

1 **Novel inductively coupled ear-bars (ICEs) to enhance restored fMRI signal**

2 **from susceptibility compensation in rats**

3

4 Yi Chen^{1,2}, Zachary Fernandez^{2,3}, Norman Scheel², Mahsa Gifani⁴, David C. Zhu^{2,3}, Scott E. Counts^{3,4,5,6,7},
5 Anne M. Dorrance^{3,8}, Daniel Razansky^{9,10,11}, Xin Yu¹², Wei Qian¹³, Chunqi Qian^{2,13*}

6 1. Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076,
7 Germany

8 2. Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI
9 48824, USA

10 3. Neuroscience Program, Michigan State University, East Lansing, MI, USA

11 4. Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA

12 5. Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA

13 6. Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA

14 7. Michigan Alzheimer's Disease Research Center, Ann Arbor, MI, USA

15 8. Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA

16 9. Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University
17 of Zurich, Zurich, Switzerland

18 10. Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH
19 Zurich, Zurich, Switzerland

20 11. Zurich Neuroscience Center, Zurich, Switzerland

21 12. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School,
22 Charlestown, MA, USA

23 13. Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA

24

25

26

27

28 **Lead corresponding author:**

29 *Prof. Chunqi Qian

30 Email: gianchu1@msu.edu

31 **ABSTRACT**

32 Functional MRI faces inherent challenges when applied to deep-brain areas in rodents, *e.g.*, entorhinal cortex (EC),
33 due to the signal loss near the ear cavities induced by susceptibility artifacts and reduced sensitivity induced by the
34 long distance from the surface array coil. Given the pivotal roles of deep brain regions in various diseases, optimized
35 imaging techniques are needed. To mitigate susceptibility-induced signal losses, we introduced baby cream into the
36 middle ear. To enhance the detection sensitivity of deep brain regions, we implemented inductively coupled ear-
37 bars (ICEs), resulting in approximately a two-fold increase in sensitivity in EC. Notably, the ICE can be seamlessly
38 integrated as an add-on device, without necessitating modifications to the scanner interface. To underscore the
39 versatility of ICEs, we conducted echo-planner imaging (EPI) based task fMRI in rats modeling Alzheimer's
40 disease. As a proof of concept, we also demonstrated resting-state (rs)-fMRI connectivity maps originating from
41 the left EC-a central hub for memory and navigation networks-to amygdala hippocampal area, Insular Cortex,
42 Prelimbic Systems, Cingulate Cortex, Secondary Visual Cortex, and Motor Cortex. This work demonstrates an
43 optimized procedure for acquiring large-scale networks emanating from a previously challenging seed region by
44 conventional MRI detectors, thereby facilitating improved observation of fMRI outcomes.

45 **KEYWORDS**

46 Susceptibility artifact, resting-state fMRI, inductive coils, entorhinal cortex, Alzheimer's Disease

47 **INTRODUCTION**

48 In Magnetic Resonance Imaging (MRI) scanners, the surface coil and coil array could be placed near the rodent
49 brains to have a good signal-to-noise ratio (SNR) for the brain parenchyma adjacent to the coil. However, the SNR
50 decreases dramatically as the distance from the coil/coil array increases (Mahesh M 2013). This issue is inevitable
51 due to the decaying sensitivity profile of the surface coil/coil array, especially for rodent imaging inside high-field
52 magnets where the confined bore space is largely occupied by the rodent holder, air supply tubing, heating pad, etc.
53 To reduce hardware complexity and to boost sensitivity, inductively coupled detectors can be placed near the
54 targeted region of interest (ROI) to wirelessly relay locally detected MR signals with the external surface
55 radiofrequency (RF) coil (Schnall MD et al. 1986; Wirth ED et al. 1993; Chen Y et al. 2022). In addition, sensitivity
56 enhancement in regions near the targeted ROI can be maintained within a good range, as long as inductive coupling
57 remains larger than transmission loss (Chen Y et al. 2022). Conventionally, the teeth and ears of the rodents in the
58 rodent holder were secured by a bite bar and ear bars, respectively (Lee JH et al. 2010; Chen Y et al. 2020), in an
59 MRI-compatible stereotaxic frame. Therefore, it is particularly practical and feasible to combine the ear bars with
60 inductively coupled detectors, to enhance the detection sensitivity, especially in deep-brain regions, *e.g.*, the

61 amygdala (Hernandez CM et al. 2019) and entorhinal cortex (EC), owing to their unique locations in the rodent
62 brain (Khan UA et al. 2014) that are closer to the ear bars.

