
VT-IO: A Virtual Time System Enabling High-fidelity Container-based

Network Emulation for I/O Intensive Applications

GONG CHEN, Illinois Institute of Technology, USA
ZHENG HU, University of Arkansas, USA

YANFENG QU, University of Arkansas, USA

DONG JIN, University of Arkansas, USA

Network emulation allows unmodiied code execution on lightweight containers to enable accurate and scalable networked

application testing. However, such testbeds cannot guarantee idelity under high workloads, especially when many processes

concurrently request resources (e.g., CPU, disk I/O, GPU, and network bandwidth) that are more than the underlying physical

machine can ofer. A virtual time system enables the emulated hosts to maintain their own notion of virtual time. A container

can stop advancing its time when not running (e.g., in an idle or suspended state). The existing virtual time systems focus on

precise time management for CPU-intensive applications but are not designed to handle other operations, such as disk I/O,

network I/O, and GPU computation. In this paper, we develop a lightweight virtual time system that integrates precise I/O

time for container-based network emulation. We model and analyze the temporal error during I/O operations and develop a

barrier-based time compensation mechanism in the Linux kernel. We also design and implement Dynamic Load Monitor

(DLM) to mitigate the temporal error during I/O resource contention. VT-IO enables accurate virtual time advancement

with precise I/O time measurement and compensation. The experimental results demonstrate a signiicant improvement

in temporal error with the introduction of DLM. The temporal error is reduced from 7.889 seconds to 0.074 seconds when

utilizing the DLM in the virtual time system. Remarkably, this improvement is achieved with an overall overhead of only

1.36% of the total execution time.

CCS Concepts: ·Computingmethodologies→Modeling and simulation; ·Networks→Network performance evaluation;

· Computer systems organization → Parallel architectures.

Additional Key Words and Phrases: Virtual Time, Network Emulation, Linux Container, TimeKeeper, Virtualization

1 INTRODUCTION

Testing networked applications is a critical but challenging problem because today’s networks experience
enormous dynamic ranges (e.g., bandwidth, latency, host capability) with incessant and rapid growth. Physical
testbeds allow real-time and high-idelity experiments on real networks and devices, but the scale and lexibility
are limited as it is often too expensive or even infeasible to construct the testing scenarios. Network simulators,
on the other hand, provide great lexibility and scalability, but at the cost of idelity due to the simpliication and
abstraction of the models. A compelling approach that balances scalability and idelity is the network emulator
that allows direct code execution in virtual machines or containers running on a physical machine.

Authors’ addresses: Gong Chen, gchen31@hawk.iit.edu, Illinois Institute of Technology, Chicago, IL, USA, 60616; Zheng Hu, zhenghu@uark.

edu, University of Arkansas, Fayetteville, AR, USA, 72701; Yanfeng Qu, yqu@uark.edu, University of Arkansas, Fayetteville, AR, USA, 72701;

Dong Jin, dongjin@uark.edu, University of Arkansas, Fayetteville, AR, USA, 72701.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1049-3301/2023/12-ART

https://doi.org/10.1145/3635307

ACM Trans. Model. Comput. Simul.

https://doi.org/10.1145/3635307
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3635307&domain=pdf&date_stamp=2023-12-05


2 • Gong Chen, Zheng Hu, Yanfeng u, and Dong Jin

Network emulators provide rapid prototyping of network applications by leveraging virtualization techniques,
such as Xen [9], OpenVZ [1], and Linux Containers (LXC) [18]. While executing binaries instead of abstract models
ensures functional idelity, a network emulator may still face temporal inaccuracy. This is because containers
are multiplexed on a single physical machine, and each container uses the same system clock of the underlying
machine. Additionally, the execution time and order of the containers are non-deterministic during an experiment
as the scheduling is controlled by the host machine’s operating system. Therefore, each container’s perception of
time relects the serialization of execution on the host machine, but not the execution of their tasks.
To address the temporal idelity issue, people develop virtual time systems for virtual machines (VM) and

containers used in a network emulation experiment [7, 8, 11, 12, 14, 17, 19, 20, 34, 36]. Each virtual node has an
independent virtual clock that only advances when the node is in the execution or waiting state. Unchained from
the system clock, the nodes can perceive their own virtual time as running independently and concurrently on
diferent physical machines. TimeKeeper is a container-based virtual time system that follows the aforementioned
principle [20]. Each container has an independent virtual clock and enables processes that run inside it a notion of
virtual time. It circumvents the scheduling of the host machine’s operating system and provides a synchronization
mechanism to control each container’s execution order and duration. Therefore, each container’s clock can
advance at the same rate. TimeKeeper ensures that the perceived virtual time only advances during the process
execution on the CPU. However, the elapsed time on processes should consist of the time elapsed during the
execution burst on the CPU as well as the time waiting for non-CPU tasks to complete, such as disk I/O, network
I/O, and GPU computation. For simplicity, we use the term I/O to refer to the tasks not running on the CPU,
including disk I/O, network I/O, and GPU tasks in this paper. The absence of precise control of I/O time leads to
errors in virtual time advancement.

To tackle this issue, we design and implement a virtual time system, named VT-IO , that integrates precise time
measurement when a container yields the processor for I/O jobs to complete. However, in large-scale network
emulation settings, temporal idelity issues can still arise even with the use of VT-IO, as a result of the competition
for I/O resources among numerous processes, especially when non-CPU resources are heavily utilized. To address
this challenge, we extend VT-IO with a time calibration capability in order to mitigate the temporal errors caused
by resource contention during concurrent I/O operations. VT-IO efectively controls the execution and time
synchronization of containers for both CPU and I/O activities. By making modiications to the Linux kernel,
VT-IO enables the tracking of each process’s I/O states. At the start of each cycle, VT-IO checks if there are any
unattended I/O operations and compensates for the elapsed time during these operations by adjusting the virtual
clock of the corresponding process. To assist with the compensation procedure, we introduce a newly developed
module called the Dynamic Load Monitor (DLM). DLM monitors the system state, including I/O usage and GPU
load, in real-time using tools such as iotop and nvidia-smi. It then utilizes a machine learning-based calibrator
to mitigate the temporal errors introduced by resource contention and accurately calculate the precise virtual
time advancement. We evaluate the performance of VT-IO with DLM and compare it with our previous work
[11] in terms of accuracy in scenarios involving I/O contention. The results demonstrate that the new system
signiicantly reduces the error in I/O time to 0.074 seconds, compared to the original VT-IO with an error of up
to 7.889 seconds. These evaluations were conducted in scenarios where 32 containers simultaneously perform
intensive I/O jobs, highlighting the efectiveness of our approach in mitigating temporal errors caused by resource
contention.
We also demonstrate the advantage of VT-IO in terms of accuracy during I/O operations, synchronization

overhead, and system scalability. We compare the results with measurements from a physical testbed, TimeKeeper,
and VT-IO. VT-IO reduces the error of I/O time measurement to 3.6%, while the error is up to 87.31% in TimeKeeper.
VT-IO is a lightweight modiication of Linux Kernel and introduces limited synchronization overhead similar
to TimeKeeper. For instance, the synchronization overhead of 512 containers on 64 CPUs is less than 0.498 ms
per cycle which is around 0.091% of the overall execution time. The execution time of the same experiment

ACM Trans. Model. Comput. Simul.



VT-IO • 3

linearly decreases as the number of containers grows. It is worth noting that our main focus in this paper is
centered around the analysis and quantiication of blocking operations, speciically disk I/O, network I/O, and
GPU operations.
The remainder of the paper is organized as follows. Section 2 compares the existing virtual time systems

for network emulation. Section 3 models and analyzes the temporal error of a virtual time system during I/O
operations. Section 4 presents the architecture of VT-IO, a virtual time system that integrates precise I/O time
management. Section 5 describes the model and architecture design of Dynamic Load Monitor with performance
evaluation. Section 6 illustrates the implementation details of VT-IO, including synchronization and I/O time
compensation. Section 7 evaluates VT-IO in terms of accuracy, synchronization overhead, and scalability. Section
8 concludes the paper with future work.

2 RELATED WORK ON VIRTUAL TIME SYSTEMS FOR NETWORK EMULATION

Virtualization technologies, such as Xen [9], OpenVZ [1], and Linux Containers (LXC) [18], provide isolated
execution environments (e.g., ile system, network interfaces, process tree, etc.) for experimenters to execute raw
network application code on a physical machine. Such testbeds can raise the issue of temporal idelity due to
the increased computational cost. When the resources on the physical machine, such as CPU, memory, network
bandwidth, and disk I/O, are insuicient to serve all the processes, certain processes have to yield and wait for
resources while the system clock continues to advance. Additionally, the resource allocation controlled by the
host machine does not guarantee fair dispatch for each process.
One efective approach to addressing this issue is to develop and integrate a virtual time system into the

network emulation [7, 8, 11, 12, 14ś17, 19, 20, 33, 34, 36]. The fundamental idea is to decouple emulated processes
from the system clock and assign each process an independent virtual clock that only advances during the
process’s execution. We compare the existing virtual time systems for network emulation and summarize the
results in Table 1.

