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Shifting Consensus in a Biased Compromise Model∗

Olivia Cannon†, Ty Bondurant‡, Malindi Whyte§, and Arnd Scheel†

Abstract. We investigate the effect of bias on the formation and dynamics of opinion clusters in the bounded
confidence model. For weak bias, we quantify the change in average opinion and potential dispersion
and decrease in cluster size. For nonlinear bias modeling self-incitement, we establish coherent
drifting motion of clusters on a background of uniform opinion distribution for biases below a critical
threshold where clusters dissolve. Technically, we use geometric singular perturbation theory to
derive drift speeds, we rely on a nonlocal center manifold analysis to construct drifting clusters
near threshold, and we implement numerical continuation in a forward-backward delay equation to
connect asymptotic regimes.
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1. Introduction. Bounded confidence models [20] have been pivotal in the study of social
dynamics, providing a mechanism for the formation of opinion clusters, in some contexts
referred to as parties. Agents are attributed numerical values of opinions. They interact and
change their opinions through compromise, but only with other agents whose opinions are
sufficiently close, i.e., within a bounded confidence interval. These models can be framed in
many different formulations—stochastic Markov processes, deterministic mean-field equations,
discrete or continuous opinion values—but the qualitative phenomena are similar: a uniform
distribution of opinions is an unstable steady state, and small fluctuations from the uniform
state lead to the formation of clusters, often regularly spaced [4, 5, 6, 18, 20, 23, 29, 30].

Bounded confidence models have been used in large part to study mechanisms of po-
larization, and to that end, many modifications have been made, including, for instance,
variations of the confidence interval between agents, introduction of a small number of agents
who do not compromise (“stubborn” agents), and variations in the probability of interaction
[9, 11, 12, 14, 19, 27, 33, 36, 38]. The present work is concerned with drift of opinion clusters,
that is, with the continuous movement of clusters toward one extreme of the opinion spec-
trum. While drift caused by asymmetric confidence has been reported in [20, section 4.2],
there appear to be few systematic computational or analytical studies of this phenomenon.
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298 O. CANNON, T. BONDURANT, M. WHYTE, AND A. SCHEEL

We are interested in this effect as a self-organized phenomenon, caused by behavioral bias in
individual agents. We model this through the addition of bias terms to the bounded confi-
dence model. We will demonstrate how bias terms typically lead to drift of average opinions
in a cluster but may also lead to disintegration of individual clusters. Our focus therefore will
be on a nonlinear quadratic bias term that corresponds to self-incitement and which leads to
both persistent and coherent drift, avoiding in particular dispersal and disintegration.

The focus on this particular form of bias is also rooted in its relevance as a model for the
common sociological phenomenon of group polarization [25]. Starting with the observation of
James Stoner in 1961, it was noted that groups often collectively form an opinion more extreme
than the average of the individual opinions. This phenomenon is now broadly supported and
has been found to be present in a large variety of contexts, including group decisions, social
networks, games, juries, corporate boards, and in studies in numerous countries and cultural
contexts [25, 26, 31, 34, 35, 39, 43]. Various mechanisms for group polarization have been
proposed and have remained in question, including interpersonal comparison and social moti-
vation, informational influence, and group decision rules. Notably, a study by Van Swol found
that the shift in group opinion was independent of the presence of extremist group members
[41], and, furthering this point, earlier studies had already established independence from the
skew of the group opinions [35]. This suggests that the mechanism of self-incitement, or the
interaction between agents at the same opinion site, may quite accurately reflect mechanisms
underlying opinion shift.

In particular, we study the following deterministic mean-field model for the evolution of
populations of agents Pn with opinion n∈Z:

(1.1)
dPn

dt
= 2Pn+1Pn−1 − Pn(Pn+2 + Pn−2) + β(P 2

n+1 − P 2
n), n∈Z.

Here, β = 0 corresponds to a deterministic Hegselmann–Krause-style bounded-confidence
model in continuous time on a lattice, where populations Pn−1 and Pn+1 interact with mass-
action rates to form opinions Pn. We added the self-incitement bias term β(P 2

n+1 − P 2
n),

which can be interpreted as that an individual agent decreases their opinion value by one with
probability proportional to the population size with the same opinion: interactions between
“same-opinion agents” lead to opinion drift toward the extreme. The strength of the bias
term is encoded in the parameter β > 0.

Our results for this model can roughly be summarized as follows:
(i) There exists a critical bias level βcrit = 2, such that for β > βcrit, formation of opinion

clusters is suppressed and uniform distribution of opinions is stable.
(ii) For weak bias β & 0, drift speeds c are at leading order proportional to bias and cluster

mass, c∼ 2βm
π .

(iii) For subcritical, strong bias close to criticality, β . βcrit = 2, we establish rigorously
coherent cluster drift on a constant background of size m with speed c∼ 4m.

(iv) For bias 0 < β < 2, we find drifting clusters by numerical continuation and find that
the background population that supports coherent cluster drift is exponentially small,
exp(−const/β).

The results in (i)–(iii) are analytical. Only in the regime (iii) are we able to establish exis-
tence of coherent cluster drift, while (ii) leaves open the possibility of eventual dispersal of a
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SHIFTING CONSENSUS IN A BIASED COMPROMISE MODEL 299

cluster. We also briefly discuss some intriguing phenomena related to stability and instability
of drifting clusters.

Technically, the results in (ii) rely on a leading order computation of a flow on a slow
manifold using geometric singular perturbation theory, while (iii) uses a recently introduced
novel method for analyzing coherent structures in nonlocally coupled equations.

Outline. In section 2, we collect information about the bounded confidence model and the
model with bias terms added, as well as the linearization at single-cluster and uniform states.
We establish in section 3 the speed of drift for β� 1, case (ii), using methods from geometric
singular perturbation theory. The β ↗ 2 regime, case (iii), is treated in section 4, where
drifting solutions are established using nonlocal methods. In section 5, we describe numerical
approaches and results, in particular concerning case (iv) above. Section 6 describes numerical
evidence for lack of coherence when the equation is posed with other bias terms. We conclude
with a brief discussion.

2. The bounded confidence model: Equilibria, stability, and bias. The bounded confi-
dence model

(2.1)
dPn

dt
= 2Pn+1Pn−1 − Pn(Pn+2 + Pn−2), Pn > 0, n∈Z,

describes the dynamics of an opinion distribution Pn(t), n ∈ Z, where Pn(t) represents the
local population size with opinion n at time t. Agents at sites n− 1 and n+ 1 compromise
through interaction, moving to opinion n, while agents at site n compromise with those at
n+ 2 and n− 2, leaving site n. There is no interaction between agents at a distance greater
than 2. The equation clearly preserves mass and average opinion (or first moment),

d

dt

∑

n

Pn = 0,
d

dt

∑

n

nPn = 0,

provided reasonable conditions such as sufficient localization at |n| → ∞. The dynamics
of (2.1) are to some extent understood. The consensus process leads to the formation of
opinion clusters, which one refers to as clusters. For (2.1), these clusters can be supported
on one or two opinions sites, that is, for instance, P0 = 1, Pj = 0 for j 6= 0, or P0 = α,
P1 = 1 − α, Pj = 0 for j 6∈ {0,1}. Clusters separated by at least two empty sites between
them will not interact, and one can in this fashion generate equilibrium states with multiple
clusters. Opinion clusters, once well established after initial transients, appear to be very
robust, although introduction of agents away from existing clusters may lead to the formation
of new clusters. In addition to these single-cluster states, supported on one or two opinion sites,
and the associated well separated multi-cluster states, the equation also supports equilibria of
uniform opinion distribution, Pn ≡m for all m. We refer the reader to [4] for background on
the model and its dynamics. We note, however, that many questions of stability have not been
answered in a precise mathematical fashion, possibly due to the abundance and complexity
of possible equilibrium configurations.

2.1. Single-cluster states. A single two-site cluster of mass m takes the formP ∗
α,n =

(0, . . . ,
↓n
mα,m(1 − α), . . . ,0)⊥ for α ∈ (0,1). In the limiting case α = 0 or α = 1, the cluster
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300 O. CANNON, T. BONDURANT, M. WHYTE, AND A. SCHEEL

only occupies one site. It represents (total) consensus of opinion at two adjacent opinion sites
n and n+ 1. The linearized vector field at a two-site and at a one-site equilibrium (α= 0) of
(2.1) with mass m= 1 are, respectively, given by the matrices




0
. . .

−α 0 0 0 0 0
2α −(1− α) 0 0 0 0

−α 2(1− α) 0 0 −α 0
n←−

0 −(1− α) 0 0 2α −(1− α)
0 0 0 0 −α 2(1− α)
0 0 0 0 0 −(1− α)

. . .

↑
n

0




and




0
. . .

−1 0 0 0 0
2 0 0 0 0

−1 0 0 0 −1 n←−
0 0 0 0 2
0 0 0 0 −1

. . .

↑
n

0




.

By scaling invariance, linearization at clusters with mass m gives the same matrices multiplied
by a factor m.