63 In addition, magnetic susceptibility artifacts are prevalent on the boundary of air-containing ear cavities in rodents
64 (Lee HL et al. 2019; Lee JY et al. 2022). Although efforts have been made to reduce susceptibility artifacts
65 (Mandeville JB et al. 1998; Li RP et al. 2015; Yoo S et al. 2020; Ryu JK et al. 2021), these efforts are mostly
66 focused on restoring lost signals in echo-planar imaging (EPI)-based blood oxygen level-dependent (BOLD) fMRI
67 images over large scales across the entire brain. It remains challenging to enable true whole-brain fMRI imaging.
68 The fMRI image signal loss at the location of EC is due to its proximity to the air-tissue interface in the ears, which
69 introduces a high level of magnetic field inhomogeneity. While the higher magnetic field strength could offer higher
70 signal sensitivity, it also exacerbates the problem of susceptibility artifacts (Farahani K et al. 1990). To the best of
71 our knowledge, there is no report on the use of standard current shims to address the pointillistic character of
72 homogeneity distortion of magnetic field near the middle ear of rat brain. Several studies have already been done
73 to reduce susceptibility artifacts. An equal-TE ultrafast 3D gradient-echo imaging method was developed to provide
74 high tolerance to magnetic susceptibility artifacts in rat cortex with optical fiber implantation at 9.4 T (Ryu JK et
75 al. 2021). The middle ear filled with air is separated from the external ear by the tympanic membrane (Li RP et al.
76 2015). When this membrane was penetrated, Fomblin Y (Li RP et al. 2015) or toothpaste (Mandeville JB et al.
77 1998) could fill the ear cavities to replace the air thus restoring susceptibility-induced MRI signal dropout. However,
78 these methods to reduce distortion and to restore signal dropout in deep brain regions in proximity to the ear cavities
79 were unsatisfactory because the fluidic Fomblin Y could not be kept in the cavities, the toothpaste is skin-irritating,
80 and the implementation procedure needs specific expertise. Therefore, it is highly desirable to have a simple, skin-
81 friendly strategy without modification of the MRI interface to restore signal dropout in deep-brain regions of
82 rodents, including EC and amygdala (Hernandez CM et al. 2019). This will allow a true whole-brain imaging
83 scheme to provide a comprehensive understanding of brain networks and function.

84 The entorhinal cortex (EC) is the interface between the hippocampus and neocortex (Fyhn M et al. 2004; Brun VH
85 et al. 2008), which together form a widespread network hub for memory, navigation, and the perception of time
86 (Witter MP and EI Moser 2006; Brun VH et al. 2008; Tsao A et al. 2018). It is a potential target of deep-brain
87 stimulation (DBS) in Alzheimer's disease (AD) patients and animal models of dementia; however, the mechanism
88 for DBS remains unclear. Studies have revealed that DBS of the EC area enhanced memory (Suthana N et al. 2012;
89 Jacobs J et al. 2016; Mankin EA and I Fried 2020) in humans. This is highly consistent with the observation in AD
90 rodent models (Xia F et al. 2017), which provides a platform for mechanistic studies, combining imaging methods
91 with cell-specific optogenetic stimulation (Zhang SJ et al. 2013; Lu Y et al. 2016; Chavoshinezhad S et al. 2021;
92 Salvan P et al. 2021; Tsoi SY et al. 2022). Functional magnetic resonance imaging (fMRI), especially, resting-state
93 fMRI (rs-fMRI) (Biswal B et al. 1995), is a useful method to noninvasively study brain-wide dynamics (Logothetis

94 NK 2008) and to provide translational knowledge between humans and animal models. Rs-fMRI has been widely
95 used in both healthy human subjects and patients and multiple animal species with various neurosurgical and
96 psychiatric disorders (Lv H et al. 2018), *e.g.*, AD. For instance, despite observed abnormalities in the default-mode
97 network (DMN) early in AD (Schwindt GC et al. 2013; Zhu DC et al. 2013; Grieder M et al. 2018), the role of EC
98 function/dysfunction within the DMN and its contributions to associated network abnormalities in AD are far less
99 explored due to the location of EC in the brain, *i.e.*, one of the deepest regions in close proximity to air-containing
100 ear cavities.

101 Hence, as a proof-of-concept demonstration, we present an animal fMRI strategy to restore EPI signal loss adjacent
102 to ear cavities and to improve MR detection sensitivity of deep brain regions, particularly in EC, by ICE (Inductively
103 Coupled Ear bars) combined with ear canal injection of baby cream. As an *in vivo* benchmark application of ICE in
104 contrast to conventional surface coil arrays, we have embedded the ICE to show a nearly 2-fold enhancement of
105 SNR in lateral EC. We evaluated this setup first by using task fMRI with electrical stimulation on the forepaw
106 followed by rs-fMRI. In the task fMRI, we observed a robust evoked BOLD signal in the primary somatosensory
107 cortex of forelimb (S1FL). In the rs-fMRI, we observed a robust DMN. Finally, we analyzed the seed-based rs-
108 fMRI connectivity maps based on the left entorhinal cortex.

