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Abstract
Pattern forming systems allow for a wealth of states, where wavelengths and
orientation of patterns varies and defects disrupt patches of monocrystalline
regions. Growth of patterns has long been recognized as a strong selection
mechanism. We present here recent and new results on the selection of patterns
in situations where the pattern-forming region expands in time. The wealth of
phenomena is roughly organised in bifurcation diagrams that depict wavenum-
bers of selected crystalline states as functions of growth rates. We show how
a broad set of mathematical and numerical tools can help shed light into the
complexity of this selection process.
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1. Introduction

The formation of regular spatial structure in nature has intrigued scientists for many centur-
ies, across nearly every physical discipline. Researchers have sought to determine both speci昀椀c
mechanismswhich lead to ‘patterns’ in a given physical setting, and also universal phenomeno-
logical and mathematical mechanisms which help describe patterns across seemingly different
physical domains.
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One mathematical mechanism that is often proposed is the growth of spatially periodic
modes caused by small random昀氀uctuations of an unstable, spatially uniform, equilibrium state.
For example, Turing’s seminal work [93], showed how a stable chemical reaction and spatial
diffusion can combine to induce pattern-forming instability. Here, typically as some phys-
ical parameter is varied, a 昀椀nite band of spatially periodic modes become linearly unstable.
Random 昀氀uctuations in the underlying medium (such as thermal 昀氀uctuations or small impur-
ities in the homogeneous state) can then excite the unstable modes which grow until being
saturated by nonlinearities inherent in the system.

In isotropic spatial environments, perturbation by small uniform noise will excite spatial
modes of any spatial orientation, leading to the formation of patches of regular structure which
are oriented randomly to each other and have spatial wavenumber close to one of the unstable
modes; see for example 昀椀gure 1 below. Zooming out from these local patches, one observes
various types of imperfections, often referred to as defects, in the regular structure, such as
wavenumber and phase mismatches, disclinations, dislocations, and grain boundaries.

From this viewpoint, the defect free nature of patterns observed in various systems across
different domains seems surprising. Spatial growth and heterogeneity have been recognised for
their crucial role in mediating and selecting patterns, leading in particular to the emergence of
surprisingly regular, defect-free crystalline states. More precisely, through the temporal evol-
ution of a system boundary, through the evolution or variation of the medium itself, or through
a spatio-temporal external forcing on the system, orientation, wavenumber, and type of pat-
tern can be selected and defect formation suppressed. Such pattern selection mechanisms have
been observed in the patterning of various biological, chemical, and physical systems, includ-
ing the regulation of digit and skeletal patterning in growing organisms [38, 85], the formation
of spiral primodium arrangements on apically growing plant meristems [71], the formation
of crystallographic lattices on 昀椀sh retinae [68], bacterial colony growth [7, 45], the formation
of periodic bands of precipitate in travelling chemical reactions [19, 37, 46, 90, 91], animal
coat patterning [26], and even the formation of von Kármán vorticies via the perturbation of
a laminar 昀氀ow by a moving object [1, 11, 41]. In man-made experiments, researchers hope to
use such growth processes to exert precise control over the structure formed in a given mater-
ial while suppressing imperfections and defects. Examples include the formation of nanoscale
patterns via high energy ion bombardment of metal alloys [62], ripple formation through pro-
gressive surface erosion [24], deposition of patterns via dewetting or evaporation on a surface
[89], eutectic lamellar crystal growth [2, 18], elastic surface crystals [86], or the directional
quenching of metallic alloy melts [23, 54], and other general phase separation behaviours [55,
92]. The last example provides in fact easy intuition for this broad area of study. One begins
with a stable and homogeneous liquid alloymelt, which when rapidly cooled becomes unstable
to a phase separative instability. This process, known as a quench, leads to the formation of ran-
domly oriented lamellae and ‘cow patch’ shapes. Alternatively, a directional quench induces
the self-organised formation of regular patterns in its wake by moving across the domain in a
spatially progressive manner, locally cooling the alloy, and leaving behind an unstable state
from which patterns can form.

An example that particularly motivates the present work, is the spatial patterning in a light-
sensing CDIMA reaction-diffusion system [56]. Patterning in this diffusion limited chemical
reaction can be suppressed by illumination with high-intensity light. Suddenly turning off the
light throughout the system excites patterning modes of all orientations and leads to patches
of randomly oriented periodic stripes with defects spread throughout the domain. If instead,
a mask that progressively blocks the light is moved across the domain, the pattern-forming
instability leads to regular patterns and controlling the mask shape and motion allows for con-
trol of patterns formed in the wake [49, 61].
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We focus throughout on this type of controlled growth, although examples of different
forms of heterogeneity or growth mechanism abound. In plant and developmental biology,
diffusion induced pattern-formation, or ‘Turing patterns’ in various growth scenarios were
studied with different types of domain growth and evolution, including in particular apical
growth where material is added progressively to the boundary of the domain, while the bulk
is left untouched. Speci昀椀cally, this situation arises in models for plant growth, where only
a collection of cells on the boundary of the plant, the apical meristem, are able to replicate
[71]. Different examples include self-similar, uniform, or isotropic growth, where all parts of
the material grow uniformly, and arise for instance when modelling pattern-formation in cell
colonies that are constantly dividing and causing domain growth. In both cases, an evolving
growth rate can have novel and dramatic effects on patterns formed in the domain [12, 13,
59]. Without being comprehensive, we also mention boundary curvature, manifold evolution,
growth anisotropy, and piecewise-constant kinetics as related examples beyond the scope of
this work [50, 51, 53, 73, 78]; see also [52, 94] for recent reviews. Beyond externally con-
trolled growth, the pattern-forming process may impact or even drive the growth process, with
examples ranging from cell biology over combustion fronts to the evolution of growing bac-
terial colonies with chemotactic movement [69, 77, 88].

Stepping away from these more general scenarios, we now turn back to our basic mathem-
atical setup.

1.1. Prototype model: the Swift–Hohenberg equation

We consider a prototypical model of pattern formation, the Swift–Hohenberg equation

ut =−(1+∆)2u+ f(u;µ), u ∈ R, ∆=
n∑

i=1

∂2
xj , x= (x1, . . . ,xn) ∈ R

n, n ∈ N, (1.1)

designed as a phenomenological model for the formation of spatially periodic convection rolls
in Rayleigh–Bénard convection [87], where a 昀氀uid is heated from below and cooled from
above, driving a turning over of the 昀氀uid. Here u represents thermal perturbations from a
pure conductive state and µ is a parameter related to the temperature difference between
top and bottom boundaries of the 昀氀uid that controls the onset of instability. The equation,
or variants of it, has also been studied in the context of localised patterns in various phys-
ical systems [48], of plant phyllotaxis [71], and of patterning of elastic surface crystals [86].
Interestingly, a non-local variant was considered by Turing just before his passing [15]. We
start our investigation with this equation since it both exhibits universally observed pattern-
forming behaviour and is well studied. Relevant phenomena include the existence of stable
‘Turing patterns’, invasion fronts, grain boundaries and defects, zigzag and wrinkling instabil-
ities, and localised patterns. We mostly work with a simple cubic, supercritical nonlinearity
f(u,µ) = µu− u3; see section 5.1 for some results with weakly sub-critical, cubic-quintic non-
linearity f(u,µ) = µu+ µu3 − u5.

In the linear equation ut =−(1+∆)2u+µu, the pattern forming instability is readily
understood after Fourier–Laplace transform, setting u= eik·x+λt, k ∈ R

n to 昀椀nd the linear
dispersion relation

λ=−(1− k2)2 +µ, k := |k|.
As µ increases through zero, a band of wavenumbers k∼ 1 becomes unstable, λ(k)> 0. Note
that the equation is isotropic, that is, invariant under rotations and hence exhibits no prefer-
ence for any orientation of the wave vector. Indeed, perturbations of the homogeneous equi-
librium state u≡ 0 for µ> 0 with small spatial white noise excites various orientations of
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Figure 1. Left: defect riddled quasi-stationary solution resulting from random initial
data after long-time integration of (1.1) with small random initial data for µ= 3/4;
Right: plot of approximate existence and stability domains in (µ,k)-space near (0,1).
Striped patterns exist above the black curve, are Eckhaus stable above the blue curve,
zigzag stable to the right of the green curve. The red shaded region gives the wavenum-
bers which can be selected in 1D by a stationary quench (see section 2.1.1) while the
blue shaded region gives stable wavenumbers in two spatial dimensions.

wavenumbers. Solutions grow in amplitude until saturated by the cubic nonlinearity, leading
to a labyrinth of patterns and defects which evolve on a slow time-scale compared with linear
growth rate; see 昀椀gure 1.

The simplest solutions created by linear instability and nonlinear saturation are bifurcating
families of periodic equilibrium solutions up(k · x;k), for (1.1), often referred to as stripe or
roll solutions. They satisfy

0=−(1+ k2∂2
¹)

2up+µup− u3p, up(¹+ 2π;k) = up(¹;k),

up(¹;k) =

√
4
3
(µ−κ2)cos(k¹)+O(|µ|), (1.2)

for 0< µ� 1, where κ := 1− k2 is in the range 0⩽ κ2 < µ, thus k ∈ (kex,min,kex,max), with
kex,max/min =

√
1±√

µ at leading order in µ. Both linear and nonlinear stability, but also
instability of such patterns in various regimes has been shown in one and two spatial
dimensions [60, 84]. In one dimension, stable wavenumbers are determined by the Eckhaus
condition

|κ|< κeck :=
√
µ/3+O(µ). (1.3)

In higher spatial dimensions, an additional ‘zigzag’ condition is required for stability,

k> kzz := 1− µ2

512
+O(µ3). (1.4)

Instabilities induce phase-slips and dislocations for the Eckhaus instability, and wrinkling
for the zigzag instability. Away from onset, existence and stability are model dependent and
regions of stable patterns in µ− k space are often referred to as the Busse balloon; see for
instance [14].

We also note that (1.1) is an L2-gradient 昀氀ow with respect to the free energy

E [u] :=
ˆ

Rn

((1+∆)u)2 − µu2

2
+
u4

2
dx. (1.5)
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Figure 2. Solutions of (1.6) with radial quenching term (1.7) at µ= 3/4, with radial
quenching speeds c= 0.05,0.4,1,3 from left to right. Simulations are randomly seeded
at t= 0 and run until the quenching interface is close to the boundary of the domain
[−100π,100π]2.

Clearly, the energy landscape re昀氀ects the complexity of the dynamics of defects and grain
boundaries. Minimisers among periodic patterns are stripes with k= kzz. Growth as studied
below continuously inserts energy into the system and leads to ‘non-equilibrium’ patterns with
k 6= kzz.

Throughout, we will focus on x ∈ R
2, that is, N= 2, which incorporates most experimental

setups mentioned and all potential instabilities of stripes.

1.2. Quenching models of growth

As a simple model for a spatio-temporal quenching process, we consider a spatio-temporal
jump in the bifurcation parameter µ= ρ(x, t),

ut =−(1+∆)2u+ ρ(x, t)u− u3, ρ(x, t) =

{

µ, x ∈ Ωt

−µ, x ∈ Ωc
t

, µ > 0, x= (x,y) ∈ R
2,

(1.6)

for some time-dependent, evolving domain Ωt ⊂ R
2 that expands in time, Ωt ⊂ Ωs, t< s. For

x ∈ Ωt, the base state is unstable and patterns form, while for x ∈ Ωc
t it is stable and patterns

are suppressed.

1.2.1. Radial quenching. One interesting example is the radially expanding domain

Ωt = {x | |x|⩽ ct}, t⩾ 0, (1.7)

with c> 0 a parameter that denotes the growth speed or growth rate. We envision that this
parameter is controlled by the experimenter or another mechanism that is independent of u.
The radially expanding interface |x|= ct organises the pattern forming process and, after ini-
tialising the system with small uniform noise initial data, one observes a variety of solution
behaviors, such as target patterns, spirals, star-like shapes, secondary wrinkling instabilities,
and travelling defects for different radial speeds c; see 昀椀gure 2. It is interesting to note here
that it is possible for several different orientations to be selected in different sectors of Ωt for
the same growth speed. We remark that defects and wrinkles observed in these patterns may
once again evolve on a slow time-scale.

1.2.2. Directional quenching. A further simpli昀椀cation, which could be viewed as a large-
radius or small-curvature approximation of the radial quenching process above, but is also
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Figure 3. Solutions to (1.6) with directional quench (1.8) with µ= 3/4 and a range of
quenching speeds cx = 0.4,1,3,5 increasing from left to right, solution stopped when
quenching interface x∼ 110 in horizontal domain.

important in its own right from an application standpoint, is a planar interface that propagates
from left to right, so that

Ωt = {x |x⩽ cxt}. (1.8)

with growth rate cx ⩾ 0. In this case, ρ= ρ(x− cxt) :=−µ sign(x− cxt), where sign(x)
denotes the sign function.

There are of course many different types of quenching geometries that could be considered
(see 昀椀gure 22 below for a few examples) as well as other types of heterogeneity that could be
introduced to model growth. We discuss some examples in section 4. We mainly, in sections 2
and 3, focus on simple directional quenching for its motivation in experimental settings [2, 18,
68, 86] and for its conceptual mathematical simplicity that was exploited in a series of works
that build the foundation of this paper [3, 10, 29, 30, 32, 33, 35, 63, 64, 66, 82].

To brie昀氀y get a feel for the basic behaviour of such a quench, 昀椀gure 3 depicts stripe forma-
tion here for several different quenching speeds. For large speeds, the quenching line outpaces
the patterns, setting up the unstable homogeneous state into which the patterns naturally invade
at a slower speed. As cx is decreased below this invasion speed, one 昀椀rst observesmostly stripes
oriented parallel to the quenching interface; for intermediate speeds, stripes which are oblique
or slanted to the interface; and for small speeds, stripes which are perpendicular to the inter-
face. We remark that such a set of qualitative phenomena has been recently observed in a series
of analogous experiments in the light-sensing reaction-diffusion system [49, 61].

Despite the simplicity of the setting, the ensuing wealth of phenomena is not fully under-
stood at a rigorous, formal, or even heuristic level and we hope that this exposition will serve
as motivation for further investigation and development of novel mathematical tools. We note
some of this material was presented, in an abbreviated manner, in the online article [27].

1.3. Moduli spaces of quenched patterns

The mathematical understanding of the patterned solutions observed in 昀椀gure 3 has sev-
eral facets, beginning with existence and local stability, instability, or metastability of front-
like solutions, and expanding to continuation and bifurcation of solutions under changes in
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extrinsic parameters such as the quenching speed cx. Of interest are then also questions of
universality, that is, how much qualitative features depend on speci昀椀c models, and in this con-
text the description via amplitude or phase modulation equations. Phenomenologically, one
observes at times nucleation of defects at the quenching interface and one would like to relate
properties of stripe formation to the presence or absence of such defects. In speci昀椀c simple
cases, one may even be able to obtain global descriptions of the dynamics.

More directly, a 昀椀rst question one may wish to answer is if the quenching process can create
a regular ‘crystal’, that is:

For a quenching speed cx, what wavenumbers and orientations of stripes can be
formed in the wake of the quench?

Answers to this question would for instance shed light on the apparent selection of orient-
ation in 昀椀gure 3 as well as in CDIMA experiments [61] depending on the quenching speed
cx. As a further simpli昀椀cation, we may narrow the question to existence, only, of the simplest
solutions that form stripes. That is we consider front-like solutions with whose temporal beha-
viour can be thought of as a 1:1 resonance with the formation of perfect stripes. To make this
precise, we look for solutions in the frame moving with the quench x̃= x− cxt. Pure stripes
at x̃∼−∞ then take the form up(kxx+ kyy;k) = up(kxx̃+ kxcxt+ kyy;k), where k= (kx,ky) is

the wavevector and k= |k|=
√
k2x + k2y the bulk wavenumber. The simplest form of solutions

then is general ‘heteroclinic’ behavior in x̃ and periodic dependence in kxcxt+ kyy. Minimal
period 2π then corresponds to a strong, 1:1 resonance of the quenching process with the crystal
in the wake. We therefore introduce the scaled, y-comoving frame ỹ= ky(y− cyt). Choosing
cyky =−kxcx, the pure stripe solution satis昀椀es up(kxx+ kyy;k) = up(kxx̃+ ỹ;k). We note the
choice of this co-rotating frame, for kx,ky > 0, breaks the y-re昀氀ection symmetry and 昀椀xes the
orientation of oblique stripes relative to the quench interface, with stripes of opposite orienta-
tion given by fronts with ky < 0.

