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Abstract. We study the long-time behavior of scalar viscous conservation
laws via the structure of ω-limit sets. We show that ω-limit sets always con-
tain constants or shocks by establishing convergence to shocks for arbitrary

monotone initial data. In the particular case of Burgers’ equation, we review
and refine results that parametrize entire solutions in terms of probability mea-

sures, and we construct initial data for which the ω-limit set is not reduced
to the translates of a single shock. Finally we propose several open problems

related to the description of long-time dynamics.

1. Introduction and main results. We are interested in the long-time dynamics
of viscous scalar conservation laws,

∂tu(t, x) + f ′(u(t, x))∂xu(t, x) = ∂2xu(t, x) , t > 0 , x ∈ R , (1.1)

with smooth and strictly convex flux function f : R → R, that is, f ′′(u) > 0 for all
u ∈ R. A typical example is Burgers’ equation where f(u) = u2/2. The Cauchy
problem for (1.1) is globally well-posed in the space L∞(R), see e.g. [28]. More
precisely, given initial data u0 ∈ L∞(R), equation (1.1) has a unique global solution
u ∈ C0((0,+∞), L∞(R)) such that u(t, ·) converges to u0 in the weak-∗ topology
of L∞(R) as t → 0+. By parabolic regularity, the function u(t, x) is smooth for
all positive times. For any t > 0, let St : L

∞(R) → L∞(R) be the nonlinear map
defined by u(t, ·) = St(u0), where u(t, x) is the solution of (1.1) with initial data
u0 ∈ L∞(R). We also write S0 = 1, the identity map.

To a first approximation, the long-time behavior of St(u0) as t→ ∞ is described
by the collection of all limit points, usually referred to as the É-limit set. The
unboundedness of the spatial domain R implies a typical lack of compactness of
the trajectory {St(u0) | t > 0}, and the É-limit set may indeed be empty when
convergence is measured in the uniform topology defined by the norm in L∞(R). It
is therefore preferable to rely on the local topology induced by L∞

loc(R), which is the
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topology of uniform convergence on compact intervals [−R,R] ¢ R. The É-limit
set is commonly defined as follows:

É0(u0) :=
{

v ∈ L∞(R)
∣

∣ ∃ tk → ∞ s.th. Stk(u0) → v in L∞
loc(R)

}

, (1.2)

but this definition assigns a particular role to the laboratory frame and is not invari-
ant under Galilean transformations. A somewhat richer description of asymptotic
behavior is obtained by considering the set of limit points modulo translations,

É(u0) :=
{

v ∈ L∞(R)
∣

∣ ∃ tk → ∞ and xk ∈ R

s.th. Txk
Stk(u0) → v in L∞

loc(R)
}

,
(1.3)

where (Tyu)(x) = u(x− y). Note that we use the zero subscript in the definition of
É0 to emphasize the fixed origin in the definition of locally uniform convergence in
(1.2).

Fairly standard results assert that both É0(u0) and É(u0) are non-empty, com-
pact, connected, fully invariant, attractive, and chain recurrent (up to translations)
in the topology of L∞

loc(R); see Propositions 3.2 and 3.3. Full invariance implies in
particular that for any v0 in the É-limit set, there exists a solution v(t, x) of (1.1)
that is defined for all t ∈ R and satisfies v(0, ·) = v0. We refer to such solutions, de-
fined for all positive and negative times, as entire solutions. Describing all possible
long-term dynamics can then be rephrased as describing all subsets of the family of
entire solutions that can occur as É-limit sets for bounded initial data.

The results we present can be seen as small steps in this direction. Somewhat
trivial candidates for the É-limit sets are first spatially constant states v(x) ≡ m and
then viscous shocks, found as traveling-wave solutions v(t, x) = ϕβ,α(x − ct) with
ϕ(−∞) = ´ > ϕ(+∞) = ³, ϕ′(À) < 0 for all À, and c given by the Rankine-Hugoniot
formula cβ,α = (f(´) − f(³))/(´ − ³). It is known since the classical work of Il’in
and Oleinik [14] that large sets of initial data give rise to solutions of (1.1) that
converge uniformly to shocks as t → +∞, see also [7]. In Proposition 4.1 below,
we show that this is the case for all initial data that are monotonically decreasing,
without any assumption on the rate at which the limits are approached as x→ ±∞.
At this level of generality, we cannot prove convergence to a fixed translate of the
shock as t→ +∞. In fact, as discussed in Remark 4.2, there exist monotone initial
data u0 ∈ L∞(R) with u0(−∞) = ´ > u0(+∞) = ³ and cβ,α = 0 such that, for
instance, É0(u0) = ´; in particular one observes that Tyϕβ,α /∈ É0(u0) for all y ∈ R.

Our first general result establishes a property which is somehow reminiscent of the
Poincaré-Bendixson theorem, in the sense that it describes the long-time behavior
of solutions with initial data in É-limit sets.

Proposition 1.1. For every u0 ∈ L∞(R) and any nonconstant v ∈ É(u0), there
exist real numbers ³ < ´ such that

É(v) = {Tyϕβ,α ; y ∈ R}L∞

loc ¢ É(u0) . (1.4)

In particular, the set É(u0) contains a shock unless it consists entirely of constants.

In other words, if v ∈ É(u0) is nonconstant, the É-limit set É(v) consists of all
translates of a viscous shock ϕβ,α, together with the constant states ³ and ´ that
arise as limits of the shock profile at ±∞. The proof relies on the simple observation
that any such v is necessarily monotonically decreasing, as a consequence of Oleinik’s
inequality (2.2). We can thus invoke Proposition 4.1 to determine the É-limit É(v),
which is included in É(u0) since the latter set is invariant under the dynamics of
(1.1).
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Our remaining results focus on the specific case of Burgers’ equation, which
through the Cole-Hopf transformation allows for a somewhat explicit representa-
tion of any solution in terms of its initial data. Interestingly, as pointed out in [15],
bounded entire solutions of Burgers’ equation can be represented in terms of prob-
ability measures µ on the real line,

u(t, x) =

∫

z e−zx/2+z2t/4 dµ(z)
∫

e−zx/2+z2t/4 dµ(z)
, t ∈ R , x ∈ R . (1.5)

This remarkable formula gives, in particular, an explicit characterization of candi-
dates for elements in É-limit sets. In Section 5 we give a short proof of the represen-
tation (1.5), showing that the measure µ is unique and supported in the closure of
the range of the entire solution u. We also relate the measure µ to backward-in-time
asymptotics of the entire solution u. A striking result in this direction is:

Proposition 1.2. Assume that u is given by (1.5) for some probability measure µ
on R. A real number c ∈ R belongs to supp(µ) if and only if u(t, · + ct) converges
to c in L∞

loc(R) as t→ −∞.

It is also possible to determine the asymptotic behavior of u(t, x) as t→ −∞ in
Galilean frames with speeds c /∈ supp(µ). In that case we define

m−(c) = sup{z < c | z ∈ supp µ} , and m+(c) = inf{z > c | z ∈ supp µ} .
Proposition 1.3. If c /∈ supp(µ) and c ̸= (m+(c)+m−(c))/2, the solution u defined
by (1.5) satisfies

lim
t→−∞

u(t, ·+ ct) =

{

m−(c) if c < (m+(c) +m−(c))/2 ,

m+(c) if c > (m+(c) +m−(c))/2 ,

where convergence is understood in L∞
loc(R).

We refer to Propositions 5.6 and 5.8 below for more general statements, which
also cover the somewhat delicate situation where c = (m+(c) +m−(c))/2. Other
properties of the measure µ, such as the presence of atoms, can also be detected in
the ancient behavior of the corresponding entire solution u.

Lastly, we show that out of this plethora of entire solutions, the É-limit set may
contain elements that are not simply shocks or constants.

Proposition 1.4. There exist initial data u0 ∈ L∞(R) for Burgers’ equation such
that É0(u0) contains a solution v(t, x) that is neither a constant nor a shock. An
example can be constructed where v describes the merging of a pair of shocks into a
single shock.

The construction is carried out in a somewhat explicit fashion in Section 6. In the
terminology of dynamical systems, the É-limit set contains a heteroclinic trajectory
connecting the zero solution to a steady shock ϕ, as well as a continuous family of
steady shocks interpolating between ϕ and 0. This can be compared to a famous
example of coarsening dynamics due to Eckmann and Rougemont [4], also rigorously
studied by Poláčik [20, 21], where the É-limit set is a heteroclinic loop.

Outline. We recall basic properties of conservation laws and shocks in Section 2.
We then formulate and establish properties of both É-limit sets É0(u0) and É(u0)
in Section 3. Our first main result, the convergence to shocks for monotone initial
data, is proved in Section 4. Section 5 derives the representation of entire solutions
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in terms of probability measures, displays some key examples, and relates measures
to ancient limits. Lastly, Section 6 is devoted to the proof of Proposition 1.4. We
conclude with a brief discussion in Section 7, and collect the proofs of some auxiliary
results in Appendix A.

2. Properties of scalar conservation laws and shocks solutions. We first
recall some basic properties of scalar conservation laws of the form (1.1).

A priori bounds and monotonicity. The evolution semigroup (St)tg0 defined
by (1.1) in L∞(R) has the following properties :

a) Monotonicity : if u0, u1 ∈ L∞(R) and u0 f u1 almost everywhere, then
St(u0) f St(u1) everywhere when t > 0;

b) Contraction in L1 : if u0, u1 ∈ L∞(R) satisfy u0 − u1 ∈ L1(R), then
St(u0)− St(u1) ∈ L1(R) and ∥St(u0)− St(u1)∥L1 f ∥u0 − u1∥L1 for all t > 0;

c) Conservation of mass : under the assumptions of b), we also have
∫

R

(

St(u0)− St(u1)
)

(x) dx =

∫

R

(

u0 − u1
)

(x) dx , t > 0 .

Assertions a), b), c) are readily established using the parabolic maximum prin-
ciple [23] and the fact that (1.1) is a conservation law, see e.g. [26, 28].

Another remarkable property of the solutions of (1.1) is a universal upper bound
for the derivative ∂xu, which is known as Oleinik’s inequality. Given u0 ∈ L∞(R),
we define

³ := ess inf
x∈R

u0(x) , ´ := ess sup
x∈R

u0(x) . (2.1)

Since constants are steady states of (1.1), monotonicity implies that the solution
u(t) = St(u0) satisfies ³ f u(t, x) f ´ for all t > 0 and all x ∈ R (in fact, due to the
strong maximum principle, both inequalities are strict as soon as ³ < ´). Oleinik’s
inequality asserts that, for all t > 0 and all x ∈ R,

∂xu(t, x) <
1

kt
, where k := min

{

f ′′(u) ; u ∈ [³, ´]
}

> 0 . (2.2)

For convenience, we include a short proof of (2.2) in Section A.1.

Viscous shocks. Given ³, ´ ∈ R with ³ < ´, equation (1.1) has a unique traveling
wave solution of the form u(t, x) = ϕβ,α(x−ct), such that ϕ(−∞) = ´, ϕ(+∞) = ³,
and ϕ(0) = (³+ ´)/2. The profile ϕ is strictly decreasing and solves

ϕ′(y) = f(ϕ(y))− cϕ(y)− d , y ∈ R , (2.3)

where

c :=
f(´)− f(³)

´ − ³
, d := f(´)− c´ ≡ f(³)− c³ , (2.4)

Strict convexity of f gives the Lax condition f ′(´) > c > f ′(³), and the ODE (2.3)
then implies that ϕβ,α converges exponentially to its limits at ±∞.

Stability of viscous shocks has been known since the classical work of Il’in and
Oleinik [14]. For localized perturbations, that is, for initial data u0 ∈ L∞(R) with
u0 − ϕβ,α ∈ L1(R) for some ³ < ´, the solution u(t, x) of (1.1) converges uniformly
to ϕβ,α(x− ct− x0) as t→ +∞, with c as in (2.4) and

x0 :=
1

´ − ³

∫

R

(

u0(x)− ϕβ,α(x)
)

dx . (2.5)

Extensions towards viscous conservation laws with more general flux function, al-
lowing for degenerate shocks, can be found in the references [17, 7, 28, 19, 12, 10].
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Rates of convergence can be obtained under stronger localization of the pertur-
bations. However, the hypothesis that u0 − ϕβ,α ∈ L1(R), which allows one to
determine the asymptotic shift (2.5), seems to play an important role in all existing
results. Our analysis in Section 4 removes this restriction for monotone solutions.

3. Properties of É-limit sets. In this section we establish the properties of the
É-limit sets (1.2), (1.3) that were announced in the introduction. Here and in what
follows, we denote by d the distance on L∞(R) defined by

d(u, v) = ∥u− v∥exp , where ∥u∥exp = ess sup
x∈R

(

e−|x||u(x)|
)

. (3.1)

As is easily verified, on any bounded set Σ ¢ L∞(R), the topology defined by
the distance (3.1) coincides with the topology of L∞

loc(R), namely the topology of
uniform convergence on compact subsets of R.

In view of the properties recalled in Section 2, for any initial data u0 ∈ L∞(R)
the solution u(t, ·) = St(u0) of (1.1) belongs for all times to the ball

Σ(u0) :=
{

u ∈ L∞(R) ; ∥u∥L∞ f ∥u0∥L∞

}

¢ L∞(R) . (3.2)

The following standard result plays a fundamental role:

Lemma 3.1. When equipped with the topology of L∞
loc(R), the ball Σ(u0) defined

by (3.2) is closed and the solution map St : Σ(u0) → Σ(u0) is continuous for any
t g 0.