Both matrices clearly have infinite-dimensional kernels, with bases spanned by

{ej | j 6= n− 2, n− 1, n+ 2, n+ 3} and {ej | j 6= n− 2, n+ 2} ,

respectively. Here, en is the canonical basis vector such that (en)k = δnk with Kronecker-δ
notation.

For the two-site cluster, the kernel has codimension 4 and corresponds to the two sites of
the cluster and the sites at a distance 3 or more away. The spectrum of the linearization is
{0,−mα,m(1− α)}. For the one-site cluster, the kernel has codimension 2 and the spectrum
of the linearization is {0,−m}. The complement of the kernel can be associated with opinion
sites n that interact with the support of the cluster, while kernel elements correspond to lattice
sites that do not interact with the cluster, either because they are too far away or because
they simply change the shape of the cluster.

Associated with the kernel elements en and en+1 for the two-site cluster, there is a two-
dimensional family of single cluster equilibria parameterized by the massm and the parameter
α, which can be thought of as parameterizing the average opinion in the cluster. At the two-site
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SHIFTING CONSENSUS IN A BIASED COMPROMISE MODEL 301
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...
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n n+1n-1 n+2

n n+1n-1 n+2

n n+1n-1 n+2

...

...

(a) (b) (c) (d)

(e) (f)

(a)

(b)

(c)

(d)

(e) (f)

Figure 2.1. Single-cluster at one or two sites, multi-cluster, and uniform distribution equilibria (top).
Phase-space schematic of a family of single-cluster equilibria with corners at one-site clusters (bottom).

cluster, one can associate the kernel vector en with mass change and the kernel vectors en+1

and en−1 with increases or decrease in the average opinion in the cluster. Note, however, that
the direction en+1+en−1 associated with states (. . . ,0,0, α,1, α,0,0, . . .)⊥ does not correspond
to the tangent space of a family of equilibria. Similarly, directions in the kernel with support
on more than two sites do not correspond to families of equilibria. In particular, the infinite-
dimensional kernel is not simply the tangent space to a high-dimensional family of equilibria,
a fact that will slightly complicate the application of singular perturbation theory later. We
remark that the stability of single-cluster states is analytically rather subtle due to this high-
dimensional kernel and the possible associated dynamics of clustering of small mass nearby in
phase space but far away in the opinion spectrum.

Fixing total mass, single-cluster states naturally come in a one-parameter family F that
can be parameterized by their average opinion: A cluster with mass 1−α at site n and mass
α at site n+ 1 has average opinion n+ α.

Drifting opinion in a biased model is to leading order described by drift along this con-
tinuous family of single-cluster states. A subtlety arises when viewing this family in phase
space. The tangent vector to the family of two-site clusters supported on sites n and n+1 is
en − en+1. This tangent vector is discontinuous at the one-site cluster, where the continuous
curve of single-cluster equilibria possesses a corner; see Figure 2.1 for an illustration. Drift
along this corner, as we shall see below, introduces dynamics and error terms known from the
analysis of a passage through a transcritical bifurcation.

2.2. Uniform distribution of opinions. The uniform state Pn ≡m is also an equilibrium
of (2.1). This equilibrium turns out to be unstable, and a typical question of interest is how
fluctuations around this equilibrium evolve into multi-cluster states. In order to understand
this process, one usually starts by linearizing (2.1) at the uniform state to find

dPn

dt
=m(−Pn−2 + 2Pn−1 − 2Pn + 2Pn+1 − Pn+2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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302 O. CANNON, T. BONDURANT, M. WHYTE, AND A. SCHEEL

Figure 2.2. Linear dispersion relation (2.3) for β < 2, β = 2, and β > 2.

Solutions to this constant-coefficient lattice-differential equation can readily be found after
Fourier transform. Therefore, inserting an ansatz Pn = eiσn+λt, one finds the dispersion
relation

λ= 2m(2 cos(σ)− cos(2σ)− 1), −π6 σ < π;

see also Figure 2.2. The temporal eigenvalue λ is real and obtains a maximum of 1 at σ=±π
3 .

The linearization therefore predicts fastest growth of perturbations with period n = 6,
predicting that white-noise fluctuations around a constant state would evolve towards a multi-
cluster state with peaks at sites with distance δn= 6. A more refined branch point analysis of
this dispersion relation reveals that localized perturbations of the unstable state evolve into
clusters with different spacing, δn= 5.311086 . . .; see [5]. We will return to this analysis when
considering stability of uniform states with (strong) bias.

2.3. The effect of bias on equilibria. Returning to the model equation with self-incitement
bias,

(2.2)
dPn

dt
= 2Pn+1Pn−1 − Pn(Pn+2 + Pn−2) + β(P 2

n+1 − P 2
n),

we note that, for β > 0, single-cluster states do not form equilibria. The resulting drift of
single clusters along the family of equilibria F with a resulting change in average opinion is
the object of much of the remainder of this paper.

On the other hand, the uniform state does persist as an equilibrium, but the linearization
picks up new terms. When β > 0, the linearized equation

dPn

dt
=m(−Pn−2 + 2Pn−1 − (2 + 2β)Pn + (2+ 2β)Pn+1 − Pn+2)

has dispersion relation

(2.3) λ=m(−2cos(2σ) + (4 + 2β) cos(σ)− (2 + 2β) + 2iβ sin(σ)).

For β < 2, the maximum of Reλ(σ) is positive and the uniform state is unstable. However, for
β ≥ 2, Reλ6 0 is nonpositive, with a quadratic tangency of the eigenvalues at the origin for β >
2: strong bias stabilizes uniform distribution of opinion and hence disfavors opinion clusters!

Intuitively, this effect stems from the added advection and diffusion induced by the bias
term in the linearization. The negative diffusion in the compromise process competes with pos-
itive diffusion from discrete transport, and for high enough bias, the latter dominates and stabi-
lizes the uniform state. Mechanistically, one can intuitivize the high bias as causing movement
so fast that agents move outside the compromise region before any cluster can be kept together.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SHIFTING CONSENSUS IN A BIASED COMPROMISE MODEL 303

Spectral stability in the dispersion relation translates readily into linear stability in, say,
`2. One would also expect nonlinear stability with approximately diffusive decay of the per-
turbation for localized initial conditions, measured in `∞, due to the presence of (discrete)
derivatives in the nonlinearity; see Remark 4.1 for more detail.

We shall exploit the change of stability in our bifurcation analysis, showing that the
destabilization is accompanied by the creation of localized coherent structures, in section 4.

3. Small bias regime. We study here dynamics for 0 < β � 1. We use methods from
geometric singular perturbation theory (GSPT) to investigate the speed of propagation of a
single cluster in the biased system. We note that the lack of smoothness of the family of
equilibria in the unbiased system prohibits a global slow-fast decomposition using existing
theory. Nevertheless, we find locally invariant manifolds and separately analyze the system
near the points where the manifold is not smooth, allowing us to compute the local speed of
propagation for small bias.

3.1. Singular perturbation analysis near single-cluster equilibria. We begin by estab-
lishing the existence of locally invariant manifolds.

Proposition 3.1 (two-site center manifold). Fix n ∈ Z, k > 1 ∈ N arbitrary, and δ > 0
arbitrarily small. Then, for each fixed mass m > 0 of two-site cluster equilibria, there exists
a family of locally invariant, infinite-dimensional, codimension-4, Ck-manifolds Mβ ⊂ `∞,
which depend on β in a Ck-fashion such that M0 ⊃ {P ∗

α,n | α ∈ (δ,1 − δ)}, the part of the
family of two-site single-cluster equilibria supported on sites n and n+ 1 away from one-site
single-cluster equilibria. Its tangent space for β = 0 at any of the two-site equilibria coincides
with the infinite-dimensional kernel of the linearization at this equilibrium.

Proof. The manifold of equilibriaM0 is (locally) invariant, and its linearization possesses
an exponential dichotomy with a four-dimensional stable subspace and an infinite-dimensional
center subspace, with uniformly bounded projections Ps and Pc. Standard theory for invariant
manifolds then shows the existence of smooth, locally invariant center manifolds associated
with this splitting, using, for instance, graph transforms as in [3, 17, 22].

Proposition 3.2 (one-site center manifold). Fix n ∈ Z, k > 1 ∈ N arbitrary, and δ > 0
sufficiently small. Then, for fixed mass m> 0 of the one-site equilibrium, there exists a fam-
ily of locally invariant, infinite-dimensional, codimension-2, Ck-manifolds M′

β ⊂ `∞, which

depend on β in a Ck-fashion such that M′
0 ⊃ P ∗

n ∪ {P ∗
α,m |m = n,α ∈ (0, δ);m = n− 1, α ∈

(1− δ,1)}, the family of two-site single-cluster equilibria close to the one-site equilibrium P ∗
n .

Its tangent space for β = 0 at the one-site equilibrium coincides with the infinite-dimensional
kernel of the linearization at this equilibrium.

Proof. This is a standard local center-manifold result in infinite dimensions; see, for in-
stance, [42, 21]. It contains the family of equilibria since it contains all small solutions bounded
for all times.