Altogether, (1.6) is then reduced to the asymptotic boundary-value problem

0=−(1+ ∂2
x̃ + k2y∂

2
ỹ )

2u+ ρ(x̃)u− u3 + cxux̃− kxcxuỹ,

0= lim
x̃→−∞

u(x̃, ỹ)− up(kxx̃+ ỹ;k), 0= lim
x̃→∞

u(x̃, ỹ), u(x̃, ỹ) = u(x̃, ỹ+ 2π); (1.9)

see the inserts in 昀椀gure 5 or 昀椀gure 9 for examples of such solutions. Note that cx is an extrinsic
parameter, while kx and ky are intrinsic to the solution. Values kx = 0 or ky = 0 correspond to
stripe formation perpendicular and parallel to the quenching line, respectively; nonzero values
of both kx and ky correspond to oblique stripe formation.

The set of parameter values cx,kx,ky for which solutions to (1.9) exist,

M= {(ky,cx,kx) ∈ R
3 | (1.9) has a solution}, (1.10)

naturally parameterises the space of quenching fronts, up to possiblemultiplicities of solutions.
It turns out thatM is a variety with a rich structure that informs much of the understanding of
the quenching process. Drawing from a classical terminology for parameterisations of solu-
tions to (algebraic) equations [9], we refer to M as the moduli space of quenched patterns.
Clearly, M ignores multiplicities such as trivial translation symmetry in ỹ, but also inher-
ent multiplicities, quotienting the structure of solutions for 昀椀nite x̃ and retaining only far-昀椀eld
information near x̃=−∞. Exploiting Fredholm properties of the linearisation of (1.9) at solu-
tions, one 昀椀nds that M is generically locally a graph kx = kx(cx,ky), indicating the selection
of a stretching of patterns in the direction perpendicular to the quenching line; for more detail
see [3, 35] as well as appendix A below. We show numerical computations of M in 昀椀gure 4.
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Figure 4. Several views of the moduli spaceM for (1.9), obtained from results numer-
ical continuation (see appendix B below on numerical details); here µ= 3/4. The red
curve denotes the linear spreading curve (ky,clin(ky),kx,lin(ky), given in (2.13) and (2.14)
below for both parallel/oblique as well as perpendicult stripes. The black curve denotes
the zigzag critical curve for cx = 0, which satis昀椀es k2zz = k2y + k2x . The green curve
denotes a band of wavenumbers at ky = cx = 0.

Figure 5 gives a schematic depiction with corresponding solution pro昀椀les, as as well as ref-
erences to past works and sections of this work which explore a given region. A table that
summarises various limits, singularities, and boundaries of M can be found in the beginning
of section 2 below.

Broadly, one hopes to connect quantitative and qualitative properties ofM to phenomena in
quenched pattern formation. Practically, the objectM can be viewed as a ‘cookbook’ or guide
for fabricating patterns, indicating which wave vectors can be selected for a given quenching
speed, while also revealing locations where novel dynamic phenomena and bifurcations occur.
In other words, if one can control the vertical spatial period of the experimental domain, and
thus control ky, the variety M indicates which quenching speeds cx can grow a pattern with
horizontal wavenumber kx. In a reductionist sense,M also gives effective boundary conditions
in a homogenised description of the crystalline structure: averaging over the ‘microstructure’,
that is, the stripes, one is left with a local wave vector as an effective variable. Dynamics in such
a description are usually diffusive and the relation between kx and ky gives effective boundary
conditions for the vector-valued diffusion equation.

We therefore hope that a focus on the moduli spaceM, as promoted here, will help organise
and guide further exploration of the interplay between growth and pattern formation, invest-
igating in particular how M changes as system parameters vary, or how such moduli spaces
differ among different systems, such as the complex-Ginzburg–Landau equation, the CDIMA
reaction-diffusion system, the Cahn–Hilliard equation [23], phase-昀椀eld equation, and other
reaction-diffusion systems. More narrowly, we explore in the following section 2 various
regions of M in more detail, discussing the types of solutions observed, what physical mech-
anisms affect wavenumber selection, and what types of mathematical methods can be used to
study solutions rigorously. We also demonstrate how bifurcation points and singularities inM
lead to qualitative changes in the full temporal dynamics of the original model (1.6).

1.4. Overview

We use the supercritical cubic Swift–Hohenberg equation (1.6) as a testbed to explore direc-
tionally quenched patterns. By using one speci昀椀c, but prototypical equation, this work seeks
to review, combine, and unify the authors’ previous works [3, 10, 29, 32, 33, 35, 82] which
studied quenched patterns from a mathematical viewpoint in a variety of models. We expect
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Figure 5. Schematic depiction of the moduli spaceMwith representative solution pro-
昀椀les in various regions, references to corresponding sections below, as well as citations
to related works. See also 昀椀gure 6 which depicts important boundary and limit curves
of M.

many of the phenomena observed in this context to be generic, and thus observable in other
pattern-forming systems. Throughout, we use the moduli spaceM to organise our results. We
shall also indicate areas ofM or phenomena which are yet to be fully understood at a rigorous
or even heuristic level.

Section 2 describes the moduli space for the quenched Swift–Hohenberg equation (1.6)
and compares stripe selecting mechanisms in different cx and ky regimes. Section 3 brie昀氀y
discusses stability of these pattern forming fronts. Section 4 discusses how other travelling
heterogeneities, different from the steep quench, affect wavenumber selection. Section 5 then
presents new numerical results for the moduli space in other prototypical models of pattern
formation, such as the complex Ginzburg–Landau equation, a reaction-diffusion model for the
CDIMA chemical system, as well as two modi昀椀ed Swift–Hohenberg equations, one with spa-
tial anisotropy, and another with a subcritical cubic-quintic nonlinearity. Appendix A reviews
the local description ofM as a graph in kx over (ky,cx) using Fredholm theory, and appendix B
gives an overview of the numerical continuation approach we use to approximate pattern-
forming front solutions of (1.9) on a 昀椀nite computational domain.

2. Qualitative properties of quenching: singularities of M

Singularities and boundaries of the moduli space M give important information on pattern-
forming dynamics and are excellent starting points for mathematical analysis. Understanding
boundaries and bifurcation points, one can then resort to continuation techniques to ‘昀椀ll in’ the
bulk of M. On the other hand, boundaries and singularities correspond to qualitative changes
in the pattern-forming dynamics.

R9



Nonlinearity 36 (2023) R1 Invited Article

Figure 6. Schematic diagram of the different regimes of stripe formation in the moduli
space, along with corresponding parts of section 2 where they are discussed.

We organise this section according to the limiting growth rates of the quench, from sta-
tionary, fast, slow, and intermediate, growth regimes. In section 2.1 we consider fronts for a
stationary quench, cx = 0, where a range of perpendicular and parallel wavenumbers can be
selected. We also 昀椀nd that only oblique stripes whose bulk wavenumber is equal to the zig–zag
critical mode can be selected. Next, in section 2.2, we discuss the fast growth regime where
the absolute spectrum of the unstable trivial state governs wavenumber selection at leading-
order and determines the stripe detachment boundary. Next, in section 2.3, we discuss the
slow growth regime, where novel stretch-slip and kink-forming phase dynamics are found and
characterised using a variety of modulational analyses. Finally, in section 2.4, we discuss the
intermediate growth regime where we observe that perpendicular stripes detach via a saddle-
node bifurcation and nearby strongly oblique stripes reattach in a symmetry breaking pitchfork
bifurcation at kx = 0. In this regime we also observe a region whereM undergoes a hyperbolic
catastrophe.

The following list, together with 昀椀gure 6, provides a rough summary, or ‘grasshopper’s
guide’ of limiting cases and singularities discussed here. All notation will be discussed
throughout the following sections.

• Stationary quench, cx = 0 (section 2.1)
∗ ky = 0, (section 2.1.1): Range of selected wavenumbers determined by the strain displace-
ment relation kx ∈ (ksd,min,ksd,max).

∗ ky ∈ (0,kzz), kx > 0, (section 2.1.2): Oblique stripes have zigzag critical wavenumber
k2zz = k2x + k2y ,

∗ ky ∈ [ky,psn,kex,max],kx = 0, (section 2.1.3): perpendicular stripes.
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Figure 7. Left: cx = 0 cross section of moduli space M for µ= 3/4, showing selected
wavenumbers for front solutions (2.1), showing three distinct domains: parallel stripe
selection with ky = 0, kx ∈ (ksd,min,ksd,max) (yellow), oblique stripes with k2zz = k2x + k2y
(blue), and perpendicular stripes with kx = 0 for ky ∈ (ky,psn,kex,max =

√

1+
√
µ); see

subsections below for explanation of notation.

• Fast growth, cx ≲ clin(ky), (section 2.2)
∗ ky ∈ [0,ky,po]: For ky 昀椀xed and kx 6= 0, striped fronts cease to exist for cx ⩾ clin(ky). Leading
order wavenumber prediction of kx, for cx ≲ clin(ky), given by absolute spectrum of trivial
state.

∗ ky ∈ [
√
(2+

√
3µ)/2,kex,max): perpendicular stripes selected, detachment for cx ⩾ clin(ky)

• Slow growth, cx ≳ 0, (section 2.3)
∗ ky = 0, (section 2.3.1): Monotonically increasing wavenumber curve kx(cx) with kx →
ksd,min as cx → 0.

∗ ky ≳ 0, (section 2.3.2): Wavenumber kx(cx,ky) non-monotonic in cx for 昀椀xed ky, these
develop a singularity at cx = 0 as ky → 0.

∗ ky ≲ kzz,kx 6= 0, (section 2.3.3): Kink-dragging bubble, oblique stripes detach in a kink-
forming saddle-node curve (kx,ksn,cx,ksn)(ky).

• Intermediate growth, (section 2.4):
∗ cx ≲ cx,psn(ky), ky ∈ (ky,psn,

√
(2+

√
3µ)/2): (section 2.4) Perpendicular stripe detach-

ment through a saddle-node bifurcation, along curve cx,psn(ky).
∗ cx ≳ cx,opf(ky): (section 2.4) Oblique stripes reattach in a symmetry breaking pitchfork
bifurcation at kx ∼ 0 along the curve cx,opf(ky).

2.1. Stationary fronts

We start with the conceptually simple case of a stationary quench, cx = 0, where (1.9) reduces
to an elliptic equation

0=−(1+ ∂2
x + k2y∂

2
y )

2u+ ρ(x)u− u3, (x,y) ∈ R× (R/2πZ), (2.1)

on an unbounded cylinder with asymptotic boundary conditions as in (1.9). Figure 7 depicts
a schematic of the cx = 0 cross-section of M. One 昀椀nds, in particular, a band of wavenum-
bers kx compatible with ky = 0 (yellow) and a band of wavenumbers ky compatible with kx = 0
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Figure 8. Left: plot of strain-displacement relation (2.4) for µ= 3/4; centre: schem-
atic phase-portrait of heteroclinic intersection in (2.2). (Centre) Reprinted (昀椀gure) with
permission from [28], Copyright (2016) by the American Physical Society.

(orange) limits, but a unique curve kx(ky) when kx,ky 6= 0. We discuss these three cases separ-
ately in the following.

2.1.1. Parallel stripes, ky = 0. Setting ky = 0, (2.1) reduces to a non-autonomousHamiltonian
ODE

0=−(1+ ∂2
x )

2u+ ρ(x)u− u3. (2.2)

Quenched fronts can then be studied using spatial dynamics, where one views this equation
as a non-autonomous dynamical system with evolutionary variable x. Since ρ is a step-like
function, the system is piecewise constant and solutions can be found from separate phase
portraits with ρ=+µ for x< 0 and with ρ=−µ for x> 0. In both portraits, the homogen-
eous solution u≡ 0 corresponds to an equilibrium point. In the former, stripe solutions up
within the Eckhaus stable range take the form of hyperbolic periodic orbits with 2-dimensional
centre-unstable manifold. The union of these manifolds over the wavenumber kx forms a 3-
dimensional manifold, which we denoteWcu

− . In the latter phase portrait, the equilibrium u≡ 0
is a hyperbolic equilibrium with 2-dimensional stable manifold, denoted asWs

+(0). Patterned
fronts are heteroclinic orbits that lie in the intersectionWcu

− ∩Ws
+(0). Intersections in the ambi-

ent phase space R4 are then expected to occur in a one parameter family of distinct orbits, due
to the broken translational invariance. From the intersection, orbits are constructed 昀氀owing
the intersection point backwards and forwards in x using the ρ=±µ 昀氀ows respectively; see
昀椀gure 8. Generically, intersections can be parameterised by base points in the Wcu

− , that is,
asymptotic wavenumber kx and phase ϕ, that is, |u∗(x)− up(kxx+ϕ;kx)| → 0, as x→−∞.
The one-dimensional intersection then gives a curve in kx−ϕ-space, which is referred to as a
strain-displacement relation relation; see [67] for more details and rigorous proofs. In the spe-
ci昀椀c case of the Swift–Hohenberg equation and small µ≳ 0, kx = gsd(ϕ) for some 2π-periodic
function g [82], with wavenumber-selecting strain-displacement relation

{(ϕ,kx) |kx = gsd(ϕ)} ⊂ R/2πZ×R, (2.3)

but different x-dependence or boundary condition at x= 0 can lead to more complex depend-
ence between kx and ϕ [67]. At small µ, normal form and centre manifold theory were
used to rigorously establish heteroclinics in (2.2) with leading-order expansion for the strain-
displacement curve

gsd(ϕ) = 1+
µcos(2ϕ)

16
+O(µ3/2). (2.4)
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Note that as a consequence, the quenching interface restricts the set of possible selected
wavenumbers to k ∈ [ksd,min,ksd,max] with

ksd,min :=min
ϕ

gsd, ksd,max :=max
ϕ

gsd, ksd,max/min = 1± µ

16
+O(|µ|3/2),

an O(µ)-width band well within the much wider O(
√
µ)-existence and Eckhaus-stability

regions; see [67] for various boundary conditions, [66] for an alternate rigorous approach, and
[28] for other prototypical systems. To conclude, we remark that in (cx,ky,kx) parameter space,
this family of solutions traces out a vertical line, {(0,0,kx) |kx ∈ [ksd,min,ksd,max]}, protruding
out of the main surface of the moduli space at (cx,ky) = (0,0), see 昀椀gure 4.

2.1.2. Oblique stripes, kx,ky 6= 0. For cx = 0, we now turn to oblique stripes with kx,ky 6= 0
in (2.1). Quenched fronts now solve an elliptic PDE, so that the type of shooting arguments
described in the case ky = 0 are not readily available. An analysis near µ≳ 0 could however
rely on reducing to centre manifolds, separately for x> 0 and x< 0, and normal form theory as
performed in [83] tomimic the analysis in [82]; see for instance [35] for a related situation. One
obtains coupled equations for amplitudes of modes that are compatible with the pre-imposed
periodicity in y. In normal form and at leading order, one expects to be able to set all amplitudes
to zero except for the amplitude of a single oblique mode, which can then be analysed as in
[82]. The normal form symmetry on this mode is however an exact symmetry, induced by y-
translations, suggesting that only a single wavenumber is selected by the interface. Without
attempting such an analysis, we present here a rationale for the selection of energy-minimising
strain, k= kzz, following the reasoning in [57].

