFS’s EditLog. Each
NameNode logs all modi�cations it makes to a separate log
�le stored remotely in a network �le system, similar to how
HDFS stores edit logs on Quorum Journal Machines [7] or
NFS [6] for high availability. Locks are not released until the
logging service acknowledges the writes.
A periodic process asynchronously �ushes recent writes

to the database layer in batches. This limits the staleness of
database state. A background process in the DDBMS takes
periodic durable checkpoints of a snapshot of transaction-
consistent state. Recovery starts from the most recent check-
point, and plays forward any log records found in the log-
ging service that were not incorporated in the database state,
which are merged with log records found in the DDBMS log.

Log records that are re�ected in any database layer check-
point can be safely removed from the logging service.

Figure 2 shows thework�ow of �le-create operation.When
FileScale receives a request to create a �le with ID = 7, the
NameNode writes a log record to the remote server and cre-
ates an inode object in the cache. After it receives a success
message from the logging service, it makes the inode visi-
ble to subsequent requests prior to �ushing the write to the
DDBMS. Eventually the write is �ushed to the DDBMS and
is incorporated into a database snapshot, after which the log
record associated with that write can be safely truncated.
If the DBMS fails during �ush or multi-partition oper-

ations, the namenode employs an exponential backo� for
future retries, anticipating database recovery.

6 PROXY LAYER
FileScale horizontally scales the name service through the
creation of multiple, independent NameNodes in the caching
layer. Each NameNode manages a disjoint partition of the
namespace. However, the union of all the partitions need
not cover the entire namespace. Requests over partitions
of the namespace not covered by a NameNode are routed
to a default NameNode that forwards the request directly
to the database layer. FileScale implements a proxy layer

to route requests to the appropriate NameNodes that will
process those requests. Unlike HDFS, FileScale supports
multi-partition (multi-NameNode) transactions.

6.1 Request Routing
FileScale stores the namespace partitioning across NameN-
odes in a "mount table" stored in Zookeeper [30]. Speci�c �le
path pre�xes are assigned to NameNodes, which become the
only eligible location for caching metadata associated with
those path pre�xes. The mount table is updated when new
NameNodes are added or removed from the cluster, or when
partitions need to be combined or split for improved load
balancing. In practice it is read far more frequently than it is
updated. Therefore, routing paths can be cached at the indi-
vidual servers of the proxy layer for improved performance.
However, this results in the proxy layer occasionally routing
a request to the wrong NameNode, and that NameNode must
then forward the request to the correct one (see below).

FileScale supports two modes to route user requests: (1)
proxy mode and (2) watch mode. In proxy mode, the proxy
layer consists of multiple routers that use the same commu-
nication protocols as HDFS. The router acts as a middleware
layer that includes an upstream manager that maintains
communication sessions for di�erent clients, and intercepts
client requests/responses to manipulate them as needed. The
proxy layer can share hardware with the caching layer, such
that there exists a router on each NameNode. When a client
request is received by a router, the �le paths associated with
that request are extracted, and longest pre�x matching is
performed to locate the mount table entries relevant to that
request. If all items accessed by the request are managed by a
single NameNode, the request is forwarded there. Otherwise,
the protocol described in Section 6.2 is used.

Watch mode works identically to proxy mode, except that
the client watches ZooKeeper and caches the mount table
at the client-side to save a network hop. The performance
bene�ts of watch mode will be explored in Section 7.3.1.
Figure 3 shows an example request being routed to the

appropriate NameNode. The two di�erent sets of blue lines
correspond to the proxy and watch modes described above.
In both the watch mode and proxy mode, mount table

data is cached locally and a listener receives noti�cations
when changes occur. On occasion, a name space partition
may be moved from one NameNode to another, or an ex-
isting partition may be split or combined with a partition
located on a di�erent NameNode, temporarily rendering
these caches stale, and causing misrouting of requests. Each
NameNode maintains a recent-memory of paths that it for-
mally managed, but part or all of it was moved3 This enables
the NameNode to immediately forward requests that were

3Adding a new path is performed via a split of the existing root path.

463

SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA Gang Liao and Daniel J. Abadi

Mount Table
ZooKeeper

op
en

 fi
le

:/a

NN1 RouterCached Table

Cached Table Cached Table

NN2 Router NameNode1

NameNode3 NameNode4

NameNode2

open file:/b

b

a

c

b

T
T
L

U
R
L

P
A
T
H

90
s

n
n
4

/b/b
 w

as
 m

ov
ed

!

as
yn

c
up

da
te

s

Figure 3: Request Routing in FileScale.

misrouted to it to the NameNode that took over the manage-
ment of that partition of the namespace. This recent memory
of moved paths is maintained with a short Time to Live (TTL)
for each entry, since the cache of the mount table at each lo-
cation is typically updated with short delay after it becomes
stale. In the rare occasion where a NameNode receives a
misrouted request for which it has no entry in its list of re-
cent moves (because the TTL for that entry was too short
and the entry already expired), the NameNode must look up
the correct routing information in ZooKeeper to properly
reroute the request.
In Figure 3, the two red lines illustrate this process. The

requests are forwarded to the wrong NameNode because of
outdated routing information and are then forwarded to the
correct location directly from the old NameNode.

6.2 Multi-partition requests

File systems that partition by path prefixes reduce the fre-
quency of multi-partition transactions; however, they still
occur. The main source of multi-partition requests are ‘move’
or ‘copy’ operations in which data from the source partition
must be read (for ‘copy’ operations) or removed (for ‘move’
operations) and inserted into the destination partition. Addi-
tionally, recursive operations such as ‘chmod’ (change the file
permissions) or ‘rm’ (delete) that starts high in the directory
tree (close to the root) may span partitions.

In FileScale, all multi-partition requests are performed by
the database system after all data accessed by the transaction
are removed from cache (dirty data is written to the database
prior to removal) and prevented from being brought into
cache while the transaction is ongoing.

Figure 4 shows the control flow between the NameNodes
and associated services when a directory move operation
spans multiple partitions. An example directory with an in-
ode ID of 3 (along with its children) is being moved to a
destination partition managed by a different NameNode. (1)
The source NameNode writes back all relevant dirty inodes
in batches and removes the subtree from the cache layer.

Source NameNode Destination NameNode

Database as a Service

Logging as a Service

1. DB: Write dirty data to DB
Cache: Invalidate the subtree 3. DB: Lazy Loading

2. DB: Rename subtree
via distributed transaction

transactions

Command Log

Src Log Dest Log

Figure 4: Move a folder across NameNodes.

(2) The database layer is updated synchronously via a (dis-
tributed) transaction that updates all affected inodes’ names
and their parent names. The precise implementation of the
transaction depends on the underlying system, but can often
be implemented via the SQL LIKE or STARTS WITH clause.
(3) The destination NameNode can choose to load the entire
new subtree or lazily load it as needed.

FileScale’s cache layer log appends the offsets of the data-
base log of the multi-partition transaction after it completes.
This is only done for book-keeping purposes and is never
relevant for recovery. This is because, as described in Section
5.2, only those log records not already incorporated in DBMS
state are replayed during recovery. Since the processing of a
multi-partition transaction is preceded by a DBMS flush, only
cache-layer log records after the multi-partition transaction
are potentially relevant to recovery.

7 PERFORMANCE EVALUATION

The implementation of FileScale directly inside the HDFS
codebase was a large engineering effort and produced a total
of 40k lines of code in HDFS 3.3.0. This effort allows for direct
comparison of the metadata scalability and performance of
FileScale with standard HDFS along with a state-of-the-
art HDFS alternative that also stores data in a distributed
database system (HopsFS) [39].