We emphasize that the two-site center manifold is global in the sense that it contains a
compact subset of the line of equilibria between two one-site clusters, while the one-site center
manifold is local, defined only in a small neighborhood of the one-site cluster.
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304 O. CANNON, T. BONDURANT, M. WHYTE, AND A. SCHEEL

3.2. Leading-order dynamics away from corners. Using invariance, we can now compute
the leading-order dynamics on each manifold and the reduced flow. Away from the corners,
we can parameterize the kernel of the linearization at a two-site cluster P ∗

α,n through values
qn, qn+1 and p∈ `∞, pj = 0 for n−2≤ j ≤ n+3 and write the manifold by P = h(qn, qn+1, p, β),
with

h(qn, qn+1, p, β) = (α+ qn)en + (1− α+ qn+1)en+1 + p+O(β, |qn|2 + |qn+1|2, |p|2).
In this parameterization, we have

q̇n = βPc(G(h(qn, qn+1, p, β)))n +O(β2, |qn|2 + |qn+1|2, |p|2),
q̇n+1 = βPc(G(h(qn, qn+1, p, β)))n+1 +O(β2, |qn|2 + |qn+1|2, |p|2),

ṗ=O(|p|2, |βp|, β2(|qn|+ |qn+1|)),
where G(P )j = P 2

j+1 − P 2
j , and Pc is the spectral projection onto kerDf(P ∗

α,n), defined as

Pc(P )j =





Pj , j < n− 2, j > n+ 3,

0, j = n+ 1, n+ 2, n− 1, n− 2,

3Pn−2 + 2Pn−1 + Pn − Pn+2 − 2Pn+3, j = n,

−2Pn−2 − Pn−1 + Pn+1 + 2Pn+2 + 3Pn+3, j = n+ 1.

,

Now scaling p= βq, we find explicitly at leading order on the center manifold

q̇n = β(α2 + (1− α)2) +O(β2),
q̇n+1 =−β((α)2 + (1− α)2) +O(β2),

ṗ=O(β2).
Clearly, at leading order mass in the cluster is conserved, Ṗn + Ṗn+1 = 0. For the family of
two-site clusters parameterized by Pn = α,Pn+1 = 1− α, this gives
(3.1) α̇=−β[α2 + (1− α)2] +O(β2).

We compare this first-order approximation (3.1) with numerically computed drift speeds
averaged in time, that is, covering the interval α ∈ [0,1] rather than the interval (δ, (1− δ))
where the above analysis applies in Figure 3.1(a). Details on computational procedures are
delineated in section 5. We see that the predicted speeds here give the leading-order term for
small β, but the discrepancy for even moderately small values of β is significant. We show
how this discrepancy can be attributed to the passage near the one-site clusters, contributing
a term β3/2.

3.3. Corner dynamics and slow passage through transcritical bifurcations. We now
compute the leading-order dynamics near the one-site cluster. The kernel of the linearization
Df(P ∗

n) is now of codimension 2, and we parameterize elements Pc of the kernel by values
α+, α−, αm ∈R and p∈ `∞, with pj = 0 for n− 2≤ j ≤ n+ 2. Let

e+ = (0, . . . ,1,
↓n
−1,0, . . .)⊥, e− = (0, . . . ,0,

↓n
−1,1, . . .)⊥, em = (0, . . . ,0,

↓n
1 ,0, . . .)⊥,

e∗+ = (0, . . . ,0,0,
↓n
0 ,1,2 . . .)⊥, e∗− = (0, . . . ,2,1,

↓n
0 ,0,0, . . .)⊥, e∗m = (0, . . . ,1,1,

↓n
1 ,1,1,0 . . .)⊥.
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Figure 3.1. (a) Comparisons of leading-order average drift speed prediction from theory (red) with drift
speed from numerical continuation (blue) for a cluster of total mass 1; see section 5 for details. (b) Numeri-
cally computed values for the drift speed (blue) plotted against the leading-order approximation (green) and the

approximation with the β
3
2 correction.

We write the center manifold as the graph of hc = hc(α+, α−, αm, p, β), with

hc(α+, α−, αm, p, β) = P ∗
n + p+ α+e+ + α−e− + αmen +O(|α+|2 + |α−|2 + |αm|2 + |p|2 + β2).

In these coordinates, we have

Ṗc =Pc(f(P ∗
nPc + hc(Pc))) +O(|Pc|3 + β3),

where the spectral projection Pc onto kerDf(P ∗
α,n) is given by

Pcv= 〈v, e∗+〉e+ + 〈v, e∗−〉e− + 〈v, e∗m〉en +
∑

|i|>3

〈v, ei〉ei.

Writing the vector field in terms of α+, α−, αm, p, β, we find that

f(P ∗
n+Pc+h(Pc)) =




...
2p−3p−5 − p−4p−6

−p−3α− − p−3p−5

−h− + 2p−3α−

2h−α−α+ − α−p−3 + β(1 + 2(αm − α− − α+))
2α+α− − (h− + h+)− β(1 + 2(αm − α− − α+))

2h+ − α+α− − α+p3
−h+ + 2α+p3
−α+p3 − p3p5
2p3p5 − p4p6

...




n←− +O(|Pc+β|3),
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306 O. CANNON, T. BONDURANT, M. WHYTE, AND A. SCHEEL

which in turn gives

α̇− = 〈f(P ∗
n + Pc + hc(Pc)), e

∗
−〉 = β−α−α++3p−3α−+2β(αm−α+−α−) +O(3),

α̇+ = 〈f(P ∗
n + Pc + hc(Pc)), e

∗
+〉 = −α−α+ + 3p3α+ +O(3),

α̇m = 〈f(P ∗
n + Pc + hc(Pc)), e

∗
m〉 = p3α+ + p−3α− +O(3),

ṗ3 = 〈f(P ∗
n + Pc + hc(Pc)), e3〉 = −p3α+ − p3p5 +O(3),

ṗ−3 = 〈f(P ∗
n + Pc + hc(Pc)), e−3〉 = −p−3α− − p−3p−5 +O(3),

ṗ4 = 〈f(P ∗
n + Pc + hc(Pc)), e4〉 = −2p3p5 − p4p6 +O(3),

ṗ−4 = 〈f(P ∗
n + Pc + hc(Pc)), e−4〉 = −2p−3p−5 − p−4p−6 +O(3),

ṗj = 2pj−1pj+1 − pj(pj+2 + pj−2) +O(3), |j|> 4.

At leading order, the subspace where pj = 0 for all j and αm = 0 is invariant, and we therefore
consider the leading-order equation for α−, α+ only,

α̇− = β − α−α+ − 2β(α+ + α−), α̇+ =−α−α+.

Changing variables x= α− + α+ and µ= α− − α+, this gives

ẋ=−1

2
(x2 − µ2) + β(1− 2x), µ̇= β(1− 2x).

In the natural scaling x∼ µ∼ β1/2, the terms −2βx are of higher order. The remaining terms
describe precisely the slow passage through a transcritical bifurcation as studied, for instance,
in [28] using geometric desingularization.

The passage near the one-site cluster can be analyzed by starting in a section to the flow
{x− µ= 2δ} near x=−µ= δ and tracking time until the section x+ µ= 2δ near x= µ= δ.
At leading order this time is given by 2δ/β, which confirms that, at leading order, the passage
time near the one-site equilibrium can be ignored in the computation of the average speed,
letting, for instance, δ→ 0. The scaling does, however, introduce error terms involving β1/2,
which indeed manifest themselves in corrections to the averaged speed of order β3/2; see, for
instance, [28]. We did not attempt to derive these corrections analytically but numerically
found the coefficient to the β3/2 correction as –.467; see Figure 3.1(b) for numerical values
of the drift speed of a cluster of mass 1, plotted against the theoretical prediction with and
without the β3/2 correction.

4. Large bias regime. In this section, we investigate the dynamics as β gets large. Nu-
merically, we see that the background mass of profiles increases and that as β approaches 2
the size of the profiles becomes arbitrarily small relative to the background mass.

We can see that this agrees with heuristics from the spectrum of the linearization at the
background mass. We recall the dispersion relation for the linearization at the uniform steady
state u≡m,

−iω=m(−2cos(2σ) + (4 + 2β) cos(σ)− (2 + 2β) + 2iβ sin(σ)),

and note that the quantity −iω has nonpositive real part exactly when β ≥ 2. Therefore,
the uniform steady state regains (marginal) linear stability when β = 2, which may explain
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SHIFTING CONSENSUS IN A BIASED COMPROMISE MODEL 307

why traveling profiles disappear. For β < 2 but sufficiently close, numerically we see small-
amplitude, long-wavelength profiles atop the background state u ≡ m. In this section, we
rigorously establish the existence of these spike solutions for β sufficiently close to 2. We first
derive formal amplitude equations, giving heuristics for the existence of spike solutions. We
then establish existence rigorously and derive expansions through a nonlocal center manifold
computation, followed by a Melnikov analysis of the reduced system.

Formal derivation of amplitude equations. We derive formal amplitude equations for the
β ∼ 2 regime, under long-wavelength, small-amplitude assumptions. We will see in section 4.2
that rigorous center manifold calculations in fact agree with the resulting amplitude equations.
For our approximation, we follow [37] by choosing the regime in which the lattice spacing
remains constant but the spatial variable in the KdV equation is rescaled.