We write (2.1) as a 昀椀rst-order system for u= (u,u1,v,v1)T in x and 昀椀nd

ux = u1,

u1,x = v− (1+ k2y∂
2
y )u

vx = v1
v1,x =−(1+ k2y∂

2
y )v+ ρu− u3. (2.5)

This de昀椀nes an ill-posed Hamiltonian equation in the phase space Y= H3(T)×H2(T)×
H1(T)× L2(T). Using the standard skew-symmetric matrix

J=

(
0 J2
J2 0

)
, J2 =

(
0 1
−1 0

)
,

and the Hamiltonian and symplectic structure,

H[u] =
ˆ

−v2

2
+ u1v1 + v(1+ k2y∂

2
y )u−

ρu2

2
+
u4

4
dy, É(u,v) =

ˆ

u · (Jv)dy,

this system can be written as

ux = J∇L2H[u]. (2.6)

Since (2.1) is invariant under translations y 7→ y+ ¹, Noether’s theorem yields an associated
conserved quantity, which we refer to as the momentum,

S[u] =−
ˆ

uv1,y+ vu1,ydy, J∇L2S[u] = ∂yu. (2.7)
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Thus d
dxH[u] = 0 on x< 0 and x> 0, and d

dxS[u] = 0 for all x ∈ R along solutions of (2.1).
Setting ρ= µ, one can evaluate these quantities on a pure stripe solution up(kxx+ y;k),
obtaining

H(k) := H[up(kxx+ y;k)] =
ˆ

y

(
k4y
2
− 3k4x

2
− k2xk

2
y

)
(u ′ ′

p )
2 +(k2x − k2y)(u

′
p)

2 −
µu2p
2

+
u4p
4
dy,

S(k) := S[up(kxx+ y;k)] = 2kxky

ˆ

y
k2(u ′ ′

p )− (u ′
p)

2dy. (2.8)

Next, one uses that the zigzag critical mode k= kzz minimises the stripe free-energy

E(k) := 1
2π

ˆ 2π

0

1
2

[
(1+ k2∂2

¹)up
]2 −

µu2p
2

+
u4p
4
d¹, (2.9)

to conclude that that S=
´

y |k|2(u ′
p)

2 − (u ′
p)

2dy= 0 precisely for k= kzz.
Along heteroclinic solutions in the heterogeneous system with ρ=−µsign(x), we 昀椀nd that

the asymptotic condition u→+∞ at x→+∞ enforces S[u] = 0 along the entire heteroclinic
solution. Hence, we conclude that any heteroclinic solutions of (2.1), with ky 6= 0 and satisfying
u→ up as x→−∞ and u→ 0 as x→+∞must either select perpendicular stripes with kx = 0
or oblique stripes with zigzag critical mode k2x = k2zz − k2y . Figure 7 con昀椀rms this observation
numerically.

2.1.3. Perpendicular stripes, kx = 0,ky 6= 0. Following the lines of the analysis suggested in
the oblique case, one can also in this case try to construct fronts within a normal form amp-
litude approximation also in this case, restricting for instance to solutions that are even in
y. One then expects an existence band that is bounded above by kex,max =

√
1+

√
µ, while

the lower boundary of the band, which we denote as ky,psn, is marked by a fold point, where
the perpendicular stripes develop a localised anti-phase kink, related to a cross roll instabil-
ity. Numerical continuation matches these predictions; see 昀椀gure 16 below. We comment
in more depth on these boundaries in sections 2.2 and 2.4, below, when including positive
speeds cx > 0.

2.2. Fast growth and stripe detachment

For large growth speeds cx � 1, the quenching interface renders the homogeneous state
unstable but the pattern is unable to ‘keep up’ and invades the now unstable state with a slower
speed, so that the unstable state takes up a linearly expanding region in the wake of the inter-
face; compare the right-most plot of 昀椀gure 3. The speed with which a pattern invades the
unstable state is often referred to as the spreading or free invasion speed. For cx above the free
invasion speed, the asymptotic wavenumber is 昀椀xed and the growth process has little affect
on the asymptotic pattern. When the growth speed is varied below the free invasion speed,
patterns catch up with the growth interface and the interaction leads to a change in the asymp-
totic wavenumber. Hence, in the speed regime just below the spreading speed, one can seek
to understand pattern-forming fronts in the quenched system (1.9) as perturbations of the free
invasion front in the homogeneous system with ρ≡ µ. In section 2.2.1 we brie昀氀y discuss front
invasion into an unstable state. Section 2.2.2 then gives heuristics on how linear instability
information helps predict quenched pattern-formation for cx just below the invasion speed. In
sections 2.2.3 and 2.2.4, we respectively discuss dynamical systems and functional analytic
approaches to rigorously establishing fronts in this speed regime.
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2.2.1. Free front invasion into an unstable state. Awealth of results on pattern-forming inva-
sion into an unstable state exist for various mathematical models. This includes heuristically
and rigorously derived predictions for the invasion speed and asymptotic wavenumber with
which a pattern invades [39, 96]. In the supercritical Swift–Hohenberg equation, the spread-
ing speed of a pure striped pattern with a 昀椀xed vertical period can be predicted using only the
linear information near the homogeneous unstable state [96], that is, using only the linearised
equation,

vt = Lv :=−(1+ ∂2
x + ∂2

y )
2v+µv. (2.10)

In this case, where the linear growth ahead of the patterned state determines the invasion,
the front is sometimes referred to as a pulled front. We shall outline how to determine these
linear predictions below, but refer to [96] for a general phenomenological overview, and [39]
for a rigorous derivation and study of these speeds in linear systems. We also remark that if
the supercritical nonlinearity f(u) = u− u3 is replaced with a subcritical nonlinearity f(u) =
u+ µu3 − u5 for µ > 1, nonlinear growth accelerates the front faster than predicted by linear
information [4]. Such fronts are generally called pushed fronts and their interaction with a
quenching interface is discussed in section 5.1 below.

2.2.1.1. Linear speeds, pinched double roots, and marginal stability criteria. With a focus
on pulled fronts, we now derive predictions for speeds and selected wavenumbers from the lin-
earised equation (2.10). Retaining the information on periodicity in y, we substitute an ansatz
v(x̃,y, t) = eikyyṽ(x̃, t), which yields

ṽt = L(ky,c)ṽ :=−(1+ ∂2
x̃ − k2y)

2ṽ+µṽ+ c∂x̃ṽ. (2.11)

Following for instance the narrative in [39], one de昀椀nes a linear spreading speed clin(ky) as the
supremum of speeds c for which localised initial conditions to (2.11) do not decay pointwise,
or, equivalently, for which sup|x|<1 |ṽ(t,x)| →∞ for t→∞. The frame moving with clin then
tracks the leading edge of the spatio-temporally growing instability. The spreading speed can
also be thought of as a marginal stability criterion, and the selection of fronts can be phrased
more generally as a marginal stability selection; see [6] for a more comprehensive discussion
and results towards such a general selection criterion.

One determines pointwise growth rates from the complex dispersion relation, obtained with
the ansatz ṽ(x̃, t) = eλt+ν x̃ as 0= d(λ,ν;ky,c) =−(1+ ν2 − k2y)

2 +µ+ cν−λ.
A stationary phase approximation gives pointwise exponential growth rates eλbrt through

the location of double roots (νbr,λbr) of the dispersion relation, which satisfy

0= d(λbr,νbr;ky,c), 0= ∂νd(λbr,νbr;ky,c), (2.12)

along with a ‘pinching’-condition; see [39]. Spreading speeds are then obtained as clin(ky) =
sup{c : Reλbr(c)⩾ 0}. At the spreading speed, marginal stability implies that at the leading
edge of the instability, one observes oscillations with frequency Élin = Imλbr. Assuming a
1:1 resonance between these oscillations in the leading edge and the pattern laid down in the
wake, a property sometimes referred to as node conservation, one then predicts a wavenumber
kx,lin = Élin/clin.

Dependence of clin on ky is quite generally monotonically decreasing in isotropic systems
[39]. In the case of the Swift–Hohenberg equation (2.11), one 昀椀nds explicitly [3, 96]
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clin(ky) =















4(2−2k2y+
√

1−2k2y+k4y+6µ)
√

−1+k2y+
√

1−2k2y+k4y+6µ

3
√

3
, 0< ky <

√

2+
√

3µ
2

4
√

−1+k2y−
√

4−8k2y+4k4y−3µ(−2+2k2y+
√

4−8k2y+4k4y−3µ)
3
√

3
,

√

2+
√

3µ
2 < ky <

√

1+
√
µ,

(2.13)

kx,lin(ky) =





3(3−3k2y+
√

1−2k2y+k
4
y+6µ)

3/2

8(2−2k2y+
√

1−2k2y+k
4
y+6µ)

, 0< ky <
√

2+
√

3µ
2

0,
√

2+
√

3µ
2 < ky <

√
1+

√
µ.

(2.14)

Note in particular the change to kx = 0 for wavenumbers ky > ky,po =
√

2+
√

3µ
2 , indicating a

selection of perpendicular stripes for those larger values of ky, in contrast to the selection of
oblique stripes for smaller ky.

Patterns in fact ‘detach’ for growth speeds cx > clin, so that the piecewise-smooth curve
{
(ky,cx,lin(ky),kx,lin(ky)) , ky ∈ (0,

√
1+

√
µ)

}

gives the upper boundary, in cx, of the moduli space M; see 昀椀gure 9 for a comparison of this
algebraic prediction of the boundary with numerical results for a range of ky values.

2.2.1.2. Essential and absolute spectra. We comment brie昀氀y on a complementary aspect of
the transition between pointwise growth and decay, often discussed as a distinction between
absolute and convective instability, based on spectral properties of the linearisation [79]. Since
the linearisation L has constant coef昀椀cient, its L2(R)-spectrum consists entirely of the essential
spectrum,

σess,L2(L) : = {λ : L−λ is not Fredholm index 0 in L2}
= {λ : Reνj(λ) = 0, for some j= 1, . . . ,4},

where the νj(λ) are the roots of the dispersion relation d(λ,ν) for 昀椀xed λ.
For a 昀椀xed frame speed cx > 0, instabilities that are convected towards x=−∞ can be iden-

ti昀椀ed by posing L in an exponentially weighted space L2
¸,<(R) de昀椀ned through the weighted

norm

‖u‖2L2
η,<

:=

ˆ

R

|e−¸ξu(ξ)|2dξ.

Since multiplication by the weight provides an isomorphism to L2, we 昀椀nd that the essential
spectrum in the weighted space is given by

σL2
η,>

(L) := {λ : Re νj(λ) = ¸, for some j= 1, . . . ,4}.

Clearly, ReσL2
η,>

(L)< 0 for some ¸ implies pointwise exponential decay for the linear
equation. This leads to characterising an in stability as ‘exponentially convective’ if there is
an exponential weight so that the spectrum is stable in this weighted norm.

A weaker characterisation of convective stability is based on the notion of absolute spec-
trum [76, 79]. One therefore orders roots ν to d(λ,ν) with respect to real part, Reν1 ⩽ . . .⩽
Reν2N (with N= 2 in the case of the Swift–Hohenberg equation), and ReνN < 0< ReνN+1

for Reλ� 1. We then de昀椀ne the absolute spectrum as

σabs = {λ |ReνN(λ) = ReνN+1(λ)}, (2.15)
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where we assume that the ν j are ordered by real part for all λ. Clearly, for any λ not in the
absolute spectrum, there is a weight ¸ so that λ does not belong to the essential spectrum in
this weighted space, with a consistent number of roots ν to the left and right of ¸. This implies
for instance stability in arbitrarily large bounded domains [79], leading to using stability of
the absolute spectrum as a criterion for convective stability.

The absolute spectrum consists of algebraic curves in the complex plane that terminate
in branch points, where νN = νN+1. Typically, these branch points form the rightmost, most
unstable points of the absolute spectrum [76], and correspond to pinched double roots intro-
duced above (2.12), so that pointwise stability and stability of the absolute spectrum typically
coincide.

2.2.2. Selected patterns for growth speed cx ≲ cinv(ky). Quenched front solutions in (1.9),
with transverse wavenumber ky 昀椀xed, bifurcate as cx is decreased below the free invasion speed
so that points in the moduli space are bounded in the (cx,ky) plane by the curve clin(ky). We
expect this linear mechanism to determine the upper boundary of the moduli space for gen-
eric systems where the free invasion front is pulled. We now show a formal calculation which
that predicts kx(cx,ky) close to clin(ky) based on the absolute spectrum. Such a calculation was
made rigorous through the construction of quenched fronts in the context of the supercritical
complex Ginzburg–Landau equation, see 5.3 and [32, § 2], and we expect it also to hold more
generically in pattern forming systems near pulled fronts; see also the related work [33] for
related phenomena in a 1-dimensional Cahn–Hilliard equation with a directional quenching
mechanism, albeit with only a compact unstable region Ωt. On the other hand, if the free inva-
sion front is pushed, wavenumber selection in the wake of a quench is more subtle. Typically,
non-monotonic front locking behaviours arise and lead to patterns being ‘dragged’ by the
quench for speeds faster than the free spreading speed. An example of this is discussed in
section 5.1 where quenched fronts are studied in the Swift–Hohenberg equation with a sub-
critical cubic-quintic nonlinearity.

In the quenched system, as cx decreases below clin(ky), the rest state u≡ 0, becomes abso-
lutely unstable, with the absolute spectrum σabs(L) crossing the imaginary axis at the complex
conjugate branch points λbr,λbr. This crossing indicates that perturbations will grow pointwise
in x< 0, leading to a pattern which grows and saturates the domain. In this sense, this bifurc-
ation can be viewed as a perturbation of the free-invasion front with selected wavenumber
kx,lin(ky), as cx decreases below clin(ky). It turns out that at leading order, the quenched front
oscillates with frequency Éabs(c) given by the intersection of the absolute spectrum with the
imaginary axis. Heuristically, this frequency corresponds to temporally neutral oscillations
supported by the background state. From this frequency, predictions for the horizontal spa-
tial wavenumber kx can be determined assuming a 1:1-resonance in the dispersion relation,
É = kxcx.

In order to obtain expansions for this intersection, note that in a neighbourhood of λbr, the
absolute spectrum generically takes the form of a curve emanating leftwards from each branch
point. Hence, for cx just below clin(ky), curves of absolute spectrum intersect the imaginary axis
at unique locations ±iÉabs(cx) with iÉabs(clin) = λbr(clin); see 昀椀gure 9.

We calculate a linear approximation to the intersection σabs(L(ky,cx))∩ iR by expanding
near the branch point for 0< cinv − cx � 1. For curves of absolute spectrum near a generic
branch point, we solve

σabs(L) = {λ : 0= d(λ,ν;ky,cx) = d(λ,ν+ iµ;ky,cx),µ ∈ R},
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so that σabs consists of curves {λabs(µ;ky,cx) : µ ∈ R} ending at the branch point when µ= 0.
Restricting to the speci昀椀c curve with λabs(0;ky,cx) = λbr(ky,cx), we expand near µ= 0,

λabs(µ;ky,cx) = λbr(ky,cx+
∂2
γλabs(0;ky,cx)

2
µ2 +O(µ3)

= λbr(ky,cx)−
∂2
νd(λabs(0;ky,cx),ν;ky,cx)

2
µ2 +O(µ3). (2.16)

since ∂γλabs(0;ky,cx) = 0 and ∂2
γλabs(0;ky,cx) = ∂2

γd=−∂2
νd. Truncating at second-order,

the intersection of λabs(µ;ky,cx) with iR is obtained by setting µ2
∗/2= Reλbr(ky,cx)/Re∂2

νd,
so that

Éabs(µ∗,ky,cx)≈ Imλbr(ky,cx)− Im∂2
νd

(
Reλbr(ky,cx)

Re∂2
νd

)
.

Each of the quantities in the above expression can be explicitly calculated, and the leading-
order prediction for the selected wavenumber is thus given as

kx(ky,cx) = Éabs(µ∗,ky,cx)/cx+O(|clin(ky)− cx|2); (2.17)

see 昀椀gure 9 for a numerical corroboration of this prediction for a range of ky values.
We also observe that as cx → clin from below, the location of the front interface, de昀椀ned as

xf = inf{ξ : |u(x,y)|< ¶, for x> ξ} with ¶ > 0 昀椀xed and small, recedes from the quenching
line. In other words, as the quenching speed approaches clin from below the pattern locks
farther and farther away from the quenching interface, leaving a plateau state near u≡ 0 in
between. In particular we 昀椀nd that

xf(cx)∼ (clin − cx)
−1/2, cx ≲ clin, (2.18)

see 昀椀gure 9 bottom row. This is consistent with the rigorous expansion (5.15) of xf for the
complex Ginzburg–Landau equation found in [32] and discussed in section 5.3 below.

2.2.3. Spatial dynamics formulation and centre manifold approach. Existence of quenched
fronts with ky = 0 was rigorously established near onset, µ≳ 0, for all speeds c< clin.

Theorem 1 ([35, theorem 2]). Let ky = 0. Then for all µ> 0 suf昀椀ciently small, there exists
a ¶ > 0 such that for all quenching speeds cx with clin(0)− ¶ ⩽ cx < clin(0), there exists a kx
such that (1.9) has a solution. Furthermore, this front is non-degenerate, having linearisation
L which is Fredholm of index 0 with an algebraically simple eigenvalue λ= 0 when posed in
the weighted space L2

¸ for all ¸ > 0 suf昀椀ciently small.