We initially use VoltDB [17] for FileScale’s database layer.
VoltDB is an in-memory DBMS that implements durability
via a combination of asynchronous checkpointing and syn-
chronous command logging that can be deterministically
replayed to arrive at the state prior to a crash. In Section 7.6,
we investigate the performance consequence of replacing
VoltDB with Apache Ignite [3].

7.1 Experimental Setup

Previous attempts to scale metadata management within
HDFS have succeeded in scaling file system throughput far
beyond what a single HDFS NameNode is able to achieve.
However, this comes at a cost of efficiency. For example, the

464

FileScale: Fast and Elastic Metadata Management for Distributed File Systems SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA

HopsFS paper reported that it took 3 NameNodes and 2 data-
base servers to match the throughput that the single active
NameNode is able to achieve [39] (see Figure 6 from that
paper). A major goal of FileScale’s architecture is to enable
�le system scalability with a higher amount of e�ciency, so
that it can be used from the early stages of an application up
through the later stages as the application scales over time.
To that end, our experiments focus on both small and

large deployments, ranging from running on a single server
to large clusters of servers running on Amazon Web Ser-
vices (AWS) EC2 instances. All experiments are run on EC2
t3a.2xlarge4 instances for NameNodes and database servers.
Each EC2 instance attached a EBS volume optimized for
transactional workloads, and the volume is a 128 GiB of Pro-
visioned IOPS (io1) SSD that can provision up to 64000 IOPS.
Optimal NameNode heap size depends on many factors, such
as the number of �les, the number of blocks, and the load
on the system, and generally requires tweaking since each
workload has a unique byte-distribution pro�le. To reach the
NameNode memory bottleneck quickly for our experiments,
we use 16 GB for heap memory and garbage collection.

The NNThroughoutBenchmark [13] is used to generate
test workloads. NNThroughoutBenchmark runs a series of
client threads against a NameNode. However, the benchmark
code out of the box runs on a single node without end-to-
end network latency, so we extended the client workload
generation in the benchmark codebase to run in the large-
scale environments required for our analysis.

7.2 Single-node Experiments
We start by comparing FileScale with HDFS version 3.3.0
and HopsFS on a single AWS EC2 instance. All systems
use a single NameNode, and the database servers used by
FileScale (VoltDB) and HopsFS (NDB) run on the same ma-
chine as the NameNode.

7.2.1 Basic Operations. Figure 5 shows the throughput of
delete, directory create and �le create, open, and rename
operations while varying the total number of these oper-
ations run (i.e., the number of �les created, opened, etc.),
and the number of client threads. NNThroughoutBenchmark
introduces some �xed end-to-end overhead per run which
is amortized across all operations in that run. Therefore,
throughput for all systems improves as the number of oper-
ations increases.

For all types of operations, the performance of FileScale
and HDFS is similar. This is because both systems store all
metadata in memory when it �ts on a single node and the per-
formance of their respective in-memory data structures are
similar. HopsFS ran out of memory after operations on over
4Each instance contains 32 GiB of memory, 8 VCPUs feature the 2.5 GHz
AMD EPYC 7000 series processors and 5 Gbps of network burst bandwidth.

100,000 �les (a standardHopsFS deploymentwould divide the
metadata across many machines in order to avoid running
out of memory). At smaller scales, the throughput of HopsFS
was approximately one tenth of HDFS and FileScale for cre-
ate and rename operations, and one �fth for other operations.
These results are consistent with the numbers reported in
the HopsFS paper in which it took 5 servers—3 NameNodes
and 2 database servers—to match the throughput that the
single active NameNode [39]. The main reason for the per-
formance di�erence is that FileScale avoids a round trip to
the database system on the critical path during request pro-
cessing when all data �ts in cache. Instead of relying on the
database system for durability, FileScale persists all updates
to its write-ahead log (which has similar performance as
writes to HDFS’s write-ahead log). This allows FileScale to
propagate updates to the DBMS asynchronously, in batches
(in Section 7.5, we �nd that changing the frequency of these
batch updates does not e�ect throughput, but does e�ect
recovery time). In contrast, every HopsFS request requires
at least one synchronous round trip to the DBMS.

7.2.2 Recursive Delete Operations. FileScale caches in-
odes in memory in a format that enables a one-to-one map-
pingwith relational tuples in the database system. In contrast,
HDFS stores all �le system metadata in memory, and parent
nodes can store direct, in-memory pointers to children nodes.
As was explained in Section 5, this makes operations that
traverse the directory structure, such as recursive �le system
operations, slower in FileScale relative to HDFS. To under-
stand this tradeo� in more detail, we ran an experiment in
which we measured the latency of performing a recursive
delete operation, while varying the number of �les and the
depth of the tree being deleted. The results are shown in
Figure 6.
The results show that the primary bottleneck is the pro-

cess of deleting each individual �le. The latency of all sys-
tems therefore increased as the number of �les being deleted
increased. To delete a �le, HDFS needs to remove the �le
in memory (along with writing a log record to stable stor-
age), while FileScale invalidates nodes in its cache, writes a
log record, and asynchronously deletes related tuples in the
database system. Since the latency of the individual deletes
was the bottleneck, the latency numbers were only slightly
impacted when height of the tree changed (when keeping
the number of deleted �les constant). Nonetheless, as ex-
pected, the overall latency of HDFS was slightly faster than
FileScale. This is because FileScale’s caching layer must
be robust to situations in which child inodes are removed
from the cache. Therefore, FileScale uses identi�ers instead
of direct pointers to children, and require a hashmap lookup
the current location in memory of a particular ID.

465

SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA Gang Liao and Daniel J. Abadi

1 thread 4 threads 8 threads 16 threads 32 threads 64 threads
Th

ro
ug

hp
ut

 (o
ps

/s
ec

)
0

20
00

40
00

60
00

80
00

HopsFS - Create Files
100 1000 10000 100000

HDFS - Create Files
100 1000 10000 100000 1000000

FileScale - Create Files
100 1000 10000 100000 1000000

0
200
400
600
800

100 1000 10000 100000

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

0
2,

00
0

4,
00

0
6,

00
0

8,
00

0
10

,0
00

HopsFS - Open Files
100 1000 10000 100000

HDFS - Open Files
100 1000 10000 100000 1000000

FileScale - Open Files
100 1000 10000 100000 1000000

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

0
20

00
40

00
60

00
80

00

HopsFS - Delete Files
100 1000 10000 100000

HDFS - Delete Files
100 1000 10000 100000 1000000

FileScale - Delete Files
100 1000 10000 100000 1000000

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

0
2,

00
0

4,
00

0
6,

00
0

8,
00

0

HopsFS - Rename Files
100 1000 10000 100000

HDFS - Rename Files
100 1000 10000 100000 1000000

FileScale - Rename Files
100 1000 10000 100000 1000000

0

200

400

600

100 1000 10000 100000

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

0
20

00
40

00
60

00
80

00

HopsFS - Mkdirs
100 1000 10000 100000

HDFS - Mkdirs
100 1000 10000 100000 1000000

FileScale - Mkdirs
100 1000 10000 100000 1000000

Figure 5: The throughput of basic operations: create, open, and rename.

1.2

2.1

90.8

1.4

2.1

40.4

1.2

2.6

14.9

0.02

0.04

0.10

0.32

2.59

0.02

0.04

0.10

0.40

2.67

0.03

0.05

0.09

0.35

2.74

0.02

0.03

0.06

0.24

1.42

0.02

0.03

0.07

0.25

1.38

0.02

0.03

0.06

0.35

1.58

La
te

nc
y (

se
co

nd
s)

10−2

10−1

1

101

102

HopsFS - Remove Directory
100 1000 10000 100000 1000000

HDFS - Remove Directory
100 1000 10000 100000 1000000

FileScale - Remove Directory
100 1000 10000 100000 1000000

Figure 6: Recursive delete all files under the root directory.