Assume that (2.2) permits a small, long-wavelength solution Pn =m+ ε2u(ε(n+ ct), ε3t),
where c = 2mβ is chosen as the group velocity at the constant state. To simplify notation,
let ξ ≡ n+ ct. Substituting the ansatz into (2.2) and grouping linear and nonlinear terms, we
find

∂t[u(εξ, ε
3t)]

(4.1)

= 2m[u(εξ − ε, ε3t) + u(εξ + ε, ε3t)]−m[2u(εξ, ε3t) + u(εξ − 2ε, ε3t) + u(εξ + 2ε, ε3t)]

+ 2mβ
[
u(εξ + ε, ε3t)− u(εξ, ε3t)

]
− ε2u(εξ, ε3t)[u(εξ − 2ε, ε3t) + u(εξ + 2ε, ε3t)]

+ 2ε2u(εξ − ε, ε3t)u(εξ + ε, ε3t) + βε2
[
u2(εξ + ε, ε3t)− u2(εξ, ε3t)

]
.

We now expand u in the first variable,

u(εξ + kε, ε3t) = u(εξ, ε3t) + kε · ∂1u(εξ, ε3t) +
(kε)2

2!
· ∂21u(εξ, ε3t) +

(kε)3

3!
· ∂31u(εξ, ε3t)

+
(kε)4

4!
· ∂41u(εξ, ε3t) +O(ε5),

for each k ∈ {−2,−1,0,1,2}, and we implicitly assume sufficient smoothness in u. Inserting
the expansion into (4.1), we find

ε3∂2u= 2m

[
ε2∂21u+

ε4

12
∂41u

]
−m

[
4ε2∂21u+

4

3
ε4∂41u

]
+ 2mβ

[
ε2

2
∂21u+

ε3

6
∂31u+

ε4

24
∂41u

]

− ε2
[
2u2 + 4ε2u∂21u+

4ε4

3
u∂41u

]

+ 2ε2
[
u2 + ε2u∂21u− ε2(∂1u)2 +

ε4

12
u∂41u−

ε4

3
∂1u∂

3
1u+

ε4

4
(∂21u)

2

]

+ βε2
[
2εu∂1u+ ε2u∂21u+ ε2(∂1u)

2 + ε3∂1u∂
2
1u+

ε3

3
u∂31u+

ε4

4
(∂21u)

2

+
ε4

12
u∂41u+

ε4

3
∂1u∂

3
1u

]

+O(ε5),
where ∂1 and ∂2 refer to the partial derivatives with respect to the first and second arguments
εξ and ε3t, respectively. Retaining orders O(ε2) to O(ε4) and then dividing by ε3, we find the
formal amplitude equation
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308 O. CANNON, T. BONDURANT, M. WHYTE, AND A. SCHEEL

∂2u=
m(β − 2)

ε
∂21u+

mβ

3
∂31u+ 2βu∂1u− ε

(
(14− β)m

12
∂41u+ (2− β)∂1 (u∂1u)

)
+O(ε2).

(4.2)

Note that for β = 2+O(ε2), at leading order, (4.2) becomes the KdV equation

(4.3) ∂2u=
2m

3
∂31u+ 4u∂1u.

The KdV equation possesses a family of traveling spikes parameterized by the wave speed (or
the amplitude). At the next order O(ε), with β = 2− ε2β̃, β̃ > 0, we find a damping term
−εm∂41u, fourth-order viscosity and a negative damping term −εmβ̃∂21u, negative viscosity.
The analysis presented below demonstrates that this equation can be rigorously derived as
an ODE at leading order on a center manifold and that the effects of negative and positive
viscosity balance for an appropriate wave speed (or amplitude) in the reduced center manifold
equation.

Remark 4.1 (viscous Burgers modulation and stability). For β > 2, one finds that (4.2)
reduces at leading order to the viscous Burgers equation, ∂2u= ∂21u+u∂1u, after appropriate
scalings. It is known that in this approximation, localized initial conditions decay algebrai-
cally in L∞ and that higher-order terms, that is, terms carrying higher powers in u or more
derivatives, are irrelevant in the long-time asymptotics of small data; see [8]. We therefore
suspect that one can establish asymptotic stability in `∞ of constant distributions of opinions
in our system for values of β > 2 and small perturbations in `1. On the other hand, `∞ pertur-
bations may evolve into persistent dynamics, for instance viscous shocks, rarefaction waves,
and their superposition; see [13] for such a construction based on a Burgers approximation.

4.1. Statement of main result. In order to precisely state the main result of this section,
we collect some definitions and notation. We define a traveling wave in a one-dimensional
lattice as a solution of the form Pn =Q(n+ct), where Q(·) defines a fixed profile which moves
through the lattice. Seeking such a solution, we reformulate the problem as a functional
differential equation: substituting Pn =Q(n+ ct), we get

(4.4) 0 =−cQ′(ξ) + 2Q(ξ − 1)Q(ξ +1)−Q(ξ)(Q(ξ − 2) +Q(ξ +2)) + β(Q2(ξ +1)−Q2(ξ)),

where ξ = n+ ct∈R.
Further writing Q(ξ) =m+ q(ξ), we have

(4.5) 0 =−cq′(ξ)+m(2q(ξ−1)+2(β+1)q(ξ+1)−2(β+1)q(ξ)−q(ξ−2)−q(ξ+2)+N (q, β)),

where N (q, β) = 2q(ξ − 1)q(ξ + 1)− q(ξ)(q(ξ − 2) + q(ξ + 2)) + β(q(ξ + 1)2 − q(ξ)2).
Note that we can rewrite the forward-backward delay equation (4.5) as a nonlocal equation

(4.6) 0 =−cq′(ξ)− 2m(β + 1)q(ξ) +mK ∗ q+N (q, β),

with convolution kernel K(·) =−δ(· − 2) + 2δ(· − 1) + 2(β + 1)δ(·+ 1)− δ(·+ 2).
We are now ready to state the main result of this section.
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SHIFTING CONSENSUS IN A BIASED COMPROMISE MODEL 309

Theorem 1. There exists β∗ > 0 such that for 2 − β∗ < β < 2, there exists a locally
unique homoclinic solution q = q∗β(ξ) to (4.6) with locally unique wave speed c = c(β), with
lim|ξ|→∞ q∗β(ξ) =m, and therefore a unique traveling-wave spike solution (u∗β)n(t) = q∗β(n+ ct)
to (2.2). Furthermore, we have

q∗β(ξ) =m

(
1 +

7(2− β)
10

)
sech2

(√
7(2− β)

20
ξ

)
+O((2− β) 3

2 ),

c(β) =m

(
4− 16

15
(2− β)

)
+O((2− β) 3

2 ).

Note that, in particular, q∗β(ξ) > m represents an opinion spike, or a traveling cluster, and
c= c(β)> 2mβ is slightly larger than the linear group velocity 2mβ.

The outline of the proof is as follows: We first show that (4.6) can be reformulated to satisfy
the hypotheses of the nonlocal center manifold theorem in [16], allowing for a center manifold
reduction. We then calculate the nonlocal center manifold expansion in function space and
derive the reduced vector field. Finally, we prove the existence of homoclinic solutions to
the reduced equations using Melnikov analysis, where the existence of a conserved quantity
becomes crucial.

We begin with the existence of a center manifold. Let β̃ = 2− β, c̃= c− 4m, and define

Tβ̃,c̃q=−cq′ − 2m(3− β̃)q+mK ∗ q

as an operator on H1
−η(R,R) where

‖u‖H1
−η

= ‖u(·)e−η|·|‖H1

is an exponentially weighted space allowing for exponential growth. For η > 0 sufficiently
small, consider the kernel E0, which turns out to be finite-dimensional, and choose a closed
complement, thus defining a projection P0 onto the kernel P0,

E0 =kerT0,0, P0E0 = E0.

Proposition 4.2. Fix η > 0 sufficiently small, and consider the functional equation (4.6)
in H1

−η(R,R) and k < ∞. There exist neighborhoods Uq × U(0,0) of (0,0,0) in E0 × R2 and

a map Ψ ∈ Ck(Uq × U(0,0),kerP0), with Ψ(0,0,0) = 0 and DqΨ(0,0,0) = 0 such that for all

(β̃, c̃)∈ U(0,0) the manifold

Mβ̃,c̃
0 =

{
q0 +Ψ(q0, β̃, c̃) : q0 ∈ Uq,

}
⊂H1

−η

contains the set of all bounded solutions of (4.6), small in C0(R,R).

