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ABSTRACT
Co-simulation is a powerful technique integrating various simula-
tion tools to create a unified simulation environment. It provides an
in-depth understanding of the interplay between cyber and phys-
ical infrastructures in industrial control systems like smart grids.
HELICS is a framework that facilitates co-simulation development
by providing common interfaces to enhance simulators, synchro-
nize their executions, and exchange information. In this paper, we
propose HELICSAuto, a code instrumentation procedure that auto-
mates the integration of domain-specific simulators with HELICS
APIs. HELICSAuto requires developers to label their source codes
using a pre-defined syntax, after which an interpreter automati-
cally instruments the code with minimal manual involvement. We
demonstrate the effectiveness of HELICSAuto by successfully apply-
ing it to simulators based on PandaPower, PowerWorld, OPAL-RT,
and PyDNP3 to create a transmission-distribution-communication
co-simulation environment for complex smart grids.
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1 INTRODUCTION
Evolving from traditional power grids, modern smart grids are
becoming increasingly complex. Multiple agents in distribution
and transmission systems are replacing the traditional bulky grid.
Embedded computing devices, IP-based communications networks,
and physical processes continuously interact to ensure efficient and
reliable services, constructing today’s cyber-physical infrastructure.
However, profound differences between the characteristics of cyber
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and physical components present enormous challenges in analyzing
grids’ runtime states and planning for long-term stability.

Research communities and industrial sectors heavily rely on
co-simulations to obtain an in-depth understanding of the cou-
pling between cyber and physical infrastructures in smart grids.
Co-simulation integrates multiple models, which are developed in-
dependently for domain-specific tasks, to create a new shared and
holistic simulation environment. According to some co-simulation
standards and their reference models, e.g., Functional Mock-up In-
terface (FMI), High-Level Architecture (HLA), and AIOMAS library
[5, 11, 20], co-simulation usually includes three logical components
abstracted out from detailed implementations, i.e., Time Regulation,
Synchronization, and Data Exchange. These components serve as
the foundation to allow each involved domain-specific simulator
to iterate according to its execution steps but converge at synchro-
nization points, where simulation states are exchanged between
them.

After identifying shortcomings in the existing co-simulation
environments, Pacific Northwest National Laboratory (PNNL) de-
veloped the Hierarchical Engine for Large-scale Infrastructure Co-
Simulation (HELICS). Designed to integrate various power grid en-
vironments, HELICS enables high-performance cyber-physical co-
simulation to reveal complex dependencies between transmission,
distribution, and communication components [15]. A recent study
shows that HELICS was more scalable than other co-simulation
frameworks, e.g., up to 100x more scalable than Mosaik by support-
ing one million simulation instances [3]. To create “federates" that
can be orchestrated under the HELICS co-simulation federation,
HELICS provides development APIs to instrument domain-specific
simulators. However, this procedure can be manual, repetitive, and
error-prone, especially when creating large-scale co-simulations.

In this paper, we introduce HELICSAuto, a code instrumenta-
tion procedure that automates co-simulation development based
on HELICS. HELICSAuto leverages the fact that HELICS conforms
to the general co-simulation standard, which enables us to map spe-
cific APIs with standard co-simulation components. With HELIC-
SAuto, simulator developers can mark the location of the Time
Regulation, Synchronization, and Data Exchange in the source code
following a simple and predefined syntax. HELICSAuto then auto-
mates the instrumentation of specific HELICS APIs for correspond-
ing functionalities, creating federates that HELICS can directly
orchestrate. Each federate can iterate based on its time step while
communicating with the HELICS orchestrate (a HELICS broker) to
ensure that all federates converge (e.g., data exchange) at synchro-
nization points before continuing their simulations. HELICSAuto
significantly reduces the manual efforts in creating co-simulation
federates and significantly reduces the learning curve of HELICS
APIs. Furthermore, if HELICS changes its API signatures (e.g., API
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name or the parameter types), HELICSAuto can automatically up-
date the source code with the new APIs.