Table 1. Comparison of Virtual Time System for Network Emulation

System Virtualization

Technique

TDF per-

VM

TDF

Adaptive

TDF

OS Schedul-

ing Modiica-

tion

Simulator

Integra-

tion

Distributed

Memory

CPU-

Instruction

I/O Com-

pensa-

tion

DieCast[14, 15] Xen, Paravirtu-

alization

✓

SVEET! [12] Xen, Paravirtu-

alization

✓ PRIME

[21]

VT-OpenVZ [19,

36]

OpenVZ

container

✓ ✓ ✓ S3F [25]

TimeKeeper [20] Linux con-

tainer

✓ ✓ ✓ NS-3 [27]

VT-Mininet[34]

DSSnet[16]

Minichain[33]

Linux con-

tainer

✓ ✓ ✓ S3F[25],

OpenDSS[2]

Distributed

VT[17]

Linux con-

tainer

✓ ✓ ✓ OpenDSS[2] ✓

Kronos [7, 8] Linux con-

tainer

✓ ✓ ✓ S3F [25] ✓

VT-IO [11] Linux con-

tainer

✓ ✓ ✓ ✓

ACM Trans. Model. Comput. Simul.



4 • Gong Chen, Zheng Hu, Yanfeng u, and Dong Jin

One of the pioneering works to study virtual time in network emulation is DieCast [14, 15], which modiies the
Xen hypervisor to make the time in a virtual machine (VM) advance more slowly than real-time, and therefore,
to scale the resource on the host machine to match the behavior of target applications. DieCast introduces a key
variable, time dilation factor (TDF), which is the ratio between the rate at which time passes in the physical world
(wall clock time) to the VMs’ perception of time (virtual time) [15]. A TDF of ten indicates that the time on the
host machine advances ten seconds while the virtual time in the VM only advances one second. As a result, the
resources on the host (e.g. CPU, network I/O, and disk I/O) appear to be ten times more powerful. For instance, a
100 MHz CPU is scaled to 1 GHz from the emulated host’s viewpoint. Based on this idea, SVEET! [12], a TCP
performance evaluation testbed, was proposed to evaluate TCP applications in a high-idelity setting.

However, DieCast and SVEET! use Xen, which pre-allocates physical resources, such as CPU, and network I/O,
to VMs. Each VM has an independent stack of the OS kernel, which could easily use up the physical resources on
the host machine and thus afect the scalability of the emulation experiments. Additionally, the execution order
and execution burst length on each VM is controlled by the hypervisor, not the emulator. As a result, the virtual
time of each VM may not be synchronized, especially on a ine-grained time scale.

To enable high-idelity and scalable emulation, VT-OpenVZ [36] presents a virtual time system for OpenVZ [1],
an OS-level virtualization technology. OpenVZ allows multiple lightweight virtual environments (VE) sharing
the same OS kernel. Each VE is assigned an independent virtual clock, and the modiied scheduler determines the
execution burst length and order for each VE. Therefore, all virtual clocks advance in a synchronization window
to improve the temporal idelity and ensure the causality of the emulated events. Furthermore, other than scaling
up the computational resources by slowing down the time (e.g., DieCast), VT-OpenVZ can also speed up the
virtual time advancement and thus accelerate the experiments when the workload is light.

To further improve the scalability and lexibility, Lamps et al. proposed a Linux container [18] based virtual
time system called TimeKeeper [20]. According to the experimental results, TimeKeeper is highly scalable and is
capable of managing 100X more virtual nodes than VT-OpenVZ on the same physical host. TimeKeeper also
provides interfaces that enhance the lexibility of the system. For instance, TimeKeeper supports dynamic TDF
change and synchronization of LXCs’ virtual time, even if the containers have diferent TDFs [20]. Therefore,
users can easily control the speed of their experiments.

Due to the simplicity and precise virtual time advancement, multiple testbeds were built on top of TimeKeeper
to evaluate various applications. VT-Mininet integrates a virtual time system into Mininet [3], a software-deined
networking (SDN) emulator. Inspired by TimeKeeper, VT-Mininet modiies the Linux kernel to enable TDF, virtual
time, and synchronization for each container, which signiicantly improves the scalability and idelity of Mininet.
DSSnet[16] integrates VT-Mininet with OpenDSS [2], a power distribution system simulator, which expands the
inluence of virtual time from the cyber-domain to the cyber-physical domain. Furthermore, a distributed virtual
time system [17], is developed on top of DSSnet, which enables virtual time synchronization across multiple
embedded Linux devices and unchains the bottleneck of emulation tied to a single physical host. Mininchain [33],
demonstrates the usability of virtual time supported emulation in a real-world application. It directly executes the
unmodiied Ethereum code [32] in the containers and utilizes TDF to speed up blockchain emulation experiments.
While most existing approaches derive the virtual time based on the system clock, Kronos [7, 8] is a new

method to advance virtual time based on CPU instructions. Instead of controlling how long processes can be
executed on the CPU using hrtimer [13] and signaling techniques [10], Kronos controls a process’s virtual time
based on the binary instruction counts measured by ptrace [6] and perf [5]. Compared with the timer-based
virtual time systems, Kronos enhances the scalability and temporal idelity of the emulation system. Kronos also
enables the precise quantiication of the computational power of containers. Each container is speciied with a
variable, called relative CPU speed, which indicates the number of instructions processes can complete per second.
For instance, a relative CPU speed of one million indicates that the process advances for one second if one million
instructions have been executed. Kronos leverages the relative CPU speed to translate the instruction counts to

ACM Trans. Model. Comput. Simul.



VT-IO • 5

virtual time. Therefore, Kronos improves the repeatability of the emulation experiments because the virtual time
advancement is completely decoupled from the host machine and is only dependent on the application and the
coniguration of emulation (e.g., relative CPU speed).
Virtual time system, such as TimeKeeper and Kronos, ensures precise virtual time advancement when the

application code is executed on CPUs. However, the efective elapsed time on processes should consist of the
time elapsed during the execution burst on the CPU as well as the time waiting for I/O tasks to complete. Lack
of I/O time management would largely impact the temporal idelity of emulation. In this work, we propose
VT-IO , a virtual time system that integrates precise virtual time for both CPU and I/O intensive tasks. We also
develop a module called Dynamic Load Monitor that enables precise I/O advancement even under serve resource
contention scenarios. The detailed analysis and system design will be presented in Sections 4 and 5.

3 ERROR ANALYSIS OF VIRTUAL TIME SYSTEM WITH I/O INTENSIVE TASKS

Existing works of virtual time systems in network emulation fall into the following two categories: 1) timer-based
approaches [12, 14, 17, 19, 20, 34, 36] that rely on the operating system’s clock to control the execution of emulated
processes and 2) instruction-count based approaches [7, 8] that map the advancement of virtual time to the
number of assembly instructions executed by emulated processes. Both designs enable each Linux container and
the emulation processes to advance their clocks independently from the system clock during the execution. This
section explores the limitations of the existing virtual time systems during intensive I/O operations. In particular,
the virtual time is not correctly computed when a Linux container is waiting for I/O-intensive jobs to complete,
such as disk I/O, network I/O, or GPU computation. We use TimeKeeper [20] as a demonstrative case since many
recent works [7, 16, 33, 34], including this work, are inspired by the design of TimeKeeper. We mathematically
model the temporal error caused by I/O operations to illustrate the necessity of integrating precise I/O time
control into the virtual time system.

3.1 Virtual Time Advancement in TimeKeeper

TimeKeeper is a lightweight virtual time system for Linux container (LXC) [18] based network emulation. While
full virtualization (e.g., VMWare [29], VirtualBox [30]) and paravirtualization (e.g., Xen [9]) require a separate
kernel for each virtual machine instance, LXC takes a lightweight approach by allowing multiple Linux instances
running on a shared kernel. TimeKeeper assigns an individual virtual clock to an LXC. The same virtual clock is
shared by all the processes and their child processes inside the LXC. Each virtual clock is associated with a time
dilation factor (TDF) [15], which is deined as the ratio between the rate at which wall-clock time has passed
to the emulated host’s perception of time. For instance, a TDF of 2 means that processes in a time-dilated LXC
perceive the time advancement as one second for every two seconds of wall-clock time. In other words, time is
passed two times slower in the LXC than in the real world. A TDF of 0.5, on the other hand, indicates that the
virtual time in the container advances two times faster than the real-time.

ACM Trans. Model. Comput. Simul.