We found that HopsFS transactions continuously time-
out at more than or equal to 100,000 files (that appear to be
caused by deadlocks). For the smaller experiments, we found

that the latency of HopsFS are between one and two orders
of magnitude worse than HDFS and FileScale (the figure
uses a log scale y-axis). The relative performance between

466

FileScale: Fast and Elastic Metadata Management for Distributed File Systems SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA

FileScale - Open Files
FileScale - Rename Files

HDFS - Open Files
HDFS - Rename Files

Th
ro

ug
hp

ut
20

00
50

00
10

00
0

Files Per Directory
101 102 103 104 105 106

(a) Total throughput varying the depth of 106 �les.

Figure 7: Large directory experiment.

HopsFS and HDFS is consistent with the results from Section
7.4.1 of the HopsFS paper [39] where it is explained that
HopsFS performs poorly on these types of workloads be-
cause they are executed in many separate small transaction
batches. Surprisingly, the performance of HopsFS improved
when the depth of the tree being deleted increased. This is
because deleting directories that contained a large number
of �les resulted in increased lock contention for the directory
lock. By increasing the depth of the tree being deleted, there
were fewer �les per directory to delete, which reduced lock
contention in the system.

7.2.3 Large Directories. Figure 7(a) shows the throughput
of 64 threads performing �le open and rename operations
within a directory that varies in size from 10 to 1,000,000
�les. For most directory sizes, the performance of HDFS
and FileScale are similar. However, in extreme cases, when
directories contain a million �les, the performance of the re-
name operation in HDFS drops substantially. This is because
the list of children of a directory are stored as an ArrayList,
and renaming �les requires deleting elements from this list
and reinserting them in order to keep the list in sorted order.
Over time, these deletes and insertions require the entire
ArrayList to be copied to a new location to improve the
e�ciency of how it is laid out in memory. However, copying
a list that contains 1,000,000 causes a noticeable increase in
latency, which drags down system throughput. In contrast,
FileScale does not require the list of children be kept in
sorted order, since path validation does not require a binary
search at each level (Section 5).

7.2.4 Cache Misses. HDFS requires that all metadata �ts in
memory, whereas FileScale treats memory as a cache of the
underlying database and remains available even when there
is not enough aggregate memory across the nodes in the
deployment to store all metadata in memory. To understand
the extent of the performance drop at reduced memory de-
ployments, we ran an experiment in which we increase the
cache miss rate of FileScale from 0% to 30%5 and measure
the throughput reduction and latency increase on �le create
and open operations. The results are shown in Figure 8, and
the original results for HDFS and HopsFS (from the previous
experiments) are shown for comparison (even though HDFS
5Cache miss rates above (or even close to) 30% is extremely rare in practice.

479

6803

6865
6746 5742 4242 2265

8720
8128

5359 3679 1802

8849

2703

0% 1% 5% 10% 30%

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

0
5,

00
0

10
,0

00

Create Files
HopsFS HDFS FileScale

Open Files
HopsFS HDFS FileScale

(a) The throughput of creating and opening �les.

209

15 15 15
17

24
44

11
12

19
27

55

11

37

La
te

nc
y

(s
ec

on
ds

)

1
10

10
0

Create Files
HopsFS HDFS FileScale

Open Files
HopsFS HDFS FileScale

(b) The latency of creating and opening �les.

Figure 8: Cache miss penalty.

cannot run in this scenario). For each experiment, we used
16 threads to operate on 100,000 �les concurrently.

Overall, the throughput and latency of FileScale degrades
gracefully as the cache miss rate increases. The performance
of open �le operations degrades faster than for create opera-
tions because opening �les can be served entirely from mem-
ory when data is in cache. (Section 7.6 shows that switching
the database system from VoltDB can reduce the perfor-
mance drop.) In contrast, creating �les always has to push a
log record to stable storage before the operation can commit
regardless of whether the relevant directory data is already
in cache, so the relative cost of a cache miss is smaller.

In practice, the number of cache misses can be monitored
and action taken to alleviate performance problems. Speci�-
cally, the proxy server in FileScale can leverage Hadoop’s
existing monitoring component to immediately re-balance
the mount table in FileScale’s state store when performance
decreases due to cache misses.

7.3 Multi-server Experiments
We next investigate the scalability of the di�erent system
architectures using multi-server deployments. We start with
relatively small �ve-node deployments. HDFS does not sup-
port partitioning the same �le system namespace across
multiple NameNodes6, but it can use the additional nodes to
support HA (high availability). Therefore we set it up to use
two NameNodes (in an active/standby con�guration) and
three JournalNodes. The journal nodes are used by HDFS
to share logs between the active and standby NameNodes.

6HDFS does support partitioning metadata across NameNodes for di�er-
ent namespaces. We will investigate the performance of this alternative
architecture in Section 7.3.1.

467

SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA Gang Liao and Daniel J. Abadi

When a NameNode writes a log record, it must be written to
a majority of JournalNodes before it is considered durable.

FileScale and HopsFS use a similar con�guration: two of
the �ve nodes are used for NameNodes (but unlike HDFS,
the metadata can be partitioned across them), and the re-
maining three nodes for the database system — VoltDB for
FileScale and NDB for HopsFS. For HA, log records written
by FileScale and HopsFS are written to EBS volumes so
that they remain persistent beyond the life span of AWS EC2
instances (which use only ephemeral storage). For fairness,
we also run a version of HDFS in which log �les are written
to EBS (which we call HDFS-HAebs) as an alternative to the
version in which log �les are written to journal nodes as
described above (which we call HDFS-HAjns).
Figure 9 shows the throughput and latency of �le-create

and �le-open operations under this deployment. The perfor-
mance of HopsFS is almost two orders of magnitude slower
than FileScale for the �le-create benchmark, so the �g-
ure uses a log scale. This di�erence is consistent with the
results presented in Figure 5 that show a large e�ciency
gap between FileScale and HopsFS. HopsFS approximately
doubles its performance as the number of NameNodes dou-
bles from one NameNode (HopsFS1nn) to two NameNodes
(HopsFS2nn). However, FileScale’s performance also dou-
bles. Since opening �les does not requirewrites to theDDBMS,
a disadvantage of HopsFS (that it must synchronously write
data to the underlying database) is not present, and the per-
formance gap between FileScale andHopsFS ismore narrow
for the ’�le open’ workload.
Writing to EBS instead of the journal nodes improves

HDFS performance for the �le create workload, but makes
no di�erence for the �le open workload which does not re-
quire log records to be written. This enables the performance
of HDFS and FileScale to be equivalent when running on
one NameNode as they were in Figure 5. However the perfor-
mance of FileScale doubles when doubling the number of
NameNodes since it can partition data across them, whereas
HDFS does not partition data and performance remains con-
stant when adding the additional NameNode.