Proof. Preconditioning (4.6) with the operator
(
2m(β + 1) + c d

dξ

)−1
=Gβ,c∗, with

Gβ,c(ξ) =
1

c
exp

(
−2m(β + 1)

c
ξ

)
χR+(ξ),
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310 O. CANNON, T. BONDURANT, M. WHYTE, AND A. SCHEEL

the resulting equation

0 =− q+ (Gβ,c ∗mK) ∗ q+Gβ,c ∗N (q, β)

=:− q+ K̃β,c ∗ q+ Ñ (q, β)
(4.7)

is in the form of [16], with one discrepancy—the kernel K̃β,c = Gβ,c ∗mK is not in W 1,1
η0

for

any η0 > 0. However, since K̃′
β,c is still a sum of an L1

η0
function and scaled translates of

Dirac deltas, the results of [16] can be established with minor modifications as follows. In the
proof of [16, Lemma 3.1], the smoothness of K is only used to show that DT (u) =D(K∗u) =
(K′ + ρK+ ρδ0) ∗ u satisfies the hypotheses of [15]. Here, we note that although K̃β,c /∈W 1,1

η0
,

it is still true that (K̃′
β,c + ρK̃β,c + ρδ0) ∗ u satisfies the hypotheses of [15]. Therefore, [16,

Lemma 3.1] holds identically, and the rest of the proof in [16] does not use this hypothesis.
The parameter-dependent center manifold theorem [16, Theorem 3] can therefore be applied
to the system (4.6), which implies the statement of the proposition.

4.2. Nonlocal center manifold expansion. Given the existence of a nonlocal center man-
ifold, we now use the methods of [16] to calculate the Taylor expansion of the center manifold
in function space and derive the reduced vector field.

Since the Taylor expansion is written as a map over the kernel of Tβ̃,c̃, we first find a
parameterization of kerTβ̃,c̃, and a projection. The dispersion relation given by the linearized

equation, in terms of β̃, c̃, is

d(ν, β̃, c̃) = T̂β̃,c̃(ν) =−(4m+ c̃)ν−2m(3+β̃)+2m(eν+e−ν)−2m(e2ν+e−2ν)+2m(2−β̃)eν = 0.

Note that d is clearly analytic and roots on the imaginary axis ν ∈ iR are a priori bounded.
At β̃ = c̃= 0, we find that there are no imaginary roots ν 6= 0. Expanding d at ν = 0, we have

d(ν, β̃, c̃) = (2mβ̃ − c̃)ν +mβ̃ν2 +
m(2− β̃)

3
ν3 − m(β̃ + 12)

12
ν4 +O(ν5).

Note that d̃(0,0,0) = ∂ν d̃(0,0,0) = ∂νν d̃(0,0,0) = 0, with ∂ννν d̃(0,0,0) 6= 0. Additionally,
d̃(i`,0,0) 6= 0 for all ` 6= 0. Thus, the kernel E0 of T0,0 in H1

−η is given by

E0 = span{1, ξ, ξ2},

and we write elements q0 ∈ E0 as

(4.8) q0(ξ) =A0 +A1ξ +A2ξ
2 ∈ E0,

with (A0,A1,A2)∈R3. Last, we define the projection P0 :H3
−ν(R)→E0 by

P0(q) = q0 + q′(0)ξ +
1

2
q′′(0)ξ2,

noting that this is well-defined by Sobolev embedding and using that the solutions are actually
in Hk for k as in the statement of Proposition 4.2.

The calculation of a reduced center flow is done in two steps: first, invariance is used to
derive a Taylor expansion for the nonlocal center manifold Ψ from Proposition 4.2. Second,
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SHIFTING CONSENSUS IN A BIASED COMPROMISE MODEL 311

the flow Φη on the center manifold, which is defined by the action of translations ξ 7→ ξ+η on
H1

−η, is projected onto the kernel and differentiated with respect to η at η= 0, yielding a finite-
dimensional reduced vector field. We note that the bulk of the computation in this process is
in the first step since the second step will consist entirely of differentiating polynomials. In
fact, the entire computation involves only polynomials, highlighting the algebraic simplicity
of the method.

In writing the center manifold as a graph Ψ over E0, we seek a Taylor expansion of the
form

(4.9) Ψ(A0,A1,A2, β̃, c̃) =
∑

l,r
|l|+|r|>1

Al0
0 A

l1
1 A

l2
2 β̃

r1 c̃r2ψl,r(ξ),

where l= (l1, l2, l3), r= (r1, r2). Here, the second multi-index r is present because we are using
the parameter-dependent version of [16, Theorem 1]. We will use invariance to solve for the
Taylor coefficients ψl,r. Note that we do this using the unconditioned equation (4.6) since it
makes calculations more straightforward and yields identical results. We substitute (4.9) into
the functional differential equation (4.6), noting that

(4.10) Tβ̃,c̃(q0+Ψ)+N (q0+Ψ)=−c̃q′0(ξ)−2mβ̃(q0(ξ+1)−q0(ξ))+N (q0,0)+T0,0(Ψ)+O(3),

to obtain at quadratic order that

∑

|l|+|r|=2

Al0
0 A

l1
1 A

l2
2 β̃

r1 c̃r2T0,0(ψl0,l1,l2,r1,r2(ξ)) = c̃q′0(ξ) + 2mβ̃(q0(ξ + 1) + q0(ξ))−N (q0,0)

= 4A0A1 + 4ξA2
1 + 8ξA0A2 + (12ξ2 + 4)A1A2 + (8ξ3 + 8ξ + 4)A2

2

− 2mA1β̃ −A1c̃+ (−2m− 4mξ)A2β̃ − 2ξA2c̃.

(4.11)

We then take as an ansatz for ψl,r the polynomials ψl,r =
∑

i≥3αiξ
i, suppressing the depen-

dence on l, r in αi. The ansatz is inspired by the fact that the kernel E0 consists of polynomials
and more generally that the space of polynomials is invariant under convolution. We calculate

T0,0(α3ξ
3 + α4ξ

4 + α5ξ
5 + α6ξ

6) =(4m)α3 + (16mξ − 24m)α4 + (40mξ2 − 120mξ + 4m)α5

+ (80ξ3 − 360mξ2 + 24mξ − 120m)α6(4.12)

and compare coefficients between (4.12) and (4.11) for each quadratic power of (A0,A1,A2, β̃, c̃).
After doing so, one finds that the nonzero Taylor coefficients at quadratic order are

ψ1,1,0,0,0 =−
1

m
ξ3, ψ0,2,0,0,0 =−

1

4m
ξ4 − 3

2m
ξ3, ψ1,0,1,0,0 =−

1

2m
ξ4 − 3

m
ξ3,

ψ0,1,1,0,0 =−
3

10m
ξ5 − 9

4m
ξ4 − 71

5m
ξ3, ψ0,0,2,0,0 =−

1

10m
ξ6 − 9

10m
ξ5 − 71

10m
ξ4 − 457

10m
ξ3,

ψ0,1,0,1,0 =
1

2
ξ3, ψ0,1,0,0,1 =

1

4m
ξ3, ψ0,0,1,1,0 =

1

4
ξ4 + 2ξ3, ψ0,0,1,0,1 =

1

8m
ξ4 +

3

4m
ξ3.

(4.13)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
4
/0

2
/2

4
 t

o
 1

2
8
.1

0
1
.5

9
.1

7
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



312 O. CANNON, T. BONDURANT, M. WHYTE, AND A. SCHEEL

We can now compute the reduced vector field on the center manifold. We start by noting that
the flow on the center manifold is defined by the action of translations, that is, at finite order,

Φη((q0 +Ψ)(ξ)) = (q0 +Ψ)(ξ + η)

= q0(ξ + η) +
∑

Al0
0 A

l1
1 A

l2
2 β̃

r1 c̃r2ψl,r(ξ + η),
(4.14)

with q0, ψl,r as in (4.11), (4.12). This flow becomes a reduced flow after projection by P0 onto
the kernel and last becomes a reduced vector field after differentiation at η= 0:

(4.15) q′0 =
d

dη
P0(Φη(q0 +Ψ))

∣∣∣
η=0

.

In order to express (4.15) in terms of (A0,A1,A2), we note that (q0 +Ψ)(ξ + η) is a sum of
polynomials in ξ + η and calculate

d

dη
P0((ξ + η))|η=0 = (1,0,0),

d

dη
P0((ξ + η)2)|η=0 = (0,2,0),

d

dη
P0((ξ + η)3)|η=0 = (0,0,3),

d

dη
P0((ξ + η)n)|η=0 = (0,0,0), n 6= 1,2,3.

Then, using the expressions for Ψ and q0 in (4.13) and (4.8) and gathering terms, we find
the reduced vector field to be given by

dA0

dη
=A1 +O(3),

dA1

dη
= 2A2 +O(3),

dA2

dη
=− 3

m

(
A0A1 +

3

2
A2

1 + 3A0A2 −
m

2
A1β̃ −

1

4
A1c̃− 2mA2β̃ −

3

4
A2c̃+

71

5
A1A2 +

457

10
A2

2

)

+O(3).

(4.16)

4.3. Existence of solutions to reduced equations. It turns out that this three-dimensional
ODE possesses a conserved quantity at leading order. Within level sets of this conserved
quantity, one finds at leading order a homoclinic solution. In order to prove persistence of the
homoclinic, one needs to prevent drift along level sets under perturbations of arbitrarily high
order. To this aim, we establish the existence of a quantity that is exactly conserved, which we
compute to leading order following the ideas in [2]. Within level sets of this exact conserved
quantity, we then use a somewhat standard Melnikov-type argument to find homoclinics for
the perturbed equation.