6 • Gong Chen, Zheng Hu, Yanfeng u, and Dong Jin

Fig. 1. Virtual time advancement for CPU intensive processes

TimeKeeper proposed a barrier-based conservative synchronization mechanism [24] to synchronize the virtual
time among the containers. The advancement of an emulation experiment is divided into many small execution
cycles. Containers with diferent TDFs get their proportional execution time in wall-clock time, while the virtual
clock of each container advances the same amount during each cycle. In other words, TimeKeeper uses a barrier
to control the virtual time of each container to advance at the same rate. Containers are executed cycle by
cycle, and their virtual time is adjusted and synchronized at the barrier between the cycles. Each container is
assigned a speciic execution time when a cycle starts. TDF and quanta determine the execution time. Quanta is a
user-deined parameter denoting the time granularity of one cycle. Theoretically, a smaller quanta ofers better
temporal accuracy despite the additional overhead due to frequent synchronizations.
TimeKeeper enables the parallel execution of containers with multiple CPUs. At the beginning of synchro-

nization, each container is designated to a CPU with a high priority, which guarantees that the container is
executed on the speciic CPU and will not get preempted by another process. Multiple containers can be assigned
to one CPU. For example, Figure 1 illustrates how two containers with diferent TDFs are scheduled on one CPU
and how their virtual time is synchronized. ��� #1 has a TDF of 1, so its virtual clock advances at the same
speed as the wall clock. The TDF of ��� #2 is 0.5, which means its clock advances two times faster than the wall
clock. ��� #1 and ��� #2 are scheduled to be executed on the CPU in turns. In each cycle, the execution time of
��� #1 is twice longer than the one of ��� #2, so both virtual clocks can advance at the same rate.

3.2 Demonstration of TimeKeeper Imprecision with I/O Intensive Tasks

TimeKeeper and other timer-based virtual time systems [7, 16, 33, 34] well manage the virtual time advancement
during CPU burst cycles. However, the virtual time imprecision occurs when the CPU waits for I/O operations
(e.g., disk or network) or GPU computation to complete. Figure 2 demonstrates how a temporal error is formed
in a container (��� #1) after the execution of an I/O operation. We simplify the scenario by setting the TDF of
both containers to 1. ��� #1 initiates an I/O operation at 3 in virtual time (i.e., at 5 in wall-clock time). The I/O
operation takes 5 seconds to complete at 10 in wall clock time, while ��� #1 inishes the third cycle. However,
the elapsed virtual time in ��� #1’s perception is only 3 seconds instead of 5 seconds. Therefore, this I/O appears
to have inished at 6 in virtual time. The 2-second temporal error in ��� #1 is due to the lack of control of virtual
time during I/O operations in TimeKeeper. The I/O operations continue their execution even if the corresponding
container is paused for synchronization. The container cannot observe the elapsed time for the ongoing I/O once

ACM Trans. Model. Comput. Simul.



VT-IO • 7

Fig. 2. Virtual time advancement with I/O operations in Timekeeper. In this example, I/O time is 5 seconds and thus ��� #1

should advance its virtual time for 5 seconds instead of 3 seconds (TDF = 1), i.e., no integration of I/O time in TimeKeeper

causes a temporal error of 2 seconds.

5 10 15 20 25
Number of LXCs

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 Ta
sk

 c
om

pl
et

io
n 

tim
e 

(s
) Physical testbed measurement

TimeKeeper, #core=4

Fig. 3. Demonstration of temporal error: measurement of the GPU task completion time in TimeKeeper

it is paused. As shown in Figure 2, from time 6 to 8, it is ��� #2’s turn to be executed on the CPU while ��� #1
is paused. As a result, ��� #1’s clock does not advance for 2 seconds while the I/O operation is executing. The
missing I/O time is the temporal error we need to address in this paper. If we set up more containers to share the
CPU in the experiment, we will have a larger temporal error with an even lesser I/O time for ��� #1.
We empirically demonstrate the timing imprecision and show the experimental result in Figure 3. Only

one container conducts I/O tasks in the experiment, while the others run CPU-intensive applications. For
demonstration purposes, the I/O task in this experiment is matrix addition operations on GPU. The other types
of tasks, such as disk I/O and network I/O, are discussed in Section 7. Figure 3 depicts the I/O completion time by

ACM Trans. Model. Comput. Simul.



8 • Gong Chen, Zheng Hu, Yanfeng u, and Dong Jin

varying the number of containers. Task completion time is the virtual time elapsed during an I/O operation. The
dashed orange line is the measurement on a physical testbed as the ground truth. The diference between the two
lines is the temporal error. The error increases as the number of containers grows. We discovered an interesting
pattern: the completion time drops when the number of containers increases by four. Four is also the number of
CPUs used in the experiment. The following section mathematically models the error to explain the observed
pattern.

3.3 Error Modeling

Suppose there are � containers denoted as �� , where 0 < � ≤ �, in an emulation experiment running on a machine
with� available CPUs, denoted as � � , where 0 < � ≤ �. Containers are scheduled on the CPUs in a round-robin
fashion. Multiple containers can be assigned to the same CPU if � > �. Each container �� is associated with a
time dilated factor (TDF), �� �� . The container with the largest TDF is called the leader, and its TDF is denoted as
�� � ′. TimeKeeper uses conservative synchronization to keep all the containers’ virtual time advancing at the
same pace. At the beginning of each execution cycle, the system calculates the execution time in wall clock, �� ,
for each container �� based on �� �� and a quanta � . Quanta is a predeined constant representing the granularity
of time synchronization in emulation. �� is calculated with the following equation.

�� =
� × �� ��

�� � ′
(1)

Equation 1 ensures the containers’ virtual clocks are synchronized at each cycle. The execution time, � � , of all
containers assigned to each � � in one cycle is calculated as follows. The function � yields all containers associated
with a CPU.

� � =

︁

∀�∈� (� � )

�� (2)

The total wall clock time elapsed in one cycle is

� = max {� � |0 < � ≤ �} + � (3)

where � is the synchronization overhead time between cycles.
Assume a container �� initiates a request for an I/O operation, and the time to complete the I/O is Δ� in

wall-clock time. Equivalently, it takes Δ�/�� �� for �� to complete the task in virtual time. If Δ�/�� �� is small enough
for the I/O to complete within �� , the resulting virtual time is accurate, and otherwise, the error occurs. Because
�� is still waiting for I/O even though �� is paused for synchronization (i.e., the virtual clock of �� is frozen). The
I/O operation time can be modeled as follows.

� ≈
� × Δ�

�� � ′ ×�
(4)

Given a constant and uniied TDF, we can further simplify Equation 4 and deduce the following relation to
explain the observation in Figure 3.

� ∝
Δ�

⌈�/�⌉
(5)

To further validate Equation 5, we conducted another experiment in TimeKeeper running on two CPUs. TDFs
are set to 1 for all containers. One container initiates a disk I/O while the others run a CPU-intensive application.
Figure 4 depicts the elapsed virtual time during the disk write operation, and the result well matches the relation
shown in Equation 5.

ACM Trans. Model. Comput. Simul.



VT-IO • 9

2 4 6 8 10 12 14 16
#LXCs/#Cores

0.1

0.2

0.3

0.4

0.5

0.6

Ta
sk

 c
om

pl
et

io
n 

tim
e 

(s
)

TimeKeeper-#core=2
y= t / n/m

Fig. 4. Measurement of disk write operation completion time in TimeKeeper. � is the number of containers.� is the number

of CPUs. Δ� is a measurement of time elapsed during the write operation in the wall clock. TDF of all containers in this

scenario is 1.

3.4 I/O Temporal Error Mitigation

Containers are executed in cycles for virtual time synchronization. � is the total execution time in each cycle
(see Equation 3). Each container is executed on a CPU for �� time (see Equation 1). �� is usually less than � since
multiple containers share the CPU. Therefore, the containers are paused for� −�� in each cycle, during which the
containers yield their CPU, and the virtual clock is stopped. However, if an I/O operation cannot be completed
in �� , the remaining I/O time will not be counted while the virtual clock is stopped. As a result, the recorded
I/O time seen by the container is shorter than the actual time. Such error in each cycle is upper bounded by
(� − �� )/�� �� and the error accumulates over cycles. For instance, if an I/O takes � cycles to inish, the total error
is � × (� − �� )/�� �� . Since � ≃ Δ�/� , the total error is modeled as follows.

� ≈
Δ�

�
× (� − �� ) (6)

To mitigate the temporal error during I/O, we designed a new module called I/O Time Compensator. The
compensator checks each container’s state at the end of its execution cycle. If an ongoing I/O operation is detected,
an active I/O lag is set for the container. At the beginning of the next execution cycle, the compensator calculates
the I/O time and adds it back to the virtual clock of the container whose active I/O lag is true. How to precisely
calculate and compensate for I/O time is discussed in detail in Section 4.2 and Section 6.1.
Synchronization Controller is designed to synchronize virtual time among the containers (see Section 4.2

for details). In particular, it determines the execution time of each container and the execution order at the
beginning of each cycle. The execution time is deined in Equation 1. However, once the I/O time compensator is
triggered, certain containers’ virtual clocks may be ahead of the others, afecting the system’s temporal idelity
and emulation causality. Therefore, we propose an adaptive scheduler doing dynamic execution time calculations
to synchronize the virtual time gradually. The details of the scheduler are described in Section 6.2.