7.3.1 Scalability. We next increase the scale of our exper-
iment by varying the number of NameNodes from 1 to 32
while keeping the number of database nodes constant. The
workload consists of 50% �le-create operations and 50% �le-
open operations that are uniformly spread across the names-
pace. We run two distinct HDFS architectures. The �rst is
the default HDFS architecture in which the entire �le system
belongs to a uni�ed namespace, so that there are no restric-
tions in the �le system operations that can be run. However,
this version must store all �le system metadata on a single
NameNode, as we described above. We also experiment with
HDFS’s router-based federation (RBF) capability, in which

1 101 102 103 104

HopsFS1nn

HopsFS2nn
HDFS-HAjns

HDFS-HAebs
FileScale1nn

FileScale2nn
HDFS-ebs-latency

18790

18648

16309

13957

9371

9277

8290

7016

9382

9258

8163

7118

9376

9125

4433

4516

8914

8359

581

405

4528

4262

308

218

0 2×104
53

5

61

7

107

11

121

14

107

11

122

14

107

11

226

22

112

12

1721

247

221

24

3252

458

O
pe

n
10

6
O

pe
n

10
5

C
re

at
e

10
6

C
re

at
e

10
5

Latency (seconds) Throughput (ops/sec)

Figure 9: A multi-server deployment.

the namespace is partitioned, and the associated metadata
for each partition can be managed by di�erent NameNodes.
Although the functionality of HDFS RBF is severely limited —
for example, the multi-partition rename operations we run in
Section 7.3.2 cannot be supported — it can support the simple
�le open and create operations used for this benchmark.
HopsFS ran into a bottleneck at the database layer at 16

NameNodes. Therefore we ran two versions of HopsFS —
one with only three database nodes where the bottleneck is
observed, and one with eight database nodes that avoids the
bottleneck. FileScale did not experience the same bottleneck
since it puts less pressure on the database layer by writing
to the database in batches asynchronously instead of issuing
synchronous writes for each new �le created. Furthermore,
HopsFS issues a batch query to the database layer at the
beginning of every request to retrieve all the relevant inodes
for the �le path components of the request. This can be
avoided in FileScale when the relevant data is in cache.
Therefore, FileScale only requires 3 database nodes.

The results of this experiment are presented in Figure 10.
HopsFS-8 NDB, HDFS-RBF, and both versions of FileScale
are able to scale linearly — as the number of NameNodes dou-
ble, so too does the total system throughput. Therefore, the
original relative di�erences in performance between HopsFS,
HDFS, and FileScale observed when running on a single
NameNode (see Figure 5) remain present as the system scales.
However, HDFS-RBF has in e�ect half has many NameN-
odes as FileScale and HopsFS since HDFS requires one
hot standby for every NameNode for high availability. As
expected, HDFS-RBF outperforms HDFS’s default implemen-
tation, since the default implementation cannot partition
metadata across the additional NameNodes and thus cannot
scale. Nonetheless, HDFS’s default implementation (along
with HopsFS and FileScale) is able support the full range of

468

FileScale: Fast and Elastic Metadata Management for Distributed File Systems SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA

HopsFS-3 NDB
HopsFS-8 NDB

HDFS-1NN
HDFS-RBF

FileScale-Client
FileScale-Proxy

0

20,000

40,000

1 2 4

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

0

1×
10

5

2×
10

5

3×
10

5

NameNodes
1 2 4 8 16 32

Figure 10: Throughput when scaling NameNodes.

36

92

2,825

6,342

47

504

7,236

38,379

66

757

9,420

98,628

27

53

135

536

dist0%
dist50%

dist100%
local

La
te

nc
y

(m
s)

102

104

106

Move a directory with # files
10 1000 10000 100000

Figure 11: Local vs. distributed move operations.

�le system operations over all metadata, while HDFS-RBF
must partition the namespace.

FileScale-Client corresponds to the watch mode con�gu-
ration of FileScale described in Section 6, while FileScale-
Proxy uses proxy mode. As expected, watch mode performs
better since it is able to save a network hop during request
processing, and avoid the overhead of processing and for-
warding network messages at the proxy layer which shares
physical hardware with the cache layer in the FileScale-
Proxy deployment for this experiment.

7.3.2 Multi-Partition Transactions. Figure 11 shows the av-
erage latency of multi-partition move requests in FileScale7
as the percent of dirty data that must be written back to
the database is varied. When the move operation is single-
partition ("local"), latency is limited by the time to generate
and write the log records to the logging service. For multi-
partition move requests, log records need to be written to
the log �les for both the source and destination NameN-
odes. Furthermore, the move operation requires updating
the primary key (the full path of the �le), which is an ex-
pensive operation in the database layer since it partitions
by the primary key. Nonetheless, when signi�cant amounts
of data need to be written back, it becomes the bottleneck.
Supplemental experiments in Section 7.6 indicate that this
bottleneck can be alleviated by changing the DDBMS.
Figure 12(a), shows the same experiment for distributed

chmod operations. The database layer can process the dis-
tributed chmod transactions with much lower latency since
7In this experiment we omit HopsFS, since it also uses a DDBMS for multi-
partition transactions, and di�erences in performance across systems are
usually attributable to di�erences in the underlying DDBMS.

14
86 233 322 598 1339 2311 2970

La
te

nc
y

(m
s)

102

104

Chmod a directory with 104 files
local dist0% dist5% dist10% dist20% dist40% dist80% dist100%

(a) The latency of changing a directory’s permission.

9
238 754 2933 4681 5236 5795x-axis: (mp%, sp%, cache%)

Th
ro

ug
hp

ut

1

102

104

Chmod a directory with 104 files
(100,0,0) (1,99,0) (0,100,0) (1,49,50) (1,19,80) (1,9,90) (0,0,100)

(b) The total throughput of chmod operations.

Figure 12: Local vs. distributed chmod operations.

they do not require updating the primary key. Nonetheless,
the writing of dirty data prior to transaction processing still
dominates the latency. Figure 12(b) shows the throughput
under varying mixes of multi-partition (MP) transactions,
single-partition (SP) transactions and cache operations. Pure
cache operations (100%) are 7x faster than SP transactions
(100%). As soon as there are any MP transactions in a work-
load, even SP transactions that access the same data must
be performed by the database layer. Therefore, there is more
than a 1% drop in performance between 0%MP and 1%MP.

7.4 Hotspot mitigation
Figure 13 shows FileScale throughput as a hotspot is mit-
igated by re-balancing the mount table and distributing
workloads across multiple NameNodes. We used benchmark
utilities to create 4 subdirectories, all of which are initially
mounted to NameNode 0. The proxy layer is triggered every
60 seconds to modify the mount table and assign each sub-
directory to a new NameNode. The total throughput rises
linearly as the hotspot workloads are re-distributed.

Rebalancing Mount Table

Th
ro

ug
hp

ut

0

10,000

20,000

30,000

Timeline (sec)
0 50 100 150 200

Figure 13: Hotspot Mitigation.

7.5 Flush intervals and disaster recovery
Figure 14(a) shows that size of �ush intervals do not impact
system performance, since the writes to the database layer
are asynchronous. In essence these overheads are pushed to
recovery time. Therefore we experiment with system restore
to investigate this overhead, using the same experimental
setup as for Figure 5. As described in Section 2, HDFS HA
keeps its states (FSImage and EditLog) in a quorum-based

469

SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA Gang Liao and Daniel J. Abadi
Th

ro
ug

hp
ut

1

102

104

Cache Sync Periods (ms)
101 102 103 104

(a) Throughput when varying database sync periods.

177 183
41

374

Replay log in memory/cache
Restore snapshot (106 records)

Flush cache to DB (sync)

La
te

nc
y

(s
ec

s)

0

500

log records in HDFS
103 104 105 106

log records in FileScale
103 104 105 106

0 5.0×101 1.0×102 1.5×102 2.0×102

Restore snapshot (106 records)
Replay log (106 records)

N

am
eN

od
es

8 n
n

4 n
n

2 n
n

1 n
n

FileScale's Latency (seconds)

(b) Latency when recovering from its backups.