In our evaluations, HELICSAuto has demonstrated the success-
ful implementation on the simulator written in Python or can be
controlled through a Python API, e.g., PandaPower [16], Power-
World (enhanced with SimAuto Python API) [17], OPAL-RT [14],
and PyDNP3 library [18]. With minimal manual involvement, we
successfully use HELICSAuto to create a complicated transmission-
distribution-communication co-simulation for today’s smart grid
environment.

2 BACKGROUND
As shown in Figure 1, HELICS is a co-simulation framework for
power grids’ cyber-physical infrastructure. It is capable of running
up to 1 million simulation instances [3], making it feasible for a real-
world power grid case [4]. HELICS instruments domain-specific
simulators in their source codes to achieve functionalities such as
Time Regulation, Synchronization, and Data Exchange. Each simu-
lator participating in the HELICS co-simulation is referred to as a
federate, which iterates based on its time steps. When encountering
a synchronization point set through the HELICS API (also referred
to as convergence points), the federate blocks its local simulation and
inquires the HELICS broker to move on to the next iteration. Only
when the broker receives requests from all participated federates
does it send the responses to the federates, unblocking their local
simulation. Federates can maintain specific data exchange orders
by performing read or write data before or after the synchroniza-
tion points through a publish-subscribe mechanism. Following this
procedure, HELICS iterates federates’ simulations at the discrete
synchronization points.

Figure 1: High-level logic in HELICS.

Comparison with Distributed Simulation. Similar to a co-
simulation framework, distributed simulation also leverages mul-
tiple agents to achieve simulation tasks. However, different from
co-simulations that focus on how to orchestrate involved simu-
lators in terms of data exchange, distributed simulation requires
algorithms to ensure fine-grained ordering among data consumed
and produced by each agent. There are two types of parallel dis-
tributed simulation algorithms [1]. The optimistic algorithm allows
each agent to continue the simulation without blocking until a con-
flict emerges and requires some agents to roll back to an error-free
state. On the other hand, the conservative algorithm blocks agents at
a certain time stamp and only allows them to continue simulations
if doing so introduces no conflicts [13].

HELICS’ synchronization logic shares some similarities with
conservative distributed simulation algorithms. We emphasize two
major differences. First, coordinated by HELICS broker, federates
are synchronized at specific locations in simulators’ source code;
it does not have a global virtual time scheduling all federates ex-
ecution. Second, HELICS does not provide algorithms to define

the correct data dependency among different federates within the
co-simulation; it leaves developers to determine the appropriate
locations to insert its APIs to consume or generate data values.

3 RELATEDWORK
Some existing studies develop various designs and implementations
related to modeling, analyzing, and optimizing cyber-physical in-
frastructures of power grids. For example, studies in [6, 21] present
comprehensive surveys. The existing co-simulation of the cyber-
physical smart grids mainly consists of three layers. The physical
layer models the physical interconnection of electronic devices. The
network layer interconnects sensors and actuators. The application
layer enables human operations.

In addition, various research work has attempted to enhance
the fidelity, functionality, and performance of each layer of the
smart grid co-simulation testbed. For example, Lin et al. have ex-
plored various implementations, such as network emulation, cloud
environments, and hardware switches, to achieve realistic commu-
nications in a laboratory setting [12]. Some testbeds incorporate
software-defined networking (SDN) techniques to enable network
programmability [7, 8]. Commercial tools present interfaces that
incorporate real electronic devices into simulations in the physical
layer. The Real-Time Digital Simulator (RTDS) [19] and OPAL-
RT [14], for instance, allow for real-time event injection without
the need to reboot simulations, providing more dynamic simula-
tion capabilities. In the application layers, industrial sectors and
research communities have different priorities. The former focuses
on developing a friendly graphical user interface, while the latter
prefers a scripting interface to automate research tasks.

Apart from enhancing individual layers, the primary objective
of HELICS is to increase the efficiency of coupling different simula-
tion platforms, rather than providing specific simulation techniques.
This work aims to provide additional support to HELICS by au-
tomating the process of instrumenting simulation source codes
with the appropriate APIs, reducing error-prone manual efforts.