The theorem is proved using amultiple-scales analysis and a pseudo-centre manifold reduc-
tion on the spatial dynamics formulation of the problem with ideas originating in [21]. We
sketch the idea of the proof, here.

One scales µ= ϵ2µ̃,cx = ϵc̃,kx = 1+ ϵµ̃ and looks for solutions of (1.6) of the form
u(x,y, t) =W(x− cxt,x) which are 2π/kx-periodic in the second variable. Note, this is a dif-
ferent, but equivalent, solution ansatz to that of (1.9). To construct fronts, one considers the
phase-portraits for the ξ := x− cxt> 0 and ξ < 0 dynamics separately. Decomposing W into
Fourier series in x,W(ξ,x) =

∑
n∈Z

Wn(ξ)e−inkx, and inserting into the equation with ρ≡±µ
one obtains

(
−(1+(∂ξ − ikn)2)2 + ϵ2µ̃r/l + ϵc̃∂ξ

)
Wn(ξ) =

∑

p+q+r=n

Wp(ξ)Wq(ξ)Wr(ξ), (2.19)
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Figure 9. Top left: schematic of the essential (orange) and absolute spectrum (blue) of
L(ky,c), the linearisation about the homogenous rest state with ρ≡ µ. Dots denote the
branch points λbr(c),λbr(c) which cross the imaginary axis iR⊂ C as c is decreased
through clin. Top right: comparison of selected wavenumbers kx(ky,cx) in (1.9) (solid)
near the all-stripe detatchment line {(ky,cx,kx) : (kx,cx) = (kx,lin(ky),cx,lin(ky),ky ∈

[0,

√

2+
√

3µ

2 } with leading-order predictions (dash-dot) (2.17) using linear spreading
speed and the absolute spectrum, for a range of 昀椀xed ky values (different colors). Bottom
left and centre: plot of front interface location xf against cx and (clin − cx)−1/2 for ky = 0;
bottom right: corresponding solution plots for a few speeds, corresponding to orange
dots in bottom left 昀椀gure.

with µ̃r/l =∓µ̃ for x≷ 0 and some µ̃ > 0 昀椀xed.Writing each equation as a 昀椀rst-order system in
ξ and linearising aboutW≡ 0, the in昀椀nite dimensional system decouples into a countable set of
four-dimensional complex linear systems each with spectrum determined by the characteristic
polynomial

0= pr/ln (ν) = (ν− i(kn+ 1))2(ν− i(kn− 1))2 − ϵc̃ν+ µ̃r/lϵ
2.

For ϵ= 0, each linearisation has a pair of geometrically simple and algebraically double
eigenvalues ν = i(kn± 1). Perturbing in 0< ϵ� 1, all eigenvalues ν move off iR with speed
O(ϵ1/2) except for the n=±1 pairs which are O(ϵ),

ν±r/l = ϵ



−c̃±

√
c̃2 − 16(µ̃r/l + ic̃µ̃))

8
+ iµ̃


+O(ϵ2).

One can then apply theorem A.1 of [21] to obtain local centre manifolds Wc
±(0) which are

complex two-dimensional and tangent to the aforementioned O(ϵ) eigenspace. These mani-
folds contain the set of bounded solutions near the origin for both the µl and µr phase portraits.
Strong stable and unstable local foliations of the normal hyberbolic dynamics near the origin
collapse the in昀椀nite-dimensional dynamics on to Wc

±(0) so that the desired heteroclinic is
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Figure 10. Phase portraits in the real subspace of the leading-order equations on the
centre-manifold (2.20) for both µ̃ > 0 (blue) and µ̃ < 0 (red) for different speeds c̃
above and below the free invasion speed. [35] John Wiley & Sons. © 2018 London
Mathematical Society.

determined at leading-order by analysing the following system for coordinates (p,q) ∈ C
2 on

the centre manifold,

dq
d·

= p+O(ϵ),

dp
d·

=
1
4

(
µ̃sign(·)q− c̃p+ 3q|q|2 + µ̃(2ip+ µ̃q)+O(ϵ)

)
. (2.20)

The origin (0,0) is a hyperbolic equilibrium in the · > 0 phase portrait, while the · < 0
phase portrait with c̃> 0 has heteroclinic orbits between the family of 昀椀xed points P =
{ei¹(1/

√
3,0) : ¹ ∈ [0,2π)} and the origin. Overlaying these two portraits, a phase-plane ana-

lysis shows an intersection of the unstable manifold ofP in the · < 0-dynamics with the stable
manifold of (0,0) in the · > 0 dynamics for 0< 4− c̃� 1; see 昀椀gure 10. An intersection in
the full systems is then found by using a Melnikov integral to show that these manifolds are
transversely unfolded in the speed c̃ and wavenumber parameter µ̃.

2.2.4. Perturbing parallel fronts. One could consider the existence problem for oblique
stripes, ky > 0, 昀椀xed, in a fashion similar to section 2.2.3. Dif昀椀culties arise however in the
limit ky → 0 for small µ. In order to investigate the regime of small ky we therefore investig-
ated a weak bending problem, perturbing from a parallel front to 昀椀nd a weakly oblique front
in [35], under suitable stability and non-degeneracy conditions that happen to be satis昀椀ed for
the fronts found in theorem 1. The perturbation result can be stated as follows.

Theorem 2 ([35, theorem 2]). Suppose there exists a solution (u∗,kx,∗) of the modulated trav-
elling wave equation (1.9) with ky = 0 for some 昀椀xed cx > 0,µ > 0. Further, suppose this solu-
tion is non-degenerate as in Theorem 1. Then there exists a family of oblique striped front
solutions (utr,kx,tr) to (1.9) depending on ky ∼ 0, suf昀椀ciently small, which are C2 smooth in
ky measured in C0

loc(R×T). At leading order, the horizontal wavenumber satis昀椀es kx(ky) =

kx,∗ − by
cx
k2y +O(k4y), with

by :=
〈
−2∂2

y (1+ ∂2
x )u∗,e∗

〉
L2 , (2.21)

where e∗ is a function spanning the cokernel of the linearisationL about u∗ and which satis昀椀es
〈e∗,∂yu∗〉L2

η
= 1.

The two main technical challenges in the proof of this result are the presence of neutral
essential spectrum of the L2-linearisation of the parallel striped front, and the singular limit
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ky = 0. The spatial dynamics approach, as described above, has been historically useful to
address the former, but leads to dif昀椀culties when attempting to addressing the latter. In partic-
ular, one would try to use a variational equation to study the phase space near the unperturbed
front and exponential dichotomies to construct perturbed invariant manifolds for ky 6= 0 and
locate heteroclinic intersections. This becomes dif昀椀cult as ky 6= 0 changes the domain onwhich
asymptotic linearisations are closed densely-de昀椀ned operators.

The result in [35] therefore relies on a functional analytic approach to address these dif昀椀-
culties. One separates the asymptotic behaviour from the interfacial dynamics using a far-昀椀eld
core decomposition of the front solution

u(x,y) = w(x,y)+Ç(x)up(kxx+ y;k), k=
√
k2x + k2y . (2.22)

The core perturbation w satis昀椀es w ∈ L2
¸(R×T) while Ç is a smooth step function with

Ç ≡ 1 for x⩽−d− 1 and suppÇ ⊂ {x<−d} for some d> 0 昀椀xed. This decomposition
enforces the desired far-昀椀eld behaviour, controlled by the wavenumbers kx,ky, while the expo-
nentially localised perturbation w glues the far-昀椀eld pattern to the asymptotically constant
state ahead of the quench. Inserting this ansatz into (1.9) and subtracting off the expression
Ç
[
−(1+ ∂2

x + k2y∂
2
y )

2up+ cx(∂x+ ky∂y)up+µup− u3p
]
, which is identically equal to zero, one

obtains a nonlinear equation F(w;kx,ky,cx) = 0 for the localised core variable.
One then sets w∗ = u∗ −Çup(kxx+ y;kx) to be the core-perturbation given by the ky = 0

front so that F(w∗;kx,∗,0,cx,∗) = 0. The key advantage of substituting an exact solution into
the far 昀椀eld is that this equation now is well-posed on spaces of exponentially localised func-
tions, where the linearisation is Fredholm, albeit with negative index; see appendix A for
details on Fredholm indices in this context. One compensates for the negative Fredholm index
by viewing the selected wavenumber kx, inserted through the far昀椀eld ansatz, as an additional
variable.

To address the singular-limit, an approach similar to [75] was used to precondition the
nonlinear problem

0= F̃(w;kx,ky,cx) := P(kx,ky) ◦F(w;kx,ky,cx) (2.23)

where P is a Fourier multiplier with symbol P̂(kx,ky) := (−1− (1− ℓ2 − k2ym
2)+ cxi(ℓ−

kym))−1, m ∈ Z, ℓ ∈ R. This allows one to obtain suf昀椀cient smoothness of F̃ in (w,kx,ky)
near (w∗,k∗x ,0). Then, the genericity of the front implies that ∂kxF 6∈ RgL so that the joint
linearisation ∂w,kxF is Fredholm index 0 with trivial kernel and thus invertible, allowing one
to solve for (w,kx) in terms of ky. Expanding in ky then gives the leading order behaviour of
kx in ky.

As a simple consequence, we 昀椀nd that for 昀椀xed cx > 0 the horizontal wavenumber kx
depends quadratically on ky in a neighbourhood of 0; see 昀椀gure 13 for a numerical depiction
of this via 昀椀xed cx cross-sections of M.

2.3. Slow speeds and modulational approximations

We next consider the slow growth regime cx ≳ 0 of the moduli space M. Figures 11–13
reveal several qualitatively different regimes for the horizontal wavenumber kx(ky,cx) as ky
and cx vary. For ky = 0, that is for parallel striped fronts, the wavenumber selection curve
kx(0,cx) is monotonically increasing in cx > 0, with a minimum at cx = 0, equal to ksd,min :=
minφ g(φ), the minimum of the stationary strain-displacement relation. Next, for ky > 0 昀椀xed
small, we 昀椀nd kx(ky,cx) is non-monotonic in cx, 昀椀rst decreasing from the zigzag critical

wavenumber kx,zz =
√
k2zz − k2y at cx = 0, reaching a local minimum, and then increasing again.
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Figure 11. Left: ky = 0,cx > 0 cross-section ofM, for µ= 3/4, depicting singularity at
cx = 0where kx(cx)↘ ksd,min as cx ↘ 0, end point of the curve gives the upper boundary
clin(0); Right: solution pro昀椀les u(x,y) for select points on this curve, decreasing in speed
from top to bottom. Recall that y= ωt, ω = kxcx is a scaled variable, so that for small
speeds cx, represents a larger time interval.

Alternatively, we also 昀椀nd kx(cx,ky) is non-monotonic in ky for cx 昀椀xed and small, passing
through a series of local maxima and minima as ky is decreased to 0. For strongly oblique
stripes with ky ≲ kzz, we 昀椀nd that the front undergoes a fold bifurcation as cx is increased,
where the solution developes a localised kink (or wrinkle) near the quench interface. The curve
of folds in ky touches down on the kx = 0-plane, connecting with purely perpendicular stripes
with zigzag critical wavenumber (kx,ky) = (0,kzz); see 昀椀gure 14. Continuing the other direc-
tion in ky, this curve of folds collides with the main body of the moduli space leading to a
hyperbolic catastrophe. We discuss these various regions in more detail below.

2.3.1. Parallel stripes, ky = 0, cx ≳ 0. At zero speed, parallel stripes are compatible with the
boundary condition for an interval of wavenumbers determined by the strain-displacement
relation, k ∈ [ksd,min,ksd,max]. Slowly moving the boundary, one passes through this strain-
displacement relation, changing the phase and wavenumber of the pattern and effectively
stretching the pattern, until a minimum of the strain-displacement relation is reached. At this
point, further stretching is impossible and one sees a snapping event, where a half-period of
the pattern is added at the boundary in a process similar to the depinning transition of inter-
faces between patterned and unpatterned regions [58]; see 昀椀gure 11 for a depiction of these
dynamics (depicted in the y direction of the plots).

This periodic stretch-snap behavior leads to a perturbation in the asymptotic wavenumber of
the pattern. When cx is increased from zero, more energy is inserted into the local phase allow-
ing it to overcome the local pinning effect, leading to a weaker deformation of the asymptotic
pattern and hence an increase in the wavenumber from ksd,min.

One can begin to understand these dynamics analytically using a simplifying modulational
approximation. In the one dimensional case, since the transverse zigzag instability is sup-
pressed, one 昀椀nds for µ≳ 0 that wavenumbers [ksd,min,ksd,max] lie inside the Eckhaus stability
region (1.3) so that they are spectrally, linearly, and nonlinearly diffusively stable [84]. Stripe
dynamics are well approximated by a phase diffusion modulation equation [16]. Most eas-
ily, one reduces (1.1) in n= 1 with the parabolic scaling µ= ϵ2,X= ϵx,T= ϵ2t, and an ansatz
u(x, t) = ϵA(X,T)eix+ c.c. at leading order to the Ginzburg–Landau amlitude equation
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AT = 4AXX+A− 3A|A|2. (2.24)

In polar coordinates A= Reiϕ̃, expanding near R= 1/
√
3, ϕ̃= 0, one obtains a linear phase

diffusion equation

ϕT = 4ϕXX. (2.25)

The quenching term can bemodelled by posing the equation on a half-line {X⩽ 0} in a comov-
ing frame with speed c̃x, with a mixed nonlinear boundary condition that relates the phase ϕ
to the local wavenumber ϕx through the strain-displacement relation (2.3),

ϕT = 4ϕXX+ c̃xϕX, X< 0, ϕX = g(ϕ), X= 0. (2.26)

Here, 2π-periodicity of g implies a discrete gauge-symmetry ϕ 7→ ϕ+ 2π. Pattern-forming
fronts are represented by asymptotically linear pro昀椀les which are time-periodic with period
Tp = 2π/É up to this symmetry,

ϕ(X,T+ Tp) = ϕ(X,T)+ 2π, |ϕ(X,T)− (kxX−ÉT)| → 0, X→−∞, É = c̃xkx.

Such solutions were studied in [28], using a asymptotic inner and outer expansions in terms of
Fourier–Laplace modes. As a result, one 昀椀nds a leading-order expansion for the wavenumber
selection curve kx(c̃x) for c̃x ≳ 0 of the form

kx(c̃x) = ksd,min + k1c̃
1/2
x +O(c3/4), k1 = ·(1/2)

√
2ksd,min/deff, (2.27)

where deff = 4 is the effective diffusivity of phase perturbations of patterns with wavenum-
ber k= 1, and ·(s) is the Riemann-Zeta function analytically continued onto the critical strip
Res= 1/2. Hence, the phase-diffusion approximation shows that the selected wavenumber is
smoothly dependent on the square root of the speed cx, with leading-order coef昀椀cient depend-
ent on the strain displacement relation and the stability properties of a pure stripe. We also
mention that comparison principle type arguments were used to rigorously establish existence
and stability of these solutions in [70] but existence of such slowly quenched fronts in the full
Swift–Hohenberg equation has not been established.

2.3.2. Weakly oblique stripes, cx ≳ 0 and ky ∈ (0,kzz) 昀椀xed. In this regime, we 昀椀nd that
wavenumbers kx(cx,ky) depend smoothly on cx. Fixing ky, curves kx(cx) limit on the energy
minimising wavenumber kx = kx,zz(ky) as cx → 0. For non-zero cx, the slow movement of
the quench imposes a strain on the striped phase, stretching the pattern, and decreasing the
wavenumber. It would be interesting to quantify and interpret this strain through a perturba-
tion analysis.

Taking in addition the limit ky → 0, the curves kx(cx;ky) limit set-wise on the ky = 0-cross
section of M which consists of the locally monotonically decreasing curve kx(cx,0) for cx >
0, and the vertical line segment {ky = cx = 0,kx ∈ [ksd,min,kzz]}; see 昀椀gure 12. In particular,
curves develop a singularity at cx = ky = 0, with local slope in cx proportional to −1/ky as
ky → 0.

This steepening indicates that slow growth imposes a stronger strain on weakly oblique
stripes, that is, on stripes that are almost parallel to the interface. A quantitative analysis in this
regime would need to take the development of a point defect at the quenching interface into
account; see section 5.2.2 and [3].