Figure 14: System restore operations.

storage so that a standby can take over quickly if the ac-
tive NameNode fails. Similarly, the database snapshot of
FileScale provides a transactional point-in-time consistent
copy of all �le metadata, and the separated logging system
records every changes from the last snapshot.

Figure 14(b) compares the latency of restoring snapshots
and replaying logs for the di�erent architectures. FileScale
achieves comparable performance to HDFS when restoring
106 records from a snapshot. In HDFS, the NameNode only
needs to replay edit logs in memory. However, FileScale
must also update the database system after replaying logs
in the cache. Doing this synchronously can add substantial
latency to recovery, while doing this asynchronously works
similarly to how the database layer lags behind the cache
layer in normal operations. In this experiment, as the number
of NameNodes increases from 1 to 8 and �lemetadata spreads
more evenly, FileScale’s restore time decreases linearly.

7.6 The Impact of Database System Choice
FileScale uses a modular architecture such that any data-
base system could be used for the database layer as long as
it supports ACID transactions and provides an interface in
which transactions can be submitted in SQL (with additional
support for stored procedures). Most of FileScale’s function-
ality is implemented using SQL at the database layer, which
makes adding support for a new database system straight-
forward. For example, the original version of FileScale was
built over VoltDB’s open source community edition, but
when we were denied access to their enterprise version, we
added support for Apache Ignite within a few weeks. In con-
trast, the rest of the FileScale codebase took two years of
graduate student work.

15 15 18 19 21 25
15 15 17

24
32

44

6,759

6,472

5,648

5,373

4,705

3,964

6,865

6,746

5,742

4,242

3,214

2,265

Apache Ignite
VoltDB

La
te

nc
y

(s
ec

)

0

20

40

Th
ro

ug
hp

ut

0

5,000

10,000

Cache Miss Rate
0% 1% 5% 10% 20% 30%

Figure 15: Cache miss penalty.

Most metadata operations require asynchronous interac-
tion with the database layer for which the database choice
does not a�ect performance. Therefore, the choice of data-
base system to use in the database layer often makes no
runtime performance di�erence. However, when the cache
layer does not have su�cient memory and cache misses are
frequent, the performance of the database layer starts to
matter. Furthermore, multi-partition transactions always re-
quire synchronous interactions with the database layer. We
therefore explore the impact of di�erent database systems
under these scenarios in which the choice of database system
becomes important. Speci�cally, our experiments explore
the performance impact of replacing VoltDB with Apache
Ignite [3]: an open-source high throughput distributed data-
base. Ignite stores data in memory by default, but also in-
cludes an optional disk tier which we enabled for these ex-
periments. Apache Ignite provides key-value APIs as well as
MapReduce-like computations in addition to ANSI-99 SQL
and ACID transactions.

7.6.1 Cache Misses. To understand the extent of the per-
formance di�erence between using VoltDB vs. Ignite as the
database layer for FileScale, We ran an experiment in which
we measure performance of �le create operations as we
increase the cache miss rate of FileScale from 0% to 30%
and measure the throughput reduction and latency increase
on �le create operations. For each experiment, we used 16
threads to operate on 100,000 �les concurrently, and the re-
sults are shown in Figure 15. The throughput of FileScale
with VoltDB and Ignite falls smoothly as the cache miss rate
rises, and the latency rises gracefully. VoltDB’s performance
declines faster than Ignite’s after 10% cache misses. This is
because Ignite’s Key-value API get() can access the needed
data from the storage using simple, light-weight access meth-
ods. In VoltDB, this was implemented using a standard SQL
statement. Although VoltDB supports pre-compiling these
SQL statements within a stored procedure, the performance
of Ignite’s lighter-weight key-value access methods is faster.

7.6.2 Multi-Partition Requests. As detailed in Section 6.2,
a breadth-�rst search is used in FileScale to �nd all dirty

470

FileScale: Fast and Elastic Metadata Management for Distributed File Systems SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA

0.02

0.06

0.27

2.78

21.82

0.03

0.10

0.67

7.10

70.51Apache Ignite
VoltDB

La
te

nc
y

(s
ec

)

10−2

1

102

Dirty INodes
10 100 1000 10000 100000

Figure 16: Dirty data �ush penalty.

inodes of the relevant data in the cache layer and bulk writes
them to the database layer. After the dirty inodes are written
to the database, The entire multi-partition transaction is then
performed there. We saw in Section 7.3.2 that this write-back
of dirty inodes is often the bottleneck for multi-partition
transactions. Therefore, in this section, we investigate the
performance of this cache �ushing within the context of
distributed transactions in more detail.

To understand the performance of cache �ushing, we ran
an experiment in which the amount of dirty inodes to be
�ushed as part of the transaction was increased from 10 to
100,000. Figure 16 shows the latency of writing dirty data
to VoltDB and Ignite. Ignite supports a putAll() interface
for bulk writes to the database, while the the same process
was done in VoltDB with a bulk INSERT statement. Here
again, avoiding the heavier-weight SQL API allows Ignite to
achieve better performance.

For the transaction itself, we ran two types of operations:
chmod and move. The pseudo code in Listings 1 and 2 shows
how the distributed chmod operation is implemented in
VoltDB and Ignite, where the standard SQL APIs of both
systems is used. The query updates all of the children’s per-
missions in a directory by matching the common ancestor
path of the �les and is implemented using the STARTS WITH
<string -expression> expression in VoltDB. Ignite doesn’t
provide STARTS WITH <string-expression> in its SQLAPI,
so the syntactically equivalent LIKE <string-expression>%
is used instead. The use of the STARTS WITH clause enables
the utilization of available indexes, whereas LIKE requires a
sequential scan, since the compiler cannot tell if the replace-
ment text ends in a percent sign or not and must plan for
any possible string value. This allows VoltDB to be slightly
faster than Ignite in Figure 17 when no dirty data needs to be
�ushed. However, when the amount of dirty data that must
be written back grows, cache �ushing dominates query time,
for which Ignite is faster, as we saw above.

1 -- 1. Update all children in the subtree

2 UPDATE inodes SET permission = ? WHERE parent_name

3 STARTS WITH ?;

4 -- 2. Update the root inode of the subtree

5 UPDATE inodes SET permission = ?

6 WHERE parent_name = ? AND inode_name = ?;

Listing 1: Distributed chmod operation VoltDB.

1.5
3.0

4.4
2.9

7.3

9.5

0.09

2.02

2.87

0.06

3.69

7.16

Apache Ignite VoltDB Apache Ignite VoltDB

Dist Chmod Op Dist Move Op

La
te

nc
y

(s
ec

)

0

5

10

Dirty Data (%) in 10,000 files
0% 50% 100%

Dirty Data (%) in 10,000 files
0% 50% 100%

Figure 17: Distributed chmod and move operations.

1 IgniteCache<Object, Object> cache =

2 ignite.cache("inodes").withKeepBinary();

3 // 1. Update all children in the subtree

4 cache.query(new SqlFieldsQuery("UPDATE inodes SET

5 permission = ? WHERE parent_name LIKE ?%")

6 .setArgs(permission, subtree_path)).getAll();

7 // 2. Update the root inode of the subtree

8 cache.query(new SqlFieldsQuery("UPDATE inodes SET

9 permission = ? WHERE parent_name = ? AND inode_name = ?")

10 .setArgs(permission, parent_name, inode_name)).getAll();

Listing 2: Distributed chmod in Apache Ignite.

The move operation can be broken down into three steps:
1) Match the common ancestor path to obtain descendant
inodes in the subtree. 2) For each child obtained from step (1)
change the �le path (parent name), inode name, and inode
id. Since this involves updating the primary key, which also
serves as the partitioning key, both VoltDB and Ignite require
the updated inodes to be inserted anew into the database
system 3) Delete the old subtree from the database using the
old primary key and commit the transaction.