4 DESIGN ARCHITECTURE

We design a virtual time system named VT-IO that integrates precise virtual time measurement when a container
yields the processor and waits for jobs such as disk I/O, network I/O, or GPU computation to complete. VT-IO
has two layers: 1) Container-based Middleware that ofers each container a perception of virtual time, and 2)

ACM Trans. Model. Comput. Simul.



10 • Gong Chen, Zheng Hu, Yanfeng u, and Dong Jin

Container-based 
Middleware

LXC #1

Physical Host

LXC #3

LXC #2

CPU

…

Virtual 
Time 

Interface

Virtual Time 
Coordinator

CPU
#1

CPU
#2

CPU
#M

#1 #3

#2

#N

#5

…

Disk I/O Network I/O …

#1

#2

#5

Process Linux Container Synchronization Barrier Compensation Barrier

Synchronization 
Controller

Time 
Compensator

Dynamic Load 
Monitor GPU

Fig. 5. Architecture design of VT-IO with Dynamic Load Monitor

Virtual Time Coordinator that controls the execution and virtual time synchronization of containers on CPU and
I/O activities. The architecture design of VT-IO is depicted in Figure 5.

4.1 Container-based Middleware

The container-based middleware consists of lightweight Linux containers and a uniied virtual time interface. A
container in VT-IO is a predeined template that ofers an OS-level virtualization environment and encapsulates
virtual-time-related variables, such as TDF and execution time, for processes running inside the container. New
container instances are initiated when a network emulation experiment starts, and each container emulates an
individual physical host. Each container maintains its own virtual clock, and time dilates the processes and their
child processes running inside the container. No application code modiication is necessary to enable virtual time
for the processes.
The virtual time interface intercepts and handles the time-related functions, such as gettimeofday and

nanosleep. If a process inside a container invokes a time-related system call, the default system call is circum-
vented, and the call is redirected to a modiied function whose return value is based on the container’s virtual
clock.
The middleware and virtual time interface collaboratively ofer the emulation processes a notion of virtual

time. Their implementation details are discussed in Section 6.

4.2 Virtual Time Coordinator

It is challenging to keep all the containers advancing the virtual time with the same amount each cycle. By
default, the operating system schedules the execution of each process. The order and the execution time are
both non-deterministic. It is impossible to distribute the CPU time among all the containers evenly. Therefore,
the processes running in the container have to face temporal idelity issues, especially when the resources (e.g.,

ACM Trans. Model. Comput. Simul.



VT-IO • 11

Fig. 6. Virtual time advancement with I/O operations in VT-IO

available CPUs, network bandwidth) on the physical machine are insuicient to support a large number of
containers [34].

To address this problem, researchers have explored the virtual machine scheduling mechanism [31, 36], based
on which existing works have proposed various designs for Xen [12, 14, 15] and Linux Container [7, 20, 36].
In this work, we design the Virtual Time Coordinator to handle the synchronization of containers for CPU
execution and I/O operation. Virtual Time Coordinator contains three modules: Synchronization Controller, Time
Compensator, and Dynamic Load Monitor, as shown in Figure 5.
Synchronization Controller is invoked at the beginning of each execution cycle. The controller interacts

with the virtual time interface to extract the current state of each container and calculates the expected running
time of each container in the next cycle. The controller then assigns each container to a designated CPU and
schedules the execution of processes inside the container in a round-robin style. A hill-climbing algorithm is used
for scheduling. For each container, the scheduling algorithm selects a CPU core that has minimal workload at the
moment and assigns the container to it. It yields an overhead bounded by � (� × �), where� is the number of
designated CPU cores and � is the number of containers. While exploring an eicient scheduling algorithm for
emulation containers is not a focus of this work, it is worth mentioning that the current scheduling algorithm is
fast but may not always yield the optimal solution. One approach is to use a ine-tuned scheduling algorithm
[35], but it inevitably introduces more overhead due to the increasing time and space complexity of the algorithm.
We will leave the design and analysis of eicient container scheduling algorithms as future works.

Time Compensator is invoked at the end of each execution cycle to compensate for the missing virtual
time during I/O operations. The I/O operations keep running even though the associated container yields the
CPU. The virtual time is stopped at the end of its execution, but the container may not complete the I/O task
by the end of the container’s assigned execution time. Temporal errors arise as the remaining I/O time should
have been included. Time Compensator is designed to mitigate this temporal error. It checks the status of every
LXC at the end of each execution cycle and determines whether an I/O task is ongoing. If true, the missing time
measurement for this task will be compensated back to the corresponding LXC at the next cycle.

ACM Trans. Model. Comput. Simul.



12 • Gong Chen, Zheng Hu, Yanfeng u, and Dong Jin

Figure 6 demonstrates an example of how the Time Compensator adjusts the container’s virtual clock to
include the I/O time. There are three containers, all with a TDF of 1 in the scenario. ��� #1 initiates an I/O
operation at time 1, which is the beginning of the second cycle. This operation takes 3 units in wall-clock time
to inish. At time 2, ��� #1 inishes its execution time for the second cycle, but the I/O is not yet completed.
Therefore, ��� #1 is blocked. The compensator detects this blocking state and sets a lag and a timestamp �1 to
���#1 (i.e., 4 in wall-clock time). After that, the I/O operation continues while ��� #2 and ��� #3 run for their
second cycle. The I/O completes at the end of the second cycle �2 (i.e., 6 in wall-clock time). Before the third cycle
starts, the compensator checks the lag of containers and updates ��� #1 ’s virtual clock by adding (�2 − �1)/�� �1,
i.e., (6-4)/1 = 2. Therefore, the virtual time of ��� #1 elapsed during the I/O operation is compensated. Since
the clock of ��� #1 is ahead of the other two containers, ��� #1 will yield the execution cycles until the other
containers catch up.

Dynamic LoadMonitor enhances the temporal idelity of VT-IO, especially under resource contention scenar-
ios. Although the Synchronization Controller and Time Compensator enable precise virtual time measurement,
VT-IO still yields temporal error due to resource contention for I/O-intensive tasks. To tackle this problem, we
designed a new module, Dynamic Load Monitor, to calibrate the virtual time advancement based on the load of
the host machine.

Theworklow depicted in Figure 7 illustrates the operation of the Dynamic LoadMonitor. This component works
in conjunction with the Time Compensator to update the virtual clock of a container that has an incomplete I/O
intensive task. It also collaborates with the Synchronization Controller to adjust the scheduling for the subsequent
cycle. This adjustment is necessary because the virtual clock of the updated container may be ahead of the other
containers due to the compensation process. At the start of each cycle, the VT-IO examines whether an LXC
(Linux Container) had an uninished I/O or GPU task in the previous cycle. This information is conveyed through
the compensation lag, as shown in Figure 7. When the lag is set to False, VT-IO follows the standard path
without employing dynamic compensation, indicated by the black arrows. However, if the lag is True, VT-IO
activates the dynamic time compensation mechanism, and the execution path is depicted by the red arrows.
The Time Compensator performs an accurate calculation of the missing virtual time for the uninished task.
Subsequently, the Dynamic LoadMonitor assesses the system load and employs machine learning models to adjust
the time measurement based on the load. This adjustment is used to update the virtual clock of the corresponding
LXC. Finally, the Synchronization Controller schedules the execution of each LXC to ensure that their virtual
time remains synchronized by the end of the cycle. Further details regarding the design, implementation, and
evaluation of the Dynamic Load Monitor are discussed in the subsequent section.

5 DYNAMIC LOAD MONITOR

In the original design of VT-IO [11], the precise I/O time is enabled at the OS level with the notion of virtual
time. However, this measurement can vary dramatically during resource contention, such as disk I/O, GPU, and
network I/O, among multiple containers. For example, suppose ten thousand containers simultaneously issue the
disk write operations. The measured completion time for one write operation can take much longer than the
scenario when only one container performs one write operation, and thus raises a temporal idelity issue of the
virtual time system.

We empirically demonstrate the timing imprecision under I/O resource contention and show the experimental
results in Figure 8. In this experiment, multiple containers simultaneously write 100 MB data to the disk and
hit the disk I/O bottleneck. The task completion time is the virtual time elapsed during a disk write operation.
The boxplot shows the distribution of the task completion time with diferent numbers of LXCs. The orange line
shows the trend of the median among diferent LXCs. We observe that the task completion time signiicantly
increases as the number of LXCs grows due to the higher level of I/O resource contention in the physical machine.

ACM Trans. Model. Comput. Simul.