Proof. It is easy to check that Σ(u0) is closed in L∞
loc(R), and the properties recalled

in Section 2 imply that the semiflow St maps the ball Σ(u0) into itself. The key
point is the continuous dependence of the solution St(u) upon the initial data u ∈
Σ(u0), in the topology of L∞

loc(R). This a rather standard result for parabolic PDEs
on unbounded domains, see e.g. [18]. For the reader’s convenience, the argument
showing continuity is reproduced in Section A.2 below.

We are now in position to establish the main properties of the É-limit set (1.2).

Proposition 3.2. For any u0 ∈ L∞(R), the É-limit set É0(u0) defined by (1.2) is
bounded in L∞(R) and, when equipped with the topology of L∞

loc(R), has the following
properties :
a) É0(u0) is non-empty, compact, connected, and

É0(u0) =
⋂

T>0

{

St(u0) ; t g T
}L∞

loc

; (3.3)

b) É0(u0) is fully invariant, attractive, and chain recurrent, namely :

• St(É0(u0)) = É0(u0) for all t g 0;

• for any neighborhood N of É0(u0), there exists T > 0 such that St(u0) ∈ N
for all t g T ;

• for each v0 ∈ É0(u0) and any T, ε > 0, there exists a closed (ε, T )-pseudo-
orbit in É0(u0) starting at v0; that is, there exist finite sequences vj ∈ É(u0)
and tj ∈ [T, 2T ] for 0 f j f N−1, such that vN = v0 and d(vj+1,Stj (vj)) < ε
for all j ∈ {0, . . . , N−1}.

In particular, if v0 ∈ É0(u0), there exists an entire solution v ∈ C0(R, L∞(R))
of (1.1) such that v(t, ·) ∈ É0(u0) for all t ∈ R and v(0, ·) = v0; moreover we
have the inclusion É0(v0) ¢ É0(u0).
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c) É0(u0) is a bounded subset of Ck
b (R) for all k ∈ N, and any v ∈ É0(u0) satisfies

v′(x) f 0 ∀x ∈ R.

Proof. Smoothing properties of the parabolic equation (1.1) and a priori bounds
for the solutions and their derivatives guarantee that, for any u0 ∈ L∞(R) and any
k ∈ N, the solution St(u0) is uniformly bounded in Ck

b (R) for t g 1. This does
not imply that the forward trajectory µ+(u0) := {St(u0) ; t g 0} is compact in
L∞
loc(R), because in general the map t 7→ St(u0) is not continuous at t = 0 in that

topology. However, for any T > 0, the trajectory µ+(ST (u0)) = {St(u0) ; t g T}
is relatively compact and connected in L∞

loc(R). Topological properties (a) and
dynamic properties (b) of the É-limit set É0(u0) follow in a standard fashion. We
include some details here for later reference.
1) Compactness and attractivity. It is easy to verify that the relation (3.3) is equiv-
alent to the definition (1.2). Now (3.3) shows that É0(u0) is the intersection of a
decreasing family of non-empty compact sets, so that É0(u0) is itself compact and
non-empty. By the same argument, if N is any neighborhood of É0(u0) in L

∞
loc(R),

there exists T > 0 such that µ+(ST (u0)) ¢ N , which proves attractivity.
2) Connectedness. We argue by contradiction: if É0(u0) = A1∪A2 where A1, A2 are
non-empty disjoint closed sets, then A1, A2 are in fact compact and are therefore
separated by a distance ε > 0. If N1,N2 are ε/3-neighborhoods of A1, A2, respec-
tively, then N1,N2 are non-empty disjoint open sets, and the attractivity property
shows that, for T > 0 sufficiently large, the connected forward orbit µ+(ST (u0)) is
contained in the neighborhood N := N1 ∪N2, without being included in either N1

or N2, which is clearly impossible.
3) Full invariance. If v0 ∈ É0(u0) there exists a sequence tk → +∞ such that
Stk(u0) → v0 in L∞

loc. By Lemma 3.1, for any t > 0, we thus have

St(v0) = St

(

lim
k→∞

Stk(u0)
)

= lim
k→∞

Stk+t(u0) ∈ É0(u0) ,

which proves that St(É0(u0)) ¢ É0(u0). Similarly, we can extract a subsequence
(still denoted by tk) such that Stk−t(u0) → v−t ∈ É(u0), where v−t satisfies
St(v−t) = v0. Altogether, this shows that St(É0(u0)) = É0(u0) for all t g 0.
It is easy to deduce that, given any v0 ∈ É0(u0), there exists an entire solution
v ∈ C0(R, L∞

loc(R)) of (1.1) such that v(0) = v0.
4) Chain recurrence. This is a consequence of continuity and attractivity, which can
be established as follows. Fix ε, T > 0 and take v0 ∈ É0(u0). By continuity, there
exists ¶ ∈ (0, ε/2) such that, for all u1, u2 ∈ Σ(u0) such that d(u1, u2) < ¶, one
has d(St(u1),St(u2)) < ε/2 for all t ∈ [T, 2T ]. By attractivity, we can then choose
t∗ > 0 such that dist(St(u0), É0(u0)) < ¶ for all t g t∗. Now, we take T0 g t∗ such
that d(ST0

(u0), v0) < ¶, and also T∗ g t∗ + T such that d(ST∗
(u0), v0) < ¶. For

some N ∈ N
∗, we define intermediate times T1, . . . , TN such that TN = T∗ and

tj := Tj+1 − Tj ∈ [T, 2T ] , for all j ∈ {0, . . . , N − 1} .
Finally we denote ũj = STj

(u0) for j = 0, . . . , N , and we take vj ∈ É0(u0) such that
d(vj , ũj) < ¶. Note that v0 is given from the beginning, and we can take vN = v0.
We claim that the sequence vj for j = 0, . . . , N is the desired pseudo-orbit. Indeed
for j = 0, . . . , N − 1 we have ũj+1 = Stj (ũj), hence

d
(

vj+1,Stj (vj)
)

f d
(

vj+1, ũj+1

)

+ d
(

Stj (ũj),Stj (vj)
)

< ¶ + ε/2 < ε ,

where we used the uniform continuity of Stj and the fact that tj ∈ [T, 2T ].
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5) Assertion (c) is an easy consequence of parabolic smoothing and Oleinik’s in-
equality (2.2).

We next consider the larger É-limit set (1.3), where limit points are considered
up to translations in space. The analogue of Proposition 3.2 is:

Proposition 3.3. For any u0 ∈ L∞(R), the É-limit set É(u0) defined by (1.3) is
bounded in L∞(R) and, when equipped with the topology of L∞

loc(R), has the following
properties :
a) É(u0) is non-empty, compact, connected, and

É(u0) =
⋂

T>0

{

TySt(u0) ; t g T, y ∈ R
}L∞

loc

; (3.4)

b) É(u0) is fully invariant in time, translation invariant in space, uniformly at-
tractive, and chain recurrent up to translations;

c) É(u0) is a bounded subset of Ck
b (R) for all k ∈ N, and any v ∈ É(u0) satisfies

v′(x) f 0 ∀x ∈ R.

Proof. The proof is parallel to that of Proposition 3.2, and we just indicate here
the main differences. The starting point is the formula (3.4), which is easily derived
from the definition (1.3). Since the space-time trajectory

{

TySt(u0) ; t g T, y ∈ R
}

is relatively compact in L∞
loc(R) for any T > 0, we see that É(u0) is non-empty and

compact as the decreasing intersection of non-empty compact sets. Moreover, if N
is any neighborhood of É(u0) in L∞

loc(R), we have
{

TySt(u0) ; t g T, y ∈ R
}

¢ N
for any sufficiently large T > 0, which means that É(u0) attracts the trajectory
TySt(u0) uniformly in y ∈ R as t → +∞. As a consequence, since the space-time
trajectory is connected for all T > 0, the same argument as in Proposition 3.2 shows
that É(u0) is a connected set. There is no difference either in the reasoning showing
that St(É(u0)) = É(u0) for all t g 0. Finally, the definition (1.3) immediately
implies that Ty(É(u0)) = É(u0) for all y ∈ R, and the boundedness properties (c)
are established exactly as before.

The main difference we would like to point out is that É(u0) is not chain recurrent
in the sense of Proposition 3.2, but only in a weaker sense that can be called
“chain recurrence up to translations”. The precise definition is as follows: for each
v0 ∈ É(u0) and any T, ε > 0, there exist finite sequences vj ∈ É(u0), tj ∈ [T, 2T ],
and yj ∈ R for 0 f j f N − 1, such that vN = v0 and d(vj+1, Tyj

Stj (vj)) < ε for all
j ∈ {0, . . . , N−1}. In other words, the definition of the (ε, T )-pseudo-orbit involves
spatial shifts yj in addition to the time shifts tj , which is natural in view of (1.3).
The existence of such a pseudo-orbit for all v0 ∈ É(u0), all ε > 0, and all T > 0 is
established by the same argument as in Proposition 3.2.

Although the É-limit sets (1.2), (1.3) are relatively easy to define and enjoy
the nice properties listed in Propositions 3.2 and 3.3, it is notoriously difficult to
compute them for arbitrary initial data. In the case of equation (1.1), general
results in this direction are only available under monotonicity assumptions. If u0
is increasing, the solution St(u0) remains increasing for all t > 0 by the maximum
principle, and ∥∂xSt(u0)∥L∞ → 0 as t → +∞ by Oleinik’s inequality (2.2). This
implies that É(u0) consists of the constant states u ≡ µ for all µ ∈ [³, ´], where ³, ´
are as in (2.1). On the other hand, if u0 is decreasing, Proposition 4.1 below implies
that É(u0) is the set of all translates of the viscous shock ϕβ,α, supplemented with
the constant states u ≡ ³ and u ≡ ´. A similar conclusion is reached if u0 satisfies
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the assumptions of Il’in and Oleinik’s result [14]. Incidentally, we observe in this
example that É(u0) is a heteroclinic orbit in the terminology of dynamical systems,
so that É(u0) is not chain recurrent.

More generally, if u0 ∈ L∞(R) and if there is a v ∈ É(u0) that is not a constant,
then v is decreasing by Proposition 3.3, and since É(v) ¢ É(u0) we deduce that
É(u0) contains the translates of a viscous shock, as asserted in (1.4). So we see that
Proposition 1.1 is a direct consequence of Propositions 3.3 and 4.1. In addition we
have

Corollary 3.4. For any u0 ∈ L∞(R), the É-limit set É(u0) contains a constant
state or a viscous shock.

This statement can be compared with a result by S. Slijepčević and the first
author [8] which shows that, for a general class of dissipative systems including
reaction-diffusion equations on the real line, the É-limit set of a bounded trajectory
always contains an equilibrium. For the viscous conservation law (1.1), where all
Galilean frames are equivalent, the role of equilibria is played by the constant states
and the viscous shocks.

From a different perspective, one may wonder which collections of entire solutions
v ∈ C0(R, L∞

loc(R)) of (1.1) may occur as É-limit sets of bounded initial data. From
the results presented thus far, only non-empty, compact, connected, invariant, and
chain-recurrent sets are candidates. In general, compact, connected sets with a
chain-recurrent flow are precisely the possible É-limit sets of flows, in the sense that
any such set is topologically conjugated to an É-limit set of some flow [6]. It is
however not clear at all if any compact, connected, invariant, and chain-recurrent
set within the family of entire solutions is realized as the É-limit set of the particular
flow generated by the conservation law (1.1).

Remark 3.5. In the definition (1.3) of the É-limit set É(u0), we allow for arbitrary
spatial shifts xk ∈ R while the temporal shifts tk must go to infinity. This is clearly
not the only possibility. One the one hand, we could restrict the class of spatial
shifts by imposing, for instance, a Galilean constraint of the form |xk| f ctk with,
typically, c > ∥u0∥∞. Actually, we could even require that xk/tk converges to some
limit in [−c, c] as k → +∞. In a different direction, we could consider all spatio-
temporal shifts such that |xk| + tk → ∞ as k → ∞, which potentially gives an
É-limit set even larger than (1.3). However, in the examples we are aware of, these
alternative possibilities do not seem to change the nature of the É-limit set in a
profound way, so in what follows we stick to the original definition (1.3).

4. Convergence to shocks for monotone initial data. The main result of this
section is:

Proposition 4.1. Assume that u0 ∈ L∞(R) is nonincreasing and satisfies ³ < ´,
where

³ := lim
x→+∞

u0(x) , ´ := lim
x→−∞

u0(x) . (4.1)

Then there exists a smooth function s : (0,+∞) → R such that the solution u of
(1.1) with initial data u0 satisfies

sup
x∈R

∣

∣u(t, x)− ϕβ,α(x− s(t))
∣

∣ −−−−→
t→+∞

0 . (4.2)

Moreover s(t)/t→ c as t→ +∞, where c is given by the Rankine-Hugoniot formula
(2.4).
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Remark 4.2. It is not difficult to find examples for which the shift function s in
(4.2) is not asymptotically linear, namely s(t) − ct has no limit as t → +∞. For
instance, assume that ´ − u0 ∈ L1(R−) but u0 −³ /∈ L1(R+). Given any µ > 0, we
define ũ0(x) = u0(x) for x f µ and ũ0(x) = ³ for x > µ. As ũ0 f u0, monotonicity
implies that Stũ0 f Stu0 for all t > 0. On the other hand, since ũ0 −ϕβ,α ∈ L1(R),
we can apply the result of [14] to deduce that (Stũ0)(x) converges uniformly to
ϕβ,α(x− ct− x̃0) as t→ +∞, where

x̃0 :=
1

´ − ³

(
∫ γ

−∞

(

u0(x)− ϕβ,α(x)
)

dx+

∫ +∞

γ

(

³− ϕβ,α(x)
)

dx

)

.