In order to derive a conserved quantity, we integrate (4.4) from 0 to L, L∈R, and simplify
to find

0=− cQ(L) +

∫ L

L−1
Q(y− 1)Q(y+ 1)dy−

∫ L+1

L
Q(y− 1)Q(y+ 1)dy+ β

∫ L+1

L
Q2(y)dy

−
(
−cQ(0) +

∫ 0

−1
Q(y− 1)Q(y+ 1)dy−

∫ 1

0
Q(y− 1)Q(y+ 1)dy+ β

∫ 1

0
Q2(y)dy

)
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SHIFTING CONSENSUS IN A BIASED COMPROMISE MODEL 313

for any L∈R. Hence, Φ[Q], defined by

(4.17) Φ[Q] =−cQ(0) +

∫ 0

−1
Q(y− 1)Q(y+ 1)dy−

∫ 1

0
Q(y− 1)Q(y+ 1)dy+ β

∫ 1

0
Q2(y)dy,

is translation invariant on solutions, i.e., Φ[Q] = Φ[SτQ], where Sτ is a translation operator.
We therefore define ϕ≡Φ[Q] as the equivalent of a true conserved quantity or first integral.

Then, letting Q(ξ) =m+A0+A1ξ+A2ξ
2+Ψ(A0,A1,A2, β̃, c̃) be an element of the center

manifold, we insert Q into (4.17) to obtain

ϕ[Q] = (−2m2 −m2β̃ −mc̃) + 4m

3
A2 + 2A2

0 − (2mβ̃ + c̃)A0 −
(
4mβ̃ +

3

2
c̃

)
A1 + 6A0A1

+
284

15
A0A2 +

142

15
A2

1 −
(
187m

15
β̃ +

22

5
c̃

)
A2 +

457

5
A1A2 +

50201

175
A2

2 +O(3).

(4.18)

We see that there exists a locally invertible change of coordinates where A2 maps to φ. We
can solve (4.18) for A2 using the implicit function theorem, since 4m

3 6= 0, to find

A2 =
3

4m
φ +

3

4m
(2mβ̃ + c̃)A0 −

3

2m
A2

0 −
9

2m
A0A1 +

3

4m

(
4mβ +

3

2
c̃

)
A1 −

71

10m
A2

1

+
99

40m2
c̃φ+

561

80
β̃φ− 213

20m2
A0φ−

4113

80m2
A1φ−

1355427

11200m3
φ2 +O(3)

=: g(A0,A1, φ) +O(3),

(4.19)

where φ is redefined to equal ϕ+2m2 +m2β̃ +mc̃ since the latter is also conserved. We also
define Ã1 =

dA0

dη = A1 +O(3) and note that by the implicit function theorem we can find A1

in terms of Ã1 with an expansion. Changing coordinates to (A0, Ã1, φ), we have the system

dA0

dη
= Ã1,

dÃ1

dη
= 2g(A0, Ã1, φ) +O(3),

dφ

dη
= 0.

(4.20)

We now rescale. Let c̃= β̃mc0, and rescale the spatial variable by choosing η= (3β̃)
1

2 (1+ c0
2 )

1

2 ζ

and the amplitudes by A0 = β̃m(1+ c0
2 )a0, Ã1 = β̃

3

2

√
3m(1+ c0

2 )
3

2a1, and φ= β̃23m2(1+ c0
2 )

2φ̃.
Substituting, we obtain the final reduced system

da0
dζ

= a1,

da1
dζ

=
1

2
φ̃+ a0 − a20 − β̃

1

2

√
3

[
3

(
1 +

c0
2

) 1

2

a0a1 −
(
1 +

c0
2

)− 1

2

(
2 +

3c0
4

)
a1

]
+O(β̃),

dφ̃

dζ
= 0.

(4.21)
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314 O. CANNON, T. BONDURANT, M. WHYTE, AND A. SCHEEL

We are looking for homoclinics to a0 = 0 since we are interested in homoclinics with background
mass m. We therefore choose φ̃≡ 0 as a solution to the third equation, reducing to
(4.22)

0 = a′′0 − a0 + a20 − β̃
1

2

√
3

[
3
(
1 +

c0
2

) 1

2

a0a
′
0 −

(
1 +

c0
2

)− 1

2

(
2 +

3c0
4

)
a′0

]
+O(β̃) =: F (a0, β̃),

where ′ = ∂ζ . Note that for β̃ = 0, this equation admits the explicit homoclinic solution

a∗(ζ) =
3
2 sech

2( ζ2).
We now prove the existence of homoclinic solutions to (4.22) using a standard Melnikov
analysis.

Lemma 4.3. There exists β̃∗ > 0 such that for 0 < β̃ < β̃∗, (4.22) admits a homoclinic
solution to a0 = 0 that is uniformly O(β̃1/2)-close to a∗(ζ).

Proof. Let a∗(ζ) be as above. Linearizing (4.22) at a0 = a∗, β̃ = 0 yields the linear operator

L∗u= ∂ζζu+ 2a∗u− u.
We note that kerL∗ = span{a′∗}. Define the projection P onto kerL∗ by Pu= 〈a′∗, u〉, where
〈·, ·〉 denotes the L2-inner product over R. Note also that L∗ is a self-adjoint operator. Then,
writing a0 = a∗+v+αa

′
∗, where v ∈ (kerL∗)⊥, we wish to solve F (a∗+v+αa

′
∗, β̃) = 0. Without

loss of generality, we fix a translate of any potential solution by choosing α= 0, arriving at

0 =PF (a∗ + v, β̃),

0 = (1−P)F (a∗ + v, β̃).
(4.23)

By the implicit function theorem, since the linearization (1 − P)DF (a∗, β̃) = (1 − P)L∗ is
invertible as an operator from kerL⊥ to RanL, there exists a smooth function v = ψ(β̃)
defined on a neighborhood of 0 such that (1 − P)F (a∗ + ψ(β̃), β̃) = 0. Inserting ψ into the
first equation, we get the reduced equation

0 =PF (a∗ +ψ(β̃), β̃)

= 〈a′∗,L∗ψ(v)〉+ β̃
1

2

√
3

[
3
(
1 +

c0
2

) 1

2 〈a′∗, a∗a′∗〉 −
(
1 +

c0
2

)− 1

2

(
2 +

3c0
4

)
〈a′∗, a′∗〉

]
+O(β̃).

(4.24)

Noting that 〈a′∗,L∗ψ(v)〉= 〈L∗a′∗, ψ(v)〉= 0, and dividing by β̃
1

2 , we get

(4.25) 0 = 3

(
1 +

c0
2

)
〈a′∗, a∗a′∗〉 −

(
2 +

3c0
4

)
〈a′∗, a′∗〉+O

(
β̃

1

2

)
.

At β̃ = 0, we can explicitly find that c0 =
4〈a′

∗,a
′
∗〉

3〈a′′
∗ ,a

′′
∗ 〉
− 2 =−16

15 . Noting that (4.25) is smooth in

δ = β̃
1

2 , there exists c0 = c0(δ) for |δ| < δ∗, by the implicit function theorem, since ∂
∂c0
PF =

3
4〈a′′∗, a′′∗〉= 18

7 6= 0, such that (4.25) is satisfied.

Then for 0< β̃ < β̃∗ := δ2∗ there exists a solution to (4.22), with the scaled correction c0 to
the speed given by

c0(β) =−
16

15
+O(β̃ 1

2 ).
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SHIFTING CONSENSUS IN A BIASED COMPROMISE MODEL 315

Putting this together, we see that Theorem 1 is proven, and we have that a homoclinic
solution to the system (4.16) exists for β . 2, with the speed parameter given by

c(β) =m(4− c0β̃) +O(β̃
3

2 ) =
4m

15
(7 + 4β) +O((2− β) 3

2 ).

5. Cluster drift: Numerical continuation and stability. We explore the existence and
stability of traveling clusters numerically for 0 < β < 2. The numerical results connect the
two asymptotics regimes β & 0 (section 3) and β . 2 (section 4). In particular, the results
confirm the asymptotics and existence results with good quantitative agreement and provide
a more global picture of drift in the parameter β. In addition to these numerical continuation
studies, we present a glimpse into the intricate question of stability and selection: instabilities
in the constant cluster tails grow and lead to the formation of new clusters.

5.1. Connecting the regimes—secant continuation. We compute traveling profiles
throughout the entire range 0 < β < 2 using a Newton method to find fixed points of the
functional equation (4.5),
(5.1)
0 =−cq′(ξ)+m(2q(ξ−1)+2(β+1)q(ξ+1)−2(β+1)q(ξ)−q(ξ−2)−q(ξ+2)+N (q, β)), ξ ∈R.

We truncate the real line ξ ∈ R to ξ ∈ [−L/2,L/2] and impose (artificial) periodic boundary
conditions. We then discretize (5.1) with N points and a grid spacing h= L/N = 1/`, ` ∈N,
so that shifted values can be evaluated on the grid, using a fourth-order finite difference
approximation for the derivative.