Alternatively, one can 昀椀x cx ∼ 0 and continue in ky ∼ 0. FromTheorem 2 above, one expects
kx to be quadratically dependent on ky near ky = 0. Moving further out from ky = 0, one
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Figure 12. Moduli surface for cx,ky ∼ 0, continuing in cx → 0 for a range of 昀椀xed ky
values, plots of kx (left) and k (centre), as well as cross sections in kx for 昀椀xed ky.

Figure 13. Moduli surface for cx,ky ∼ 0, continuing in ky → 0 for cx 昀椀xed, ranging from
10−3 to 5 ∗ 10−2. Top left: plot of surface kx(ky,cx); top right: ky slices of kx-surface
bottom row: similar plots but for the bulk wavenumber k(ky,cx).

observes non-monotonic curves where kx(cx,ky) has a series of minima and maxima, the num-
ber of which depends on the magnitude of cx; see 昀椀gure 13. For larger 昀椀xed cx values the 昀椀rst
local minimum disappears, leading to a monotonically decreasing curve in ky. A modulational
analysis for cx,ky ∼ 0, where kx is near the zigzag critical wavenumber kx,zz, would yield a neg-
ative effective diffusivity in the y-direction so that higher-order terms must be included. Thus
one expects to obtain a Cross–Newell equation [40] for modulations of the striped pattern,
paired with an appropriate boundary condition to represent the quench.
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Figure 14. Left: zoom in on the kink-dragging bubble in M with µ= 1/4 along with
the associated bubble from continuing fronts in (2.31) (grey); centre-left: cross section of
bubble inM for a 昀椀xed ky; centre-right: solution pro昀椀les of (1.9) along this cross section;
right: kink-dragging bubble bifurcation diagram in (2.31), comparing front asymptotic
value η with front speed cx, solid line denotes stable solutions while dashed line gives
unstable solutions, bottom inset gives example pro昀椀les ψ∗(x) for points along the stable
(solid) and unstable (dashed) branches. (Left and two centre subplots) Reproduced with
permission from [3].

Figure 15. Time-periodic solution pro昀椀les for the directionally quenched time-
dependent equation (1.6) posed in a comoving frame x 7→ x− cxt and scaled by
the vertical wavenumber y 7→ kyy, in a long cylinder (x,y) ∈ [−50π,50π]× [−π,π]
with periodic boundary conditions and µ= 3/4. Period increases as cx is decreased
to the fold value. Left: oblique stripes with ky = 0.8 with speeds cx− cx,osn(ky)∼
0.07,0.015,0.005 from top to bottom with cx,osn(ky)≈ 0.1355. Right: perpendicular
stripes with ky = 1, and cx− cx,psn(ky)∼ 0.12,0.04,0.02 and cx,psn(ky)∼ 0.96.

2.3.3. Acute oblique stripes and the kink-dragging bubble. We observe a qualitatively
different regime when slowly grown and acutely oblique stripes are grown near the point
(kx,ky,cx) = (0,kzz,0) which corresponds to a zigzag critical perpendicular stripe. As men-
tioned earlier, for 昀椀xed ky ≲ kzz, and kx 6= 0, curves emanate smoothly from kx,zz(ky) for
cx > 0 until undergoing a fold bifurcation at the point (cx,ksn(ky),ky,kx,ksn(ky)), where it folds
back underneath itself; see 昀椀gure 14. Through this transition, the corresponding front solu-
tion develops an anti-phase ‘kink’ or ‘wrinkle’ near the growth interface which has the
same local wavenumber as in the far-昀椀eld but with opposite orientation in y. The curve
{(cx,ksn(ky),ky,kx,ksn(ky)),ky ⩽ kzz} of fold points, depicted in green in the left plot of 昀椀gure 14,
emanates from (0,kzz,0) into the positive octant and reconnects with the main body of M in
a hyperbolic catastrophe; see 昀椀gure 18 below.

The fold curve delineates a qualitative transition in the dynamics of slowly grown oblique
stripes in the original equation (1.6). For growth speeds cx past the fold value cx,ksn, dir-
ect numerical simulations show saddle-node on a limit cycle dynamics, with time-periodic
kink-shedding at the interface with period Tkink ∼ (cx− cx,ksn)−1/2 ↗∞ as cx ↘ cx,ksn; see
昀椀gure 15.

One can use a modulational approximation near a perpendicular stripe with critical
wavenumber ky = kzz to understand these dynamics in a reduced model. In particular, through
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the ansatz u(x,y, t) = ϵeikyyA(ϵx, ϵt)+ c.c. in the bulk domain with ky = 1− ϵ, ρ≡ µ, one
obtains at leading order in ϵ> 0 small, the Newell–Whitehead–Segel equation [40]

AT =−(∂XX+ 2ϵ− ϵ2)2A+µA− 3A|A|2. (2.28)

Expanding again in the phase ϕ near R=
√
µ/3 in polar coordinates A= Reiϕ, one obtains

ϕT =−c4ϕXXXX− c1ϵϕXX+ c3ϕ
2
XϕXX, c4 = 1,c1 = 4,c3 = 6. (2.29)

Through subsequent scaling and transforming to a comoving frame X 7→ X− cxT, one 昀椀nds
the Cahn–Hilliard equation [8] for the local vertical wavenumber È = ϕx,

ÈT =−(ÈXX+È −È3)XX+ cxÈX. (2.30)

Note that È ≡ ¸ 6= 0 represents an oblique stripe. Exploiting a Hamiltonian structure at cx = 0,
one 昀椀nds an effective boundary condition induced by the parameter step in Swift–Hohenberg,
È = ÈXX = 0 at X= 0; see [3, § 2.3]. One therefore wishes to study

ÈT =−(ÈXX+È −È3)XX+ cxÈX, X< 0, È = ÈXX = 0, X= 0. (2.31)

The striped travelling wave solutions are represented by equilibrium solutions È∗(X)which
satisfy È∗(X)→ ¸,X→−∞. For cx = 0, they take the explicit form Èd(X) =± tanh(X/

√
2).

A functional analytic approach was then used in [3, theorem 3.1] to continue these fronts to
cx 6= 0, determining the selected wavenumber as a function of cx. For larger cx, numerical
continuation was used to continue the fronts È∗ in cx through the saddle-node bifurcation. If
we let (cx,CH,¸CH(cx,CH)) denote the fold curve obtained from the Cahn–Hilliard equation, we
can obtain a prediction for the Swift–Hohenberg equation through the curve

· = kzz − ky, kx =
√
2kzz¸CH(cx,CH)·

1/2, cx = 8cx,CH·
3/2. (2.32)

The left plot of 昀椀gure 14 gives the comparison of this prediction (red) to the numerically
observed fold curve (green). The work [3] also computed local saddle-node coef昀椀cients and
predicted limit-cycle frequencies for time-periodic solutions of (2.31) depicted in 昀椀gure 15
with speed just above the fold speed.

2.4. Intermediate growth regions

2.4.1. Perpendicular stripes and oblique stripe reattachment. Similar to oblique stripes, per-
pendicular stripes perturb regularly as cx increases from zero. We observe that the domain
of supported wavenumbers ky shrinks as cx increases. For ky > ky,po, stripe detachment lim-
its the range of ky-wavenumbers from above, or, equivalently, the range of cx-values; see
section 2.2.1. For ky < ky,po the free invasion calculation predicts oblique stripes near detach-
ment, so that one expects a transition from perpendicular to oblique stripes for 昀椀nite cx before
detachment. Indeed, we 昀椀nd fronts undergo a kink forming saddle-node bifurcation at some
昀椀nite speed cx = cx,psn(ky); see 昀椀gure 16. Direct numerical simulations show that solutions
exhibit time-periodic kink-shedding just as in the oblique stripe case for cx ≳ cx,psn, with
period blow-up as cx approaches cx,psn from above; see 昀椀gure 15. Prior to the saddle-node, for
c= cx,ppf < cx,psn(ky), perpendicular stripes destabilise in a pitchfork bifurcation that breaks
the y-re昀氀ection symmetry, leading to oblique stripes; see 昀椀gure 16. The location of these
curves of saddle-node and pitchfork bifurcations can be approximately located using amp-
litude equations. One inserts u(x,y, t) = A(x, t)eiy+ c.c. into (1.9), detuning by the y-frequency
A 7→ Aeikxcxt, and truncating at lowest order in eiy, to obtain the Newell–Whitehead–Segal
equation,

At =−(1+ ∂2
x − k2y)

2A+ ρ(x)A− 3A|A|2 + cxA, A ∈ C. (2.33)
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Figure 16. Left two plots: zoom in of cx = 0 slice ofM near (ky,kx) = (1,0), black dots
correspond to adjacent perpendicular stripe solution pro昀椀les for a range of ky values
on either side of the fold point ky,sn; right two plots: cross-section of M with 昀椀xed
ky = 1.0646 illustrating the perpendicular to oblique bifurcation with adjacent solution
pro昀椀les along this cross-section. (Two right plots) Reproduced with permission from
[3].

Figure 17. µ= 1/4, left: domain of existence of perpendicular stripes predicted
by (2.33), bounded above by bifurcation curves cx,psn(ky),cx,opf(ky) (red and magenta),
blue and green points indicate numerically measured bifurcation values in (1.9); right:
front solutions of (2.33) representing perpendicular stripes for various cx,ky values label
in centre-left plot; µ= 1/4 throughout. (Left and Right) Reproduced with permission
from [3].

Setting ρ≡ µ for the wake of the quench, plane waves A= rei(kxx+ωt) with r2 =
µ−(1−k2y)

2

3 ,É =
kxcx represent oblique stripes for kx 6= 0 and perpendicular stripes for kx = 0. Figure 17 gives
the results of numerical continuation of travelling wave solutions, which are equilibrium solu-
tions to (2.33), connecting a plane wave solution with the trivial state as x increases, repres-
enting perpendicular and oblique striped fronts. Continuing in cx with ky 昀椀xed we 昀椀nd perpen-
dicular fronts destabilise in a saddle-node bifurcation and oblique stripes bifurcate in a nearby
pitchfork bifurcation. Numerically continuing the fold and pitchfork points in ky we 昀椀nd good
agreement with numerical results in the full equation (1.9).

2.4.2. Hyperbolic catastrophe. As the kink-dragging bubble discussed in section 2.3.3
expands for decreasing ky, it eventually collides with the main surface of oblique stripes in
a hyperbolic catastrophe. That is the two branches of oblique stripes on either side of the
kink-forming saddle node separate, with one continuing upwards in cx towards the all-stripe
detachment boundary clin(ky) while the other branch has a rapid drop in kx and connects with
the perpendicular stripe surface; see 昀椀gure 18. Very little is known about this singularity.
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Figure 18. Left: slices of the M for µ= 1/4, for ky = 0.842 (dashed blue) and ky =
0.847 (solid red). Right: solution pro昀椀les at various points (1)–(4) along the two slices.
Reproduced with permission from [3].

3. Stability and dynamics of patterns

Stability of quenched fronts is poorly understood. We discuss here brie昀氀y a general approach
and some limiting scenario where partial results are available. Quenched fronts are either equi-
libria or time-periodic in an appropriately comoving frame. One therefore needs to investigate
properties of the linearisation in a comoving frame, a constant-in-time parabolic equation, or
possibly the period-map to a periodically forced parabolic equation. In either situation, spec-
tral properties of the linearisation largely determine stability. Spectra decompose into essential
and point spectrum, where the former is entirely determined by the states at spatial in昀椀nity.
Since the asymptotic state at x=+∞ is stable due to form of the quench, the stability of the
crystalline state in the wake determines stability of essential spectra. The stability of these
simple periodic solutions are amenable to a Floquet–Bloch wave analysis, and it is in prin-
ciple possible to determine spectral properties in many of the situations discussed thus far. A
slight complication is the possibility of a convective instability of the pattern created in the
wake. In fact, the transition from convective to absolute instability is likely at the origin of
much of the complexity in the transitions between perpendicular and oblique fronts at inter-
mediate speeds discussed in section 2.4. The discrete part of the spectrum of the linearisation,
the point spectrum, is often more dif昀椀cult to access. Controlling both real and imaginary part
of the spectrum often allows for nonlinear stability results; see for instance [5, 25].

In the remainder of this section, we describe examples where some understanding of point
spectrum is available. The arguably simplest example are quenched fronts at cx = ky = 0,
which are simply solutions to a four-dimensional ODE. As pointed out in [67], the mono-
tonicity of the strain-displacement relation gives a parity index on the number of unstable
eigenvalues. Numerics suggest that this number is minimal, 0 or 1, in the present case of
the Swift–Hohenberg equation with a small quench. On the other hand, [67] outlines many
other examples of pattern-forming systems where at times stability information may be more
immediately accessible, in particular the Ginzburg–Landau equation and the phase diffusion
equation, discussed at several instances above as an approximation. In the phase-diffusion
equation, stability is readily accessible through the sign of the strain-dispersion relation.
Stability in the Ginzburg–Landau setting appears to be related to monotonicity of the amp-
litude pro昀椀le; see [67]. In particular, real solutions of the Ginzburg–Landau equations are
stable against real perturbations precisely when the real part is monotone; see [64].

For 昀椀nite speed, the phase-diffusion approximation still allows for a quite complete exist-
ence and stability analysis, with strain-displacement relation incorporated into the boundary
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condition; see [70]. In addition to spectral stability, the results there include more global con-
vergence to the time-periodic pattern-forming solutions. Local stability in this approximation
has also been established for oblique stripes in [10]. It would be interesting to incorporate the
possibility of zigzag instabilities with a Cahn–Hilliard approximation for local wavenumbers
as in [3].

Stability also appears to be accessible near the detachment limit, where one can study sta-
bility of the quenched fronts as a perturbation of the free invasion front. Spectral and at times
nonlinear stability of free invasion fronts is known in many examples, including the Ginzburg–
Landau amplitude approximations and to some extent the Swift–Hohenberg equation [5, 20].
Recently, spectral stability has been established near this detachment limit in the context of
the complex Ginzburg–Landau equation; see the discussion in section 5.3 and [29].

4. Other types of growth and quenching

In addition to the simple parameter step which allows or precludes patterns depending on
the side of the interface discussed above, there are of course many other types of quenching
mechanisms and heterogeneities. We brie昀氀y mention a few speci昀椀c cases of interest.

4.1. Slowly-varying parameter ramps

Contrasting the rapid change in parameters modelled by the step-function ρ(x), one could ask
for the effect of ρ(x)which varies slowly in space. In fact, smooth but rapidly varying quenches
yield qualitatively similar results to the case of step-function like parameter quenches dis-
cussed thus far. On the other hand, slowly-varying quenches have been studied in the past with
both stationary [74] and moving [72] interfaces. In the former, it was found that the band of
selected wavenumbers inside (kex,−,kex,+) is narrowed signi昀椀cantly compared with the range
of the strain-displacement relationship for the steep parameter step discussed in section 2.1
above. Figure 19 gives numerical results plotting the strain displacement relationship for (2.2)
with cx = 0 and ρ(x) =−µ tanh(x/¶) for ¶� 1. The amplitude ksd,max − ksd,min is exponen-
tially small in ¶. The bottom left plot also shows the ky = 0 cross section of the moduli space
for varying cx for two values of ¶. We 昀椀nd the local maximum for cx small practically disap-
pears as ¶ increases. Heuristically, the slow ramping of the parameter suppresses the slow-fast
stick/slip phase-pinning effect discussed in section 2.3.1 above. The bottom right plot also
depicts solution pro昀椀les for several quench speeds. We 昀椀nd that for x large negative, the pat-
tern amplitude goes like

√
4ρ(x)/3. As cx increases, the front location decreases away from

x= 0where ρ switches from negative to positive. This can be understood as follows, for a given
昀椀xed quenching speed, perturbations near x= 0, where ρ is small, grow but are convected left-
wards until they reach the x location where the value ρ(x) renders the trivial state absolutely
unstable. In other words, we expect the front interface to be located, at leading order, near
the maximum x-value where the value ρ(x) makes the trivial state u= 0 absolutely unstable
for the given quenching speed cx. Since ρ is slowly varying we expect the next-order correc-
tion for the front location to be determined by a dynamic slow fold bifurcation coming from
the Jordan block mediating the absolute/convective instability transition. More rigorously, one
would transform the system into normal form, with slowly varying coef昀椀cients, thus obtaining
a Ginzburg–Landau approximation with a slow quench, mimicking the rapid quench construc-
tion in [82, § 4(c)]. The real part of this equation is analyzed rigorously in [31] using geometric
singular perturbation theory, locating in particular leading-order asymptotics for the location
of the front interface relative to the quench position. This work also shows that the stationary
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Figure 19. Upper left: strain-displacement relations for the stationary problem cx = 0
in both the step (black) and slow ramp with ¶= 10 (blue) parameter heterogeneities,
µ= 3/4; upper right: semi-log plot of the numerical range of the strain-displacement
relation for several ramp slopes ¶ ∈ (0.1,8) indicating an exponential decay for large ¶,
Bottom left: ky = 0 slice of the moduli space for the parameter step (black) and slowly
varying ramp with ¶= 10 (blue), Bottom right: slices of solution pro昀椀les (blue) for a
昀椀xed y-value with ¶= 10 for speeds c= 0.002,0.851,3.82, plotted against the curve√

4ρ(x)/3 (orange) for x< 0.

case cx = 0 is governed by a slow-passage through a pitchfork bifurcation with inner solution
determined by a unique connecting solution of Painlevé’s second equation.