In particular one has lim inft→+∞(s(t) − ct) g x̃0 by monotonicity. Now, taking
taking µ → +∞, we see that x̃0 → +∞ by assumption on u0, and we conclude that
s(t) − ct → +∞ as t → +∞. A more explicit example of such a “sublinear shift”
will be given in Section 5.2 below.

The remainder of this section is devoted to the proof of Proposition 4.1. Assume
that the initial data u0 ∈ L∞(R) are nonincreasing and satisfy (4.1) for some
³ < ´. The solution u(t) = Stu0 of (1.1) is smooth for positive times, and the
strong maximum principle implies that ∂xu(t, x) < 0 for all t > 0 and all x ∈ R. On
the other hand, using for instance Lemma 3.1, it is not difficult to verify that the
limits of u(t, x) as x → ±∞ are independent of time. As a consequence, for each
t > 0, there exists a unique point s(t) ∈ R such that

u(t, s(t)) =
³+ ´

2
. (4.3)

Moreover s(t) is a smooth function of time thanks to the implicit function theorem.

Lemma 4.3. The shift function s : (0,+∞) → R defined by (4.3) satisfies

lim
t→+∞

s(t)

t
= c :=

f(´)− f(³)

´ − ³
. (4.4)

Proof. We use the monotonicity of the evolution map St to compare the solution
u(t) = Stu0 with suitably translated viscous shocks. Take ε > 0 small enough so
that

0 < ε <
´ − ³

2
, hence ³+ ε <

³+ ´

2
< ´ − ε . (4.5)

Since u0 is nonincreasing and satisfies (4.1), there exist x+(ε) ∈ R and x−(ε) ∈ R

such that

ϕβ−ε,α−ε(x− x−(ε)) f u0(x) f ϕβ+ε,α+ε(x− x+(ε)) , ∀x ∈ R , (4.6)

where ϕβ±ε,α±ε denotes the viscous shock connecting ´ ± ε with ³ ± ε. In fact, it
is straightforward to verify that (4.6) holds as soon as x+(ε) k 1 and x−(ε) j −1
are sufficiently large, depending on ε. By monotonicity, we deduce from (4.6) that

ϕβ−ε,α−ε

(

x− c−(ε)t− x−(ε)
)

f u(t, x) f ϕβ+ε,α+ε

(

x− c+(ε)t− x+(ε)
)

, (4.7)

for all t g 0 and all x ∈ R, where the speeds c±(ε) are given by the Rankine-
Hugoniot formulas

c+(ε) :=
f(´+ε)− f(³+ε)

´ − ³
, c−(ε) :=

f(´−ε)− f(³−ε)
´ − ³

. (4.8)
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On the other hand, due to the second inequality in (4.5), there exist s+(ε) ∈ R and
s−(ε) ∈ R such that

ϕβ+ε,α+ε

(

s+(ε)
)

= ϕβ−ε,α−ε

(

s−(ε)
)

=
³+ ´

2
. (4.9)

In view of (4.9), we deduce from (4.7) that the shift function defined by (4.3)
satisfies

c−(ε)t+ x−(ε) + s−(ε) f s(t) f c+(ε)t+ x+(ε) + s+(ε) , ∀ t > 0 . (4.10)

In particular we infer from (4.10) that

c−(ε) f lim inf
t→+∞

s(t)

t
f lim sup

t→+∞

s(t)

t
f c+(ε) . (4.11)

Finally it is clear from (4.8) that c±(ε) → c as ε→ 0, which concludes the proof of
(4.4).

In a second step, we consider the auxiliary function v defined by

v(t, x) = ∂xu(t, x)− f(u(t, x)) + cu(t, x) + d , t > 0 , x ∈ R , (4.12)

where the constants c, d are defined in (2.4). This function is smooth for positive
times and a direct calculation shows that it satisfies the evolution equation

∂tv(t, x) + f ′
(

u(t, x)
)

∂xv(t, x) = ∂2xv(t, x) , t > 0 , x ∈ R . (4.13)

The key step in the proof of Proposition 4.1 is :

Lemma 4.4. The function v in (4.12) converges uniformly to zero as t→ +∞ :

sup
x∈R

|v(t, x)| −−−−→
t→+∞

0 . (4.14)

Proof. Shifting the initial time if needed, we can assume without loss of generality
that the functions u(t, x) and v(t, x) are smooth for all t g 0. We consider the linear
advection-diffusion equation

∂tw(t, x) + f ′
(

u(t, x)
)

∂xw(t, x) = ∂2xw(t, x) , t > 0 , x ∈ R , (4.15)

where the function u(t, x) is considered as given. The following Lp–Lq estimates
are known for the solution of (4.15) with initial data w0 :

sup
tg0

∥w(t, ·)∥L∞(R) f ∥w0∥L∞(R) , sup
t>0

t1/2∥w(t, ·)∥L∞(R) f C∥w0∥L1(R) , (4.16)

where C > 0 is a universal constant. While the first bound in (4.16) is a direct
consequence of the parabolic maximum principle, the second one takes into account
the convexity of the flux function f as well as the monotonicity of the solution u.
For the reader’s convenience, we provide a proof of the second estimate (4.16) in
Section A.3.

For the time being, to conclude the proof of Lemma 4.4, we consider the solution
v of (4.13) with initial data v0 := ∂xu0−f(u0)+cu0+d. We know that ∂xu0 ∈ L1(R)
because u0 is decreasing and bounded, and that f(u0)−cu0−d converges to zero as
x → ±∞ because of (2.4). As a consequence, given any ε > 0, we can decompose
v0 = w1 +w2, where w1 ∈ L1(R) and ∥w2∥L∞ f ε. For j = 1, 2 we denote by wj(t)
the solution of (4.15) with initial data wj , so that v(t) = w1(t)+w2(t) by linearity.
Using (4.16), we infer that

∥v(t)∥L∞ f ∥w1(t)∥L∞ + ∥w2(t)∥L∞ f Ct−1/2∥w1∥L1 + ∥w2∥L∞ , ∀ t > 0 ,

so that lim supt→+∞ ∥v(t)∥L∞ f ε. Since ε > 0 was arbitrary, this gives (4.14).
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Equipped with Lemmas 4.3 and 4.4, it is now straightforward to conclude the
proof of Proposition 4.1. Let g : R → R be the convex function defined by g(u) =
f(u)− cu− d, where c, d are given by (2.4), and let

L := max
{

|g′(u)| ; u ∈ [³, ´]
}

= max
{

c− f ′(³) , f ′(´)− c
}

.

Fix any t > 0. In view of (4.12), the function È : R → R defined by È(y) =
u
(

t, y + s(t)
)

satisfies the ODE

È′(y) = g
(

È(y)
)

+ v
(

t, y + s(t)
)

∀ y ∈ R , with È(0) =
³+ ´

2
.

This is to be compared with the ODE (2.3) satisfied by the viscous shock ϕ(y) :=
ϕβ,α(y), namely ϕ′(y) = g(ϕ(y)) and ϕ(0) = (³+ ´)/2. If w = È − ϕ, we infer that
|w′(y)| f L|w(y)| + ∥v(t)∥L∞ . Integrating this differential inequality and recalling
that w(0) = 0, we obtain

|w(y)| ≡
∣

∣u(t, y + s(t))− ϕβ,α(y)
∣

∣ f |y| eL|y| ∥v(t)∥L∞ , ∀ y ∈ R . (4.17)

Since ∥v(t)∥L∞ → 0 by Lemma 4.14, it follows from (4.17) that u(t, y+s(t))−ϕβ,α(y)
converges to zero as t→ +∞, uniformly for y in any compact interval. Taking into
account the fact that both functions u(t, ·) and ϕβ,α are decreasing and have the
same limits as y → ±∞, we deduce that the convergence is in fact uniform for all
y ∈ R. This proves (4.2), and we already established in Lemma 4.3 that s(t)/t has
a limit as t→ +∞. □

Remark 4.5. Neither the strict convexity of the flux nor the Lax condition for the
shock is used in the proof of Proposition 4.1, which therefore remains valid if we
only assume that f ′′(u) g 0 for all u ∈ [³, ´].

5. Representation of entire solutions via probability measures. From now
on we restrict our attention to the special case of Burgers’ equation

∂tu(t, x) + u(t, x)∂xu(t, x) = ∂2xu(t, x) , t > 0 , x ∈ R , (5.1)

which corresponds to taking f(u) = u2/2 in (1.1). The Cauchy problem for (5.1)
can be solved in explicit form through the celebrated Cole-Hopf transformation
[3, 13]. As is easily verified, if U(t, x) is any positive solution of the heat equation
∂tU = ∂2xU , a corresponding solution u(t, x) of (5.1) is obtained by setting

u(t, x) = −2
∂xU(t, x)

U(t, x)
, t > 0 , x ∈ R . (5.2)

It is tempting to conclude that the dynamics of (5.1) is trivial, but one should keep
in mind that bounded solutions of (5.1) are associated via (5.2) to functions U(t, x)
that may grow exponentially as |x| → ∞, and this seriously complicates the process
of computing the long-time asymptotics, even if U solves a simple equation.

A beautiful application of the Cole-Hopf transformation is the derivation of the
representation formula (1.5) for bounded entire solutions of (5.1). By Oleinik’s
inequality (2.2), any entire solution u of (5.1) necessarily satisfies ∂xu(t, x) f 0 for
all (t, x) ∈ R× R. If we assume in addition that u is bounded, the limits ³, ´ ∈ R

defined by

³ = lim
x→+∞

u(t, x) , ´ = lim
x→−∞

u(t, x) , (5.3)

are therefore finite, and independent of time (the last property directly follows from
Lemma 3.1 and translation invariance.) We then have the following result:
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Proposition 5.1. [15] If u : R × R → R is a bounded entire solution of Burgers’
equation (5.1), there exists a unique probability measure µ supported on [³, ´], where
³, ´ are the limits defined in (5.3), such that

u(t, x) =

∫

z e−zx/2+z2t/4 dµ(z)
∫

e−zx/2+z2t/4 dµ(z)
, t ∈ R , x ∈ R . (5.4)

The proof of Proposition 5.1 uses a representation of positive, ancient solutions

of the heat equation of the form U(t, x) =
∫

e−zx/2+z2t/4 dµ(z), which substituted
into (5.2) immediately gives (5.4). The formula (5.4) appears implicitly in the work
of Kenig and Merle [16], and explicitly in the PhD thesis of U. P. Karunathilake [15].
Since the latter reference is not widely available, we reproduce the proof here and
establish the uniqueness of the measure µ, which is not asserted in [15].

Remark 5.2. When restricted to the time interval (−∞, T ), for some T ∈ R, the
representation formula (5.4) remains valid for ancient solutions u : (−∞, T )×R → R

that are not necessarily bounded. In that situation µ is just a positive measure,
supported on the closure of the range of u, which may have finite or infinite mass
(in the latter case it cannot be normalized, and no uniqueness is claimed). In what
follows we focus on bounded entire solutions, due to their connection with É-limit
sets, but we allow ourselves occasional comments on the general case.

We now turn to the proof of Proposition 5.1, then study some examples of mea-
sures in Section 5.2 and conclude with an analysis of (5.4) for t → −∞ in Section
5.3.

5.1. Representation of ancient solutions. Assume that u : Ω− → R is a smooth
solution of (5.1) on the space-time domain Ω− :=

{

(t, x) ∈ R
2 ; t < 0

}

. Our goal is
to obtain a representation formula for u in terms of a positive measure on the real
line. We proceed in three steps.
Step 1 : Cole-Hopf transformation [3, 13]. We first define

U(t, x) = exp
(

−1

2

∫ x

0

u(t, y) dy + a(t)
)

, ∀ (t, x) ∈ Ω− , (5.5)

where

a(t) =

∫ t

t0

(1

4
u(s, 0)2 − 1

2
∂xu(s, 0)

)

ds , ∀ t < 0 .

Here t0 < 0 is some arbitrary reference time. A direct calculation shows that

∂tU(t, x) = U(t, x)
(

−1

2
∂xu(t, x) +

1

4
u(t, x)2

)

= ∂2xU(t, x) , ∀ (t, x) ∈ Ω− .

Our solution u of Burgers’ equation can therefore be expressed as

u(t, x) =
−2∂xU(t, x)

U(t, x)
, ∀ (t, x) ∈ Ω− , (5.6)

where U : Ω− → (0,+∞) is a positive solution of the heat equation ∂tU = ∂2xU .
Step 2 : Appell transformation [1, 30]. We next transform the ancient solution
U(t, x) of the heat equation into a solution V (t, x) of the same equation which is
defined for positive times, namely on the domain Ω+ :=

{

(t, x) ∈ R
2 ; t > 0

}

. This
remarkable transformation, first discovered by P. Appell, takes the form

V (t, x) = K(t, x)U
(−1

t
,
−x
t

)

, ∀ (t, x) ∈ Ω+ , (5.7)
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where K(t, x) is the fundamental solution of the one-dimensional heat equation :

K(t, x) =
e−x2/(4t)

√
4Ãt

, ∀ (t, x) ∈ Ω+ . (5.8)

A simple calculation shows that ∂tV (t, x) = ∂2xV (t, x) for all (t, x) ∈ Ω+, and by
construction V (t, x) is strictly positive on the domain Ω+.
Step 3 : Poisson representation [29]. A classical result due to Widder [29, Theo-
rem 6] asserts that, if V (t, x) is a nonnegative solution of the heat equation in Ω+,
there exists a (unique) positive Borel measure µ on R such that

V (t, x) =

∫

R

K(t, x− z) dµ(z) , ∀ (t, x) ∈ Ω+ . (5.9)

It should be emphasized at this point that the convergence of the integral in (5.9)
is part of the conclusion of Widder’s theorem. In particular, the measure µ(I) of
any compact interval I ¢ R should be finite, which implies that µ is a regular
measure [24, Theorem 2.18]. In addition µ should have a “moderate growth” at
infinity so that the integral in (5.9) is finite even when t > 0 is large. For instance,

if dµ = ecz
2/4 dz for some c > 0, the right-hand side of (5.9) is infinite when t g 1/c,

which contradicts the assumption that V is defined on the whole domain Ω+.