109 MATERIAL AND METHODS

110 **Flexible inductively coupled ear bars design, fabrication, and in vitro validation.** Inside an MRI scanner, the
111 rat head is secured by a bite bar from the rostral side and two ear bars from the lateral sides, leaving its dorsal side
112 accessible by surface coils that are more effective for the upper half of the brain. Because of the geometrical
113 constraint imposed by the ear-fixing apparatus, the surface coil should have a diameter smaller than the head width,
114 creating a horizontal B_1 field across the edge of the surface coil (**Fig.1a**). To enhance detection sensitivity in this
115 region that corresponds to the lateral side in the lower half of the brain, an inductively coupled resonator was
116 integrated with the ear bar to replace the conventional ear bars to stabilize the head during scanning. When the
117 inductively coupled ear-bar is perpendicularly overlapping with the edge of the receiver coil, the ICE has a normal
118 axis that is parallel to the B_1 field of the surface coil, thus creating effective inductive coupling. The ear bar was
119 3D-printed to have a 9-mm flange and a 2-mm shaft. The shaft was 3 mm away from the center of the flange so that
120 when the shaft was inserted into the ear canal and fit inside a positioning hole on the cradle, the center of the flange
121 could be aligned approximately with the EC region that was about 3-mm above the ear canal. The flange had a
122 0.4-mm wide groove around its peripheral edge to accommodate the ICE circuit. To estimate the coupling efficiency
123 between the ICE and the surface coil, finite element analysis was performed by COMSOL (COMSOL Inc,
124 Stockholm, Sweden). The ICE was modeled as a 2-turn solenoid with a 9-mm diameter and a 0.5-mm pitch distance.
125 The bridge capacitance was numerically adjusted to tune the resonance frequency to 300 MHz. The surface coil (for

126 rat head) was modeled as a square loop with a 14.6-mm side length and was numerically tuned to 300 MHz by a
127 bridge capacitor. When the ICE was aligned with the edge of the surface coil and had its normal axis separated from
128 the surface coil by 10 mm (the approximate distance from the ear cavity to the top surface of the brain), the energy
129 transfer efficiency was ~74%, assuming both resonators have a reasonably large quality factor of ~50. As another
130 example, when the surface coil was modeled as a smaller square (for mouse head) with a 10-mm side length and
131 separated from the ICE's normal axis by 10 mm, the energy transfer efficiency became 66%, which was still
132 sufficient for focal signal enhancement.

133 To fabricate an ICE detector (Fig.1a), we wrapped a 32-gauge enameled copper wire around the flange for two turns
134 and self-connected the conductor leads via a zero-biased diode (BBY52, Infenion, Neubiberg, Germany). During
135 slice excitation pulses, the diode would be transiently turned on by the voltage induced across the inductor loop,
136 thus detuning the ICE away from Larmor frequency. During MR signal acquisition, the junction capacitance of the
137 diode provided the necessary capacitance to resonate the circuit around 301 MHz which was slightly above the
138 Larmor frequency of a 7 T scanner, based on the formula: $f = \frac{1}{2\pi\sqrt{LC}}$. When the ICE is approaching the rodent's
139 lateral EC region via an ear bar, its edge perpendicularly overlaps with the edge of a receiver coil (or coil array)
140 placed above the rodent's skull. As a result, the ICE's normal axis is parallel to the B_1 field of the receiver coil,
141 creating effective inductive coupling, as demonstrated by the >2-fold sensitivity gains in the SNR enhancement
142 map (Fig.1d, g, j). Owing to its proximity to the left lateral EC region, the ICE could sensitively detect regional
143 signals and inductively relay these signals to the surface coil array placed on top of the brain (Fig.2d, e).