VT-IO • 13

Fig. 7. Workflow of I/O time compensation and dynamic time calibration in an execution cycle

Fig. 8. Motivation example: temporal error of VT-IO under I/O resource contention

5.1 Design and System Integration

Existing virtual time systems mitigate temporal errors caused by CPU resource contention through the precise
scheduling and control of the execution bursts of processes. A timer-based virtual time system [16, 20, 33, 34]
leverages the Linux Signals (e.g., SIGSTOP and SIGCONT) and high-resolution timer [13] to manage the execution
of each process in the containers, while an instruction-based virtual time system, such as Kronos [7] uses ptrace
[6] and iperf [5]. However, the execution control of I/O operations is not as easy as CPUs. Limited technologies
are available to control the execution of I/O operations. Once a user space process initiates an I/O request (such
as sys_read or sys_write), the request will be handled by the OS block layer [23]. The block layer simultaneously
mediates and orchestrates the I/O requests from multiple applications to the underlying resources, such as disk
I/O. The schedule and dispatch of the requests depend entirely on the I/O scheduling policy and the device
driver. A heavy intrusive modiication of the I/O stack of the Linux kernel is required to enable controlling and
synchronization for IO-intensive tasks. The modiication includes a generic block layer, BIO, scheduling of the

ACM Trans. Model. Comput. Simul.



14 • Gong Chen, Zheng Hu, Yanfeng u, and Dong Jin

request and dispatch queue, and service routine of the device driver. The modiication is not only labor-intensive
but also challenging since modifying each of the aforementioned modules could lead to OS corruption.

We propose a diferent approach that involves limited modiications to the kernel and provides a more general
solution across multiple operations. Instead of individually considering contention in each layer, we treat them
as a collective whole. This allows us to model and abstract the time compensation and calibration mechanism at
a higher level, making it more applicable to all the operations discussed in the paper. By taking a higher-level
approach, we aim to provide a more practical and eicient solution that reduces the complexity and potential risks
associated with deep modiications at each layer. Our goal is to develop a general solution that can efectively
address contention-related issues across various types of operations without extensively modifying the kernel
for each speciic scenario.

Fig. 9. Dynamic Load Monitor architecture that depicts all steps for I/O adjustment involved in the interaction among Time

Compensator, Dynamic Load Monitor, and OS in one round. Each I/O device is associated with a specified pre-trained linear

regression model.

We design a new module called Dynamic Load Monitor (DLM) that monitors the host machine’s disk I/O,
network I/O, and GPU computation activities in real time. The architecture design of the Dynamic Load Monitor is
illustrated in Figure 9, which contains two sub-modules: 1) System Load Interface and 2) Virtual Time Calibrator.

System Load Interface provides APIs for querying the status of I/O devices on the host machine, such as the
number of processes performing disk writes and the GPU utilization. We use diferent techniques for diferent
types of operations, e.g., disk I/O API utilizes iotop that monitors the I/O usage information in the Linux Kernel,
while nvdia-smi is used to monitor and manage Nvidia GPUs. Our current load monitor only supports the Nvidia
GPU series and a device-speciic modiication is required to support other GPU series, such as AMD.

Virtual Time Calibrator is a machine learning based surrogate (Linear Regression) that adjusts the I/O time
based on the load on the host machine. It is invoked at the end of each execution cycle once the time compensation
is triggered. The calibrator takes inputs from both Time Compensator (e.g., virtual time measurement and type
of operation) and System Load Interface (e.g., device status) and outputs an adjusted virtual time. Each type of
operation, such as disk write and GPU operation, is associated with a speciic model. The selection of models and
features also depends on the corresponding I/O type and the details are presented in Section 5.2.

The procedure of dynamic virtual time calibration is hierarchical. Figure 9 demonstrates the cooperation of the
Time Compensator, Dynamic Load Monitor, and OS to complete a dynamic virtual time calibration. The request
is initiated by Time Compensator and forwarded to Virtual Time Calibrator. The request contains information
about the virtual time measurement and the task type. The system Load Interface then invokes APIs for device
status queries. The data are fed to the machine learning models in Virtual Time Calibrator. Models then yield an
adjusted virtual time and return it to Time Compensator, which inishes the compensation with the calibrated
virtual time and continues the next cycle.

ACM Trans. Model. Comput. Simul.



VT-IO • 15

5.2 Analysis and Modeling

We analyze the behavior of I/O operations on the host machine and take a machine learning based approach to
model the behavior. As shown in Figure 8, the temporal error grows with the increasing number of processes.
Other than the number of processes, other factors in the system could also afect the temporal measurement
during I/O resource contention. In this work, we select the following ive features and analyze the correlation
between them and virtual time.

• WS: disk write speed (MB/s) for a target process
• IO: percentage of time that a process spends on waiting for I/O
• TOTAL: total disk write speed (MB/s) for all processes
• TOTAL_PER: percentage of disk bandwidth used by a target process
• NUM_PRO: number of processes performing I/O operations

(a) (b)

Fig. 10. (a) Heatmap of Pearson correlation coeficient matrix among virtual time and the five selected disk I/O features; (b)

correlation between task completion time and number of LXCs that perform disk I/O

We analyze the correlation between the ive features and virtual time using the Pearson Correlation Coeicient
(PCC), which deines the strength and direction of a linear relationship between two variables [26]. Equation 7
shows the deinition of PCC, where � and � are two features of discussion, � is the sample size, and � is the PCC
ranging from -1 to 1. The positive or negative sign of � indicates the direction of the correlation, and the value of
� implies the strength of the correlation. The closer the value is to -1 or 1, the stronger the correlation is between
the two features.

� =

∑�
�=1 (�� − �) (�� − �)

︁

∑�
�=1 (�� − �)2 (�� − �)2

(7)

We conduct a set of disk write experiments to analyze the correlation. The experiments measure the virtual
time elapsed for the I/O operations by varying the number of processes. Figure 10a demonstrates the PCC of
the ive features of disk I/O on the host machine and the measurements of virtual time in VT-IO without DLM.

ACM Trans. Model. Comput. Simul.



16 • Gong Chen, Zheng Hu, Yanfeng u, and Dong Jin

The relationship between two variables is often considered strong when the PCC value is larger than 0.7 [28].
We observe in Figure 10a that PCC between the virtual time and the number of processes has the largest value
among all the pairs and the value 0.82 indicates a strong correlation. The disk write speed and the percentage of
bandwidth usage also have a strong relationship with 0.87 PCC. However, the main objective of our model is to
minimize the temporal error of the virtual time. Therefore, we focus on the relationship between virtual time and
system loads. Other than the number of processes, the PCC values of the other features are less than or equal
to 0.6, which is considered a moderate or weak correlation. Therefore, we use the number of processes as the
factor to represent the current system load and develop a linear regression model to quantify its relation with
virtual time. Figure 10b shows the task completion time (in virtual time) of the regression model by varying the
number of processes. A large number of processes indicate a heavy workload. We observe that the virtual time
increases linearly with the system load. The mathematical representation of the linear regression model is deined
in Equation 8, where �� is the expected I/O time with the calibration, �� is the measured I/O in virtual time, � is
the number of processes which represents current system load, and� and � are the coeicients of the model.

�� = � ×
��

�
+ � (8)

5.3 Performance Evaluation

Dynamic Load Monitor enhances the ability of VT-IO to precisely advance the virtual clock during I/O operations,
especially when the I/O resources on host machines are limited. Two experiments were conducted to compare
the temporal idelity of VT-IO, with and without the assistance of Dynamic Load Monitor. We measured the
virtual time elapsed for each scenario: (a) time of direct writing 100 MB data to disk and (b) time of performing
1,000 iterations of matrix additions on GPU. To demonstrate the impact of the I/O resource competition and the
efectiveness of Dynamic Load Monitor, all the containers simultaneously performed the I/O operations, which
signiicantly overwhelmed the I/O resources. We plot the physical testbed measurements as the ground truth as
well as the results of VT-IO with and without Dynamic Load Monitor in Figure 11a and Figure 11b.

1 2 3 4 5 6
log2 (#LXCs)

0

2

4

6

8

10

Ta
sk

 C
om

pl
et

io
n 

Ti
m

e 
(s

)

Physical testbed
VT-IO
VT-IO with DLM

(a)

1 2 3 4 5 6
log2 (#LXCs)

0

5

10

15

20

25

Ta
sk

 C
om

pl
et

io
n 

Ti
m

e 
(s

)

Physical testbed
VT-IO
VT-IO with DLM

(b)

Fig. 11. Measurement of virtual time elapsed during (a) disk I/O operation (direct write of 100 MB data) and (b) GPU

operation (1,000 iterations of matrix additions) on a physical testbed (i.e., ground-truth measurement), VT-IO and VT-IO

with Dynamic Load Monitor (DLM)

ACM Trans. Model. Comput. Simul.