Remark 5.3. The assumption that V is nonnegative is crucial in Widder’s theorem.
For instance the function V (t, x) = (x/t)K(t, x) is a (sign-changing) solution of the
heat equation in Ω+ which converges to zero as t→ 0+ for any x ∈ R. As is easily
verified, in that case one cannot find any measure µ on R such that (5.9) holds.

We now return to the ancient solution of Burgers’ equation. Combining (5.7)
and (5.9) we first obtain

U(t, x) =
V (−1/t, x/t)

K(−1/t, x/t)
=

1

K(−1/t, x/t)

∫

R

K
(−1

t
,
x

t
− z

)

dµ(z) ,

for all (t, x) ∈ Ω−. The right-hand side can be simplified using the explicit ex-
pression (5.8) of the heat kernel, leading to the following representation formula for
ancient positive solutions of the heat equation :

U(t, x) =

∫

R

e−zx/2+z2t/4 dµ(z) , ∀ (t, x) ∈ Ω− , (5.10)

see also [30, Theorem 8.1]. Finally, we deduce from (5.6) the desired representation
of ancient solutions to Burgers’ equation :

u(t, x) =

∫

z e−zx/2+z2t/4 dµ(z)
∫

e−zx/2+z2t/4 dµ(z)
, ∀ (t, x) ∈ Ω− . (5.11)

Conversely, if µ is a positive measure on R that is finite on compact intervals and
has moderate growth at infinity, it is straightforward to verify that the function
u defined by (5.11) is an ancient solution of Burgers’ equation (5.1). For any
(t, x) ∈ Ω−, the quantity u(t, x) can be interpreted as the average of a random

variable z ∈ R with respect to the (non-normalized) measure e−zx/2+z2t/4 dµ(z).
Introducing the obvious notation u(t, x) = ïzðt,x, we find by direct calculation

∂xu(t, x) = −1

2

(

ïz2ðt,x − ïzð2t,x
)

= −1

2

〈

(

z − ïzðt,x
)2
〉

t,x
f 0 .

This shows that all solutions of the form (5.11) are non-increasing in x, which is also
a direct consequence of Oleinik’s inequality (2.2). Actually, we have ∂xu(t, x) < 0
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for all x ∈ R unless the measure µ = ¶α is a single Dirac mass, in which case
u(t, x) = ³ for all (t, x) ∈ Ω−.

Example 5.4. The simple example where µ is just the Lebesgue measure on R is
already quite instructive. In that case, it is clear from (5.9) that V ≡ 1 on Ω+, and
we deduce from (5.7), (5.6) that

U(t, x) =
1

K(−1/t, x/t)
=

√
4Ã√−t e

−x2/(4t) , u(t, x) =
x

t
, ∀ (t, x) ∈ Ω− .

We observe that the ancient solution U(t, x) of the heat equation blows up as t→ 0−
at any point x ∈ R, and that the ancient solution u(t, x) of Burgers’ equation does
so for any x ̸= 0.

The blow-up phenomenon observed in Example 5.4 only occurs for unbounded
solutions. Indeed, by the maximum principle, bounded ancient solutions of either
the heat equation or the Burgers equation remain uniformly bounded at later times,
and can therefore be extended to (bounded) entire solutions. In what follows, we
concentrate on bounded ancient solutions, which are candidates for trajectories in
É-limit sets of bounded initial data. We have the following characterization:

Proposition 5.5. The ancient solution u : Ω− → R of Burgers’ equation given by
(5.11) is bounded if and only if the measure µ has bounded support. In that case u
satisfies (5.3) for all t < 0, with

³ = inf
(

supp(µ)
)

, ´ = sup
(

supp(µ)
)

. (5.12)

Proof. Let µ be a (nontrivial) positive measure on R that is finite on compact
intervals and has moderate growth at infinity. We define ³, ´ by (5.12), so that
³ ∈ [−∞,+∞) and ´ ∈ (−∞,+∞]. We shall show that, for any fixed t < 0, the
quantity u(t, x) defined by (5.11) converges to ´ as x→ −∞, and to ³ as x→ +∞.
We concentrate on the limit at −∞, the other case being similar. Setting x = −2y,
where y > 0, we have the representation

u(t,−2y) =

∫

z ezy d¿t(z)
∫

ezy d¿t(z)
, where d¿t(z) = ez

2t/4 dµ(z) .

Given real numbers a, b such that a < b < ´, we decompose
∫

R

ezy d¿t(z) =

∫

{z<a}

ezy d¿t(z) +

∫

{zga}

ezy d¿t(z) =: I0(y) + J0(y) ,

and we observe that

I0(y) f eay
∫

{z<a}

d¿t(z) , J0(y) g
∫

{zgb}

ezy d¿t(z) g eby
∫

{zgb}

d¿t(z) .

Since b < ´, the last integral is strictly positive, and we deduce that I0(y)/J0(y) → 0
as y → +∞. A similar argument gives

∫

R

z ezy d¿t(z) =

∫

{z<a}

z ezy d¿t(z) +

∫

{zga}

z ezy d¿t(z) =: I1(y) + J1(y) ,

where |I1(y)|/J0(y) → 0 as y → +∞. It follows that

lim
y→+∞

u(t,−2y) = lim
y→+∞

I1(y) + J1(y)

I0(y) + J0(y)
= lim

y→+∞

∫

{zga}
z ezy d¿t(z)

∫

{zga}
ezy d¿t(z)

g a .
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Since this is true for any a < ´, we deduce that ℓ−(t) := limx→−∞ u(t, x) g ´.
This means that the solution u(t, ·) is unbounded from above if ´ = +∞. In the
converse case, we must have ℓ−(t) = ´, because it easily follows from (5.11) that
u(t, x) f ´ for all (t, x) ∈ Ω−. A symmetric argument shows that u(t, ·) is bounded
from below if and only if ³ > −∞, in which case ℓ+(t) := limx→+∞ u(t, x) = ³ for
all t < 0.

It is now straightforward to conclude the proof of Proposition 5.1. If u is a
bounded entire solution of (5.1), then u is a fortiori a bounded ancient solution on
Ω−, and can therefore be represented as in (5.11) for some positive Borel measure
µ that is finite on compact intervals. By Proposition 5.5 we know that supp(µ) ¢
[³, ´], where ³, ´ ∈ R are the spatial limits defined in (5.3). In particular µ is a finite
measure, which can be normalized into a probability measure without affecting the
representation (5.11). We conclude that (5.4) holds for all t < 0, hence for all t ∈ R

because both members are bounded solutions of Burgers’ equation which coincide
on the space-time domain Ω−.

It remains to verify that the representation (5.4) is unique. Assume that µ1, µ2

are two probability measures on [³, ´] such that (5.4) holds. Defining

U1(t, x) =

∫

R

e−zx/2+z2t/4 dµ1(z) , U2(t, x) =

∫

R

e−zx/2+z2t/4 dµ2(z) , (5.13)

we see that U1, U2 are positive solutions of the heat equation such that (∂xU1)/U1 =
(∂xU2)/U2 for all (t, x) ∈ R×R. This means that the ratio r(t) := U1(t, x)/U2(t, x)
does not depend on the space variable x. Setting t = 0 in (5.13) we deduce that

∫

R

e−zx/2 dµ1(z) = r(0)

∫

R

e−zx/2 dµ2(z) , for all x ∈ R ,

which implies that µ1 = r(0)µ2 since the Laplace transform is one-to-one. Finally,
as µ1, µ2 are both probability measures, we conclude that µ1 = µ2. □

5.2. Examples: shocks, mergers, and continuous shock superposition. In
this section we examine some examples of bounded entire solutions corresponding to
simple choices for the measure µ in (5.4). As a preliminary remark, we recall that
Burgers’ equation (5.1) is invariant under several continuous symmetries : trans-
lations in space and time, Galilean transformations, and parabolic scaling. It is
instructive to observe, in the case of bounded entire solutions, how the symmetry
group acts on the (not necessarily normalized) measure µ. From the representation
formula (5.4) we easily obtain the following group actions, where x0, t0, c ∈ R and
¼ > 0 :

a) Translation in space : u(t, x) 7→ u(t, x− x0), dµ(z) 7→ ezx0/2 dµ(z);

b) Translation in time : u(t, x) 7→ u(t+ t0, x), dµ(z) 7→ ez
2t0/4 dµ(z);

c) Galilean transformation : u(t, x) 7→ u(t, x− ct) + c, dµ(z) 7→ dµ(z − c);

d) Parabolic scaling : u(t, x) 7→ ¼u(¼2t, ¼x), dµ(z) 7→ dµ(z/¼).

We now analyze several special cases of measures µ. Illustrations of the corre-
sponding entire solutions can be found in Figure 1. The simplest possible example
of a bounded entire solution corresponds to µ = ¶α being a Dirac mass located at
some point ³ ∈ R. In that case we clearly have u(t, x) = ³ for all (t, x) ∈ R × R.
A more interesting situation is obtained when µ = 1

2¶α + 1
2¶β for some ³ < ´. A

direct calculation then shows that u(t, x) = ϕβ,α(x− ct), where ϕβ,α is the viscous
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shock profile given by

ϕβ,α(y) = c− ¶ tanh
(¶y

2

)

, c =
³+ ´

2
, ¶ =

´ − ³

2
. (5.14)

As soon as µ contains more than two Dirac masses, the solution u(t, x) given by
(5.4) describes the merger of several viscous shocks into a single one. A typical
example is µ = 1

4¶−2 +
1
2¶0 +

1
4¶2 for which

u(t, x) =
−2 sinh(x)

e−t + cosh(x)
, t ∈ R , x ∈ R . (5.15)

It is clear that u(t, x) ≈ ϕ2,−2(x) as t → +∞, whereas for large negative times a
direct calculation shows that u(t, x) ≈ ϕ2,0(x − t + x0) + ϕ0,−2(x + t − x0) with
x0 := log(2). Thus the solution (5.15) realizes the merger of a pair of traveling
viscous shocks into a single steady shock. Mergers of more than two shocks can be
described in a similar fashion.

We next consider examples where the measure µ has an absolutely continuous
component. In analogy to finitely many Dirac masses describing discrete superposi-
tions of shocks and subsequent mergers, a continuous measure µ can be thought of
as representing a continuous superposition of shocks with continuous merger events.
Such an interpretation is reminiscent of Hamel and Nadirashvili’s characterization
of entire solutions to the Fisher-KPP equation in R

N , see [9].
The prototypical example of an absolutely continuous measure µ is the Lebesgue

measure on the interval [−1, 1], which was considered in [15, 16]. In that case, the
entire solution (5.10) of the heat equation takes the simple form

U(t, x) =

∫ 1

−1

e−zx/2+z2t/4 dz , (t, x) ∈ R
2 , (5.16)

so that U(0, x) = (4/x) sinh(x/2). When t ̸= 0, we obtain after integrating by parts

−2∂xU(t, x) =
x

t

∫ 1

−1

e−zx/2+z2t/4 dz +

∫ 1

−1

(

z − x

t

)

e−zx/2+z2t/4 dz

=
x

t
U(t, x) +

2

t
et/4

(

e−x/2 − ex/2
)

,

so that the entire solution (5.6) of Burgers’ equation has the following expression :

u(t, x) =
−2∂xU(t, x)

U(t, x)
=

x

t
− 4

t

et/4 sinh(x/2)

U(t, x)
, t ̸= 0 , x ∈ R . (5.17)

It remains to obtain a more explicit formula for U(t, x). When t < 0 a direct
calculation shows that

U(t, x) =
2

√

|t|
e−x2/(4t)

{

E

(

√

|t|
2

+
x

2
√

|t|

)

+ E

(

√

|t|
2

− x

2
√

|t|

)}

, (5.18)

for all (t, x) ∈ Ω−, where E(x) =
∫ x

0
e−y2

dy is the (non-normalized) error function.
Using (5.17), (5.18), it is not difficult to verify that

lim
t→−∞

u(t, x+ ct) =







1 if c > 1 ,
c if |c| f 1 ,
−1 if c < −1 ,

the convergence being uniform for |x| f L(t) provided L(t)/|t| → 0 as t → −∞.
This is of course in full agreement with Propositions 1.2 and 1.3. For positive times,
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Figure 1. Space-time plots of entire solutions and sample plots below

at times t = −20 (blue) and t = −10 (red) for measures as indicated.

Lebesgue’s measure is denoted by µL.

the analogue of (5.18) is

U(t, x) =
2√
t
et/4

{

ex/2D

(
√
t

2
+

x

2
√
t

)

+ e−x/2D

(
√
t

2
− x

2
√
t

)}

, (5.19)

for all (t, x) ∈ Ω+, where D : R → R is the Dawson function

D(x) = e−x2

∫ x

0

ey
2

dy =

{

x− 2x3

3 +O(|x|5) as x→ 0 ,
1
2x + 1

4x3 +O(|x|−5) as |x| → ∞ .