144 **Animals.** All procedures in this study were conducted in accordance with guidelines set by the Institutional Animal
145 Care and Use Committee of Michigan State University. We developed a rat model for mixed dementia by breeding
146 the Tg344-19 rat model of AD (Cohen RM et al. 2013; Kelly SC et al. 2019) with the spontaneously hypertensive
147 stroke-prone rat (SHRSP) model of cerebrovascular small vessel disease (Yamori Y et al. 1975; Pires PW et al.
148 2015). Tg344-19 AD rats express the human mutant APPswe and PS1 Δ 9 genes under the control of the mouse prion
149 promoter (Cohen RM et al. 2013). Hemizygous Tg344-19 rats were backcrossed onto the SHRSP genetic
150 background, and the animals used in this study were the 10th generation of progeny. Transgene-positive (Tg⁺)
151 animals were confirmed by PCR analysis of DNA extracted from ear punches. The present study used a total of 9
152 Tg⁺ or Tg- mixed dementia rats (4 males, 5 females) (Kelly SC et al. 2019; Matin N et al. 2021). All animals were
153 three-in-one-housed in 12-12 hour on/off light-dark cycle conditions to assure undisturbed circadian rhythm and ad
154 libitum access to chow and water.

155 **Animal preparation for fMRI.** Animals were first anesthetized with 5% isoflurane in a chamber and kept with 2%
156 isoflurane with a nose cone during injection of baby cream (Fig.2a shows the product photo, Dist. By Meijer
157 Distribution, INC, Grand Rapids, MI USA). The ingredients are 41% Petrolatum, and the rest are mineral oil, ceresin,

158 lanolin alcohol, panthenol glycerin, and bisabolol. 0.1 - 0.2 mL baby cream was needed to fulfill each ear cavity to
159 recover signal loss and reduce noise contamination. The detailed experimental procedure is demonstrated in
160 Supplementary Movie 1. Subsequently, the animal was administered by an initial bolus of subcutaneous injection
161 of dexmedetomidine (0.1 mg/kg, NDC 44567-600-04, WG Critical Care, USA). The isoflurane was then
162 discontinued, and the animal was transferred to the scanner with dexmedetomidine (0.1 mg/kg/h) delivered
163 subcutaneously. The animal's body temperature, arterial oxygen saturation level, and respiration rates were
164 monitored and maintained within normal ranges when the animal was inside the scanner. Spontaneous respiration
165 rate typically ranged from 50 to 70 breaths per minute during rs-fMRI image acquisition.

166 **MRI acquisition.** All images were acquired with a 7 T/16 cm aperture-bore small-animal scanner (Bruker BioSpin,
167 Billerica, MA). A 72-mm quadrature volume coil and a ¹H receive-only 2 × 2 brain surface array coil (RF ARR 300
168 1H R. BR. 2 × 2 RO AD) were used to transmit and receive magnetic resonance signals, respectively. The console
169 of the Bruker system adjusted the RF pulse attenuation automatically for individual rats.

170 Functional images (**Fig.2d, e**) were acquired with a 2D gradient-echo EPI (GE-EPI) sequence with the following
171 parameters: time of echo (TE) = 20 ms, time of repetition (TR) = 1 s, the field of view (FOV) = 2.6 cm × 2.6 cm ×
172 1.6 cm, matrix size = 52 × 52 × 32, voxel size = 0.5 mm × 0.5 mm × 0.5 mm, Flip angle: 90°, Bandwidth: 333 kHz.
173 Each rs-fMRI scan has the same parameters as the task fMRI and acquired 900-time points over 15 mins. We
174 performed electrical stimulation on the left forepaw (5 Hz, 4 s, 333 μ s width, 2 mA) (**Fig.3a**) in blocks. Specifically,
175 the block design paradigm included 10-s pre-stimulation, 4-s stimulation, and 11-s intervals, *i.e.*, 15 s for each epoch
176 and 8 epochs for a full trial (2 m 10 s), as shown in **Fig.S5a**.

177 We applied a higher-resolution (100 μ m) 2D RARE sequence to acquire 32 coronal slices with the same geometry
178 as fMRI images, to accurately identify the left lateral EC in the coronal plane, with the following parameters: TR =
179 4200 ms, TE = 24 ms, Echo Spacing = 12 ms, FOV = 2.6 cm × 2.6 cm, matrix = 260 × 260, resolution
180 = 100 μ m × 100 μ m, slice thickness = 0.5 mm, RARE factor = 4 and signal averaging = 2.

181 **Immunohistochemistry** Post-fixed brain hemispheres were transferred to 15% sucrose in 0.1 M phosphate buffer
182 until saturated, then 30% sucrose in 0.1 M phosphate buffer until saturated. Brains were frozen on dry ice and
183 sectioned at a 40 μ m thickness in a 1:12 series in the coronal plane using a freezing-sliding microtome (American
184 Optical, Buffalo, NY). Serial sections were processed for immunohistochemistry using the 6F/3D mouse
185 monoclonal amyloid-beta antibody (1:50; ThermoFisher, Waltham, MA) to visualize amyloid plaque pathology.