4 HELICSAUTO DESIGN
We present HELICSAuto, a tool that automates federate creation
by instrumenting domain-specific simulators with HELICS APIs.
Figure 2 illustrates the process. Developers are required to label
their simulators with common co-simulation functionalities such
as Time Regulation, Synchronization, and Data Exchange. These
labels are added as comments for two reasons. First, developers can
comfortably add the labels without affecting the execution of the
original simulator. Second, HELICSAuto can define a consistent
syntax of the labels, irrespective of the implementation language
used by the domain-specific simulators. At present, HELICSAuto
can instrument simulators written in Python, which is commonly
used for physical process simulators, particularly power grid simu-
lators. It is worth noting that because HELICS provides C++ and
Python APIs, HELICSAuto can be extended to support simulators
built on other programming languages supported by HELICS.

Table 1 outlines the syntax defined in HELICSAuto to label sim-
ulators based on common co-simulation functionalities defined
in [20]. The labels #HA:Register and #HA:Destroy correspond to
HELICS APIs, such as helicsCreateValueFederateFromConfig and
helicsFederateDisconnect, that establish and terminate connections
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Table 1: HELICSAuto labels used to mark simulators.

Figure 2: The design overview of HELICSAuto.

with the HELICS broker. The location marked with #HA:Execute is
where we instrument codes that regulate simulation times, includ-
ing the duration of each synchronization step and the entire syn-
chronization process. A loop is wrapped around the original simula-
tion codes, starting with #HA:Execute and ending with #HA:Destroy.
Also, #HA:Sync labels the synchronization point, which is imple-
mented by HELICS API helicsFederateRequestTime. The HELICS
broker coordinates these synchronization points with each involved
simulator blocking execution until all simulators reach the synchro-
nization point. To exchange data, we use #HA:Pub and #HA:Sub
labels along with associated parameters, enabling HELICS APIs
to publish and subscribe VAR_NAME from the simulation source
codes to the “SHARE_VAR” recognized by the HELICS broker to
exchange data. Since APIs differ depending on the shared variable
type, we explicitly include the type (i.e., VAR_TYPE) in the label
to enable HELICSAuto to instrument the appropriate APIs to the
source code.

HELICSAuto scans the simulator’s source code and instruments
the appropriate API based on the labels presented in Table 1. One
challenge of instrumenting Python codes is to track the indentation
in the source codes, which is used to group the same live code range.
To overcome this challenge, we use a variable as a stack to track the
indentation while scanning the code line-by-line. This implementa-
tion is suitable for the most common simulation procedure in power
grids. To handle complex situations in more complex simulators
(e.g., duplicated variables introduced by instrumentation), we will
integrate HELICSAuto with a compiler-assisted tool such as Yacc,
which we leave for future work.

To elucidate the procedure, we use a motivating example de-
picted in Figure 3, which includes two federates representing two
simulation processes (named as Simulator1 and Simulator2). We
assume that the variable consumption in Simulator2 needs the value
of the variable production updated by Simulator1. To simplify the
discussion, we only show critical code snippets while using ellipses
to represent other codes. Although both federates run simulations

Figure 3: An example of HELICSAuto instrumenting simula-
tor source codes.

independently, their executions are synchronized at #HA:Sync with-
in each iteration of the “while” loop. After the instrumentation, we
ensure that the variable production is updated before the synchro-
nization point, while the variable consumption is used after that
point. Consequently, federate 2 always uses the updated values
from federate 1.

Discussion. HELICSAuto automates the process of federate
creation by instrumenting simulation source codes with HELICS
APIs. Developers are responsible for labeling their simulators with
co-simulation functionalities and determining the appropriate loca-
tions to put the labels based on the dependencies of data exchanged
in the co-simulation. Because the labels follow a simple syntax,
HELICSAuto can be enhanced with a model-checking functional-
ity to verify co-simulation logic, similar to the language proposed
in [10]. This enhancement will be a future direction for our work.

Figure 4: The setup of co-simulation in the case study.