The linearization at a given profile q∗ possesses a two-dimensional generalized kernel, at
least, generated by q′∗ from translations and by q∗ from mass scaling. We therefore add the
following constraints:

∫
ξq∗ = 0 eliminates translations, and

∫
q∗ = M fixes the mass. We

compensate for the lack of a Lagrange multiplier associated with the mass constraint through
the introduction of a dummy mass loss term µq(ξ). In summary, we solve the system

− cq′(ξ) +m[2q(ξ − 1) + 2(β + 1)(q(ξ + 1)− q(ξ))− q(ξ − 2)− q(ξ + 2) +N (q, β)](5.2)

+ µq= 0, ξ ∈
[
− L

2
,
L

2

]
,

∫ L/2

−L/2
ξq(ξ)dξ = 0,(5.3)

∫ L/2

−L/2
(q(ξ)−m)dξ = 1,(5.4)

q(−L/2) = q(L/2)(5.5)

after discretization in ξ for the N +2 variables (q, c,µ) using a Newton method. We then add
the parameter β as a variable and a standard secant condition to the system (5.2)–(5.5) for
numerical continuation in β. We consistently find µ= 0 to machine precision as expected.

We implement secant continuation starting at β = 0.3, computing profiles and speeds as β
varies. In the small-β regime, we hold the total mass constant, and, as β approaches 2, we hold
the mass of the uniform background state constant, appropriately changing (5.4). The initial
interval is of width L= 10 in x, with N = 1030 total grid points. The grid is refined adaptively
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(b)

Figure 5.1. (a) Cluster shape for β = .0006 (green), β = 1.08 (blue), and β = 1.92 (purple), with net mass
mcluster = 1. (b) Plot of β against the value of the uniform background mass m∞ needed to support a cluster of
size 1.

0 0.5 1 1.5 2
0

1

2

3

4

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1
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(b)

1.98 1.985 1.99 1.995 2
3.98

3.985

3.99

3.995

4

(c)

Figure 5.2. Numerically computed speed for varying β holding the sum of the background mass and cluster
mass constant (a), holding the cluster mass constant (b), and holding the background mass constant (c), with
theoretical value shown in red in (b) and (c).

as β→ 0 by doubling the number of grid points when the second derivative of q exceeds 0.03
in the sup norm since the profiles develop corners at the peak and sides. As β↗ 2, the profiles
get increasingly wider. We double the width L of the interval and the number of grid points
whenever the number of opinions at distance 0.2L from the center exceeds 0.01 of the peak
value. We checked relative discretization and truncation errors by reducing h and increasing
L and found errors typically of the order 10−7, always bounded by 10−4.

We see in Figure 5.1(a) three examples of profiles as β varies. We also plot in Figure 5.1(b)
the background mass as a function of β when fixing

∫
(q −m∞) = 1, that is, fixing the net

mass in the cluster relative to the constant background distribution of opinions. Note that
as β↗ 2 this mass approaches infinity. As β→ 0, the background mass decays exponentially
in 1

β and therefore is difficult to compute precisely due to limitations in tolerances for the
Newton method.

From the secant continuation one also obtains the speed c of the profiles as β varies. In
Figure 5.2, we see the relationship between speed and β normalized over total mass, cluster
mass, and background mass, respectively. When β is small, we fix the mass of the cluster at
1 and plot the speed, comparing it to its theoretical value from the drift speed calculations,
including the numerically computed β3/2 correction. As β approaches 2, we fix the uniform
background mass and compare the speed with its theoretical value calculated in section 4.3.
In all cases, we find excellent quantitative agreement with the leading-order predictions.
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(b)

Figure 5.3. (a) Spreading speed of instabilities for β ∈ [0,2] for m = 1; (b) cluster speed (blue) and linear
spreading speed (red) for β ∈ [0,2], with m=m∞(β).

5.2. Stability: Direct simulations, convective stability, and pushed fronts. Since the
uniform background state of a drifting cluster is unstable for 0 < β < 2, drifting clusters
will typically not be stable in a strict sense. In fact, the instability of the background state
is reflected in unstable continuous spectrum of the linearization. One then would wish to
determine whether the instability in the background affects the traveling cluster, that is,
whether perturbations grow locally in a vicinity of the cluster or whether they are advected
away from the center of the cluster, decaying locally uniformly while growing in norm. This
distinction is commonly referred to as the difference between an absolute instability, where
perturbations grow locally, and a convective instability, where perturbations decay locally
uniformly in the frame comoving with the cluster.

To a good approximation, this question is answered by comparing the spreading speed of
perturbations of the uniform state Pn = m∞, n ∈ Z, with the speed of the traveling cluster.
Spreading speeds, in most scenarios, are determined as pulled or pushed speeds. In the case of
pulled speeds, the spreading is determined by the linear equation, whereas for pushed speeds,
the nonlinearity accelerates the propagation. We therefore start with the computation of the
linear, pulled spreading speed; see [40, 24, 5] for background and spreading in the nonbiased
case. In fact, spreading is mediated by pulled fronts, at the pulled, linear spreading speed, in
the nonbiased case as demonstrated in [5].

Recall the dispersion relation for the linearized equation at the uniform state Pj ≡m,

−iω=m(−2cos(2σ) + (4 + 2β) cos(σ)− (2 + 2β) + iβ sin(σ)).

Then, through a saddle point analysis [40, 5], the linear propagation velocity for any given β
is given by

(5.6) v=
dω

dσ
=

Im[ω]

Im[σ]

after solving the second, complex equation for the complex variable σ ∈ C. Figure 5.3(a)
shows the numerical speeds v, with β ∈ [0,2] and m= 1, and Figure 5.3b compares this linear
spreading speed for m=m∞(β) with the cluster speed.

We find that the linear spreading speed of instabilities is less than the speed of the cluster
for β ∈ (0,2), which suggest that the cluster is linearly convectively unstable.
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Figure 5.4. Space-time plots for β = .35 (top) and β = 0.95 (bottom), with the initial instability at n = 0.
Lighter colors represents higher magnitude.

We explore the possibility of a nonlinear instability, mediated by an analogue of a pushed
front, through direct simulations. There, we do see evidence of faster than linear propagation.
We simulate (2.2) in an adaptively moving frame in order to compute the spreading speed of
instabilities, initializing at a small localized perturbation of the uniform state Pj ≡ 1. For all β,
we see evidence of transient pulled fronts in the wake, which give way to sequences of clusters
traveling at a larger than linear speed. The initial transient of pulled front propagation is
longer for smaller values of β. The effect is shown in space-time plots (in a stationary frame)
with initial conditions given as localized, small perturbations at n = 0 of a uniform state
m= 1. The transient pulled front is most clearly visible in the first plot, β = 0.35, where we
see a large single traveling cluster begin to form at t = 50 and overtake the pulled front at
t = 75. As β increases, the transient pulled front has a narrow wake and is quickly reached
by a large cluster that forms in its wake. In the right panel of Figure 5.4, the pulled front
is visible from about t = 10 to t = 50. In this right panel, one also sees that after the initial
nucleation of a large cluster that overtakes the pulled front, more large clusters subsequently
form spreading with similar speeds larger than the linear speed. The same effect occurs for
smaller values of β, albeit on larger time scales.
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In conclusion, we suspect that the traveling clusters are convectively stable, that is, observ-
able, for long transients. The nonlinear process in the wake ultimately results in the creation
of a train of traveling clusters of comparable size, which remain well separated, traveling at
similar speeds.

A complete description of dynamics, either on a constant background or on a zero back-
ground with resulting loss of mass, appears quite intricate. The space-time plots presented
here suggest a similarity with phenomena observed in excitable media in simulations and ex-
periments, coined tracefiring and backfiring [7, 32], both of which are also poorly understood
mathematically.

6. Noncoherence for other bias terms. Different bias mechanisms can generate dynamics
very different from the dynamics in (2.2) that we analyzed thus far. We present here briefly
phenomena caused by two other forms of bias, namely bias in the compromise process and
linear bias mimicking a transport term. The former can be thought of as introducing bias in
the compromise process itself rather than through a separate mechanism, and the latter can
be thought of as adding bias independent of interaction altogether, neither between sites nor
at the same site. For the former, propagation is blocked at one-site clusters; for the latter,
we find diffusive dissipation of the cluster, similar to the dynamics of the bounded confidence
model with diffusion studied in [4]. We think of those two scenarios as evidence that the
self-incitement mechanism of (2.2) is rather special in allowing coherent movement.

6.1. Bias in the compromise process. A natural mechanism for introducing bias would
be in the compromise process itself, that is, to consider an equation such as

(6.1)
dPn

dt
= (2− β)Pn+1Pn−1 − (1− β)PnPn+2 − PnPn−2,

where agents interact in the same way as in (2.1), but the probability of changing the opinion
to the compromise opinion is not equal for the two interacting agents. Another formulation
is to include bias in nearest-neighbor interactions and consider the equation

(6.2)
dPn

dt
= 2Pn+1Pn−1 − Pn(Pn+2 + Pn−2) + β(Pn+1Pn − PnPn−1),

where nearest-neighbor interactions lead to agents moving to the left with probability β. The
bias in (6.1) would represent a preference toward compromise in one direction, where agents
interacting with more extreme agents within the confidence bound always compromise, but
only a fraction β of the time do they compromise when interacting with more moderate agents.
In the limiting case β = 1, agents compromise exclusively with more extreme agents. The term
in (6.2) would represent asymmetric pull of nearest-neighbor interactions, preferentially toward
one end of the opinion spectrum. Reasons for asymmetry might include social comparison
or agents thinking it is beneficial to have a more extreme opinion, confirmation bias, self-
selection, or preferential interactions. The important distinction is that it is interactions with
neighbors at different sites which drive shifts of opinion.