186 **Data analysis.** All signal processing and analyses were implemented in MATLAB software (Mathworks, Natick,
187 MA), FMRIB Software Library (FSL), and Analysis of Functional NeuroImages software (AFNI, NIH, USA). For
188 evoked fMRI analysis of **Fig.2d, e**, **Fig.S3**, and **S4**, to generate BOLD functional maps, we applied pre-processing

189 steps including motion correction, image registration, time course normalization, and averaged fMRI datasets from
190 multiple trials for each animal. The regression analysis of the hemodynamic response function (HRF) was based on
191 the BLOCK function of the linear program 3dDeconvolve in AFNI. BLOCK (d, 1) computes a convolution of a
192 square wave of duration d and makes a peak amplitude of block response = 1. To compute the evoked BOLD
193 changes, ROI was defined based on the SIGMA Atlas: the right primary somatosensory area (Barriere DA et al.
194 2019).

195 For resting-state fMRI analysis (**Fig.4d**, **Fig.5**, and **Fig.S6**), the rs-fMRI processing pipelines using independent
196 component analysis (ICA) and seed-based analyses are shown in **Fig.S5b**. The pre-processing procedures followed
197 those commonly used protocol in rat rs-fMRI data (spikes, motion-correction, slice-timing correction, and spatial
198 blurring) (Hsu LM, X Liang, H Gu, JK Brynildsen, JA Stark, JA Ash, CP Lin, H Lu, et al. 2016; Nasrallah FA et
199 al. 2016; Chuang KH et al. 2019; Liu Y et al. 2020; Pradier B et al. 2021; Jung WB et al. 2022), including motion
200 correction, despike, spatial blurring, and 0.001-0.1 Hz bandpass filtering in AFNI. Then we conducted the ICA
201 analysis with 60 components using MELODIC in FSL to identify and remove non-neural artefacts (Griffanti L et
202 al. 2014; Griffanti L et al. 2017). Previous rodent fMRI studies from different research groups used ICA proposed
203 an IC number of 30 (Zerbi V et al. 2015), 40 (Lu HB et al. 2012), and 50 (Liu Y et al. 2020), and even up to 100
204 (Mechling AE et al. 2016) for mice connectome. In this study, to separate noise components from detailed regions
205 without splitting functionally connected networks, we used 60 components. With the references from FSL (Griffanti
206 L et al. 2014; Griffanti L et al. 2017), we classified the IC component manually as a noise component if it included
207 the following features: spatially, it is located predominately at ventricles, brain boundaries, or white matters;
208 spectrally, the frequency spectrum is dominated by ultra-low (<0.01 Hz) or high (>0.15 Hz) frequency; temporally,
209 there were sudden jumps in the time course. Then these noise components were regressed out from the time courses.
210 Spatial registration was conducted using the following procedure. First, EPI rs-fMRI images were co-registered to
211 the anatomical RARE images from the same rat using ‘align_epi_anat.py’ from AFNI (Glen DR et al. 2020). Second,
212 the T2-weighted images of all subjects were averaged to generate a rat brain template. Then, this template was
213 registered to the SIGMA rat brain template (Barriere DA et al. 2019). Third, after denoising these components,
214 fMRI data from each rat in the first step were aligned to the SIGMA rat brain templates using the co-registration
215 parameters obtained previously. The SIGMA atlases (Barriere DA et al. 2019) were used to define seeds and
216 different regions for the seed-based analysis. Posterior cingulate cortex and lateral EC were selected as seeds to
217 correlate the whole-brain fMRI in **Fig.4d** and **Fig.5**, respectively.

218 To compare the image sensitivity in enhanced versus unenhanced regions, we calculated SNR according to the
219 following formula:

$$SNR_j = \frac{\overline{SI_j}}{\sigma_{background}}$$

220

221 where $\overline{SI_j}$ stands for the average signal intensity in the regions of interest labeled by j , indicating enhanced or
 222 unenhanced regions, and $\sigma_{background}$ stands for the standard deviation of background signal intensity in the
 223 difference image.