5 CASE STUDY
In this section, we present a case study to demonstrate HELIC-
SAuto’s functionality. Figure 4 shows the co-simulation setup
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Algorithm 1 Steps to Perform Distribution-Transmission-
Communication Co-simulation
1: Step 1: The PyDNP3 federate performs a round of network

communication
2: Step 2: The PandaPower federate changes load demands ran-

domly and performs a steady state power flow analysis, obtain-
ing a feeder generation

3: Step 3: Check for the convergence of the synchronization
points, i.e., Step 1 and Step 2 are finished

4: Step 4: Update the load demands of Bus 5 with the feeder
generation and perform a power flow analysis of the IEEE 9-
bus transmission system

5: Step 5: if the simulation is not finished (by comparing to a
pre-set counter), go to Step 1

of three federates running on three computers connected
via a routable network, creating a distribution-transmission-
communication co-simulation. The details of HELICSAuto’s instru-
mentation are presented in Listing 1 and Listing 2 in the Appendix.
The first federate exploits the open-source PyDNP3 library to sim-
ulate communications between a master and an outstation based
on the DNP3 protocol widely used in today’s power grids [18]. The
second federate uses the PandaPower simulator to simulate a 33-bus
distribution system from [2]. The last federate leverages the Pow-
erWorld simulator to simulate an IEEE 9-bus transmission system.
To enhance the PowerWorld with HELICS APIs, we leverage its
Python SimAuto interface to configure and execute the simulation.
The co-simulation follows the procedure presented in Algorithm 1.
We assume the 33-bus distribution system is attached to bus 5 of
the IEEE 9-bus system. Consequently, the active and reactive power
provided by the feeder bus (equivalent to the slack bus) to the 33-
bus distribution system is transferred as newly added load demands
for bus 5. In this co-simulation, we perform a control operation in
the DNP3 communication to indicate that a change happens in the
distribution system, which updates the state of the transmission
system.

In our experiments, we run the co-simulation for 7,200 time steps
with 432,000 time units defined in HELICS (the actual latency of
each time unit is specified by developers). During the simulation,
we measure the actual execution time of each simulation performed
in Step 1 (i.e., DNP3 network communication), Step 2 (the power
flow analysis in PandaPower), and Step 4 (the power flow analysis
in PowerWorld). As shown in Figure 5, because the network simu-
lation is performed through the loopback network interface in the
same machine, the round-trip time is less than 0.1 millisecond, two
magnitudes smaller than the execution time of power flow analyses
performed in PandaPower and PowerWorld.
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Figure 5: Simulation execution time in each federate.

Based on the measurements in Figure 5, we intentionally add a
latency of 0.1 seconds in the federate for the DNP3 network simu-
lation. Even though we add latency in one federate, the synchro-
nization enforced by HELICS makes the simulation in all federates
move forward with the same latency. Figure 6 shows the overall
runtime communication patterns from the three federates, quanti-
fied by the number of packets per second during the co-simulation.
By zooming in on the first two seconds of the simulation shown in
Figure 7, we observe that the simulation within each federate, even
though their starting times are different, moves forward with the
same time unit of 0.1 second.
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Figure 6: Network communication during co-simulation.
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Figure 7: Synchronization timestamps in the first two seconds
of three federates.

6 CONCLUSION AND FUTUREWORK
In this paper, we present HELICSAuto, a code instrumentation
procedure automating the co-simulation development based on
HELICS. HELICSAuto provides labels for simulator developers to
mark synchronization logic in their domain-specific tools, and a line-
by-line interpreter automatically instruments the source codes with
HELICS APIs based on the synchronization logic. Our evaluation
has demonstrated the successful use of HELICSAuto to transform
simulators written in PandaPower, PowerWorld, OPAL-RT, and a
PyDNP3 into federate entities executable in HELICS. In future work,
we will improve HELICSAuto by (i) integrating the instrumentation
functionality in the Yacc compiler framework to perform code
instrumentation in more complicated simulators, and (ii) building a
bridge to the model-checking module to verify co-simulation logic.
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A EXAMPLE OF APPLYING HELICSAUTO ON
PANDAPOWER SIMULATION