While we did not attempt to compute the full moduli space in this case we expect that
slow quenches ¶� 1 drastically restrict the range of selected wavenumbers compared with
the sharp parameter jump along the quench. To our knowledge no rigorous proof of pattern
existence and wavenumber selection in any regime has been obtained so far.

4.2. Temporal and diffusive quenches

Wemention two variations of the simple spatio-temporal quench ρ(x− cxt). First, consider the
limit of in昀椀nite speeds cx, which can be recast as a purely temporal quench,

ρ(t) = µ tanh((t− t0)/¶). (4.1)
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Figure 20. Solutions of Swift–Hohenberg with spatially homogeneous slow
quench (4.1) at time t= 200 with shift t0 = 100, and ¶ = 0.1,1,80 left to right;
domain is [−40π,40π]2.

As apparent in our earlier discussion, we do not expect pattern formation to be governed by
coherent front solutions, such as solutions periodic in x and heteroclinic in t, since the ‘in昀椀n-
ite’ speed cx here is clearly above the linear spreading speed. Of interest is then in how far
this quench still leads to reduced presence of defects as did the directional quench that we
have studied thus far. There are in fact a number of heuristics, known as the Kibble-Zurek
mechanism [47, 98], that predict defect densities that vary inversely with the parameter ramp
speed when initialising with white noise initial data. Amplitude analysis near onset shows that
this density varies as ¶−

1
2 for ¶ large [86]; see 昀椀gure 20 for the direct simulation results with

this heterogeneity for a few values of ¶ and random white noise initial data. Note the qual-
itative difference in the resulting pattern as the quench rate, which roughly varies inversely
proportionally to ¶, is decreased. A brief qualitative view of these results reveals the formation
of fewer point defects, and larger domains of pure stripes, for larger ¶.

In a different direction, the parameter quench is at times given by the propagation of a
diffusive signal, leading to quenches of the form [36],

ρ(x, t) =−µsign(x− d
√
t).

One expects a patterned state with non-uniform wavenumber in the wake of the quench since
instantaneous speeds vary as d

2
√
t
so that stripes are grown quickly for small times, and then

progressively slowly as the quench moves forward. We observe that the quench dynamically
explores different regions of the moduli space as time evolves. Figure 21 shows the result of a
diffusively travelling quench, seeded with a weakly oblique stripe with ky ∼ 0, where for t≳ 0
the quench travels faster than the linear spreading speed clin(ky), selecting a large wavenumber
in the horizontal direction. Later on the pattern catches up with the quench and a much smaller
wavenumber is selected, which continues to decrease as the growth speed decreases. Also
note that the glide-dislocation defect discussed in sections 2.3.2 and 5.2 begins to develop for
progressively slow speeds. We also remark that the radial quench would be a natural setting
for such a diffusive signal.

For quenching heterogeneities, one could also consider the effect of curvature using a non-
directional quench as discussed in (1.6), where ∂Ωt expands throughout the spatial domain.
Figure 2 depicts patterns in a radially quenched domain, but one could imagine many other
interesting domains, such as elliptical, polygonal, or chevron type boundaries. See 昀椀gure 22
for a few examples.
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Figure 21. Result of pattern selected in the wake of the diffusively propagating quench,
for d= 40 (left) and d= 8 (right), top 昀椀gures give resulting patterns at the 昀椀nal time of
the simulation, determined when the quench reaches four-昀椀fths of the domain; bottom
昀椀gures gives the local wavenumber, measured using a Hilbert transform approach (see
[57, p 5]).

Figure 22. A range of different geometries for ∂Ωt, all of which move outward pre-
serving the same geometry. From left to right top to bottom: chevron, reverse chevron,
square, ellipse for both fast and slow expansion speed, and sinusoidal interfaces; domain
is [−100π,100π]2.

Different from the ‘heteroclinic’ quench ρ∼− tanh(x− cxt), one could also consider
‘homoclinic’ quenches, ρ(x− cxt) = µ+ h(x− cxt), with h exponentially or algebraically loc-
alised, or even step-like quenches ρ(x− cxt) = µl+(µr−µl)Ç(x− cxt), with Ç(ξ) a step-
function, equal to 1 for ξ > 0 and 0 otherwise, for two positive values µl,µr. In this last
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example, the heterogeneity would mediate an interface between two patterns to the left and
right of the quenching interface. Additionally, instead of a parameter heterogeneity, one could
add a u-independent term of the form g(x) to the equation; see [42, 43] for related works study-
ing the effect of localised imperfections on asymptotic patterns, a heterogeneous linear differ-
ential operator −(1+ ρ1(x,y)∂2

x + ρ2(x,y)∂2
y )

2 +µ, or posing the equation on a bounded, or
semi-bounded domain with boundary conditions [28, 67].

5. Moduli surfaces in other prototypical models

We highlight wavenumber selection under directional quenching in several other prototypical
models of pattern formation including several alterations of the supercritical Swift–Hohenberg
equation discussed above, as well as the complex Ginzburg–Landau, reaction-diffusion, and
Cahn–Hilliard equations.

5.1. Subcritical cubic-quintic Swift–Hohenberg equation

Different nonlinearities in the Swift–Hohenberg equation can also induce novel wavenumber
selection behaviours. For example, a subcritical cubic-quintic nonlinearity

ut =−(1+∆)2u+ ρu+ µu3 − u5, ρ(x, t) =−µsign(x− cxt), (5.1)

induces novel, non-monotonic wavenumber selection behaviour. In the corresponding homo-
geneous equation with ρ≡ µ, it has been observed [95, 96] that there exists a critical µ∗ > 0
value such that for all µ > µ∗, the spreading speed, cp, of the front formed by the spread of
compactly supported perturbations of the unstable base state u≡ 0, is faster than the linear
spreading speed clin. Furthermore, the pattern selected in the wake has wavenumber, kp, dif-
ferent than the linear prediction klin. Here, the strong nonlinear growth causes perturbations
of the unstable state u≡ 0 to grow and invade faster than the linear dynamics ahead of the
front predict. Thus, these are often called pushed fronts. Indeed, for µ= 1/4, the work [95]
measured this transition to be roughly µ∗ ≈ 0.63. We expect an extension of the analysis of
[4] could yield a precise determination of this transition between pushed and pulled invasion.

In the one-dimensional case, quenching mechanisms interact with the steep oscillatory
tail of the free-invasion front to form a wavenumber selection curve which is not a function
of cx but a logarithmic spiral in (cx,kx) space, with centre at the free-invasion parameters
(cx,kx) = (cp,kp); see [34, theorem 1] and 昀椀gure 23. As a consequence, for quenching speeds
cx ∼ cp, a discrete set of wavenumbers are selected. The multi-stability is induced by lock-
ing of oscillatory front tails into the position of the quenching line. We highlight in partic-
ular that this mechanism induces the existence of fronts for speeds above the free-invasion
speed cx ≳ cp. The result in [34] also gives asymptotics for the ‘tightness’ of the spiral, at
leading order through the complex difference between the strong-stable eigenvalues of the
linearisation which control the decay of the front and weakly stable spatial eigenvalues of the
linearisation. The results of numerical continuation in 昀椀gure 23 show such non-monotonic
wavenumber curves persist for oblique stripes with ky > 0 leading to a spiral scroll mod-
uli surface for large quench rates. We remark that similar behaviours were observed in one-
dimensional Cahn–Hilliard and complex Ginzburg–Landau equations with similar subcritical
nonlinearities [29, 34].
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Figure 23. Part of the moduli space for stripe-forming fronts in (5.1) for µ= 2 and
µ= 1/4. Inset gives zoom in of the ky = 0 slice near the nonlinear pushed spreading
parameters (cp,kp).

5.2. Quenching in anisotropic pattern-forming systems

5.2.1. Anisotropic Swift–Hohenberg equation. Introducing spatial anisotropy into pattern
formation can actually simplify spatio-temporal dynamics by restricting the range of available
orientations for patterns. As a simple example we consider the Swift–Hohenberg equation with
strong linear damping in say the vertical direction and quenching in the horizontal direction,

ut =−(1+∆)2u+´∂2
yu+ ρu− u3, ρ(x, t) =−µ sign(x− cxt), ´ > 0. (5.2)

Here, for ρ≡ µ, and ´ > 0, such damping selects stripes roughly parallel to the quench-
ing interface and suppresses the zigzag instability of stripes. It also reduces the presence of
defects, apparently eliminating point defects such as disclinations, and line defects such as
grain boundaries, leaving dislocations as the main source of disorder.

As a consequence, the structure of the moduli space is signi昀椀cantly simpler in the aniso-
tropic scenario, lacking all transitions to perpendicular stripes and the related zigzag and
cross roll instabilities. Figure 24 where ´= 1, µ= 3/4, shows that the ‘kink-dragging’ bubble
for nearly perpendicular stripes, which was induced by perturbing zigzag critical oblique
wavenumbers, is not present and only horizontal wavenumbers with kx ∼ 1 are supported.
Analogous predictions, not included in the 昀椀gures, from the linear spreading speed (2.14)
and absolute spectrum (2.17) using the altered dispersion relation d(ν,λ;c,ky) =−(1+ ν2 −
k2y)

2 −´k2y +µ+ cν−λ, accurately predicted the upper boundary in cx of the moduli curve,
and leading order wavenumber dependence for cx ≲ clin(ky) for each ky. Zooming into the
cx,ky ∼ 0 region for slowly growing, weakly oblique stripes, the moduli surface possesses dif-
ferent monotonicity properties in ky and cx compared with the isotropic case; see 昀椀gure 24,
centre and 昀椀gure 24 right. For cx 昀椀xed and small, we 昀椀nd kx(cx,ky) attains a local minimum
at ky = 0, a subsequent local maximum for increasing ky before decreasing monotonically for
ky ∼O(1). It is also instructive to consider the behaviour of the bulk wavenumber k(cx,ky);
see 昀椀gure 25. Here, with ky 昀椀xed, and cx varying small, we 昀椀nd the wavenumber curves inter-

polate between the equilibrium strain 1
2π

´ 2π
0 gSH(ϕ)dϕ at cx = 0,ky 6= 0 and the monotonically
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Figure 24. Left: top-down view of moduli space associated with (5.2) with µ=
3/4,´ = 1, colour denotes kx value; centre: zoom-in of moduli surface for ky,cx ∼ 0
with same µ,´ values. Right: moduli curves for cx = 0.0025 昀椀xed and µ and ´ varied.

Figure 25. Left: top-down view of moduli space associated with (5.2), once again for
µ= 3/4,´ = 1, colour denotes the bulk wavenumber k=

√
k2x + k2y value; centre: slices

of bulk wavenumber k(cx,ky) for a range of 昀椀xed cx values. Right: slices of k(cx,ky) for
a range of 昀椀xed ky values small.

increasing wavenumber curve kx(cx,0), which is the same as in the isotropic case; see 昀椀gure 11
above. That is, for ky ∼ 0 昀椀xed and cx increasing from 0, curves k(cx,ky) decrease from the
equilibrium strain, attain a global minimum, and then monotonically increase. For moderately
larger ky, we 昀椀nd this minima disappears leaving a monotonically decreasing k(cx,ky).

5.2.2. Phase diffusion approximation. Continuing to focus on the slowly growing weakly
oblique stripe regime, cx,ky ∼ 0 we note that bulk wavenumbers k in the range (ksd,min,ksd,max)
of the strain-displacement curve are stabilised by the suppression of the zigzag instability. One
can then understand wavenumber selection dynamics using a phase-diffusion approximation
similar to the one-dimensional case described in section 2.3. In particular, following a similar
multiple-scales analysis for phase dynamics u= up(φ) with |∇φ| ∼ 1 slowly varying, one
can describe patterned fronts using a linear phase diffusion equation with nonlinear boundary
condition given by the one-dimensional strain-displacement relation,

φt =∆x,yφ + cxφx, x< 0,y ∈ R

φx = gSH(φ), x= 0,y ∈ R, (5.3)

see [10] for more detail.
Stripe-forming front solutions are then represented by solutions with φ ∼ kxx+ kxcxt+

kyy= kxx+ ky(y− cyt), with cy =−kxcx/ky, in the far-昀椀eld x→−∞, andwhich are periodic in
the y variable up to the gauge symmetry induced by the periodicity of the strain-displacement
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Figure 26. Left: compacti昀椀ed plot ofmoduli space for (5.3). Centre: pro昀椀le ofψ := ϕ −
(kxx+ kyỹ) in co-rotating frame for 0< cy,ky � 1; Right: plot of cos(ϕ(x, ỹ)). (Left)
Reproduced with permission from [10].

relation gSH. In particular, one restricts to solutions which are travelling waves in the y dir-
ection, φ = φ(x,ky(y− cyt)), with · = ky(y− cyt) and φ(·, · + 2π) = φ(·, ·)+ 2π. De昀椀ning a
new variable which subtracts off the desired asymptotic state È := φ − (kxx+ ·), one obtains
the following system of equations

0= Èxx+ k2yϕ·· + cxÈx− kxcxÈ· , x< 0, · ∈ R, (5.4)

0= È(x, · + 2π)−È(x, ·), x⩽ 0, · ∈ R (5.5)

0= Èx− gSH(È+ ·)+ kx, x= 0, · ∈ R (5.6)

0= lim
x→−∞

È(x, ·), · ∈ R. (5.7)

Since È is periodic in · and linear in the bulk domain x< 0, one can decompose È(x, ·) =∑
ℓ∈Z

Èℓ(x)eiℓ· and map the equation onto the boundary by solving each decoupled linear
second-order equation forÈℓ and obtaining a boundary integral equation. The work [10] estab-
lishes existence of solutions to this system, using a priori bounds, maximum principle argu-
ments, and Fredholm properties of the linearisation. It also gives results of numerical con-
tinuation which explore the moduli surface MPD := {(cx,ky,kx) : (5.4)–(5.7) has a solution}
for this system (see 昀椀gure 26 left), and derives formal leading-order expansions near various
limits in cx and ky. After suitable scaling, in the cx,ky ∼ 0 regime, good agreement was found
between the moduli space of the phase-diffusion system and that of the anisotropic Swift–
Hohenberg equation (5.2) above. In this work, it was also found that wavenumber selection
for slowly grown, nearly parallel stripes is governed by the glide-motion of a dislocation defect
along the boundary {x= 0} of the domain; see 昀椀gure 26 centre and right for a depiction. For
extremely slow speeds, this defect relieves local strain on the striped phase at the quenching
interface causing a decrease in the wavenumber. Then for yet larger but still small speeds,
strain dynamics behave like in the one-dimensional case, with wavenumber increasing in cx.

5.3. Directionally quenched complex Ginzburg–Landau equation

Beyond the spatial striped patterns explored thus far, one can also investigate the effect of
quenches, or other spatial inhomogeneities, on temporal oscillations. A universal model for
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temporal oscillations in spatially extended systems near onset is the cubic complex Ginzburg–
Landau equation, which we consider with a directional quenching parameter as in the Swift–
Hohenberg equation above.

At = (1+ i³)∆A+ ρ(x− cxt)A− (1+ iµ)A|A|2, ρ(x) =−sign(x). (5.8)

Here, when ρ≡−1 the trivial state A≡ 0 is stable, while for ρ≡ 1 the trivial state is unstable
and there exists an explicit family of periodic wave trains reiωtei(kxx+kyy) where É,kx,ky satisfy
a nonlinear dispersion relation

r2 = 1− k2, É = k2(µ−³)− µ, k2 = k2x + k2y . (5.9)

These periodic solutions are relative equilibria with respect to the gauge action A 7→ ei¹A, ¹ ∈
[0,2π). Within this setting, existence and stability of quenched fronts were studied in [29, 32].