Since step 2 involves a bulk insert operation, Ignites better
bulk insert performance that we saw in the cache �ushing
experiment helps it perform better than VoltDB for this step.
Therefore, Figure 17 shows Ignite outperforming VoltDB at
all data points, even when there is no dirty data to �ush.

8 RELATED WORK
Merging �le systems and database systems. There has
been a large body of work which focuses on creating a hybrid
system out of �le system and database system components.
For example, DeltaFS, TableFS, IndexFS and ShardFS [43, 44,
52, 54] store metadata in the local LevelDB instance [12].
However, these systems do not leverage distributed database
systems to support multi-node atomic transactions. Instead
they scale metadata via partitioning the �le system names-
pace. In contrast, FileScale supports atomic modi�cations
of all �le system metadata in a global uni�ed namespace.
There also exists a body of work in building �le systems

on top of distributed database systems in order to scale �le
system metadata. CalvinFS [50] uses a deterministic data-
base system called Calvin [51] to store metadata, which sup-
ports high throughput distributed transactions. HopsFS [39]

471

SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA Gang Liao and Daniel J. Abadi

uses a MySQL NDB cluster instead of Calvin, and shares
FileScale’s focus on being a drop-in replacement for HDFS.
Gira�aFS [48] uses HBase for a similar purpose. As described
in Sections 1 and 7, these systems have successfully scaled
metadata management, but su�er from performance and e�-
ciency problems that are especially noticeable when scaling
down to a single node because of the frequent communica-
tion round trips between the �le system and database system.
In contrast, FileScale is designed to avoid synchronous in-
teractions with the database system for most operations.
In industry, Facebook Tectonic [40] delegates �le sys-

tem metadata storage to ZippyDB [36], a linearizable, fault-
tolerant, sharded key-value store. However, ZippyDB only
supports strong consistency for single-shard operations and
does not support cross-shard transactions. Thus Tectonic
cannot provide cross-partition directory move operations.
ADLS [42], (Microsoft Azure Data Lake Store) uses Paxos [32,
33] to maintain metadata that is stored in replicated Hekaton
tables [25] and indexes. However, ADLS is similar to HopsFS
in that it is designed from the beginning for extreme scales,
and cannot be scaled down to e�ciently run on a single node.
Colossus, the next-generation of GFS [28, 37], introduced a
distributed metadata model using BigTable [23] which does
not allow distributed transactions and thus does not allow
multi-partition metadata operations [27, 29]. WinFS [16], Mi-
crosoft’s replacement for NTFS, stores �le system data inside
a DBMS. However, this integration was not performed for
scalability reasons, but rather in order to enhance search ca-
pabilities by integrating SQL with �le system metadata [16].

Federation.Giga+ [41] includes code similar to FileScale’s
Proxy layer in that it divides each directory into a number
of partitions that are distributed across servers. Giga+ uses
a bitmap to map �lenames to directory partitions and to a
speci�c server. However, Gigamust implement their own ver-
sion of atomic multi-partition transactions and high availabil-
ity, whereas FileScale gets these "for free" by leveraging the
DB layer. Furthermore, Giga+ is designed for large scale de-
ployments, and su�ers similar e�ciency problems as HopsFS
when scaling down to single-node deployments. The View
File System (ViewFs) [11] uses the client-sidemount points to
split HDFS into multiple physical namespaces and presents
a single virtual namespace to users. However, client con�gu-
ration changes are required every time a new mount point is
added or replaced, and it is di�cult to roll out these adjust-
ments without a�ecting production work�ows [15]. HDFS
Router based Federation [8, 38] and ByteDance NameNode-
Proxy [4] are extensions to ViewFS-based partitioned fed-
eration that uses routers forward client calls to the correct
NameNode. However, all these systems su�er from the limi-
tation of HDFS Federation we discussed above: no support
for multi-partition atomic requests.

System Metadata
Multi-Partition

Single-node

Operations
In-memory
Performance

DeltaFS [55] LevelDB No Yes
TableFS [43] LevelDB No Yes
IndexFS [44] LevelDB No Yes
ShardFS [52] LevelDB No Yes
Gira�aFS [48] HBase No No
Colossus [29] BigTable No No
Tectonic [40] ZippyDB [36] No No
ADLS [42] Hekaton [25] Yes No
HopsFS [39] MySQL NDB Yes No
CalvinFS [50] Calvin [51] Yes No
ViewFS [11] In-Memory No Yes
Giga+ [41] LevelDB Yes No

HDFS RBF [8] In-Memory No Yes
FileScale Ignite, VoltDB Yes Yes

Table 2: Comparison of related scalable �le systems.

Table 2 compares all the systems discussed above in this
section. All systems we have discussed either support high-
e�ciency in-memory performance on a single node or atomic
multi-partition requests across a distributed/partitioned de-
ployment (or neither), but not both. FileScale’s novelty [35]
is that it leverages distributed database system technology
to support atomic multi-partition requests, while avoiding
synchronous interactions with the database system so that
it can gracefully scale down to single-node deployments.

9 CONCLUSIONS
FileScale’s architecture enables comparable performance
to �le systems that store all data in memory on a single
machine, and yet can also scale linearly as the size of the
metadata scales. Our experiments showed that FileScale can
achieve multiple orders of magnitude superior performance
relative to other approaches for scaling �le system metadata.
FileScale’s architecture also enables elastic scaling of each
layer in the architecture independently.

ACKNOWLEDGMENTS
We thank Zhichao Liu for his early contributions to the
codebase for this project, our shepherd Ashvin Goel for his
guidance, and the reviewers of this paper for their helpful
feedback. This work is supported by the National Science
Foundation under grant IIS-1910613.

472

FileScale: Fast and Elastic Metadata Management for Distributed File Systems SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA

REFERENCES
[1] [n.d.]. Alternate Hash Table for NameNode Memory Optimization.

https://issues.apache.org/jira/browse/HDFS-1114.
[2] [n.d.]. Apache HBase. https://hbase.apache.org.
[3] [n.d.]. Apache Ignite. https://ignite.apache.org.
[4] [n.d.]. ByteDance NNProxy. https://github.com/bytedance/nnproxy.
[5] [n.d.]. HDFS Federation. https://hadoop.apache.org/docs/current/

hadoop-project-dist/hadoop-hdfs/Federation.html.
[6] [n.d.]. HDFS High Availability Using NFS. https:

//hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
hdfs/HDFSHighAvailabilityWithNFS.html.

[7] [n.d.]. HDFS High Availability Using the Quorum Journal Man-
ager. https://hadoop.apache.org/docs/current/hadoop-project-dist/
hadoop-hdfs/HDFSHighAvailabilityWithQJM.html.

[8] [n.d.]. HDFS Router-based Federation. https://hadoop.
apache.org/docs/current/hadoop-project-dist/hadoop-hdfs-
rbf/HDFSRouterFederation.html.

[9] [n.d.]. HDFS Router-based Federation. https://issues.apache.org/jira/
browse/HDFS-10467.

[10] [n.d.]. HDFS scalability with multiple namenodes. https://issues.
apache.org/jira/browse/HDFS-1052.

[11] [n.d.]. HDFS ViewFs Guide. https://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-hdfs/ViewFs.html.