VT-IO • 17

(a) (b)

Fig. 12. Mean absolute error (MAE) of virtual time elapsed during (a) disk I/O operation (direct write of 100 MB data) and (b)

GPU operation (1,000 iterations of matrix additions) on VT-IO and VT-IO with Dynamic Load Monitor (DLM) compared

with the ground-truth measurement on a physical testbed

We observe in both disk I/O and GPU scenarios that the task completion time in the original VT-IO increases as
the number of contains grows. The root cause is resource contention. As the number of containers grows, more
processes compete for the I/O resources (such as disk I/O bandwidth) on the host machine while the available
resource is limited. Therefore, the time spent to inish the same amount of work increases as the number of
containers grows. On the other hand, VT-IO with DLM matches well with the physical testbed results. It is
because DLM is capable of monitoring the I/O load in real time and dynamically calibrating the virtual time to
mitigate the temporal error caused by resource contention. In other words, it precisely maintains the correct
virtual time even when the I/O resources are heavily overwhelmed.

Figure 12a and Figure 12b further demonstrate the Mean Absolution Error (MAE) of the virtual time compared
with the physical testbed. The error of the original VT-IO signiicantly increases when the number of containers
increases, while the error of VT-IO with DLM is very small and stable. VT-IO with DLM outperforms the original
VT-IO in all cases. For instance, in the GPU experiment with 32 containers, the error of GPU operations using the
original VT-IO is 23.06 seconds, while the error of VT-IO with DML was reduced to 0.058, which is about three
orders of magnitude less.
We notice that the disk I/O measurement on the original VT-IO yields much more signiicant variances

compared with the GPU case. It is because the disk is a physical device and its speed (i.e., data transfer rate)
depends on many factors, such as the rotational speed of the disks and the data recording density, and those
factors may vary over time. GPUs, on the other hand, are electronic devices with stable performance over time.

6 IMPLEMENTATION

We have modiied the Linux kernel to implement VT-IO, a virtual time system, based on the architecture design
shown in Figure 5. Container-based Middleware intercepts the timing-related system calls in Linux to enable the
virtual time of the containers. Similar to the existing container-based virtual systems [7, 20], we modify the data
structure task_struct, which is a process descriptor containing every relevant information about a process [22].

ACM Trans. Model. Comput. Simul.



18 • Gong Chen, Zheng Hu, Yanfeng u, and Dong Jin

We develop a lightweight container with a virtual clock by adding 7 new ields to the task_struct with 40 bytes
in total.

• isVirtual: a boolean variable indicating whether a process is a normal process using the system clock or
a dilated process using the virtual clock

• TDF: time dilation factor of a process
• virtualTime: the elapsed virtual time since the most recent virtual clock update
• timeToUpdate: the corresponding wall clock time when the virtual clock is updated most recently
• compensationFlag: a boolean variable indicating whether a process is blocked for an ongoing I/O operation
• falseStart: the amount of virtual time that a process is ahead of the expected time due to I/O compensation
• ioCompleteTime: the completion time of an I/O operation in wall-clock time

Virtual Time Interface circumvents the default time-related system calls and redirects them to our modiied
functions. The function updateVirtualTime() in Algorithm 1 deines the virtual clock update procedure. The
function new_gettimeofday() is an example of system hijacking that distinguishes the time-related system call
between normal and dilated processes. As shown in new_gettimeofday() of Algorithm 1, the execution path
is controlled by the ield ��� ������ . If a process is dilated, its ��� ������ ield is set to 1. Therefore, the function
returns a virtual time. Otherwise, the function returns the system time for normal processes.

We use signaling technology, such as SIGSTOP and SIGCONT, and hrtimers [13], and a high-resolution timer
provided by the mainstream Linux kernel, to control the process execution in the containers. Algorithms 2 and 3
illustrate the time compensation procedure. The pause() and resume() functions describe how to pause and
resume a process on the CPU and how to update its virtual clock. Diferent from TimeKeeper [20], we deine new
ields and functions to enable a container to track the state of its I/O operations and update its virtual clock for
those operations. We design a new barrier to check the I/O state when a process is paused. Based on the state,
the ield compensationFlag in the process descriptor is also updated. When the process is ready to resume, we
check the compensationFlag to determine whether the I/O operation overshoots the expected execution time. If
so, we adjust the virtual clock to compensate for the elapsed time during the I/O operation.

6.1 Precise I/O Time Compensation

One straightforward approach to calculating the I/O time is based on the I/O state of a process. We can calculate
the total execution time � in each cycle based on Equation 3 and the execution time �� of each container based
on Equation 1. Since the I/O error only occurs when a container is paused, i.e., (� − �� )/�� �� . Therefore, if an
ongoing I/O operation is detected at the beginning of each cycle, the compensator can simply add (� − �� )/�� ��
to the container’s virtual clock. However, since the I/O may inish during the pause, this design leads to a
statistical inaccuracy, bounded by (� − �� )/�� �� . This bound relects the granularity of the virtual time system. It
is proportional to � × �/�, where � is the timescale, � is the number of containers, and� is the number of CPUs.

Our analysis shows that an I/O operation may cross multiple execution cycles, and the inaccuracy only occurs
in the last cycle. Based on this observation, we improve the precision of I/O time compensation with the following
design. For the cycles before the last one, we compensate for the I/O time in the aforementioned approach. In the
last cycle, there are two scenarios. If the I/O inishes within the container’s execution burst, no update is needed
since the virtual clock has already resumed. Otherwise, we track the I/O completion time in the wall-clock time
by modifying the system calls, such as dio_bio_end_io (a block I/O completion handler). The compensator now
computes the exact I/O time elapsed in the last cycle and adds the time to the container’s clock at the beginning
of the next cycle. The detailed implementation is illustrated in Algorithm 2, and the evaluation results on VT-IO’s
ability to precisely control the virtual time during I/O are presented in Section 7.

ACM Trans. Model. Comput. Simul.



VT-IO • 19

Algorithm 1: Virtual Time Interface

Function updateVirtualTime (struct task_struct p)

if � → ��� ������ == 1 then
������������� = ��� ();

����������� = ������������� − � → ������������;

������������������ = �����������/� → ��� ;

� → ����������� += ������������������;

� → ������������ =�������������;

end

end

Function new_getimeofday (struct timeval tv)

if ������� → ��� ������ == 1 then
����������������� (�������);

�� = ��_��_������� (������� → �����������);

else

�������� � ��� (��);

end

end

6.2 Precise Virtual Time Synchronization

Applying the I/O time compensator may lead to the inconsistency of virtual time between the containers with
and without the compensation mechanism. The processes that trigger an I/O time compensation may have a
’false start’ in the next execution cycle because their virtual clocks are ahead of the clocks of other CPU-intensive
processes. The inconsistency may lead to causality issues among the events generated by the processes in diferent
containers. To ix this issue, we implement an execution time adapter that dynamically adjusts the length of the
execution time of each container with a false start. At the beginning of each execution cycle, the synchronization
controller checks the virtual clock for each container. If one is ahead of the others, the synchronization controller
adjusts the scheduling of the next cycle by reducing the execution burst of the false-started container. Therefore,
the virtual clock of other processes can gradually catch up over cycles. As shown in executionTimeAdapter()

in Algorithm 2, the adapter dynamically updates the execution time in each cycle. Once the adapter inds a ‘false
start’ process, the process’s execution time is reduced during the following cycles until falseStart reaches zero.

7 SYSTEM EVALUATION

We evaluate the performance of VT-IO in terms of accuracy during I/O operations, synchronization overhead,
and system scalability. The experiments are conducted on a 64-bit Linux platform (Ubuntu 14.04 with a modiied
Linux Kernel). The machine has two 64-Core processors, 1 TB RAM, a 12-TB hard disk drive with a sustained
data transfer rate of 248 MB/s, and Nvidia Quadro P400 GPU. Each experiment is repeated at least 10 times.

7.1 I/O Temporal Accuracy

The ability to precisely advance the virtual clocks during I/O operations and GPU computation distinguishes
VT-IO from the other container-based virtual time systems. We perform three experiments with GPU tasks,
network I/O, and disk I/O and compare the temporal accuracy of VT-IO with TimeKeeper. We measure the virtual
time elapsed for each scenario: (a) time to perform 10,000 iterations of matrix additions on GPU, (b) round-trip

ACM Trans. Model. Comput. Simul.



20 • Gong Chen, Zheng Hu, Yanfeng u, and Dong Jin

Algorithm 2: Time Compensator

Function compensateIOTime (struct task_struct p)

if � → ���������������� == 1 then
// Compensation I/O time and reset flag

������������� = ��� ();

if � → �������������� > 0 then
������������� = � → �������������� − � → ������������;

else

������������� = ������������� − � → ������������;

end

���������������� = �������������/� → ��� ;

� → ���������������� = 0;

� → �������������� = 0;

� → ������������ = �������������;

end

end

Function executionTimeAdapter (struct task_struct p)

// Execution time as it is defined in Equation 1

�������� = ������ × (� → �� � )/(������ → �� � );

if � → � ��������� > 0 then
// Reduce the execution time to mitigate the effect of false start

if � → � ��������� > �������� then

�������� = 0;

� → � ��������� −= ��������;

else

�������� −= � → � ��������� ;

� → � ��������� = 0;

end

end

return �������� ;

end

time of a UDP communication with a one-second link delay, and (c) time to direct write 100MB data to disk. In
order to limit the inluence of resource completion, only one container conducts the I/O operations while the other
processes are running CPU-intensive applications like sysbench [4]. Thus, the wall clock time elapsed during
the I/O remains the same regardless of the number of containers. We plot the physical testbed measurements,
which serve as the ground truth, as well as the results of TimeKeeper and VT-IO in Figure 13 for all three sets of
experiments.