224 **RESULTS**

225 **Design, characterization, and *ex vivo* evaluation of the ICEs**

226 To evaluate the sensitivity enhancement capability of the ICE, we first acquired control images using a phased array
 227 coil placed above a 21-mm water tube that was secured inside the cradle by ear bars from the contralateral sides
 228 (**Fig.1a**). We repeated the image acquisition twice and calculated the SNR map (**Fig.1b,c,h**) by dividing the average
 229 signal intensity of each voxel with the standard deviation of background signal intensity in the different images.
 230 Then, we replaced the left ear bar with the ICE and pressed its flange surface against the outer surface of the glass
 231 tube. Based on this detection configuration, we acquired another set of images using the same parameters and
 232 calculated the SNR map again (**Fig.1c,f,i**). Owing to effective inductive coupling, the ICE can “attract” the B1 field
 233 into the circular plane and concentrate magnetic flux, leading to focal sensitivity enhancement. This signal
 234 enhancement capability was visualized by the calculated ratio between the SNR maps obtained in the presence and
 235 absence of ICE (*i.e.*, *Enhancement ratio* = $SNR_{ICE}/SNR_{No\ ICE}$). As shown in **Fig.1d,g,j**, the ICE can enhance detection
 236 sensitivity by >2-fold for regions up to 2 mm away from the sample tube’s surface. For a distance separated up to
 237 5 mm from the surface, the ICE can gain at least 20% improvement in detection sensitivity. This effective range is
 238 more than enough to cover the EC area in brain limbic regions when the ICE is pressed against the rat’s ear.

239 ***In vivo* evaluation of baby cream and ICEs with restored BOLD fMRI mapping in rat brains**

240 After applying baby cream in the ears (**Fig.2a**, more detailed procedure in Methods and Movie S1), ICE was
 241 evaluated *in vivo* to measure enhanced MRI signal in the left (**Fig.2**) or right (**Fig.S1**) hemisphere. First, introduction
 242 of the baby cream through a blunt tubing puncture into the middle ear allows restoration of GE-EPI signal loss
 243 induced by magnetic susceptibility mismatch (**Fig.2a**). Because the baby cream is solid inside the ear, no plug was
 244 needed to keep it from leaking out, thus simplifying experimental procedures. The baby cream was used to fill the
 245 right middle ear cavity and ear canal, but none was used in the left ear. Compared to the restored EPI signals in the
 246 right hemisphere, part of the lateral hypothalamus, most of the EC, and the entire amygdala in the left hemisphere
 247 are affected by the susceptibility artifacts (**Fig.2b,c**). **Fig.2d** shows representative EPI images (upper row,
 248 parameters in Methods) and RARE images (lower row, parameters in Methods). As expected, the signal restoration

249 in the EPI images shows negligible influence on anatomical RARE images (**Fig.2e**). Noteworthily, both tympanic
250 membranes (eardrum; myringa) were penetrated when the baby cream was injected into the middle cavity and ear
251 canal in both ears, and thus led to minimal auditory responses due to the MRI scanner acoustic noise. The damage
252 of tympanic membranes will limit applications in some chronic studies.

253 Next, a 9-mm single loop ICE was used to replace the left ear bar beneath the Bruker commercial surface coil array
254 to compare the SNR of deep regions in two hemispheres (**Fig.3a**). By relaying locally detected MR signals to the
255 external coil array, the ICE can enlarge the effective detection area on the left hemisphere and homogenize the
256 image intensity between the bottom and top parts of the left cortex, leading to focal intensity enhancement in the
257 left entorhinal cortex, as observed in the anatomical RARE MR images (**Fig.3b**, yellow arrows). In contrast, because
258 the ICE is absent on the right side, the top part of the right cortex remains to have higher intensity than the bottom
259 part. It is noteworthy that no modifications to the scanner signal interface were required. The focal signal intensity
260 in ROI 1 with the ICE in the left hemisphere was significantly higher than that of ROI 2 in the right hemisphere
261 without ICE (**Fig.3b, c**), and vice versa when the right ear bar was replaced by the ICE (**Fig.S1a**). It is noteworthy
262 that the ICE could cover a large width along the anterior-posterior direction (particularly for paraflocculus in the
263 cerebellum, **Fig.S1b**) and the ventral-dorsal direction (**Fig.S2**). This setup allows enhanced fMRI image signals for
264 restored functional connectivity in rat brains.

265 **Evaluation of the feasibility of ICE at the fMRI platform with tasked and rs-fMRI**