Focusing 昀椀rst on y-independent, parallel stripes A= A(x, t), one looks for pattern forming
fronts by decomposing

A(x, t) = eiωtAtf(x− cxt), (5.10)

so that Atf solves

0= (1+ i³)Ax̃x̃+ cxAx̃+(ρ− iÉ)A− (1+ iµ)A|A|2, x̃= x− cxt, (5.11)

0= lim
x̃→−∞

A(x̃)−
√

1− k2xe
ikxx, 0= lim

x̃→+∞
A(x̃), (5.12)

for parametert pairs (É,cx). Recall that É determines kx through the shifted nonlinear disper-
sion relation É = k2x(µ−³)+ icxkx− µ.

For fast quench speeds cx near the stripe ‘detachment’ speed, the front selection mechanism
is the same as described in section 2.2.2 in the Swift–Hohenberg equation. This is due to the
fact that the free invasion front for the homogeneous system with ρ≡ 1 is once again pulled.
Thus, the linear spreading speed clin determines the speed at which patterns ‘detach’ from the
quenching interface and the absolute spectrum determines leading order wavenumber selection
properties in the quenched system for cx ≲ clin.

Performing a pinched double root analysis similar to (2.12)–(2.14) as in section 2.2 on
the linear dispersion relation 0= d(λ,ν,cx) = (1+ i³)ν2 + cν+(1− iÉ) one 昀椀nds the linear
spreading speeds, frequencies, and wavenumbers as

clin = 2
√

1+³2, Élin = ³, klin =





√
1+α2−

√
1+γ2

γ−α , for µ 6= ³

− α√
1+α2 for µ = ³

. (5.13)

Additionally, the frequency given by the intersection of the absolute spectrum with the

imaginary axis for cx ≲ clin can be explicitly calculated as Éabs =−³+
αc2x

2(1+α2) .
In this speed regime, fronts for quenching speeds cx ≲ clin were constructed rigorously

using heteroclinic bifurcation and desingularisation techniques [32]. In particular the selec-
ted wavenumber kx(cx) and the location of the interface x̃f = inf

{
x̃ : supx̃ ′>x |A(x̃)|< ¶

}
, for

some 昀椀xed 0< ¶� 1, of the pattern forming front, have the expansions

kx(cx) = klin + g1(³,µ)(clin − cx)− g2(³,µ)|∆Zi|(clin − cx)
3/2 +O((clin − cx)

2), (5.14)

x̃f = π(1+³2)1/4(clin − cx)
−1/2 +(1+³2)1/2∆Zr+O((clin − cx)

1/2), (5.15)

where g1 and g2 are continuous functions of µ and ³; see [32, theorem 1] for more detail.
Technically, these results rely on 昀椀rst factoring out orbits of the gauge symmetry in the phase

space C2 of the travelling wave equation (5.11), by using directional blow-up, with coordinate
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Figure 27. Left: comparison of selected wavenumber kx(cx) from numerical continu-
ation using AUTO07p (blue) with various truncations of the expansion (5.14) for ³=
−0.1,µ =−0.2, including prediction using a 昀椀xed ω = ωlin (dashed green), the pre-
diction using the leading order prediction using ω = ωabs (dashed red), and the higher
order prediction using the projectivised distance ∆Z; Right: depiction of the hetero-
clinic matching problem in the reduced phase portrait variables (z,R). (Left and Right)
Reproduced from [32], with permission from Springer Nature.

charts z= Ax̃/A,R= |A|2 and z̃= A/Ax̃,S= |B|2. This coordinate change, reduces the phase
space to C

2/S1 ≈ R
+ × S

2, where S
n is the unit n-sphere. Additionally, these coordinates

desingularise a Jordan block which arises in the linearised system for (cx,É) = (clin,Élin) by
‘blowing it up’ into the sphere {0}× S

2. The dynamics on this sphere give the evolution of one-
dimensional complex linear subspaces under the linearised 昀氀ow near the origin. Furthermore,
the periodic orbits formed by Ap collapse to equilibria, while its unstable manifold (blue curve
in 昀椀gure 27 right), as well as the stable manifold of the origin for ρ≡−1 (red curve in 昀椀gure 27
right), are reduced to one-dimensional manifolds. Pattern forming fronts can be obtained as
heteroclinic orbits bifurcating from the free invasion front as the parameters (cx,É) are unfol-
ded near (clin,Élin). The parameter∆Z gives the leading order projective distance between the
tangent spaces of the relevant unstable and stable manifold.

We also remark here that the work [29], under further assumptions on ³ and µ to guarantee
diffusive stability of the asymptotic pattern and existence of the freely invading front, proved
that these fronts are spectrally stable in a suitably de昀椀ned exponentially weighted space. The
main technical barrier in this result is caused in the region x̃ ∈ (x̃f,0), where the front solution
lies near the absolutely unstable trivial state. In the limit cx → c−lin this causes point spectrum
to accumulate on the weakly unstable absolute spectrum of the trivial state. Projective blow-up
techniques allow for detailed tracking of eigenvalues and the somewhat surprising fact that the
front is spectrally stable.

5.3.1. Oblique and perpendicular stripes. The simplest y-dependent pattern forming fronts
can be obtained by including an oscillatory factor in y to the solution decomposition (5.10)
in (5.8), setting A= ei(ωt+kyy)A(x− cxt) to obtain

0= (1+ i³)Ax̃x̃+ cxAx̃+(ρ− k2y − i(É+³k2y))A− (1+ iµ)A|A|2 (5.16)
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Figure 28. Moduli surfaces for (5.16) for (³,µ) = (0.1,0.4) (left) and (³,µ) =
(0.3,0.4) (right).

0= lim
x̃→−∞

A(x̃)−
√

1− k2x − k2ye
ikxx, 0= lim

x̃→+∞
A(x̃). (5.17)

Here the transverse wavenumber ky shifts the parameter step in the complex plane. Continuing
numerically gives a surface over the cx,ky-plane. Figure 28 depicts this portion of the mod-
uli surface MCGL for two pairs of (µ,³). We note that the range of kx values vary widely
between the two parameter cases. Furthermore, we note that in the left plot curves are nearly
constant in cx with ky 昀椀xed, while for the right plot the moduli surfaces varies more in cx than
in ky. Also note the difference in wavenumber range between the two cases. The approach
described above applies here with only minor modi昀椀cations due to a rescaling of ρ and É
yielding kx = kx(cx,ky) as selected by the quenching speed cx and vertical wavenumber ky.
Indeed by rescaling A 7→ mA and x 7→ x/ℓ, setting ℓ2 = m2 = (1− k2y) for |ky|< 1 and rede-

昀椀ning the speed c̃x := cx(1− k2y)
−1/2 and frequency É̃ =

ω+αk2y
1−k2y

, one obtains (5.11) in the

pattern-forming region x< 0. Note, in the stable region x> 0, this leaves a perturbed coef-
昀椀cient−(1+ k2y)(1− k2y)

−1 − iÉ̃ on the linear A term. As this term contributes to the direction
of the tangent space of the stable manifold for x> 0, non-scaling related ky-contributions enter
into to the wavenumber expansion only at third-order, via the ∆Zi term in (5.14). Thus, we
expect oblique stripe selection to be governed by a rescaling of the parallel stripe selection
curves at leading- and second-order.

The upper boundary in cx, that is the fast speed boundary, of MCGL, is governed by the
linear spreading dynamics of each ky-mode, see section 2.2. Following the calculation in (2.13)
and (2.14) gives spreading speed, frequency, and horizontal wavenumber, for the y-dependent
invasion front which is 2π/ky-periodic in y,

clin(ky) = 2
√

1− k2y
√

1+³2, Élin(ky) = (1− 2k2y)³,

kx,lin(ky) =
√

1− k2y





√
1+α2−

√
1+γ2

γ−α , for µ 6= ³

− α√
1+α2 for µ = ³

. (5.18)

Leading order predictions from the ky-dependent absolute spectrum (not shown) agree well
along the stripe-detachment boundary ofMCGL.We remark that the system does not appear to
support quenched fronts with perpendicular stripes, kx = 0. In fact, this case is not robust since
patterns in the wake lack the re昀氀ection symmetry present in the Swift–Hohenberg case and one

R39



Nonlinearity 36 (2023) R1 Invited Article

would expect this situation for isolated values of ky, only. Fronts of this form are solutions of
the travelling wave equation (5.16) with limx̃→+∞A(x̃) = 0 and limx̃→−∞A(x̃) = A−, where

A− is an asymptotic equilibrium for x̃=−∞ with amplitude |A−|=
√

1− k2y , |ky|< 1. Note,

the equilibrium condition 昀椀xes the temporal frequency É = k2y(µ−³)− µ for a given ky. In the
simplest case, ³= µ = 0, of real coef昀椀cient Ginzburg–Landau, one can restrict to A ∈ R and
perform a straight-forward two-dimensional phase portrait analysis to obtain front existence
for all cx ⩽ clin(ky), ky ∈ [0,1); see also the section 5.4 for the moduli space of Allen–Cahn.
Despite this, since É is 昀椀xed by ky, one does not expect to such fronts to generically perturb for
µ 6= ³. Indeed, moving into projective coordinates z= Ax̃/A,R= |A|2 in (5.16), one obtains a
real three-dimensional system where the stable manifold of 0 for x̃> 0 and unstable manifold
forA− for x̃< 0 are both one-dimensional. Hence, 昀氀owing the former backwards under the x̃<
0 昀氀ow, one searches for the intersection of one-dimensional and two-dimensional manifolds.
Thus we only expect the existence of intersections for isolated points in parameter space.

5.4. Allen–Cahn and Cahn–Hilliard

Quenching is of particular interest in phase separation problems. The simplest models here are
the Allen–Cahn or Nagumo equation,

du
dt

=∆u+ f(u), f(u) = µu− u3 + a, (5.19)

or the Cahn–Hilliard equation

du
dt

=−∆(∆u+µu− u3). (5.20)

Both equations are gradient 昀氀ows to the energy E[u] =
´

1
2 |∇u|2 +W(u),W ′(u) =−(µu− u3)

and support ‘phase-separating’ interfaces between u=±1 when µ= 1, a= 0. Interfaces
propagate in (5.19) when a 6= 0. For µ< 0, the energy is convex with a unique stable, global
minimiser. A simple quench would change µ= ρ(x− cxt), mimicking for instance a progress-
ive change in temperature that induces phase separation, with ρ(x̃)→±1 for x̃→∓∞.

In the case where ρ(x̃) =−sign(x̃), the moduli space was completely described in [64];
see 昀椀gure 29. One can show that stripes are either parallel or perpendicular to the interface and
propagating stripes are constructed by exploiting comparison principles of the system.

Results at cx = 0 also yield results in the Cahn–Hilliard equation with step quench, but
little is known about fronts in this equation beyond small speeds. We note that the limit ky → 0
in 昀椀gure 29(as in the Swift–Hohenberg case) yields solutions with ky = 0, but, depending on
the spatial translate, may also converge to a solution heteroclinic in y, exhibiting a nodal line
u= 0 along y= 0, x̃< 0. These solutions were also constructed in [64] and elucidate the role
of single defects in this limit in other systems. A wealth of interesting phenomena arises when
this nodal line, corresponding to the interface between the two possible selected states u=±1
in the wake of the quench, develops intrinsic dynamics for a= 0, which then interact with the
quench. The analysis in [65] shows how small values of a lead to effective boundary conditions
for this interface at the quench, or in other words, the selection of an angle relative to the
quenching line. We also mention [30] which studies oblique stripes and checkerboard type
patterns for a quench where µ is unstable only on a bounded interval in x̃.

We conclude noticing that other quenches may be of interest, in particular the case of mass
deposition in the Cahn–Hilliard equation, where

du
dt

=−∆(∆u+µu− u3)+ cxm¶(x− cxt), (5.21)
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Figure 29. Schematics of moduli space in Allen–Cahn with step-quench; all striped
formed for cx > 0 are perpendicular and stripes at cx = 0 are either perpendicular or
parallel. The boundary in the cx− ky plane is given by the linear spreading speed cx =
2
√

10k2y ; see [64].

where ¶ is the Dirac delta distribution and m is the amount of mass deposited at the location
x= cxt. Boundary conditions u=−1 at x→∞ and deposition of mass ∼ 1 ramps the system
into the spinodal unstable state leading to phase separation in the wake.

5.5. CDIMA reaction diffusion system

To conclude this section, we show some computational results for the moduli surface in the
two-component Lengyel–Epstein reaction-diffusion equation

du
dt

=∆u+ a− u− 4uv
1+ u2

−W, (5.22)

σ−1 dv
dt

= d∆v+ b

(
u− uv

1+ u2
+W

)
. (5.23)

which models the CDIMA light-sensing chemical reaction diffusion system [56], a key exper-
imental system in the study of Turing patterns. Experimentally, one observes the formation
of spatial patterns in a gel substrate fed by a continuously stirred reaction vessel. The sys-
tem allows for control of patterns as high-intensity light suppresses the formation of patterns.
The formulation (5.23) is dimensionless, with u and v representing the activator and inhibitor
ion concentrations, a,b,d, and σ are dimensionless parameters, and the constantW represents
the effect of light on the reaction: W > 0 represents illuminated dynamics and W = 0 absence
of illumination. Recent works [17, 49, 61] have studied the effect of moving masks experi-
mentally, blocking illumination and hence dynamically exciting patterns as they move across
the domain. Various quenching geometries were explored, including one-dimensional, two-
dimensional directional, as well as radial quenches. A directional quench for this equation in
two dimensions is represented by the function

W(x, t) =

{
ϕ, x> cxt

0, x⩽ cxt.
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Figure 30. Left: plot of front solution connecting stable and unstable equilibria
(u+,v+),(u−,v−) respectively as x decreases across the quenching interface at x= 0;
Parameters a= 12, b= 0.32, σ= 50, d= 1, ϕ= 1.5; Centre: numerical exploration of
the kx-moduli space for system (5.24); Right: u solution pro昀椀les for cx = 1 昀椀xed, and
(ky,kx)≈ (0.003,0.8778),(0.305,0.821),(0.670,0.574) from top to bottom.

The system with W≡ ϕ possesses a stable equilibrium (u+,v+), while W≡ 0 has a Turing-
unstable homogeneous equilibrium (u−,v−) and in fact a family of stable periodic stripe solu-
tions, (up,vp) for a range of wavenumbers. A standard travelling wave analysis shows that
there is a family of travelling front solutions (u∗,v∗)(x) connecting (u−,v−) to (u+,v+) as x
increases, for a range of positive speeds. See 昀椀gure 30 left for a numerical depiction of this
front.

Looking for modulated travelling wave solutions (u,v)(x,y, t) = (u,v)(x− cxt,kyy−Ét) as
above, we seek to numerically continue solutions of the following travelling-wave system

0= ux̃x̃+ k2yuỹỹ+ cx (ux̃+ kxuỹ)+ a− u− 4uv
1+ u2

−W(x̃),

0= d
(
vx̃x̃+ k2yvỹỹ

)
+ cx

(
vx̃+ kxσ

−1vỹ
)
+ b

(
u− uv

1+ u2
+W(x̃)

)
,

0= (u,v)(x̃, ỹ+ 2π) = (u,v)(x̃, ỹ),

0= lim
x̃→−∞

|(u,v)(x̃, ·)− (up,vp)(x̃, ·)|, 0= lim
x̃→+∞

((u,v)(x̃, ·)− (u+,v+)) . (5.24)

Mimicking the numerical approach for the Swift–Hohenberg equation, we continued front
solutions connecting (up,vp) to (u+,v+) to determine the dependence of kx on parameters ky
and cx. For more detail see appendix B.

Figure 30 depicts a rough exploration of the moduli space M for a 昀椀xed set of parameters
as well as u-solution pro昀椀les for a set of points on M all with cx = 1. We remark that the
existence of one parallel stripe at the leading-edge of the patterned front solution comes from
the unstable asymptotically constant front between (u+,v+) and (u−,v−) on which the stripes
are built. We 昀椀nd in the continuation of both parallel and oblique stripes that, as parameters
increase towards the boundary of M, stripes recede from the quench interface.