[12] [n.d.]. LevelDB. https://github.com/google/leveldb.
[13] [n.d.]. NNThroughputBenchmark. https://hadoop.apache.org/docs/

current/hadoop-project-dist/hadoop-common/Benchmarking.html.
[14] [n.d.]. Removing Name-node’s memory limitation. https://issues.

apache.org/jira/browse/HDFS-5389.
[15] [n.d.]. Scaling Uber’s Apache Hadoop Distributed File System for

Growth. https://eng.uber.com/scaling-hdfs/.
[16] [n.d.]. WinFS: Windows Future Storage. https://en.wikipedia.org/

wiki/WinFS.
[17] 2010. VoltDB. https://www.voltdb.com.
[18] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Je�rey Dean, Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, MartinWicke, Yuan Yu, and Xiaoqiang Zheng. 2016. Ten-
sorFlow: A System for Large-scale Machine Learning. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Implemen-
tation (Savannah, GA, USA) (OSDI’16). USENIX Association, Berkeley,
CA, USA, 265–283. http://dl.acm.org/citation.cfm?id=3026877.3026899

[19] Michael Abd-El-Malek, William V. Courtright, II, Chuck Cranor, Gre-
gory R. Ganger, James Hendricks, Andrew J. Klosterman, Michael Mes-
nier, Manish Prasad, Brandon Salmon, Raja R. Sambasivan, Shafeeq
Sinnamohideen, John D. Strunk, Eno Thereska, Matthew Wachs, and
Jay J. Wylie. 2005. Ursa Minor: Versatile Cluster-based Storage. In
Proceedings of the 4th Conference on USENIX Conference on File and
Storage Technologies - Volume 4 (San Francisco, CA) (FAST’05). USENIX
Association, Berkeley, CA, USA, 5–5. http://dl.acm.org/citation.cfm?
id=1251028.1251033

[20] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie
Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer,
and Roger P. Wattenhofer. 2002. Farsite: Federated, Available, and
Reliable Storage for an Incompletely Trusted Environment. SIGOPS
Oper. Syst. Rev. 36, SI (Dec. 2002), 1–14. https://doi.org/10.1145/844128.
844130

[21] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gre-
gory R Ganger, and George Amvrosiadis. 2019. File systems un�t as
distributed storage backends: lessons from 10 years of Ceph evolu-
tion. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 353–369.

[22] Andrew Audibert. 2019. Scalable Metadata Service in Alluxio: Stor-
ing Billions of Files. https://www.alluxio.io/blog/scalable-metadata-
service-in-alluxio-storing-billions.

[23] Fay Chang, Je�rey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deb-
orah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes,
and Robert E. Gruber. 2006. Bigtable: A Distributed Storage System
for Structured Data. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation - Volume 7 (Seat-
tle, WA) (OSDI ’06). USENIX Association, Berkeley, CA, USA, 15–15.
http://dl.acm.org/citation.cfm?id=1267308.1267323

[24] Je�rey Dean and Sanjay Ghemawat. 2004. MapReduce: Simpli�ed Data
Processing on Large Clusters. In Proceedings of the 6th Conference on
Symposium on Operating Systems Design & Implementation - Volume
6 (San Francisco, CA) (OSDI’04). USENIX Association, Berkeley, CA,
USA, 10–10. http://dl.acm.org/citation.cfm?id=1251254.1251264

[25] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin
Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Heka-
ton: SQL server’s memory-optimized OLTP engine. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of
Data. 1243–1254.

[26] Huang Dongfa. 2022. DanceNN: Overview of Byte Self-
developed 100 Billion Scale File Metadata Storage System. https:
//bafybeigahnjknx333gpi6uoftsoohvdssb5pyalaoavv6l2wbxicqorxwu.
ipfs.infura-ipfs.io/.

[27] Pavan Edara and Mosha Pasumansky. 2021. Big Metadata: When
Metadata is Big Data. Proc. VLDB Endow. 14, 12 (2021), 3083 – 3095.
https://doi.org/10.14778/3476311.3476385

[28] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. 2003. The
Google File System. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles (Bolton Landing, NY, USA) (SOSP ’03).
ACM, New York, NY, USA, 29–43. https://doi.org/10.1145/945445.
945450

[29] Dean Hildebrand and Denis Serenyi. 2021. Colossus un-
der the hood: a peek into Google’s scalable storage system.
https://cloud.google.com/blog/products/storage-data-transfer/a-
peek-behind-colossus-googles-�le-system.

[30] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
2010. ZooKeeper: Wait-free Coordination for Internet-scale Systems.
In Proceedings of the 2010 USENIX Conference on USENIX Annual Tech-
nical Conference (Boston, MA) (USENIXATC’10). USENIX Association,
Berkeley, CA, USA, 11–11. http://dl.acm.org/citation.cfm?id=1855840.
1855851

[31] Felix Hupfeld, Toni Cortes, Björn Kolbeck, Jan Stender, Erich Focht,
Matthias Hess, Jesus Malo, Jonathan Martí, and Eugenio Cesario. 2008.
The XtreemFS architecture - a case for object-based �le systems in
Grids. Concurrency and Computation - Practice and Experience (2008).

[32] Leslie Lamport. 2019. The part-time parliament. In Concurrency: the
Works of Leslie Lamport. 277–317.

[33] Leslie Lamport et al. 2001. Paxos made simple. ACM Sigact News 32, 4
(2001), 18–25.

[34] Haoyuan Li. 2018. Alluxio: A Virtual Distributed File System. https:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-29.pdf.

[35] Gang Liao. 2022. The Evolution of Cloud Data Architectures: Storage,
Compute, and Migration. https://drum.lib.umd.edu/items/e591f36a-
a240-42db-8252-196ed4facee9.

[36] Sarang Masti. [n.d.]. ZippyDB: A Distributed key value store. https:
//engineering.fb.com/2021/08/06/core-data/zippydb/.

[37] Marshall Kirk McKusick and Sean Quinlan. 2009. GFS: Evolution on
Fast-forward. Queue 7, 7, Article 10 (Aug. 2009), 11 pages. https:
//doi.org/10.1145/1594204.1594206

[38] Pulkit A. Misra, Íñigo Goiri, Jason Kace, and Ricardo Bianchini. 2017.
Scaling Distributed File Systems in Resource-harvesting Datacenters.

473

https://issues.apache.org/jira/browse/HDFS-1114
https://hbase.apache.org
https://ignite.apache.org
https://github.com/bytedance/nnproxy
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs-rbf/HDFSRouterFederation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs-rbf/HDFSRouterFederation.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs-rbf/HDFSRouterFederation.html
https://issues.apache.org/jira/browse/HDFS-10467
https://issues.apache.org/jira/browse/HDFS-10467
https://issues.apache.org/jira/browse/HDFS-1052
https://issues.apache.org/jira/browse/HDFS-1052
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ViewFs.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ViewFs.html
https://github.com/google/leveldb
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/Benchmarking.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/Benchmarking.html
https://issues.apache.org/jira/browse/HDFS-5389
https://issues.apache.org/jira/browse/HDFS-5389
https://eng.uber.com/scaling-hdfs/
https://en.wikipedia.org/wiki/WinFS
https://en.wikipedia.org/wiki/WinFS
https://www.voltdb.com
http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=1251028.1251033
http://dl.acm.org/citation.cfm?id=1251028.1251033
https://doi.org/10.1145/844128.844130
https://doi.org/10.1145/844128.844130
https://www.alluxio.io/blog/scalable-metadata-service-in-alluxio-storing-billions
https://www.alluxio.io/blog/scalable-metadata-service-in-alluxio-storing-billions
http://dl.acm.org/citation.cfm?id=1267308.1267323
http://dl.acm.org/citation.cfm?id=1251254.1251264
https://bafybeigahnjknx333gpi6uoftsoohvdssb5pyalaoavv6l2wbxicqorxwu.ipfs.infura-ipfs.io/
https://bafybeigahnjknx333gpi6uoftsoohvdssb5pyalaoavv6l2wbxicqorxwu.ipfs.infura-ipfs.io/
https://bafybeigahnjknx333gpi6uoftsoohvdssb5pyalaoavv6l2wbxicqorxwu.ipfs.infura-ipfs.io/
https://doi.org/10.14778/3476311.3476385
https://doi.org/10.1145/945445.945450
https://doi.org/10.1145/945445.945450
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-29.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-29.pdf
https://drum.lib.umd.edu/items/e591f36a-a240-42db-8252-196ed4facee9
https://drum.lib.umd.edu/items/e591f36a-a240-42db-8252-196ed4facee9
https://engineering.fb.com/2021/08/06/core-data/zippydb/
https://engineering.fb.com/2021/08/06/core-data/zippydb/
https://doi.org/10.1145/1594204.1594206
https://doi.org/10.1145/1594204.1594206