266 After replacing the ear bars with two ICEs, we next tested the complexity and stability for animal experiments by
267 measuring whole-brain fMRI signal with electrical stimulation on the left forepaw and then rs-fMRI connectivity
268 in anesthetized rats (**Fig.4**). The brain activation pattern upon left forepaw electrical stimulation is presented in
269 **Fig.4b**, showing robust BOLD fMRI signals in the forelimb area of the primary somatosensory cortex of (S1FL).
270 **Fig.4c** shows the temporal evolution of the BOLD signals in the S1FL with the averaged time courses acquired at
271 different stimulation intensities, pulse frequencies, and pulse durations. Functional patterns obtained under various
272 stimulation parameters are demonstrated in **Fig.S3, S4a**. It is also noteworthy that ICEs ensure highly comparable
273 activation patterns across different animals as shown in results from five individual rats (**Fig.S3, S4a**). **Fig.S4b**
274 shows activation in the S2 and S1FL in the other hemispheres from two representative rats. With respect to rs-fMRI,
275 seed-based connectivity analysis of the DMN was conducted, following ICA to denoise the fMRI data (**Fig.S5**,
276 details in Methods) and alignment with the SIGMA rat brain atlas (Barriere DA et al. 2019). As shown in **Fig.4d**,
277 highly correlated regions include the orbitofrontal cortex, prelimbic cortex, anterior cingulate cortex, auditory
278 cortex, hippocampus, posterior parietal cortex, and retrosplenial cortex. Though these results did not demonstrate
279 advantage of reduced susceptibility artifact nor increased sensitivity for task and DMN from rs-fMRI, these results
280 are highly consistent with reports from other researchers (Lu HB et al. 2012; Hsu LM, X Liang, H Gu, JK Brynildsen,

281 JA Stark, JA Ash, CP Lin, HB Lu, et al. 2016; Tudela R et al. 2019; Pradier B et al. 2021; Jung WB et al. 2022;
282 Lambers H et al. 2022), providing strong evidence for highly reliable detection of BOLD fMRI signals under
283 experimental conditions without any modification or complication of the experimental procedure.

284 **Seed-based correlation map of the left lateral EC with ICE for AD animal studies**

285 Grandjean and colleagues first reported optogenetics on excitatory neurons in EC-based whole brain task-fMRI in
286 mice (Salvan P et al. 2021; Mandino F et al. 2022), but to the best of our knowledge, no studies have been performed
287 in the resting state due to the limited MRI sensitivity in the EC region. To demonstrate the capability of our novel
288 ICEs in rs-fMRI studies, we analyzed the seed-based rs-fMRI connectivity maps of the left lateral EC in rats to
289 generate the first reported lateral EC-based rs-fMRI study in rats. As shown in **Fig.5a**, the EC is located at the
290 caudal end of the temporal lobe in rodents (Khan UA et al. 2014). Due to its diverse heterogeneous projections, we
291 first confirmed and delineated the extent of amyloid- β deposition in brain slices from the rats used in this study.
292 **Fig.5a** shows a representative coronal section and **Fig.5b** demonstrates the highly correlated Z-score normalized
293 time courses from the left lateral EC and the anterior cingulated cortex (ACC). Then we chose the region with
294 prominent amyloid- β deposition as the seed to correlate the voxel-wise fMRI signals in a whole brain scale based
295 on the SIGMA rat brain atlas (Barriere DA et al. 2019). Highly consistent with other studies (Vismer MS et al. 2015;
296 Desikan S et al. 2018), we observed correlations not only in the local EC region, Amygdala hippocampal Area
297 (**Fig.5c**), but also in Prefrontal Cortex, Prelimbic Cortex, ACC, Medio Lateral Secondary Visual Cortex, Medio
298 Medial Secondary Visual Cortex, Primary Motor Cortex, and Secondary Motor Cortex (**Fig.5c**). It is noteworthy
299 that the connectivity to posterior cingulate cortex is not significantly strong (**Fig.5c** and **S6**), this may result from
300 the heterogeneous projections of EC to different subregions of cingulate cortex. These seed-based whole-brain
301 connectivity patterns from the left lateral EC in rats warrant further studies on the dysfunction of the EC in AD for
302 future studies.

303 **DISCUSSION**

304 We developed the ICE in combination with the baby cream injection to increase fMRI detection sensitivity in deep
305 brain regions and this strategy has several advantages for rodent brain research. First, it is noteworthy that the baby
306 cream allows easier access and matching solidity to effectively reduce susceptibility artifacts. This feature is
307 particularly desirable on a preclinical scanner whose limited bore size precludes the incorporation of extra hardware
308 for localized shim coils (Hsu JJ and GH Glover 2005; Stockmann JP et al. 2022). Compared to human scanners that
309 have a larger number of artifact reduction protocols based on Z-shimming or RF pulse tailoring (Cho ZH and YM
310 Ro 1992; Stenger VA et al. 2000; Yip CY et al. 2006), the pulse sequences available on a pre-clinical scanner are
311 relatively basic, making our baby cream strategy desirable to implement. A simple injection of baby cream into the