Listing 1: Example PandaPower simulator enhanced with
HELICSAuto labels.
import pandapower as pp
import pandapower.networks as pn
import numpy as np

net = pn.case33bw ()
ori_load = net.load.loc[:, 'p_mw']. to_numpy ()
n_load = ori_load.size
np.random.seed (1)
#HA:Register

#HA:Execute
load_var = np.random.randint(low = 90, high = 110, size =

n_load) / 100
new_load = np.multiply(ori_load , load_var)
net.load.loc[:, 'p_mw'] = new_load
pp.runpp(net)
feeder_p_mw=net.res_ext_grid.loc[0, 'p_mw']
feeder_q_mvar=net.res_ext_grid.loc[0, 'q_mvar ']
feeder_s = complex(feeder_p_mw , feeder_q_mvar)
#HA:Pub , feeder_s , complex , Feeder_S

#HA:Sync

#HA:Destroy

Listing 2: HELICS federate of the example PandaPower sim-
ulator created by HELICSAuto.
import pandapower as pp
import pandapower.networks as pn
import numpy as np
net = pn.case33bw ()
ori_load = net.load.loc[:, 'p_mw']. to_numpy ()
n_load = ori_load.size
np.random.seed (1)
#HA:Register
import helics as h
fed=h.helicsCreateValueFederateFromConfig('config.json')
#HA:Execute
h.helicsFederateEnterExecutingMode(fed)
hours = 1
total_interval = int(60 * 60 * hours)
update_interval = int(h.helicsFederateGetTimeProperty(fed

, h.HELICS_PROPERTY_TIME_PERIOD))
grantedtime = 0
while grantedtime < total_interval:

load_var = np.random.randint(low = 90, high = 110,
size = n_load) / 100

new_load = np.multiply(ori_load , load_var)
net.load.loc[:, 'p_mw'] = new_load
pp.runpp(net)
feeder_p_mw = net.res_ext_grid.loc[0, 'p_mw']
feeder_q_mvar = net.res_ext_grid.loc[0, 'q_mvar ']
feeder_s = complex(feeder_p_mw , feeder_q_mvar)
#HA:Pub , feeder_s , complex , Feeder_S
pubid = h.helicsFederateGetPublication(fed ,

'Feeder_S ')
status = h.helicsPublicationPublishComplex(pubid ,

feeder_s.real , feeder_s.imag)
#HA:Sync
requested_time = grantedtime + update_interval
grantedtime = h.helicsFederateRequestTime(fed ,

requested_time)
#HA:Destroy
grantedtime = h.helicsFederateRequestTime(fed , h.

HELICS_TIME_MAXTIME)
status = h.helicsFederateDisconnect(fed)
h.helicsFederateFree(fed)
h.helicsCloseLibrary ()
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In Listing 1, we show the snippets of the PandaPower simulator
used in the case study. In this example, we randomly change all load
demands of the 33-bus distribution systems by ±10% and then run
a static power flow analysis to obtain the new generation required
by the feeder to satisfy the updated load demands. Because this
generation determines the load demand of bus 5 in the transmission
system, we label the relevant portions of the source code to enable
necessary data exchange.

In Listing 2, we present the executable HELICS federates that are
created by HELICSAuto based on the source codes in Listing 1. In
the federate, we execute the simulation, i.e., power flow analysis on
randomly changed load demands, in a “while” loop until the total

simulation time expires. After each execution of the simulation, this
federate publishes the result, i.e., feeder generation, so that the other
participated federate (in this case, the PowerWorld simulator) can
use it. In the current implementation, we can also use HELICSAuto
to label simulators implemented in PowerWorld and OPAL-RT,
similar to the labeled source code shown in Listing 1.

Other federates for the PyDNP3 and PowerWorld simulators
created by HELICSAuto are presented at [9]. A comparison of all
these federates reveals that the instrumented HELICS APIs are
common across different simulators transformed into co-simulation
federates, highlighting the versatility of HELICSAuto.
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