It easily follows from (5.17) and (5.19) that u(t, x) → − tanh(x/2) as t → +∞, in
agreement with Proposition 4.1.
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We next investigate how the solution is modified if the measure µ contains in
addition a Dirac mass. Assume for instance that µ0 = µ + ¶0, where µ is again
the Lebesgue measure on [−1, 1], and let u0(t, x) be the entire solution of (5.1)
associated with the measure µ0. The same calculations as before show that

u0(t, x) =
x

t

U(t, x)

1 + U(t, x)
− 4

t

et/4 sinh(x/2)

1 + U(t, x)
, (t, x) ∈ R

2 , (5.20)

where U(t, x) is given by (5.16). As is easily verified, the asymptotic behavior as
t → +∞ is unchanged. However, the presence of a Dirac mass at the origin can
be detected by looking at the solution for large negative times. Indeed, a direct
calculation reveals that, for all x ∈ R,

lim
t→−∞

√

|t|u0
(

t, x
√

|t|
)

= 0 , whereas lim
t→−∞

√

|t|u
(

t, x
√

|t|
)

= −x . (5.21)

Finally, we consider the measure µ1 = µ + ¶1, which includes a Dirac mass at
z = 1, and we investigate the asymptotic behavior of the corresponding solution
u1(t, x) as t→ +∞. It is clear that

u1(t, x) =
−2∂xU1(t, x)

U1(t, x)
, where U1(t, x) = U(t, x) + e−x/2+t/4 .

Using the expression (5.19) and the asymptotic behavior of the Dawson function at
infinity, we find

e−t/4 U1(t, x) = e−x/2

{

1 +
2√
t
D

(
√
t

2
− x

2
√
t

)}

+ ex/2
2√
t
D

(
√
t

2
+

x

2
√
t

)

= e−x/2
(

1 +
2

t
+O(t−2)

)

+ ex/2
(2

t
+O(t−2)

)

, t→ +∞ .

Defining x̄(t) = log(1 + t/2), we see that
√
t e−t/4 U1(t, x + x̄(t)) → 2

√
2 cosh(x/2)

as t → +∞, and we conclude that u1(t, x + x̄(t)) → − tanh(x/2) as t → +∞. In
other words, the presence of a Dirac mass at z = 1 is responsible for a logarithmic
shift in the position of the viscous shock, as discussed in Remark 4.2.

5.3. Asymptotic analysis of entire solutions as t → −∞. The properties of
the measure µ in (5.4) are reflected in the asymptotic behavior of the entire solution
u(t, x) in the ancient limit t → −∞. Some results in this direction were already
stated in Propositions 1.2 and 1.3, and illustrated by the examples considered in
the previous section. Our goal here is to perform a more systematic study of the
ancient limit for entire solutions of (5.1). Our main results are Propositions 5.6 and
5.8 below, which immediately imply the statements given in the introduction, and
also extend the results obtained in [15, Section 7].

To gain a first intuitive understanding, we consider the entire solution (5.4) in a
Galilean frame moving with speed c ∈ R. In the spirit of Appel’s transformation
(5.7), we also introduce the inverse time Ä = −1/t, so that the ancient limit t→ −∞
becomes a standard short time limit in the new variable Ä . A simple calculation
shows that

u(t, x+ ct) =

∫

ze−zx/2+(z−c)2t/4 dµ(z)
∫

e−zx/2+(z−c)2t/4 dµ(z)
=

∫

K(Ä, c− z) z e−zx/2 dµ(z)
∫

K(Ä, c− z) e−zx/2 dµ(z)
, (5.22)

where K(t, x) is the heat kernel (5.8). We investigate the behavior of (5.22) in the
limit Ä → 0+, for a fixed x ∈ R (for simplicity, we assume here that x = 0). The
denominator in the right-hand side of (5.22) is exactly the solution at time Ä > 0
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of the heat equation with initial data µ, evaluated at point c ∈ R. When Ä is small,
this quantity is an average of the measure µ in a small neighborhood of the point c.
The numerator has a similar interpretation, except that the initial measure is now
z dµ(z).

These observations strongly suggest that u(t, ct) should converge to c as t→ −∞,
whenever c belongs to the support of the measure µ. If c /∈ supp(µ), we expect that
the ancient limit of u(t, ct) will depend on the behavior of the measure near the
point in supp(µ) that is closest to c. The results established below show that these
heuristic considerations are indeed correct.

In what follows, we always assume that µ is probability measure supported in
a bounded interval of R, and we denote by u(t, x) the bounded entire solution of
(5.1) given by (5.4). We first consider the case where c ∈ supp(µ).

Proposition 5.6. If c ∈ supp(µ), the entire solution of (5.1) defined by (5.4)
satisfies

sup
|x|fL(t)

∣

∣u(t, x+ ct)− c
∣

∣ −−−−→
t→−∞

0 , (5.23)

where L : R− → R+ is any function such that L(t)/|t| → 0 as t→ −∞.

Proof. By Galilean invariance, it is sufficient to prove (5.23) in the particular case
where c = 0. We proceed as in the proof of Proposition 5.5. Given ε > 0 we observe
that

u(t, x) =
I1(t, x) + J1(t, x)

I0(t, x) + J0(t, x)
, t ∈ R , x ∈ R , (5.24)

where for k ∈ {0, 1} we denote

Ik(t, x) =

∫

{|z|>ε}

zk e−zx/2+z2t/4 dµ(z) , Jk(t, x) =

∫

{|z|fε}

zk e−zx/2+z2t/4 dµ(z) .

Assuming that |x| f L and recalling that t < 0, we observe that −zx/2 + z2t/4 f
−L2/t+ z2t/6, hence

Ik(t, x) f e−L2/t+ε2t/6

∫

R

|z|k dµ(z) . (5.25)

On the other hand, we obviously have

J0(t, x) g
∫

{|z|fε/2}

e−zx/2+z2t/4 dµ(z) g e−εL/4+ε2t/16 µ
(

[−ε/2, ε/2]
)

, (5.26)

where µ
(

[−ε/2, ε/2]
)

> 0 since 0 ∈ supp(µ). Taking L = L(t) with L(t) = o(|t|),
we deduce from (5.25), (5.26) that Ik(t, x)/J0(t, x) converges to zero as t → −∞,
uniformly for |x| f L(t). If we now return to (5.24), we conclude that

lim sup
t→−∞

sup
|x|fL(t)

∣

∣u(t, x)
∣

∣ f lim sup
t→−∞

sup
|x|fL(t)

|J1(t, x)|
J0(t, x)

f ε . (5.27)

Since ε > 0 was arbitrary, the left-hand side in (5.27) actually vanishes, which gives
(5.23).

Remark 5.7. The assumption that L(t)/|t| → 0 as t→ −∞ is optimal in general.
As can be seen from Example 5.4, where µ is the Lebesgue measure on R, the
conclusion (5.23) fails for any c ∈ R if L(t)/|t| does not converge to zero. However,
if the measure µ has an atom at c ∈ R which is an isolated point in supp(µ), it is
easy to verify that (5.23) holds with L(t) = ε|t| for some ε > 0.
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The case where c /∈ supp(µ) is more difficult to treat, see [15, Lemma 7.2] for an
attempt in this direction. For simplicity, we formulate our result in the case where
c = 0, but as already mentioned this does not restrict the generality.

Proposition 5.8. Assume that 0 /∈ supp(µ), and define a ∈ [−∞, 0) and b ∈
(0,+∞] by

a := sup
{

c < 0 ; c ∈ supp(µ)
}

, b := inf
{

c > 0 ; c ∈ supp(µ)
}

. (5.28)

i) If a+ b ̸= 0 the ancient solution of (5.1) given by (5.4) satisfies

sup
|x|fL(t)

∣

∣u(t, x)− d
∣

∣ −−−−→
t→−∞

0 , (5.29)

where L(t) is as in (5.23) and d = b if a+ b < 0, d = a if a+ b > 0.

ii) If a + b = 0 there exists a shift function s : R → R such that s(t)/t → 0 as
t→ −∞ and

sup
|x|fL(t)

∣

∣u(t, x)− ϕb,a(x− s(t))
∣

∣ −−−−→
t→−∞

0 , (5.30)

where ϕb,a denotes the viscous shock connecting the constant states b and a =
−b, see (5.14).

Remark 5.9. Since the measure µ in (5.4) is nontrivial, even when the solution
u(t, x) vanishes identically, the quantities a, b defined in (5.28) cannot be infinite
simultaneously. It follows that the sum a + b ∈ [−∞,∞] is well defined, and so is
d ∈ R in case (i). In the other case, both a and b are finite.

Proof. The proof of case (i) uses exactly the same arguments as in Proposition 5.6.
Assume for instance that a+b < 0, so that b is the point in supp(µ) that is closest to
the origin. If t < 0 is large, the leading contributions in the representation formula
(5.4) correspond to the restriction of the measure µ to a small neighborhood of b.
More precisely, given any ε > 0, we find

lim sup
t→−∞

sup
|x|fL(t)

∣

∣u(t, x)− b
∣

∣ f lim sup
t→−∞

sup
|x|fL(t)

∫

Nε
|z − b| e−zx/2+z2t/4 dµ(z)
∫

Nε
e−zx/2+z2t/4 dµ(z)

f ε ,

where Nε = [b, b+ ε] and L(t) is as in (5.23). This gives (5.29) when a+ b < 0, and
the other case is treated similarly.

We now concentrate on the case (ii) where a = −b, which requires a more care-
ful analysis because both intervals N+

ε := [b, b+ε] and N−
ε := [−b−ε,−b] equally

contribute to the representation formula (5.4) when t < 0 is large. Denoting

vε(t, x) =
I+1 (t, x) + I−1 (t, x)

I+0 (t, x) + I−0 (t, x)
, where I±k (t, x) =

∫

N±
ε

zk e−zx/2+z2t/4 dµ(z) ,

we easily find that |u(t, x) − vε(t, x)| converges to zero as t → −∞ uniformly for
|x| f L(t), provided L(t)/|t| → 0 as t → −∞. So it remains to determine the
behavior of vε(t, x) for large negative times.

For this purpose we first observe that
∣

∣I+1 (t, x)− bI+0 (t, x)
∣

∣ f εI+0 (t, x) ,
∣

∣I−1 (t, x) + bI−0 (t, x)
∣

∣ f εI−0 (t, x) ,

so that |vε(t, x)− wε(t, x)| f ε where

wε(t, x) := b
I+0 (t, x)− I−0 (t, x)

I+0 (t, x) + I−0 (t, x)
, t ∈ R , x ∈ R . (5.31)
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Using the change of variables z = ±(b+ y) we can write

I+0 (t, x) =eb
2t/4 e−bx/2J+

ε (t, x) , J+
ε (t, x) :=

∫

[0,ε]

e−xy/2 et(by/2+y2/4) d¿+(y) ,

I−0 (t, x) =eb
2t/4 ebx/2J−

ε (t, x) , J−
ε (t, x) :=

∫

[0,ε]

exy/2 et(by/2+y2/4) d¿−(y) , (5.32)

where ¿± are positive measures on [0, ε] with 0 ∈ supp(¿±). If we substitute (5.32)
in (5.31) we obtain the nicer expression

wε(t, x) = −b tanh
( b

2

(

x− Sε(t, x)
)

)

, where Sε(t, x) =
1

b
log

J+
ε (t, x)

J−
ε (t, x)

. (5.33)

Summarizing the results obtained so far, we have shown that, given any ε > 0,

lim sup
t→−∞

sup
|x|fL(t)

∣

∣u(t, x)− ϕ
(

x− Sε(t, x)
)∣

∣ f ε , (5.34)

where ϕ = ϕb,a is the viscous shock (5.14) connecting the states b and a = −b. The
bound (5.34) holds provided L(t)/|t| → 0 as t→ −∞.

To go further, we need properties of the shift function Sε(t, x) that are established
in Section A.4.

Lemma 5.10. The shift function Sε defined in (5.33) satisfies the uniform bounds

|∂xSε(t, x)| f
ε

b
, |∂tSε(t, x)| f

(

ε+
ε2

2b

)

, t ∈ R , x ∈ R . (5.35)

Moreover Sε is independent of the parameter ε in the ancient limit, in the sense
that

lim
t→−∞

sup
|x|fL(t)

∣

∣Sε(t, x)− Sε′(t, x)
∣

∣ = 0 , if 0 < ε′ < ε , (5.36)

provided L(t)/|t| → 0 as t→ −∞.

In the rest of the proof, we assume without loss of generality that 0 < ε < b. For
any t ∈ R, we denote by sε(t) the unique real number satisfying

sε(t) = Sε(t, sε(t)) . (5.37)

Note that |∂xS(t, x)| f ε/b < 1 by (5.35), so that the equation x = Sε(t, x) for
x ∈ R has indeed a unique solution. The following properties of sε will also be
established in Section A.4.

Lemma 5.11. If 0 < ε < b the function sε : R → R defined by (5.37) satisfies

lim
t→−∞

sε(t)

t
= 0 , and lim

t→−∞

∣

∣sε(t)− sε′(t)
∣

∣ = 0 for all ε′ ∈ (0, ε) . (5.38)

Equipped with Lemmas 5.10 and 5.11, we now conclude the proof of Proposi-
tion 5.8. For t < 0 large enough and |x| f L(t), we want to estimate the quantity

∣

∣u(t, x)− ϕ(x− sε(t))
∣

∣ f
∣

∣u(t, x)− ϕ
(

x− Sε(t, x)
)
∣

∣

+
∣

∣ϕ
(

x− Sε(t, x)
)

− ϕ
(

x− sε(t)
)
∣

∣ .
(5.39)

The first term in the right-hand side is controlled using (5.34). To bound the second
one, we consider three different regions:
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1) When |x− sε(t)| f ε−1/2, we have
∣

∣ϕ
(

x− Sε(t, x)
)

− ϕ
(

x− sε(t)
)
∣

∣ f ∥ϕ′∥L∞

∣

∣Sε(t, x)− Sε(t, sε(t))
∣

∣

f ∥ϕ′∥L∞

ε

b
|x− sε(t)| f

bε1/2

2
,

because ∥ϕ′∥L∞ = b2/2 and |∂xSε| f ε/b by (5.35).