Figure 31 gives slices through a few parts of the perpendicular stripe region of M with
corresponding solution pro昀椀les. For perpendicular stripes we see the pattern detatches from
the quench for large ky. Continuing perpendicular stripes downward in ky, we 昀椀nd that the
perpendicular stripe front undergoes a series of fold bifurcations for which the stripe interface
loses its spot-like end-cap and passes through consecutively smaller oscillations in the base
front (u∗,v∗).
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Figure 31. Parameters a= 12,b= 0.32,σ = 50,d= 1,ϕ = 1.5; Left two plots: con-
tinuation of perpendicular stripes of the moduli space for (5.24) with kx = 0 and ky =
0.881 昀椀xed, plotted against the L2-norm of the numerical solution u(x,y); u-pro昀椀les for
select points starting from the bottom left of the L2 norm. Right two plots: similar but
continuing in ky with cx = 0.457 昀椀xed.

We expect that many of the above heuristics and selection mechanisms discussed for the
Swift–Hohenberg equation above could be used to characterise various boundaries and regions
of this equation. In particular, preliminary experiments indicate pattern-forming fronts in the
homogeneous system with W≡ 0 are pulled so that the linear spreading speed of patterns
invading the homogeneous state (u−,v−) should give the upper boundary of M in (ky,cx).

6. Discussion and outlook

Pattern formation in the wake of directional quenching yields a wealth of novel physical beha-
viours, is relevant in numerous application areas, and is a fruitful mathematical playground
to develop deeper understanding (at both the rigorous and heuristic level) of how patterns
interact with spatial heterogeneity, growth, and geometry. Even in a standard pattern-forming
scalar partial differential equation, such as the supercritical Swift–Hohenberg equation high-
lighted above, quenches can create a wealth of spatio-temporal behaviours. As highlighted
throughout this review there are many areas which are not yet fully understood, even at the
heuristic level. These include the interaction of perpendicular and oblique striped fronts, the
limit of slowly-grown, andweakly oblique stripes, stability and instability of quenched patterns
in various growth regimes, as well as the dynamics of defects and modulations of quenched
fronts. Beyond heuristics, rigorous existence and selection results exist only for a few growth
regimes.

6.1. Moduli spaces of quenched patterns

To organise and encode the pattern-forming dynamics in a given quenched system, we intro-
duced the moduli space as an effective means to organise phenomena, easily predict quantitat-
ive and qualitative changes, build towards more complex phenomena and growth mechanisms,
but also to catalog universal features in growth processes.

6.2. Quenched spots and more frequencies

The cross-roll and wrinkling instabilities already introduced dynamics not described in the
moduli space. Those dynamics are not ‘simplest’, but possess an additional frequency com-
pared to the simple quenched fronts that we focused on here. As solutions to the PDE, they
depend on 3 independent variables rather than 2 for fronts pertaining to points in the moduli
space. This complexity is intrinsic when ‘growing’ crystalline phases of higher complexity.
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As a next step, one may wish to consider lattices of spots, for instance the common hexagonal
arrangement. In the simplest case of growing such hexagonal patterns in the direction of one of
the symmetry axes, one already expects dependence of solutions in a periodic fashion on both
time and a periodic variable across the quenching interface. Some preliminary analysis in the
case of stationary quenches was initiated in [97] where the Swift–Hohenberg equation with
nonlinearity f(u; x̃) = ρ(x̃)u+ νu2 − u3, ν ∈ R is studied in a regime favouring hexagonal
patterns. Rigorous existence is obtained in some parameter regimes. In a slowly growing
regime, one observes periodic stretch-slip dynamics similar to those discussed in section 2.3.1
as rows of spots are added behind the quenching line. Similar to the wrinkling transition, where
kink-type defects are shed as the lateral aspect ratio is changed, we expect similar transitions
for hexagons, as lattice orientations and parameters change. Even understanding simple sin-
gularities in the associated moduli space, which now features two wave vectors and the speed,
should give valuable insight into pinning and depinning effects. We suspect that many of the
tools described here, such as numerical continuation based on far昀椀eld-core decompositions,
amplitude and phase modulation approximation, and heteroclinic gluing methods will be valu-
able tools in such an endeavour.
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Appendix A. Fredholm indices, group velocities, and generic points on M

We outline how Fredholm properties of L, the linearisation about a solution u∗(x,y;kx,ky,c)
of (1.9), can be understood. Similar arguments were used in [3, 35, 57, 67, 81] and we recall
the main ideas here for convenience and to set the stage for our description of numerical
algorithms. Recall that a linear operator between Banach spaces is Fredholm if it has closed
range, and 昀椀nite-dimensional kernel and co-kernel. The Fredholm index ofL is then de昀椀ned as
indL= dimkerL− dimkerL. First we note that L is closed and densely de昀椀ned, but it is not
Fredholm in L2. To see this last fact, note that L∂yu∗ = 0 due to the y-translation invariance
of (1.9) but the bounded function ∂yu∗ does not converge to zero as x→−∞ and hence is not
in L2. A Weyl sequence construction [44, §3] readily shows then that the range is not closed.

Fredholm properties can be regained by posing the operator on exponentially weighted
function spaces,

L2
¸,<(R×T) := {w ∈ L2(R×T) : ‖w‖L2

η,<
<∞}, ‖w‖2L2

η,<

:=

ˆ

R×T

|e−¸ξw(x,y)|2dxdy.

(A.1)

or
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L2
¸(R×T) := {w ∈ L2(R×T) : ‖w‖L2

η
<∞}, ‖w‖2L2

η
:=

ˆ

R×T

|e¸|ξ|w(x,y)|2dxdy. (A.2)

Next, a compactness argument can be used [81] to show that L is Fredholm if and only if
the linearisations at the asymptotic states at x→±∞,

L− :=−(1+ ∂2
x + k2y∂

2
y )

2 +µ− 3u2∗ + cx(∂x− kx∂y),

L+ :=−(1+ ∂2
x + k2y∂

2
y )

2 −µ+ cx(∂x− kx∂y),

are invertible, possibly after conjugating with the exponential weight function. Since L+ has
constant coef昀椀cients, its spectrum is purely continuous spectrum,

specL2(L+) := {λ ∈ C : λ :=−(1− ℓ2x − k2yℓ
2
y)

2 −µ+ icx(ℓx+ kxℓy), ℓx ∈ R, ℓy ∈ Z}.
Since µ> 0 we 昀椀nd that the spectrum is contained in the region {Reλ⩽−µ} which implies
that L+ is invertible in L2

¸ for any ¸ ∼ 0.
To study the Fredholm properties of L−, it helpful to 昀椀rst consider the stability of a pure

stripe solution up(kx;k), in the original homogeneous equation (1.1), posed in the unbounded
plane (x,y) ∈ R

2. That is consider the linear operator

Lp :=−(1+ ∂2
x + ∂2

y )
2 +µ− 3up(k ·)2.

As this operator has periodic coef昀椀cients, one can use a Bloch wave decomposition [60] of
the perturbation w(x,y) = eνxxeνyyW(x)with (νx,νy) ∈ i[0,2π/k)× iR, andW a 2π/k-periodic
function, to study the spectrum. Inserting this decomposition into the eigenvalue equation
Lpw= λw one obtains a family of eigenvalue problems posed on a compact domain.

λW= L̂p(νx,νy)W :=−(1+(∂x+ νx)
2 + ν2

y )
2W+µW− 3up(kx ·)2W, x ∈ (0,2π/kx),

so that the spectrum of Lp in L2(R2) is decomposed as

specL2Lp =
⋃

νx∈i[0,2π/k),νy∈iR

specL2L̂p(νx,νy).

For wavenumbers k ∈ (kzz,keck) and νx,νy ∼ 0, specL2L̂p(νx,νy) is contained in the closed left-
half plane and bounded away from the imaginary axis except for a simple eigenvalue curve
λ(νx,νy) which touches the imaginary axis in a quadratic tangency

λ(νx,νy) = d||ν
2
x + d⊥ν

2
y +O(|νx|4 + |νy|4), d||,d⊥ > 0;

see for instance [60]. Conjugating with the weight, one 昀椀nds the spectrum in L2
¸,> with 0<

¸� 1 that the small eigenvalue takes the form

λ(νx,νy) = d||(¸+ νx)
2 + d⊥(¸+ νy)

2 +O(|νx|4 + |νy|4), d||,d⊥ > 0,

shifting the curve to the right for ¸ > 0.
Now let us return to our asymptotic operator, L−, posed on L2

¸(R×T). Because of
the periodic domain in the y-direction, we use a Floquet–Bloch decomposition w(x,y) =
eiℓyyeνxxW(kxx+ y) with ℓy ∈ Z,νx ∈ i[0,2π/kx) and W(·) =W(·+ 2π). One then obtains the
family of operators

L̂
−
(νx, ℓy) :=−(1+(νx+ kx∂θ)

2 + k2y(∂θ + iℓy)
2)2 +µ− 3up(·)2 + cxνx− kxcxiℓy, θ ∈ [0,2π).

Hence, the eigenvalues λ̃ of L̂p(νx, iℓy) give eigenvalues λ= λ̃− cx(νx+ kxiℓy) for L̂−(νx, ℓy).
Note for ¸= 0, this comoving and co-rotating frame only shifts the imaginary part of λ̃(νx, ℓy).
Furthermore, for ¸ > 0 the neutral eigenvalue curve is shifted away from the origin.
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These curves of spectra denote the values of λ for which the operator L− −λ is not invert-
ible and bound the regions where the operator is Fredholm with a constant index. In order to
compute the Fredholm index of L, one uses homotopy invariance of the index when adding the
spectral parameter λ. For the values to the right of the right-most curve λ(νx,νy) one readily
calculates the Fredholm index of L to be 0, since the linearisation does not have spectrum near
λ=+∞. Next, one can use the group velocity of the striped pattern to calculate the change
in index as λ moves from the right to left across λ(νx, ℓy). In general, the relative sign of the
group velocity for a wave with dispersion relation É(k) counts the change in Fredholm index
as one moves from right to left across the Fredholm boundary [22, 81]. In our case, since
striped patterns up are stationary in the stationary frame, they have trivial dispersion relation
É(kx) =−cxkx in the frame moving with the quench at speed cx so that the phase velocity,
cp = É/kx, and group velocity, cg = É ′(kx), are both equal to −cx, pointing away from the
quenching interface. In other words the heterogeneity acts like a source defect shedding waves
[80]. Thus, for generic points along M, we 昀椀nd that L−λ has Fredholm index −1 to the left
of the curve λ(νx, ℓy) near the origin. Finally, we may conclude that L is index 0 for ¸ < 0 and
index −1 for ¸ > 0.

The negative Fredholm index suggests that, generically we expectM to be determined by a
locally two-dimensional graph with kx in terms (cx,ky). Note that working in a space of expo-
nentially localised functions precludes the presence of a kernel induced by the y-derivative,
which yields bounded, non-localised functions near −∞.

Appendix B. Farfield-core numerics

The numerical continuation results given above use a far-昀椀eld core decomposition approach
to represent and approximate heteroclinic-type front solutions of the unbounded domain prob-
lem in a bounded computational domain. The approach was developed in [67] for striped pat-
terns in a general one-dimensional pattern-forming system on both semi-bounded and bounded
domains, and in [57] to study grain-boundaries. In the present context, this approach was adap-
ted in [3, 10] to the quenched Swift–Hohenberg equation (1.9) to obtain the results described
in sections 2 and 5.2 above. We brie昀氀y outline the computational approach here in the context
of the directionally quenched Swift–Hohenberg equation (1.9).

We sets x= kxx̃ in (1.9) and, following the functional analytic approach outlined in
section 2.2.4 above, decompose front solutions into

u(x,y) = w(x,y)+Ç(x)up(x+ y;k), k=
√
k2x + k2y ,

where w(x,y) is the core perturbation which matches the stable stationary state u= 0 ahead
of the quench with the periodic state, up, which solves the stripe equation (1.2), and Ç(x) a
smooth monotonic step function with Ç(x) = 1 for x<−d, suppÇ ⊂ (−∞,−d− 1), and Ç ′

exponentially localised. Here w corrects and connects the asymptotic state up at x=−∞ with
the trivial equilibrium state at x=+∞.

We let

L(kx,ky,cx) :=−(1+ k2x∂
2
x + k2y∂

2
y )

2 + cxkx(∂x− ∂y), N (u) := ρ(x)u− u3,

and use the fact that Ç(L(kx,ky,cx)up(·;k)+N (up))≡ 0 for suitable wavenumbers k to obtain
a nonlinear equation for the core variable with kx,ky controlling the far-昀椀eld

0= F(w,kx;ky,cx) := L(kx,ky,cx)w+ [L,Ç]up+N(w+Çup(k))−ÇN(up(k)), (B.1)

[L,Ç]v : = L(Çv)−ÇLv.
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Note that the linear [L,Ç]up and the nonlinear commutator N(w+Çup(k))−ÇN(up(k)) are
exponentially localised. The linearisation in this space is Fredholm of index −1 as discussed
in appendix A, so that the additional free variable kx gives a Fredholm 0 linearisation on the
unbounded domain.

We then truncate this problem onto a bounded computational domain (x,y) ∈
[−3Lx/2,Lx/2]× [0,2π], with w periodic in both variables x and y. Alternative approaches
with w satisfying Dirichlet boundary conditions in x are also suf昀椀cient, but periodic boundary
conditions are used to take advantage of spectral discretisations and the ef昀椀ciency of the
Fast Fourier Transform. To enforce exponential localisation of the solution, we add a phase
condition that prohibits neutral growth according to the derivative of the wave train at −∞,
0=
´

I×[0,2π]w · u ′
pdxdy where I⊂ [−3Lx/2,−d] is an interval of length 2π.

In sum, we obtain the truncated problem

0= F(w,kx;ky,cx), (x,y) ∈ (−3Lx/2,Lx/2)× (0,2π) (B.2)

0= ∂jx(w(−3Lx/2,y)−w(Lx/2,y)), y ∈ [0,2π], j = 0,1,2,3 (B.3)

0= ∂jx(w(x,0)−w(x,2π)), x ∈ [−3Lx/2,Lx/2], j = 0,1,2,3 (B.4)

0=
ˆ

I×[0,2π]
w · u ′

pdxdy (B.5)

0=−(1+ k2∂2
¹)

2up+µup− u3p, ¹ ∈ [0,2π], 0= up(0)− up(2π) (B.6)

Of course, the linearisation in any bounded domain would be Fredholm of index zero without
far昀椀eld-core decomposition. However, the condition number of the linearisation grows rapidly
as Lx increases. The far昀椀eld-core decomposition described here avoids this issue and we 昀椀nd
that linear solvers work well roughly independent of the domain size [57].

Numerically, we discretise both the core and far-昀椀eld equations (B.2) and (B.5) using a
Fourier–Galerkin approximation

w(x,y)∼
Nx/2,Ny/2∑

ℓx=−Nx/2,ℓy=−Ny/2

ŵℓx,ℓye
i(ℓxx+ℓyy),

and apply of the linear operator L as well as the linearisation ∂wF as pointwise multiplication
in spectral space using the fast Fourier transform:

L̂ :
{
ŵℓx,ℓy

}
7→

{[
−(1− k2xℓ

2
x − k2yℓ

2
y)

2 + cxkxi(ℓx− ℓy)
]
ŵℓx,ℓy

}
.

We use pseudo-arclength continuation with a Newton-GMRES nonlinear solver to continue
solutions in either ky or cx.

We 昀椀nd as expected that bounded domain solutions converge exponentially to front solu-
tions on the unbounded domain as Lx →∞ and work with moderate Lx ∼ 200 . . .800. To
fully exploit Fredholm well-posedness in the unbounded domain, we conjugate the nonlin-
ear equation (B.2) with an exponential weight F̃(w, ·) := h(x) · F(h(x)−1w, ·) where h(x) =
e¸(x−Lx/2) before using the iterative linear solver. We also improve convergence of the GMRES
solver for each Newton step by preconditioning the linear solves with the constant coef昀椀cient
operator P := (L(kx,ky,cx)− I)−1, which acts as a simple Fourier multiplier.

Discretisation and domain size of the scaled system were adaptively controlled, expanding
the domain when the tails of w(x,y) grew beyond a threshold value, and re昀椀ning the mesh size
in either x or y if the tails of the Fourier space variable ŵ(ℓx, ℓy) grew above a threshold value.
Typical mesh sizes were Nx = 4096,Ny = 128 Fourier modes in the x and y directions respect-
ively. Computations were performed on an NVIDIA GV100 GPU using the MATLAB 2021a
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software package to take advantage of the massive parallelisation of the ‘fft’, and ‘gmres’
functions as well as pointwise and matrix arithmetic operations.
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