SoCC ’23, November 7–9, 2023, Santa Cruz, CA, USA Gang Liao and Daniel J. Abadi

In Proceedings of the 2017 USENIX Conference on Usenix Annual Tech-
nical Conference (Santa Clara, CA, USA) (USENIX ATC ’17). USENIX
Association, Berkeley, CA, USA, 799–811. http://dl.acm.org/citation.
cfm?id=3154690.3154765

[39] Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Ste�en
Grohsschmiedt, and Mikael Ronström. 2017. HopsFS: Scaling Hierar-
chical File System Metadata Using newSQL Databases. In Proceedings
of the 15th Usenix Conference on File and Storage Technologies (Santa
clara, CA, USA) (FAST’17). USENIX Association, Berkeley, CA, USA,
89–103. http://dl.acm.org/citation.cfm?id=3129633.3129642

[40] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel
Zakharov, Abhinav Sharma, Mike Shuey, Richard Wareing, Monika
Gangapuram, Guanglei Cao, et al. 2021. Facebook’s Tectonic Filesys-
tem: E�ciency from Exascale. In 19th USENIX Conference on File and
Storage Technologies (FAST’21). 217–231.

[41] Swapnil V Patil, Garth A Gibson, Sam Lang, and Milo Polte. 2007.
GIGA+ scalable directories for shared �le systems. In Proceedings of the
2nd international workshop on Petascale data storage: held in conjunction
with Supercomputing’07. 26–29.

[42] Raghu Ramakrishnan, Baskar Sridharan, John R Douceur, Pavan Kas-
turi, Balaji Krishnamachari-Sampath, Karthick Krishnamoorthy, Peng
Li, Mitica Manu, Spiro Michaylov, Rogério Ramos, et al. 2017. Azure
data lake store: a hyperscale distributed �le service for big data an-
alytics. In Proceedings of the 2017 ACM International Conference on
Management of Data. 51–63.

[43] Kai Ren and Garth Gibson. 2013. TABLEFS: Enhancing Metadata
E�ciency in the Local File System. In 2013 USENIX Annual Technical
Conference (USENIX ATC 13). USENIX Association, San Jose, CA, 145–
156. https://www.usenix.org/conference/atc13/technical-sessions/
presentation/ren

[44] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson. 2014. IndexFS:
Scaling �le system metadata performance with stateless caching and
bulk insertion. In SC’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE,
237–248.

[45] P. Schwan. 2003. Lustre: Building a �le system for 1000-node clusters.
In Proceedings of the 2003 Linux Symposium (2003).

[46] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. 2010. The Hadoop Distributed File System. In Proceedings
of the 2010 IEEE 26th Symposium on Mass Storage Systems and Tech-
nologies (MSST) (MSST ’10). IEEE Computer Society, Washington, DC,
USA, 1–10. https://doi.org/10.1109/MSST.2010.5496972

[47] Konstantin V Shvachko. 2010. HDFS Scalability: The limits to growth.
; login:: the magazine of USENIX & SAGE 35, 2 (2010), 6–16.

[48] Konstantin V Shvachko and Yuxiang Chen. 2017. Scaling Namespace
Operations with Gira�a File System. USENIX; login (2017).

[49] Jan Stender, Björn Kolbeck, Mikael Högqvist, and Felix Hupfeld. 2010.
BabuDB: Fast and E�cient File System Metadata Storage. 2010 Inter-
national Workshop on Storage Network Architecture and Parallel I/Os
(2010), 51–58. https://doi.org/10.1109/snapi.2010.14

[50] Alexander Thomson and Daniel J. Abadi. 2015. CalvinFS: Consistent
WAN Replication and Scalable Metadata Management for Distributed
File Systems. In Proceedings of the 13th USENIX Conference on File and
Storage Technologies (Santa Clara, CA) (FAST’15). USENIX Association,
Berkeley, CA, USA, 1–14. http://dl.acm.org/citation.cfm?id=2750482.
2750483

[51] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J. Abadi. 2012. Calvin: Fast Distributed Trans-
actions for Partitioned Database Systems. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data (Scotts-
dale, Arizona, USA) (SIGMOD ’12). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/2213836.2213838

[52] Lin Xiao, Kai Ren, Qing Zheng, and Garth A. Gibson. 2015. ShardFS vs.
IndexFS: Replication vs. Caching Strategies for Distributed Metadata
Management in Cloud Storage Systems. In Proceedings of the Sixth ACM
Symposium on Cloud Computing (Kohala Coast, Hawaii) (SoCC ’15).
Association for Computing Machinery, New York, NY, USA, 236–249.
https://doi.org/10.1145/2806777.2806844

[53] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-tolerant Ab-
straction for In-memory Cluster Computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation
(San Jose, CA) (NSDI’12). USENIX Association, Berkeley, CA, USA, 2–2.
http://dl.acm.org/citation.cfm?id=2228298.2228301

[54] Qing Zheng, Charles D Cranor, Danhao Guo, Gregory R Ganger,
George Amvrosiadis, Garth A Gibson, Bradley W Settlemyer, Gary
Grider, and Fan Guo. 2018. Scaling embedded in-situ indexing with
deltaFS. In SC18: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 30–44.

[55] Qing Zheng, Kai Ren, Garth Gibson, Bradley W Settlemyer, and Gary
Grider. 2015. DeltaFS: Exascale �le systems scale better without dedi-
cated servers. In Proceedings of the 10th Parallel Data Storage Workshop.
1–6.

474

http://dl.acm.org/citation.cfm?id=3154690.3154765
http://dl.acm.org/citation.cfm?id=3154690.3154765
http://dl.acm.org/citation.cfm?id=3129633.3129642
https://www.usenix.org/conference/atc13/technical-sessions/presentation/ren
https://www.usenix.org/conference/atc13/technical-sessions/presentation/ren
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/snapi.2010.14
http://dl.acm.org/citation.cfm?id=2750482.2750483
http://dl.acm.org/citation.cfm?id=2750482.2750483
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2806777.2806844
http://dl.acm.org/citation.cfm?id=2228298.2228301

	Abstract
	1 Introduction
	2 HDFS Background
	3 System Architecture
	4 Database Layer
	5 Caching Layer
	5.1 Object Cache
	5.2 Durability

	6 Proxy Layer
	6.1 Request Routing
	6.2 Multi-partition requests

	7 Performance Evaluation
	7.1 Experimental Setup
	7.2 Single-node Experiments
	7.3 Multi-server Experiments
	7.4 Hotspot mitigation
	7.5 Flush intervals and disaster recovery
	7.6 The Impact of Database System Choice

	8 RELATED WORK
	9 Conclusions
	Acknowledgments
	References