2) When x− sε(t) g ε−1/2, the triangle inequality implies that

x− Sε(t, x) g x− sε(t)− |Sε(t, x)− Sε(t, sε(t))| g x− sε(t)−
ε

b

(

x− sε(t)
)

,

so that x− Sε(t, x) g ε−1/2(1− ε/b). It follows that
∣

∣ϕ
(

x− Sε(t, x)
)

− ϕ
(

x− sε(t)
)
∣

∣ f
∣

∣ϕ
(

x− Sε(t, x)
)

+ b
∣

∣+
∣

∣ϕ
(

x− sε(t)
)

+ b
∣

∣

= O
(

e−bε−1/2)

,

because ϕ(y) + b = b
(

1− tanh(by/2)
)

∼ 2b e−by as y → +∞.

3) The same bound holds when x− sε(t) f −ε−1/2, and is established by a similar
argument.

Summarizing, we have shown that there exists a constant C > 0 such that

sup
x∈R

∣

∣ϕ
(

x− Sε(t, x)
)

− ϕ
(

x− sε(t)
)∣

∣ f Cε1/2 , if 0 < ε < b . (5.40)

If we now combine (5.34), (5.39), and (5.40), we arrive at

lim sup
t→−∞

sup
|x|fL(t)

∣

∣u(t, x)− ϕ
(

x− sε(t)
)
∣

∣ f ε+ Cε1/2 . (5.41)

In fact, since |u(t, x)−ϕ
(

x−sε(t)
)

| f |u(t, x)−ϕ
(

x−sε′(t)
)

|+∥ϕ′∥L∞ |sε(t)−sε′(t)|,
it follows from (5.38), (5.41) that

lim sup
t→−∞

sup
|x|fL(t)

∣

∣u(t, x)−ϕ
(

x−sε(t)
)
∣

∣ f ε′+C(ε′)1/2 , for any ε′ ∈ (0, ε) , (5.42)

where the constant C does not depend on ε′. Thus, taking the limit ε′ → 0 in
(5.42), we arrive at (5.30) with s(t) = sε(t).

In view of Galilean invariance, Proposition 1.3 is simply a reformulation of case
(i) in Proposition 5.8. In case (ii), the solution u(t, x) converges to a translate of
the viscous shock ϕb,−b if the shift function s(t) has a finite limit as t→ −∞, or to
the constant state ±b if s(t) → ±∞. A priori it is also possible that u(t, x) does not
converge at all, if s(t) has an oscillatory behavior, but we have no explicit example
of this phenomenon. In any case u(t, x) cannot converge to zero in L∞

loc(R), because
this would contradict either (5.29) or (5.30). So we see that Propositions 5.6 and
5.8 together imply Proposition 1.2.

Remark 5.12. It is also possible to detect the presence of atoms in the measure µ by
using a different scaling in the ancient limit. Assume for instance that 0 ∈ supp(µ).
For any x ∈ R, the representation formula (5.4) can be written in the form

|t|1/2u(t, x|t|1/2) =

∫

|t|1/2z e−zx|t|1/2/2+z2t/4 dµ(z)
∫

e−zx|t|1/2/2+z2t/4 dµ(z)
, t < 0 , x ∈ R . (5.43)

By Lebesgue’s dominated convergence theorem, the numerator in the right-hand
side vanishes in the ancient limit t → −∞, whereas the denominator converges to
µ({0}). So, if the measure µ has an atom at the origin, we deduce that the quantity
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|t|1/2u(t, x|t|1/2) converges to zero in L∞
loc(R) as t → −∞. Now, assume on the

contrary that dµ(z) = f(z) dz near the origin, where the density f is continuous
and satisfies f(0) > 0. Using the change of variable z = y|t|−1/2, we can transform
(5.43) into

|t|1/2u(t, x|t|1/2) = −x+

∫

(y + x) e−(y+x)2/4f(y|t|−1/2) dy
∫

e−(y+x)2/4f(y|t|−1/2) dy
, (5.44)

for all (t, x) ∈ Ω−. Applying Lebesgue’s theorem again, we see that |t|1/2u(t, x|t|1/2)
converges to −x in L∞

loc(R) as t → −∞. This explains the observations made in
(5.21).

6. Long-time asymptotics beyond shocks. Equipped with the representation
formula (5.4), we now return to the discussion of É-limit sets, focusing our attention
to the particular case of Burgers’ equation. If u0 ∈ L∞(R), we know from Propo-
sition 3.3 that É(u0) is bounded and fully invariant under the evolution semigroup
(St)tg0 defined by (5.1). This implies that any ϕ ∈ É(u0) is the evaluation at time
t = 0 of some bounded entire solution of (5.1). Applying Proposition 5.1, we thus
find:

Corollary 6.1. For any ϕ ∈ É(u0), where É(u0) is the É-limit set (1.3) corre-
sponding to Burgers’ equation, there exists a unique probability measure µ on R

such that

ϕ(x) =

∫

z e−zx/2 dµ(z)
∫

e−zx/2 dµ(z)
, x ∈ R . (6.1)

This result means that, at least for Burgers’ equation, the É-limit set of any
solution of (5.1) with values in some interval [³, ´] can be identified with a subset
of all probability measures supported on that interval. This does not imply, however,
that any probability measure on [³, ´] can be realized in this way. To make the
discussion more precise, let us denote

Σ :=
⋃

βgα

⋃

y∈R

{

Ty ϕβ,α
}

, (6.2)

where Ty is the translation operator and ϕβ,α is given by (5.14). In other words
Σ is the collection of all translates of all viscous shocks, including the constants.
Any ϕ ∈ Σ corresponds, via (6.1), to a probability measure µ that is a convex
combination of at most two Dirac masses.

We know from Proposition 4.1 that É(u0) ¢ Σ whenever u0 ∈ L∞(R) is mono-
tonically decreasing. On the other hand, Oleinik’s inequality (2.2) indicates that all
solutions of (5.1) are “eventually decreasing” when t→ +∞. Combining these ob-
servations, it is rather tempting to conjecture that É(u0) ¢ Σ for any u0 ∈ L∞(R).
Our last result provides an example that contradicts this hasty conclusion. To make
a precise statement we introduce for any µ > 0 the function Ψγ : R → R defined by

Ψγ(x) =
−2 sinh(x)

µ + cosh(x)
, x ∈ R . (6.3)

Note that Ψγ(x) is just the evaluation at time t = log(1/µ) of the two-shock solution
(5.15).
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Proposition 6.2. There exist initial data u0 ∈ L∞(R) for Burgers’ equation such
that

É0(u0) £
{

Ψγ ; µ > 0
}

∪
{

ϕδ,−δ ; ¶ ∈ [0, 2]
}

, (6.4)

where É0(u0) is the É-limit set (1.2). In particular É0(u0) ̸¢ Σ.

In other words, Proposition 6.2 gives an example of bounded initial data u0 such
that even the “small” É-limit set É0(u0) contains the two-shock solution (5.15), in
addition to a continuum of steady shocks. More generally we conjecture that, for
any probability measure µ on the interval [³, ´], there exist initial data u0 ∈ L∞(R)
satisfying (2.1) such that the É-limit set É(u0) contains the function ϕ defined by
(6.1). We believe that this (nontrivial) extension of Proposition 6.2 can be obtained
following the same lines of thought as in Section 6.1 below. This question is left for
future work.

Examples of É-limit sets with complicated structure were also constructed for
reaction-diffusion equations on the real line, see e.g. [4, 20, 21]. In those examples,
nonstationary solutions appear in the É-limit set as a result of a coarsening dy-
namics. The same idea is exploited here in our proof of Proposition 6.2, but the
result is in some sense more surprising because it is not clear a priori if something
like a coarsening dynamics is compatible with the constraints imposed by Oleinik’s
inequality (2.2).

Remark 6.3. In the spirit of the work of Slijepčević and the first author, one may
ask if, for general initial data (including those considered in Proposition 6.2), the
solution u(t) = Stu0 approaches locally uniformly the set Σ at least for “almost all
times”, in the precise sense considered in [8]. We hope to address that interesting
question in a near future.

6.1. Shock mergers in the É-limit set. In this section, we construct bounded
initial data for Burgers’ equation (5.1) such that the corresponding solution ex-
hibits mergers of viscous shocks at the origin for an infinite sequence of times. The
construction is based on the Cole-Hopf representation formula (5.6).

Definition 6.4. For any m g 0, let Vm(t, x) be the solution of the linear heat
equation ∂tVm = ∂2xVm with initial data

Vm(0, x) =

{

cosh(x) if |x| f m,

cosh(m) if |x| > m .
(6.5)

Since et cosh(x) is an exact solution of the heat equation, the parabolic maximum
principle implies that 1 f Vm(t, x) f max

(

cosh(m), et cosh(x)
)

for all t g 0 and all
x ∈ R. The following two lemmas give more precise estimates on the function Vm
and its derivative.

Lemma 6.5. For any t > 0 and any x ∈ R the following estimates hold :

cosh(m)
(

1− m√
Ãt

)

f Vm(t, x) f cosh(m) ,
∣

∣∂xVm(t, x)
∣

∣ f m cosh(m)√
4Ã t

. (6.6)

Proof. Let Wm(t, x) = cosh(m) − Vm(t, x). Then Wm(t, x) satisfies the heat equa-
tion on R, so that

Wm(t, x) =
1√
4Ãt

∫ m

−m

e−(x−y)2/(4t)
(

cosh(m)− cosh(y)
)

dy , (t, x) ∈ Ω+ . (6.7)
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It is clear from this representation that

0 f Wm(t, x) f 1√
4Ãt

∫ m

−m

cosh(m) dy =
m cosh(m)√

Ãt
,

which gives the first two inequalities in (6.6). Similarly, differentiating (6.7), we
find

|∂xWm(t, x)| f 1√
4Ãt

∫ m

−m

|x− y|
2t

e−(x−y)2/(4t) cosh(m) dy f m cosh(m)√
4Ã t

,

where we used the fact that z e−z2 f 1/2 for all z g 0. This concludes the proof of
(6.6).

Estimates (6.6) provide a good approximation of the solution Vm(t, x) for large
times. The short time behavior near the origin is described by the following result.

Lemma 6.6. Assume that t > 0 and |x|+ 2t f m/2. Then

et cosh(x)
(

1− e−m2/(16t)
)

f Vm(t, x) f et cosh(x) ,
∣

∣∂xVm(t, x)− et sinh(x)
∣

∣ f e−m2/(16t) et cosh(x) . (6.8)

Proof. Let W̃m(t, x) = et cosh(x) − Vm(t, x). Then W̃m(t, x) is again a solution of
the heat equation, hence

W̃m(t, x) =
1√
4Ãt

∫

|y|gm

e−(x−y)2/(4t)
(

cosh(y)− cosh(m)
)

dy , (t, x) ∈ Ω+ . (6.9)

Our main goal is to find an upper bound on W̃m(t, x) in the region region where

|x|+ 2t f m/2. We observe that 0 f W̃m(t, x) f I+(t, x) + I−(t, x) where

I+(t, x) =
1√
4Ãt

∫ ∞

m

e−(x−y)2/(4t) ey dy =
1

2
et+x erfc

(m−x−2t

2
√
t

)

,

I−(t, x) =
1√
4Ãt

∫ −m

−∞

e−(x−y)2/(4t) e−y dy =
1

2
et−x erfc

(m+x−2t

2
√
t

)

, (6.10)

where erfc denotes the complementary error function. In the last equalities in (6.10),
we used the changes of variables y = x± (2t+ 2

√
tz) to reduce the integrals to an

error function. By assumption, we have m ± x − 2t g m − |x| − 2t g m/2, and it

is known that erfc is a decreasing function on R+ which satisfies erfc(z) f e−z2

for
all z g 0. This leads to the upper bound

W̃m(t, x) f et cosh(x) erfc
( m

4
√
t

)

f et cosh(x) e−m2/(16t) ,

which proves the first part of (6.8). The second inequality is established by a similar
calculation based on the identity

∂xW̃m(t, x) =
1√
4Ãt

∫

|y|gm

e−(x−y)2/(4t) sinh(y) dy , (t, x) ∈ Ω+ .

This concludes the proof of Lemma 6.6.

We now explain our strategy to prove Proposition 6.2. If m > 0 is large enough,
the solution of Burgers’ equation given by u(t, x) = −2∂xVm(t, x)/(1 + Vm(t, x))
satisfies, by Lemma 6.6,

u(t, x) ≈ −2 sinh(x)

e−t + cosh(x)
, when |x|+ 2t f m/2 ,
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whereas u(t, x) ≈ 0 when t g m2 by Lemma 6.5. In other words u(t, x) describes,
for relatively small times, the merger of a pair of viscous shocks at the origin, but in
the long time regime u(t, x) actually converges to zero, uniformly in x on compact
intervals. The idea is to construct, by superposition, a solution of (5.1) which
exhibits infinitely many such mergers, along an appropriate sequence of times.