For both (6.1) and (6.2), the bias does not induce persistent drift of existing clusters. In
fact, one- and two-site clusters are also equilibria of (6.1), and one-site clusters are equilibria
of (6.2). As a result, clusters do not drift at all in (6.1). In (6.2), one can mimic the analysis

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
4
/0

2
/2

4
 t

o
 1

2
8
.1

0
1
.5

9
.1

7
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



320 O. CANNON, T. BONDURANT, M. WHYTE, AND A. SCHEEL

in section 3 and find a drift speed near two-site clusters, which vanishes at one-site clusters.
The result agrees well with direct numerical simulations which find two-site clusters evolving
towards one-site clusters, which are one-sided stable, similar to saddle-node equilibria. One
can think of this blocking of motion at one-site clusters as a pinning phenomenon, reflecting
the discreteness of the opinion space, similar to the rather well understood pinning of front
and pulse propagation in discrete or inhomogeneous media [1].

We note, however, that the dynamics in (6.2) resulting from the perturbation of a spatially
constant equilibrium with the resulting formation of multiple clusters is rather complex and
does involve movement of clusters, but at nonconstant speeds, mediated by both the bias
effect on single clusters and the interaction between clusters.

6.2. Nonincitement bias. All bias terms considered thus far are quadratic, modeling
person-to-person interactions, and preserve the quadratic scaling invariance of the dynamics.
The arguably simplest possible bias terms would model spontaneous change of opinion in one
direction, without the need for interaction between agents, and thus be represented by a linear
term of the form β(Pn+1−Pn), with variants β(Pn+`−Pn)/`, `= 2,3, . . .. This term would rep-
resent a shift in opinion that is not dependent on the population at the opinion site and does
not come from any kind of interaction. One could think of this as modeling, for instance an ex-
ternal influence, either informational or parasocial, which affects agents individually and inde-
pendently of their opinions. Up to scaling, this term can also be viewed as a spatial discretiza-
tion of the shift term ut = ux in a continuous opinion space x∈R. The resulting equation is

(6.3)
dPn

dt
= 2Pn+1Pn−1 − Pn(Pn+2 + Pn−2) + β(Pn+` − Pn)/`,

with several possible scalings depending on initial conditions. Numerically, we observe drift
of single clusters as expected, with initial speed β at leading order. Expanding the one-sided
difference Pn+1 − Pn into derivatives, we find at second order an effective diffusion, which
indeed is observable in the dynamics and leads to mass loss in the cluster similar to the ob-
servations in [4]. Figure 6.1(a) shows the loss of mass from the cluster, defined as all opinions
within five sites of the peak, into the tail and leading edge over time. Figure 6.1(b) shows the
self-similar shape of the leading edge when scaled horizontally by t−

1

2 , mimicking the profiles
in [4]. The tail, however, appears to grow exponentially in time at first and then becomes
diffusive as the mass of the cluster is no longer significant; see also Figure 6.1(a). The effect
of mass loss can also be understood in the small-β perturbation analysis of section 3, where at
higher order, the drift term generates growth at sites with distance 3 or more to the cluster.
In fact, for long-range coupling ` > 2, the effect appears at first order in β and the mass loss
is correspondingly more pronounced.

6.3. Stability of uniform opinion distribution in the presence of different forms of

bias. The effect of bias for our original model of quadratic self-incitement −βP 2
n leads to

stabilization of uniform opinion distributions for strong enough bias β > 2. The effect in the
forms of bias discussed in this section also differs in this aspect.

For the biased compromise process (6.1), the linear dispersion relation at a constant state
Pn ≡m is

(6.4) λ=m (4 cos(σ)− 2cos(2σ)− 2 + β(1− 2cos(σ) + cos(2σ) + i sin(2σ))) ,
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Figure 6.1. Plot of proportion of mass in the cluster, tail, and leading tail over time and profiles of the

tails plotted against t
1
2 · n.

with 0 ≤ β ≤ 1 representing the physically feasible parameter region since β is the fraction
of interactions leading to compromise toward the unfavored direction. One finds that the
stability of the constant state is unchanged from (2.1); the uniform state remains unstable for
all 0 ≤ β ≤ 1. In other words, for this model, the bias cannot compensate for the instability
from the compromise process.

For biased nearest-neighbor compromise (6.2), the linear dispersion relation at a constant
state is

(6.5) λ=m (4 cos(σ)− 2cos(2σ)− 2 + β(2i sin(σ))

for 0≤ β. Here, the effect of bias is purely advective-dispersive, and again, the uniform state
is always unstable for β ≥ 0. Again, no strength of bias can stabilize the constant state.

Finally, for (6.3), the linear dispersion relation at the uniform state is

(6.6) λ=m

(
4cos(σ)− 2cos(2σ)− 2 +

β

m
(cos(σ)− 1 + i sin(σ)

)
.

In this case, we do see stabilization of the uniform state above a threshold that depends on
its magnitude, βcrit = 4m. In this way, the effect is similar to the effect of self-incitement,
but also notably different—for self-incitement, bias above the critical level βcrit = 2 stabilizes
a uniform state of any magnitude, but for (6.3), larger and larger bias is required as the
population increases. We do note that stabilization of the uniform distribution is well known
in the context of noisy opinion dynamics and models with discrete diffusion [4, 10], and there
also, higher noise is required as the population increases. The above findings for (6.3) are thus
not unexpected if interpreting the bias as a one-sided diffusive process.

7. Discussion. We presented results on the effect of bias in a deterministic bounded
confidence model. The corresponding unbiased bounded confidence model supports local-
ized clusters, including a one-parameter family roughly parameterized by the position of the
cluster in space. One expects that introduction of bias leads to a drifting movement of clus-
ters. We analyze this drifting motion in two limits, small and large bias. For large bias,
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β > 2, we find that the uniform distribution is stable, preventing cluster formation and po-
larization. For bias close to but below threshold, β . 2, we prove that coherent movement
of clusters on a constant background distribution of opinions is possible for quadratic self-
incitement bias. Numerically, we find such coherent motion for all values of bias 0 < β < 2.
For small values of β, the constant background distribution is exponentially small in the pa-
rameter and drift speeds are obtained from a leading-order analysis of the flow on a slow
manifold.

Technically, we used a geometric singular perturbation analysis to derive drift speeds in
the small bias regime and a nonlocal center manifold analysis to find coherent drifting clusters
for β . 2. The analysis in the latter case is possibly of independent interest, demonstrating
the simplicity of calculations in the recently introduced framework of center manifolds without
a phase space. Within the narrow focus on coherent drifting clusters, a major open question
is to establish rigorously existence, drift speeds, and size of background state in the regime
β & 0.

Beyond coherent drifting clusters, we touched on the evolution near unstable constant
states. We find modulation equations familiar from fluid dynamics, such as the Korteweg–de
Vries or the Kuramoto–Sivashinsky equation and variations thereof. Observed dynamics in
simulations appear to involve complex dynamics of formation and interaction of clusters.

Interesting questions arise when attempting to quantify mass loss in incoherent drifting
clusters. Geometric singular perturbation theory at a single cluster predicts mass accumula-
tion in sites further away from the center of the cluster, possibly at high or beyond all orders
in β depending on the bias term. It would be interesting to quantify these effects and, for
quadratic self-incitement bias, to contrast with the existence of coherent drifting clusters on
a constant background, relating, for instance, the size of the constant background to the rate
of mass loss.

We noted that stability questions in the context of bias are subtle due to the instability of
the constant background state and the complexity of the dynamics in the evolution of pertur-
bations. In fact, it appears that even without bias, stability of clusters against perturbations,
say small in `∞, is not known. On the other hand, we expect that one should be able to
establish nonlinear stability of the constant state for large bias base against, say, small per-
turbations in `1 using the heat-equation-type linear decay and a fixed point argument that
exploits discrete derivatives in the nonlinearity.

We note that some of the effects of bias studied here are strongly tied to the fact that
discrete transport is inherently diffusive and dispersive, as seen, for instance, in the Fourier
symbol eiσ−1∼ iσ−σ2− iσ3 of the discrete derivative Pj+1−Pj . In a model with continuous
opinion distributions, diffusive and dispersive effects could be avoided by adding a simple drift
term ∂xP . More in the spirit of the bounded confidence model would, however, be a nonlocal
bias K ∗ P with asymmetric convolution kernel K, which in turn would introduce similar
diffusive-dispersive effects through nonvanishing second and third moments of the interaction
kernel K. In that regard, the discrete opinion space simply enforces a nonlocality in the
interaction, not different from the continuous model. It would be interesting to explore the
effect of such a nonlocal bias on drift of opinion clusters in this context, exploring in particular
localization of clusters in comparison to the Dirac-δ localization in the absence of bias.
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