We observe in all three scenarios (GPU, network I/O, and disk I/O), that the virtual time in TimeKeeper decays
when the number of containers increases by�, where� is the number of cores. The cause of such an error is
modeled and analyzed in Section 3. On the other hand, VT-IO successfully maintains the correct virtual time as
the number of containers increases. The results are very close to the physical testbed measurements, as shown

ACM Trans. Model. Comput. Simul.



VT-IO • 21

Algorithm 3: Execution Control

Function resume (struct task_struct p)

if � → ���������������� == 1 then
���������������� (�);

else

� → ������������ = ��� ();

end

// Start execution on CPU

���� (�, ������� );

end

Function pause (struct task_struct p)

����������������� (�);

// Set flag if I/O not finished

if �������������� (�) then

���������������� = 1;

end

���� (�, �������);

end

in Figure 13. Without the time compensation mechanism, the error of I/O can be signiicant. For instance, in
the experiment with 30 containers, the error caused by a network I/O operation is up to 87.31% in TimeKeeper
compared with the physical testbed, while the error is less than 3.6% in VT-IO. Note that the standard deviations
of measurement in Figure 13a and Figure 13b ranged from 0.0012 seconds to 0.0028 seconds, which are hard to
observe on the plots.

7.2 Scalability

To study the scalability of VT-IO with DLM, we irst ix the number of CPUs to 32 and 126 and measure the
execution time per cycle with various numbers of containers. The results are plotted in Figure 14. We observe that
the execution time linearly increases as the number of containers grows. We then ix the number of containers
to 64, 256, and 512 and measure the execution time per cycle with various numbers of CPUs. The results are
plotted in Figure 15. We observe that the parallel execution of containers is eicient since the execution time
dramatically decreases as the number of CPUs increases. The standard deviations in Figure 14 and Figure 15 are
two orders of magnitude less than the mean value and thus are hard to observe on the plots.
The results indicate that both models exhibit similar runtime for each execution cycle. For example, when

using a coniguration of 32 cores and 512 containers, the runtime per cycle for VT-IO is 0.1607 seconds, while
the model with DLM is 0.1614 seconds, resulting in a diference of only 0.4%. Detailed results can be found in
Figures 14 and 15, demonstrating good and comparable scalability in both models. This can be attributed to the
independent operation of each container, eliminating the need for data synchronization mechanisms such as
locks in multi-thread parallelism, which would introduce additional overhead.

7.3 Synchronization Overhead

Similar to Timekeeper and other virtual time systems, VT-IO with DLM introduces the synchronization overhead
due to the following two reasons: 1) the time spent to wake up kernel threads to start synchronization; note

ACM Trans. Model. Comput. Simul.



22 • Gong Chen, Zheng Hu, Yanfeng u, and Dong Jin

(a) (b)

(c)

Fig. 13. Measurement of virtual time elapsed during (a) matrix additions on GPU, (b) round-trip time of socket communication,

and (c) direct disk write on a physical testbed (i.e., ground-truth measurement), Timekeeper and VT-IO

100 200 300 400 500
Number of LXC

0.025

0.050

0.075

0.100

0.125

0.150

Ru
nt

im
e 

pe
r E

xe
cu

tio
n 

Cy
cle

 (s
)

VT-IO, #core=32
VT-IO, #core=126
VT-IO with DLM, #core=32
VT-IO with DLM, #core=126

Fig. 14. Execution time per cycle vs. number of LXCs

0 10 20 30 40 50 60
Number of Cores

0.0

0.2

0.4

0.6

0.8

Ru
nt

im
e 

pe
r E

xe
cu

tio
n 

Cy
cle

 (s
)

VT-IO - #LXC=64
VT-IO - #LXC=256
VT-IO - #LXC=512
VT-IO with DLM - #LXC=64
VT-IO with DLM - #LXC=256
VT-IO with DLM - #LXC=512

Fig. 15. Execution time per cycle vs. number of CPUs

that each CPU is associated with a kernel thread, and 2) the computational time for each kernel thread to
complete task scheduling (e.g., execution Time Adapter in Algorithm 2). We conduct experiments to measure the
synchronization overhead for each execution cycle and compare the overhead among TimeKeeper, VT-IO, and
VT-IO with DLM.

We compute the ratio of synchronization overhead in TimeKeeper, VT-IO, and VT-IO with DLM by varying
the number of CPUs and containers. The ratio of synchronization overhead is deined as the synchronization
time over the execution time in one cycle. The results are plotted in Figure 16a and Figure 16b respectively. We

ACM Trans. Model. Comput. Simul.



VT-IO • 23

2 4 8 16 32 64
Number of Cores

0.00

0.02

0.04

0.06

0.08

0.10

Sy
nc

hr
on

iza
tio

n 
Ov

er
he

ad
 R

at
io TimeKeeper, #LXC=64

TimeKeeper, #LXC=512
VT-IO, #LXC=64
VT-IO, #LXC=512
VT-IO with DLM, #LXC=64
VT-IO with DLM, #LXC=512

(a) Ratio of synchronization overhead vs. number of CPUs

100 200 300 400 500
Number of LXCs

0.00

0.01

0.02

0.03

0.04

Sy
nc

hr
on

iza
tio

n 
Ov

er
he

ad
 R

at
io TimeKeeper, #core=16

TimeKeeper, #core=64
VT-IO, #core=16
VT-IO, #core=64
VT-IO with DLM, #core=16
VT-IO with DLM, #core=64

(b) Ratio of synchronization overhead vs. number of LXCs

2 4 8 16 32 64
Number of Cores

0.1

0.2

0.3

0.4

Sy
nc

hr
on

iza
tio

n 
Ov

er
he

ad
 (m

s) TimeKeeper, #LXC=64
VT-IO, #LXC=64
VT-IO with DLM, #LXC=64

(c) Synchronization overhead time vs. number of CPUs

100 200 300 400 500
Number of LXCs

0.35

0.40

0.45

0.50

0.55

Sy
nc

hr
on

iza
tio

n 
Ov

er
he

ad
 (m

s) TimeKeeper, #core=64
VT-IO, #core=64
VT-IO with DLM, #core=64

(d) Synchronization overhead time vs. number of LXCs

Fig. 16. Synchronization overhead on VT-IO, VT-IO with DLM, and TimeKeeper

observe that the overhead introduced by our I/O time compensator and dynamic load monitor are very minimal
compared with TimeKeepr and VT-IO as shown in Figure 16a and Figure 16b. For instance, the overhead ratio
of 512 containers on 64 CPUs is 2.026% on TimeKeeper, 2.011% on VT-IO, and 2.031% on VT-IO with DLM.
Figure 16c shows the relation between the time of synchronization overhead and the number of CPUs. The
synchronization overhead doesn’t increase as the number of CPUs increases from 2 to 8 because of the reduced
workload on each thread. As the number of CPUs keeps increasing from 8 to 64, the cost of controlling the kernel
threads now dominates the overhead. As shown in Figure 16c, the synchronization overhead of TimeKeeper
and VT-IO are close. For instance, the overhead to emulate 64 containers on 32 CPUs in VT-IO with DLM is
0.4025 ms in each cycle, while the overhead is 0.4056 ms in TimeKeeper and 0.3973 ms in VT-IO. The diference is
within 0.01 ms. Figure 16d shows the relation between the time of synchronization overhead and the number of
containers. The overhead increases linearly as the number of containers grows, and more containers lead to an
increased workload of task scheduling. However, Figure 16b shows that the ratio of synchronization overhead
drops even if the number of containers increases. It is because the execution time increases linearly as the number
of containers grows (see Figure 14), and the improvement in execution time is more signiicant than the cost of
the increased overhead, and thus results in performance gain with the increasing number of containers. VT-IO
with DLM experiences a similar synchronization overhead compared with TimeKeeper and VT-IO. As shown in
Figure 16d, to emulate 512 containers on 64 CPUs, the overhead introduced by VT-IO with DLM is 0.5194 ms,
while the overhead is 0.5144 ms in VT-IO and 0.5214 in TimeKeeper. The diference is less than 0.9%.

ACM Trans. Model. Comput. Simul.