Proof of Proposition 6.2 (first part). FixN g 10 and let 1 f t1 < t2 < t3 < . . .
be a sequence of times such that

tj+1 g N2t2j for all j g 1 , and
t2j
tj+1

−−−−→
j→+∞

0 . (6.11)

We consider the function U : [0,+∞)× R → (0,+∞) defined by

U(t, x) = 1 +

∞
∑

j=1

e−tj VNtj (t, x) , t g 0 , x ∈ R , (6.12)

where VNtj is given by Definition 6.4 with m = Ntj . Since VNtj (t, x) f et cosh(x),
it is clear that the series in (6.12) converge uniformly on compact sets in space-time,
and that U(t, x) is a solution of the heat equation on R+ ×R. We are interested in
the corresponding solution u(t, x) of Burgers’ equation, given by

u(t, x) =
−2∂xU(t, x)

U(t, x)
, t g 0 , x ∈ R . (6.13)

As |∂xVm(0, x)| f Vm(0, x) for all x ∈ R, we have |∂xVm(t, x)| f Vm(t, x) for all
t g 0 by the maximum principle, and it follows that |u(t, x)| f 2, so that u(t, x) is
a bounded solution of Burgers’ equation. We shall show that, for any sufficiently
large k ∈ N, this solution exhibits a merger of viscous shocks at the origin on the
time interval [tk, 2tk]. More precisely, we shall prove that

sup
|x|ftk

∣

∣

∣
u(Äk, x) +

2 sinh(x)

1 + cosh(x)

∣

∣

∣
−−−−−→
k→+∞

0 , where Äk = tk + (N−1)tk−1 . (6.14)

To establish (6.14), we fix a large k ∈ N, and we assume that t ∈ [tk, 2tk] and
|x| f tk. If j g k, we know from Lemma 6.6 that

et−tj cosh(x)
(

1− e−N2t2j/(16t)
)

f e−tj VNtj (t, x) f et−tj cosh(x) , (6.15)

because |x| + 2t f 5tk f Ntj/2 since N g 10. In view of (6.11), estimate (6.15)
shows that, in the space-time region under consideration, all terms with j g k + 1
can be neglected in the sum (6.12) defining U(t, x), namely

∞
∑

j=k+1

e−tj VNtj (t, x) j e−tk VNtk(t, x) , uniformly for t ∈ [tk, 2tk] , |x| f tk .

If j < k, we apply Lemma 6.5 and obtain the bound

e−tj cosh(Ntj)
(

1− Ntj√
Ãt

)

f e−tj VNtj (t, x) f e−tj cosh(Ntj) , (6.16)

where the left-hand side is strictly positive since t g tk g N2t2j . Again it follows
from (6.11), (6.16) that the terms with j f k−2 can be neglected in the sum (6.12),
in the sense that

1 +

k−2
∑

j=1

e−tj VNtj (t, x) j e−tk−1 VNtk−1
(t, x) , uniformly for t ∈ [tk, 2tk] , |x| f tk .
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Summarizing, we have shown that the function U(t, x) defined by (6.12) satisfies
U(t, x) ≈ Uk(t, x) when t ∈ [tk, 2tk] and |x| f tk, where

Uk(t, x) :=e
−tk−1 VNtk−1

(t, x)+e−tk VNtk(t, x)≈e(N−1)tk−1+et−tk cosh(x) . (6.17)

More precisely we have

sup
t∈[tk,2tk]

sup
|x|ftk

( |U(t, x)− Uk(t, x)|
Uk(t, x)

+
|∂xU(t, x)− ∂xUk(t, x)|

Uk(t, x)

)

−−−−−→
k→+∞

0 , (6.18)

where the estimate for the derivative is obtained in the same way using Lemmas 6.5
and 6.6. We now take t = Äk := tk + (N−1)tk−1, so that both terms in the right-
hand side of (6.17) are of comparable size. With that choice, we have Uk(Äk, x) ≈
eτk−tk

(

1 + cosh(x)
)

, and using estimates (6.18) we easily deduce that the function
u(Äk, x) = −2∂xU(Äk, x)/U(Äk, x) indeed satisfies (6.14).

So far we have shown that the function Ψγ introduced in (6.3) belongs to the
É-limit set É0(u0) when µ = 1. But the argument above also implies that, given
any t ∈ R,

lim
k→+∞

sup
|x|ftk

∣

∣

∣
u(t+ Äk, x) +

2 sinh(x)

e−t + cosh(x)

∣

∣

∣
= 0 ,

which shows that the É-limit set É0(u0) contains the entire two-shock solution (5.15)
(as is clear from time invariance). So we conclude that É0(u0) £

{

Ψγ ; µ > 0
}

, as
asserted in (6.4). □

6.2. Repair along the family of steady shocks. In the topology of L∞
loc(R),

the two-shock solution (5.15) converges to zero as t → −∞ and to the steady
shock ϕ2,−2 as t → +∞. Such a heteroclinic connection is obviously not chain
recurrent in the sense of Proposition 3.2. As a consequence, for the initial data
u0 ∈ L∞(R) constructed in the previous section, the É-limit set must be larger
than the heteroclinic orbit given by the two-shock solution. In this section, we
show that É0(u0) contains in addition a continuum of steady shocks, as stated in
Proposition 6.2 and illustrated in Figure 2.

To prove the claim, we need to control the function Vm(t, x) introduced in Def-
inition 6.4 for some intermediate times that are not covered by Lemmas 6.5 and
6.6.

Lemma 6.7. For any fixed ¶ ∈ (0, 2) we have, as m→ +∞,

Vm(m/¶, x) =
1√
Ãm¶

2 + ¶

2− ¶
em(1−δ/4) cosh(¶x/2)

(

1 +O(m−1)
)

, (6.19)

where convergence is uniform in x ∈ [−L,L] for any L > 0. A similar asymptotic
expansion also holds for the spatial derivative ∂xVm(m/¶, x).

Proof. To establish (6.19) it is convenient to use an explicit expression for the
function Vm(t, x). Starting from the definition

Vm(t, x) =
1√
4Ãt

∫

|y|fm

e−|x−y|2/(4t) cosh(y) dy

+
1√
4Ãt

∫

|y|>m

e−|x−y|2/(4t) cosh(m) dy ,

and proceeding as in (6.10), we obtain the tractable formula

Vm(t, x) = V̂m(t, x) + V̂m(t,−x) + Ŵm(t, x) + Ŵm(t,−x) , t > 0 , x ∈ R , (6.20)
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where

V̂m(t, x) =
cosh(m)

2
erfc

(m+x

2
√
t

)

,

Ŵm(t, x) =
et+x

2

{

erfc
(2t−m+x

2
√
t

)

− erfc
(2t+m+x

2
√
t

)

}

.

(6.21)

In what follows, we assume that t = m/¶ for some fixed ¶ ∈ (0, 2), and we consider
the limit m → +∞ for x in some fixed interval [−L,L]. Using the asymptotic
expansion of the complementary error function

erfc(z) =
e−z2

z
√
Ã

(

1 +O(z−2)
)

, as z → +∞ ,

we easily find that

V̂m(m/¶, x) =
1

2

1√
Ãm¶

em(1−δ/4) e−δx/2
(

1 +O(m−1)
)

, m→ +∞ . (6.22)

Next, observing that 2t +m k 2t −m k 1 as m → +∞ because 2/¶ > 1, we see

that the second term in the expression (6.21) of Ŵm(t, x) is negligible compared to
the first one. Since

t+ x−
(

2t−m+x

2
√
t

)2

= m− (m−x)2
4t

= m
(

1− ¶/4
)

+ ¶x/2 +O(m−1) ,

we thus find

Ŵm(m/¶, x) =
1√
Ãm¶

¶

2− ¶
em(1−δ/4) eδx/2

(

1 +O(m−1)
)

, m→ +∞ . (6.23)

Finally, replacing (6.22) and (6.23) into (6.20), we arrive at (6.19). A corresponding
asymptotic expansion for the derivative ∂xVm(m/¶, x) is obtained in the same way.

Proof of Proposition 6.2 (second part). We consider again the solution U(t, x)
of the heat equation given by (6.12), and we evaluate it along the sequence of times
Ä̂k := Ntk/¶, for some fixed ¶ ∈ (0, 2). The main contribution to the sum comes
from the term where j = k, and using Lemma 6.7 with m = Ntk we obtain

e−tk VNtk(Ntk/¶, x)=
e−tk

√
ÃNtk¶

2 + ¶

2− ¶
eNtk(1−δ/4) cosh(¶x/2)

(

1+O(t−1
k )

)

, (6.24)

where convergence holds uniformly for x ∈ [−L,L]. The terms where j < k can be
easily estimated using the trivial bound Vm(t, x) f cosh(m), leading to

1 +

k−1
∑

j=1

e−tj VNtj (Ntk/¶, x) f 1 +

k−1
∑

j=1

e−tj cosh(Ntj) f C e(N−1)tk−1 , (6.25)

where the right-hand side is much smaller than (6.24) since tk g N2t2k−1. Finally,

for the terms where j > k, we use the simple bound Vm(t, x) f et cosh(x) which
gives

∞
∑

j=k+1

e−tj VNtj (Ntk/¶, x) f
∞
∑

j=k+1

e−tj eNtk/δ cosh(x) . (6.26)

Again, for x ∈ [−L,L], the right-hand side is much smaller than (6.24) because the
sequence tj grows fast enough as j → ∞ and tj g tk+1 g N2t2k.
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Summarizing, it follows from (6.24), (6.25), (6.26) that the function U(t, x) de-
fined by (6.12) satisfies

U(Ntk/¶, x) =
e−tk

√
ÃNtk¶

2 + ¶

2− ¶
eNtk(1−δ/4) cosh(¶x/2)

(

1 +O(t−1
k )

)

, k → +∞ ,

uniformly for x ∈ [−L,L], and a similar expansion also holds for the first derivative
∂xU(t, x). So, we deduce that the solution of Burgers’ equation defined by (6.12),
(6.13) satisfies, for any L > 0,

sup
|x|fL

∣

∣u(Ntk/¶, x) + ¶ tanh(¶x/2)
∣

∣ −−−−−→
k→+∞

0 .

This implies that the É-limit set É0(u0) contains the viscous shock ϕδ,−δ for any
value of ¶ ∈ (0, 2), hence for any ¶ ∈ [0, 2] since É0(u0) is closed in L∞

loc(R). The
proof of (6.4) is now complete. □

x

x

−2

0

2
−2

0

2
(a) Merger of two viscous shocks

(b) Repair along the family of shocks

Figure 2. Illustration of the long-time behavior of the solution u(t, x)

of (5.1) given by (6.12), (6.13). (a) Along a sparse sequence of times

τk → +∞, the solution describes the merger of a pair of viscous shocks

near the origin, as in the explicit solution (5.15). (b) Between the times

τk and τk+1, the solution slowly returns to zero along the family of steady

shocks φδ,−δ, where 0 < δ < 2. Both processes recur infinitely often, and

are therefore reflected in the ω-limit set of the solution u(t, x), as asserted

in Proposition 6.2.

Remark 6.8. We conjecture that, for the initial data u0 constructed in the proof
of Proposition 6.2, the É-limit set É0(u0) is in fact equal to the right-hand side
of (6.4). Note that this set satisfies all the properties listed in Proposition 3.2,
including chain recurrence.

7. Discussion. We presented results on long-time behavior in scalar conservation
laws on the real line, both in the case of a general convex flux and in the special
case of Burgers’ equation with quadratic flux. Our main results include a general
definition and characterization of É-limit sets, the convergence to single shocks for
monotone data, and the construction of initial data for which the É-limit set does
not consist of a constant state nor of the translates of a single shock. The latter
result was established in the context of Burgers’ equation, where a somewhat explicit
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representation of all entire solutions in terms of compactly supported probability
measures is available. Since all elements in the É-limit set are entire solutions, this
characterization provides a “list” of candidates for elements in the É-limit set.

We mentioned throughout several open problems and conjectured some answers.
We revisit some of those here in a broader context and point to some other poten-
tially interesting questions.

As a first step towards a complete characterization, one can ask what functions
may be found within an É-limit set. Candidates are entire solutions, which, in the
case of Burgers’ equation, are described somewhat explicitly through a one-to-one
correspondence with compactly supported probability measures on the real line.
Even beyond the goal of describing the long-time behavior of general solutions, it
would be quite interesting to characterize entire solutions of scalar conservation laws
with convex, not necessarily quadratic flux. In the absence of a direct connection
with the heat equation, we think that a description of bounded solutions in terms of
their ancient limits t→ −∞ in suitably rescaled variables might provide an avenue
for progress in this direction. Note that solutions representing the superposition of
two viscous shocks as t → −∞ can be constructed under generic assumptions on
the flux function, see [27].

On the other hand, it would be interesting to extend the analysis of ancient
solutions and possibly the characterization of É-limit sets to the complex-valued
Burgers’ equation, where the Cole-Hopf transformation is still at hand, but L∞

upper bounds, Oleinik’s inequality, and the positivity that is essential in the char-
acterization of ancient solutions are not available; see [22] for results on blowup in
this context.

Given the characterization of entire solutions in Burgers’ equation, we conjec-
tured in Section 6 that any entire solution of that equation can be found in the
É-limit set for appropriate initial data. Beyond Burgers’ equation, one may find it
plausible that the existence of shock mergers in specific É-limit sets can be estab-
lished, by controlling the interaction of shocks and rarefaction waves without the
conjugation to a linear heat equation and the associated superposition principle.

A more ambitious result would characterize the entire É-limit set. We showed
that for monotone initial data, one only finds a single shock (together with its
translates) or a family of constant states. We conjectured that in the example
considered in Proposition 6.2, the É-limit set actually consists of the shock merger
itself and of the family of steady shocks with smaller amplitude, which together
form a chain recurrent set. Given the ancient asymptotics of entire solutions, all
nonconstant elements of the É-limit sets can be thought of as continuous or discrete
superpositions of shocks and their eventual merger into a single shock. The natural
question in this direction is whether different shock mergers can occur within a
single É-limit set. Eventually, one may hope to determine which subsets of the set
of ancient solutions may occur as É-limit sets, that is, to decide if any additional
restrictions beyond compactness, connectedness, and chain recurrence are imposed
by the dynamics.

Clearly, all of the questions above can be asked for É0(u0) and for É(u0), that
is in a fixed frame of reference or up to translations. Our introduction of É(u0),
while seemingly natural, can of course be questioned. One could ask for a more
narrow characterization, limiting the allowed translations for instance to almost
Galilean shifts as suggested in Remark 3.5. To clarify the role of the shifts, it would
be interesting to identify É-limit sets that actually depend on the class of allowed
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spatial translates. More specifically, one can ask if for all u0, the set É(u0) defined
by (1.3) coincides with the É-limit set obtained by restricting the class of allowed
shifts to almost Galilean ones.

Beyond the structure of É-limit sets, one can investigate the dynamics for large
but finite times. While Burgers’ equation is not a gradient flow, our results basically
show that the long-term asymptotics of solutions are to a large extent determined
by equilibria, up to Galilean boosts. While we did show that solutions other than
equilibria, particularly shock mergers, can occur in the É-limit set, it is conceivable
to conjecture that those occur only “rarely” in time, a statement that one could
attempt to quantify in the spirit of the work of S. Slijepčević and the first author [8];
see Remark 6.3.

Finally, a number of subtle questions arise when attempting to characterize the
set of initial data that lead to a specific É-limit set. From local stability of vis-
cous shocks, one can conclude that the basin of attraction is open (in appropriate
topologies). On the other hand, we showed that the basin contains all monotone
initial data with the same limits at x = ±∞. The construction of repeating shock
mergers suggests robustness of this asymptotic behavior at least in a spatially uni-
form topology. We note however that such questions on the basin of attraction of
an É-limit set do not appear to have been answered in the case of mergers between
layers in the Allen-Cahn equation [4, 20, 21]. Despite the apparent similarities be-
tween the results there and our construction, it is worth noticing that in our case,
all equilibria and traveling waves are asymptotically stable, whereas the Allen-Cahn
equation accommodates a large family of unstable equilibria and traveling waves,
including the zero solution, spatially periodic equilibria, and traveling waves con-
necting those equilibria to stable solutions; see for instance [25]. We are not aware
of results that connect the role of these unstable equilibria to the description of
long-term dynamics through É-limit sets as attempted here and in [4, 20, 21].

Appendix A. Ancillary proofs.

A.1. Oleinik’s inequality. If u(t, x) is a solution of (1.1) with initial data u0
satisfying (2.1), we define

v(t, x) = t2∂xu(t, x)− k−1t , t > 0 , x ∈ R , (A.1)

where k > 0 is defined in (2.2). The function v is smooth, and it is clear by
construction that v(t, x) < 0 for all x ∈ R whenever t > 0 is sufficiently small.
Indeed, since u(t, x) solves equation (1.1) with bounded initial data, we know that
there exist positive constants C and t0 such that |∂xu(t, x)| f Ct−1/2 when 0 < t <
t0. Now a direct calculation shows that v solves the equation

∂tv+f
′(u)∂xv−∂2xv = 2t∂xu−k−1−t2f ′′(u)

(

∂xu
)2

f 2t∂xu−k−1−t2k
(

∂xu
)2

= −k−1
(

1− kt∂xu
)2 f 0 , (A.2)

where in the second line we used the fact that f ′′(u) g k for all u ∈ [³, ´]. By
the maximum principle, the differential inequality (A.2) implies that v(t, x) stays
negative for all times t > 0, which gives inequality (2.2).

A.2. Proof of Lemma 3.1. We prove here that the solution of u(t) = St(u0) of
(1.1) depends continuously on the initial data u0 in the topology of L∞

loc(R). Our
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starting point is the integral equation associated with (1.1), namely

u(t) = K(t, ·) ∗ u0 −
∫ t

0

∂xK(t− s, ·) ∗ f(u(s)) ds , t > 0 , (A.3)

where K(t, x) is the heat kernel (5.8) and ∗ denotes convolution in space. Straight-
forward calculations show that there exists a constant C > 0 such that

∥K(t, ·) ∗ u0∥exp +
√
t ∥∂xK(t, ·) ∗ u0∥exp f Cet∥u0∥exp , (A.4)

for all u0 ∈ L∞(R) and all t > 0. To prove the desired continuity property, we fix
R > 0 and consider two initial data u0, v0 such that max(∥u0∥L∞ , ∥v0∥L∞) f R.
Denoting u(t) = St(u0), v(t) = St(v0), and using (A.4), we can estimate

∥u(t)− v(t)∥exp f Cet∥u0 − v0∥exp +

∫ t

0

Cet−s

√
t− s

L∥u(s)− v(s)∥exp ds ,

where L = sup{|f ′(u)| ; |u| f R}. The quantity ¶(t) := e−t∥u(t) − v(t)∥exp thus
satisfies an integral inequality that can be solved using a variant of Grönwall’s
lemma, see [11, Lemma 7.1.1]. This gives, for some constants C1, C2 depending
only on L, an estimate of the form ∥St(u0)−St(v0)∥exp f C1e

C2t∥u0−v0∥exp which
shows that the solution of (A.3) depends continuously on the initial data in the
topology of L∞

loc, uniformly in time on compact intervals.

A.3. Proof of the L1–L∞ estimate (4.16). Assume that Ç : R → R is a smooth
convex function such that Ç(0) = 0 and Ç(s) > 0 for all s ̸= 0. If w(t, x) is a
solution of (4.15) with initial data w0 ∈ L∞(R), we compute

d

dt

∫

R

Ç(w) dx =

∫

R

Ç′(w)
(

∂2xw − f ′(u)∂xw
)

dx

= −
∫

R

Ç′′(w)
(

∂xw
)2

dx+

∫

R

f ′′(u)(∂xu)Ç(w) dx

f −
∫

R

Ç′′(w)
(

∂xw
)2

dx f 0 , t > 0 ,

(A.5)

where we used the crucial observation that f ′′(u)(∂xu) f 0, because f is convex
and u is decreasing. As a first application, we take Çε(w) = (ε2 + w2)1/2 − ε,
where ε > 0 is a small parameter. Using (A.5) we easily obtain

∫

R
Çε

(

w(t, x)
)

dx f
∫

R
Çε

(

w0(x)
)

dx f ∥w0∥L1(R), for any t > 0. Then, invoking Lebesgue’s monotone
convergence theorem, we can take the limit ε→ 0 and arrive at

∥w(t, ·)∥L1(R) f ∥w0∥L1(R) , t > 0 . (A.6)

In a second step, we choose Ç(w) = w2 in (A.5) and we use the celebrated Nash
inequality

∥w(t, ·)∥3L2(R) f CN∥wx(t, ·)∥L2(R)∥w(t, ·)∥2L1(R) , (A.7)

see [2]. Taking (A.6) into account and assuming ∥w0∥L1(R) > 0, we obtain the
differential inequality

d

dt
∥w(t, ·)∥2L2(R) f −2∥wx(t, ·)∥2L2(R) f −

2∥w(t, ·)∥6L2(R)

C2
N∥w(t, ·)∥4L1(R)

f −
2∥w(t, ·)∥6L2(R)

C2
N∥w0∥4L1(R)

,

which can be integrated to give the L1–L2 estimate

∥w(t, ·)∥L2(R) f Ct−1/4∥w0∥L1(R) , t > 0 , (A.8)

where C = (CN/2)
1/2.
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Finally, to estimate the L∞ norm of w, we can either bound the L2p norm for
all integers p g 2, or use a duality argument, see [5]. We follow here the latter
approach and consider the dual equation

∂tÈ(t, x)− ∂x
(

f ′(u)È
)

= ∂2xÈ(t, x) , t > 0 , x ∈ R , (A.9)

which has similar properties as (4.15). In particular, proceeding as in (A.5), we find

d

dt

∫

R

Ç(È) dx = −
∫

R

Ç′′(È)
(

∂xÈ
)2

dx+

∫

R

f ′′(u)(∂xu)
(

ÈÇ′(È)− Ç(È)
)

dx ,

f −
∫

R

Ç′′(È)
(

∂xÈ
)2

dx f 0 , (A.10)

because Ç(È) f ÈÇ′(È) by convexity. We deduce that estimates (A.6), (A.8) also
hold for the solutions of (A.9). Now, if w solves (4.15) with initial data w0 ∈ L2(R)
and È solves (A.9) with initial data È0 ∈ L1(R), then for any t > 0 the quantity
∫

R
È(t − s, x)w(s, x) dx is independent of s ∈ [0, t], as can be easily verified by

differentiation. It follows that
∣

∣

∣

∣

∫

R

È0(x)w(t, x) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

È(t, x)w0(x) dx

∣

∣

∣

∣

f ∥È(·, t)∥L2(R)∥w0∥L2(R)

f Ct−1/4∥È0∥L1(R)∥w0∥L2(R) , (A.11)

where the last inequality follows from (A.8). Clearly (A.11) is equivalent to the
L2–L∞ estimate

∥w(t, ·)∥L∞(R) f Ct−1/4∥w0∥L2(R) , t > 0 , (A.12)

and the L1–L∞ bound in (4.16) follows immediately by combining (A.8), (A.12).

A.4. Proof of Lemmas 5.10 and 5.11.

Proof of Lemma 5.10. Since ¿± are positive measures supported on the interval
[0, ε], it is clear that the functions J±

ε introduced in (5.32) satisfy the estimates

|∂xJ±
ε (t, x)| f ε

2
J±
ε (t, x) , |∂tJ±

ε (t, x)| f
(bε

2
+
ε2

4

)

J±
ε (t, x) , t ∈ R , x ∈ R ,

which immediately imply (5.35) in view of the definition (5.33) of Sε. On the other
hand, if 0 < ε′ < ε, we have the identity

Sε(t, x)− Sε′(t, x)

=
1

b

{

log

(

1 +
J+
ε (t, x)− J+

ε′ (t, x)

J+
ε′ (t, x)

)

− log

(

1 +
J−
ε (t, x)− J−

ε′ (t, x)

J−
ε′ (t, x)

)}

, (A.13)

and proceeding as in the proof of Proposition 5.6 we easily obtain, if |x| f L(t),

J±
ε (t, x)− J±

ε′ (t, x) =

∫

(ε′,ε]

e∓xy/2 et(by/2+y2/4) d¿±(y)

f C±
ε,ε′ e

εL(t)+tbε′/4J±
ε′ (t, x) ,

where C±
ε,ε′ = ¿±([ε

′, ε])/¿±([0, ε
′/2]). If L(t)/|t| → 0 as t→ −∞, it follows that

sup
|x|fL(t)

∣

∣

∣

∣

J±
ε (t, x)− J±

ε′ (t, x)

J±
ε′ (t, x)

∣

∣

∣

∣

f Cε,ε′ e
εL(t)+tbε′/4 −−−−→

t→−∞
0 ,

which together with (A.13) implies the desired estimate (5.36).
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Proof of Lemma 5.11. Let us define Ãε(t) = Sε(t, 0). For any T > 0, we observe
that

lim
t→−∞

(

Ãε(t+ T )− Ãε(t)
)

= 0 , which implies lim
t→−∞

Ãε(t)

t
= 0 . (A.14)

Indeed, if 0 < ε′ < ε, we have
∣

∣Ãε(t+T )−Ãε(t)
∣

∣ f
∣

∣Ãε(t+T )−Ãε′(t+T )
∣

∣+
∣

∣Ãε′(t+T )−Ãε′(t)
∣

∣+
∣

∣Ãε′(t)−Ãε(t)
∣

∣ .

The middle term in the right-hand side can be estimated with the help of (5.35) :

∣

∣Ãε′(t+ T )− Ãε′(t)
∣

∣ f
∫ t+T

t

|∂tSε′(Ä, 0)| dÄ f T
(

ε′ +
(ε′)2

2b

)

f 2Tε′ ,

where we used the fact that ε′ < ε < b. The other terms are controlled by (5.36),
which gives

lim sup
t→−∞

∣

∣Ãε(t+ T )− Ãε(t)
∣

∣ f 2Tε′ ,

and taking the limit ε′ → 0 we obtain the first part of (A.14). The second claim
follows by an elementary argument.

We now return to the shift function sε(t) defined by (5.37). We have by (5.35)

|sε(t)− Ãε(t)| = |Sε(t, sε(t))− Sε(t, 0)| f
ε

b
|sε(t)| f

ε

b
|sε(t)− Ãε(t)|+

ε

b
|Ãε(t)| ,

so that

|sε(t)− Ãε(t)| f
ε

b− ε
|Ãε(t)| , |sε(t)| f

b

b− ε
|Ãε(t)| .

In view of (A.14), it follows in particular that sε(t)/t→ 0 as t→ −∞, which is the
first claim in (5.38). Moreover, if 0 < ε′ < ε, we have

|sε(t)− sε′(t)| f
∣

∣Sε(t, sε(t))− Sε(t, sε′(t))
∣

∣+
∣

∣Sε(t, sε′(t))− Sε′(t, sε′(t))
∣

∣

f ε

b
|sε(t)− sε′(t)| + sup

|x|fsε′ (t)

∣

∣Sε(t, x)− Sε′(t, x))
∣

∣ .

Since sε′(t)/t → 0 as t → −∞, the last term in the right-hand side converges to
zero by (5.36). We deduce that |sε(t)− sε′(t)| → 0 too, which concludes the proof
of (5.38).
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[22] P. Poláčik and V. Šverák, Zeros of complex caloric functions and singularities of complex

viscous Burgers’ equation, J. Reine Angew. Math., 616 (2008), 205-217.
[23] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-

Hall, Englewood Cliffs, 1967.

[24] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1966.
[25] A. Scheel, Coarsening fronts, Arch. Ration. Mech. Anal., 181 (2006), 505-534.
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