24 • Gong Chen, Zheng Hu, Yanfeng u, and Dong Jin

8 CONCLUSIONS AND FUTURE WORK

In this paper, we discover and analyze the virtual time advancement error in existing virtual time systems because
of I/O operations. We develop VT-IO with Dynamic Load Monitor that provides precise time advancement control
during disk I/O, network I/O, and GPU operations even during the I/O resource contention among multiple
processes. We conduct a comparative evaluation with TimeKeeper and a physical testbed to show that VT-IO is
capable of maintaining high temporal idelity during I/O operations with limited synchronization overhead. Our
future work aims to further speed up the virtual-time-enabled emulation testbed. One approach is to integrate the
scheduler with a load balancer, which is responsible for optimizing the process allocation with limited overhead.
We will also integrate VT-IO to a network simulator to improve the lexibility and scalability of the testbed.

ACKNOWLEDGMENTS

The authors are grateful for the support of the National Science Foundation (NSF) under Grant CNS-2247721,
CNS-2034870, and the NSF Center for Infrastructure Trustworthiness in Energy Systems (CITES) under Grant
EEC-2113903. The authors also express their gratitude for the inancial support provided by the Chancellor’s
Fund for Innovation and Collaboration at the University of Arkansas.

REFERENCES

[1] 2005. OpenVZ: a container-based virtualization for Linux. https://openvz.org/

[2] 2021. OpenDSS: an electric power distribution system simulator. https://www.epri.com/pages/sa/opendss

[3] 2022. Mininet: An Instant Virtual Network on your Laptop (or other PC). http://mininet.org/

[4] 2022. SysBench: a cross-platform and multi-threaded benchmark tool for evaluating OS parameters. http://manpages.ubuntu.com/

manpages/trusty/man1/sysbench.1.html

[5] 2023. perf: Linux proiling with performance counters. https://perf.wiki.kernel.org/index.php/Main_Page

[6] 2023. Ptrace: The linux process tracing subsystem. https://man7.org/linux/man-pages/man2/ptrace.2.html

[7] Vignesh Babu and David Nicol. 2020. Precise Virtual Time Advancement for Network Emulation. In Proceedings of the 2020 ACM SIGSIM

Conference on Principles of Advanced Discrete Simulation.

[8] Vignesh Babu and David Nicol. 2022. Temporally synchronized emulation of devices with simulation of networks. In Proceedings of the

2022 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.

[9] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warield. 2003.

Xen and the Art of Virtualization. SIGOPS Oper. Syst. Rev. (2003).

[10] Daniel Pierre Bovet, Marco Cassetti, and Andy Oram. 2000. Understanding the Linux Kernel. O’Reilly & Associates, Inc.

[11] Gong Chen, Zheng Hu, and Dong Jin. 2022. Integrating I/O Time to Virtual Time System for High Fidelity Container-based Network

Emulation. In Proceedings of the 2022 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.

[12] Miguel A. Erazo, Yue Li, and Jason Liu. 2009. SVEET! a scalable virtualized evaluation environment for TCP. In Proceedings of the 5th

International Conference on Testbeds and Research Infrastructures for the Development of Networks Communities and Workshops.

[13] Thomas Gleixner and Douglas Niehaus. 2006. Hrtimers and Beyond: Transforming the Linux Time Subsystems. In Proceedings of the

Ottawa Linux Symposium.

[14] Diwaker Gupta, Kashi Venkatesh Vishwanath, Marvin McNett, Amin Vahdat, Ken Yocum, Alex Snoeren, and Geofrey M. Voelker. 2011.

DieCast: Testing Distributed Systems with an Accurate Scale Model. ACM Trans. Comput. Syst. (2011).

[15] Diwaker Gupta, Kenneth Yocum, Marvin McNett, Alex C. Snoeren, Amin Vahdat, and Geofrey M. Voelker. 2005. To Ininity and beyond:

Time Warped Network Emulation. In Proceedings of the Twentieth ACM Symposium on Operating Systems Principles.

[16] Christopher Hannon, Jiaqi Yan, and Dong Jin. 2016. DSSnet: A Smart Grid Modeling Platform Combining Electrical Power Distribution

System Simulation and Software Deined Networking Emulation. In Proceedings of the 2016 ACM SIGSIM Conference on Principles of

Advanced Discrete Simulation.

[17] Christopher Hannon, Jiaqi Yan, Yuan-An Liu, and Dong Jin. 2019. A distributed virtual time system on embedded Linux for evaluating

cyber-physical systems. In Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.

[18] Matt Helsley. 2009. LXC: Linux container tools. https://developer.ibm.com/tutorials/l-lxc-containers/

[19] Dong Jin, Yuhao Zheng, Huaiyu Zhu, David M Nicol, and Lenhard Winterrowd. 2012. Virtual time integration of emulation and parallel

simulation. In Proceedings of 2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed Simulation. 201ś210.

[20] Jereme Lamps, David M. Nicol, and Matthew Caesar. 2014. TimeKeeper: A Lightweight Virtual Time System for Linux. In Proceedings of

the 2nd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.

ACM Trans. Model. Comput. Simul.

https://openvz.org/
https://www.epri.com/pages/sa/opendss
http://mininet.org/
http://manpages.ubuntu.com/manpages/trusty/man1/sysbench.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/sysbench.1.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://developer.ibm.com/tutorials/l-lxc-containers/


VT-IO • 25

[21] Jason Liu. 2008. A Primer for Real-Time Simulation of Large-Scale Networks. 41st Annual Simulation Symposium (2008), 85ś94.

[22] Robert Love. 2010. Linux Kernel Development (3rd ed.). Addison-Wesley Professional.

[23] Pratik Mishra and Arun K. Somani. 2017. Host managed contention avoidance storage solutions for Big Data. J. Big Data 4, 1 (June

2017), 18.

[24] David M. Nicol. 1993. The Cost of Conservative Synchronization in Parallel Discrete Event Simulations. J. ACM (1993).

[25] David M. Nicol, Dong Jin, and Yuhao Zheng. 2011. S3F: The Scalable Simulation Framework Revisited. In Proceedings of the Winter

Simulation Conference.

[26] Marie-Therese Puth, Markus Neuhäuser, and Graeme D. Ruxton. 2014. Efective use of Pearson’s productśmoment correlation coeicient.

Animal Behaviour 93 (2014), 183ś189.

[27] George F. Riley and Thomas R. Henderson. 2010. The ns-3 Network Simulator. Springer Berlin Heidelberg.

[28] Patrick Schober, Christa Boer, and Lothar A. Schwarte. 2018. Correlation Coeicients: Appropriate Use and Interpretation. Anesthesia &

Analgesia 126, 5 (2018).

[29] Brian Walters. 1999. VMware Virtual Platform. Linux J. (1999).

[30] Jon Watson. 2008. VirtualBox: Bits and Bytes Masquerading as Machines. Linux J. (2008).

[31] Elias Weingärtner, Florian Schmidt, Hendrik Vom Lehn, Tobias Heer, and Klaus Wehrle. 2011. SliceTime: A Platform for Scalable and

Accurate Network Emulation. In Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation.

[32] Gavin Wood. 2022. Ethereum: A secure decentralised generalised transaction ledger. https://ethereum.github.io/yellowpaper/paper.pdf

[33] Xiaoliang Wu, Jiaqi Yan, and Dong Jin. 2019. Virtual-Time-Accelerated Emulation for Blockchain Network and Application Evaluation.

In Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.

[34] Jiaqi Yan and Dong Jin. 2015. VT-Mininet: Virtual-Time-Enabled Mininet for Scalable and Accurate Software-Deine Network Emulation.

In Proceedings of the 1st ACM SIGCOMM Symposium on Software Deined Networking Research.

[35] Xuanxia Yao, Peng Geng, and Xiaojiang Du. 2013. A Task Scheduling Algorithm for Multi-core Processors. In Proceedings of the 2013

International Conference on Parallel and Distributed Computing, Applications and Technologies.

[36] Yuhao Zheng and David M. Nicol. 2011. A Virtual Time System for OpenVZ-Based Network Emulations. In Proceedings of the 2011 IEEE

Workshop on Principles of Advanced and Distributed Simulation.

ACM Trans. Model. Comput. Simul.

https://ethereum.github.io/yellowpaper/paper.pdf

	Abstract
	1 Introduction
	2 Related Work on Virtual Time Systems for Network Emulation
	3 Error Analysis of virtual time system with I/O intensive tasks
	3.1 Virtual Time Advancement in TimeKeeper
	3.2 Demonstration of TimeKeeper Imprecision with I/O Intensive Tasks
	3.3 Error Modeling
	3.4 I/O Temporal Error Mitigation

	4 Design Architecture
	4.1 Container-based Middleware
	4.2 Virtual Time Coordinator

	5 Dynamic load Monitor
	5.1 Design and System Integration
	5.2 Analysis and Modeling
	5.3 Performance Evaluation

	6 Implementation
	6.1 Precise I/O Time Compensation
	6.2 Precise Virtual Time Synchronization

	7 System Evaluation
	7.1 I/O Temporal Accuracy
	7.2 Scalability
	7.3 Synchronization Overhead

	8 Conclusions and Future Work
	Acknowledgments
	References