ear canal can already enable connectivity mapping across most brain regions, including deep brain regions such as EC and amygdala (Campolongo P et al. 2009). Second, the BOLD fMRI with lower structure contrast and spatial resolution are registered to the high-resolution anatomical images for group analysis. With the signal dropout restored by ICE and baby cream, the whole-brain boundary could be used as a landmark to co-register activation maps (Sydekum E et al. 2009). This is particularly helpful to keep signals after averaging in the small nuclei that are affected dramatically by the quality of image registration. Without this highly desirable feature, image registration becomes less accurate. Finally, as shown in **Fig.3b** and **Fig.S2**, the ICE could increase the SNR across a range of brain regions, notably, without any modification of the MRI scanner interface or complication of the experimental setup. When the ICE is applied to various transgenic AD rodent lines (Sturchler-Pierrat C et al. 1997; Wiesmann M et al. 2017; Dawson TM et al. 2018; Gotz J et al. 2018; Baglietto-Vargas D et al. 2021), it will provide a highly promising imaging platform for fMRI studies in both healthy and diseased animal models.

Extensive studies have revealed the critical role that EC plays in AD, while functional characterization of EC has been limited by the lack of effective imaging modalities for *in vivo* whole-brain imaging with high SNR in deep brain regions. Functional ultrasound is an emerging promising tool with proper sensitivity and resolution, but when taking into consideration the *in vivo* whole-brain, non-invasive, and translational value of fMRI, there is still a need and value to optimize the fMRI method. However, due to the long distance separating deep brain regions and the surface coil placed above the skull, as well as susceptibility artifacts induced by the air in the ear cavity, it remains extremely challenging to study the functional role the EC plays in AD using fMRI. The EC is less explored in both patients and AD animal models compared to the widely investigated DMN hubs (Schwindt GC et al. 2013; Zhu DC et al. 2013; Grieder M et al. 2018; Rauchmann BS et al. 2021) in cortex or subcortical regions, *e.g.*, hippocampus. From a structural perspective with MRI anatomical imaging, Jessen and colleagues reported a mean EC volume reduction of 18% in patients with subjective memory impairment, 26% in patients with mild cognitive impairment, and 44% in patients with AD (Jessen F et al. 2006). From the molecular perspective, Khan and colleagues have found that the lateral EC was particularly sensitive to tau and amyloid pathology and that lateral EC dysfunction could spread to the parietal cortex (Khan UA et al. 2014) and recently it was shown that EC layer II contains reelin-positive projection neurons, underscoring the established linkage between reelin dysfunction and plaque and tangle pathologies (Kobro-Flatmoen A et al. 2021). The imaging scheme of ICE with baby cream makes it possible to establish EC-based connectivity in animals (**Fig.5**), bringing a missing piece to study the EC-mediated whole-brain connectivity in AD rodent models. More detailed analysis for in-depth EC activity and connectivity in different animal groups are underway, which will be reported in our future work. Our methodology may provide new insights into different EC connectivity patterns in healthy and AD animals, enabling us to search for novel preclinical fMRI biomarkers for AD.

Several limitations about the usage of ICE should be considered when interpreting the results of this study and for future optimization of the ICE for animal fMRI. First, the ICE increases focal sensitivity by “attracting” magnetic flux through its circular plane, thus redistributing B1 across the entire sample. This also means the focal sensitivity is increased near the ICE but at the cost of sensitivity decreases in regions far away from the ICE. For example, when the ICE is placed against the bottom left surface of the sample (e.g. in Figs.1c and 3b), signal intensities in the left hemisphere become comparable between the lower and the upper regions while the right hemisphere has higher intensity only in its upper part. However, the limited FOV of an individual ICE can be overcome by incorporating another ICE on the right side to increase the coverage area, enabling sensitivity gain on both sides of the sample. To ensure sensitivity enhancement for a certain detection depth, we need to adjust the diameter of ICE to approximately twice the desired detection depth. Based on our empirical experience with rats with body weight 200-400g, the current ICE design with a diameter of 9 mm has a larger brain parenchyma coverage with the signal enhancement in the smaller rats (Fig.1). We anticipate that for a larger rat with a long distance between the brain parenchyma and the skin, the size of ICE would be scaled proportionally to keep a similar level of SNR enhancement over a conventional surface array. Similarly, for mouse studies, it will be necessary to re-design a smaller ICE with matching geometrical parameters. This is undergoing with our current project, which is to fabricate an inductively coupled detector that could both increase SNR for MR imaging and also be applied for mice studies. Second, because the materials used for the 3D printing are UV-curable photopolymer, they could not be as stiff as the ear bars made of carbon fiber. Therefore, for awake animal studies, there is still room for improvement from the material perspective for the inductively coupled ear bars. It is also worth pointing out that in rare occasions if a rat wakes up during scanning and struggles violently, the ICE can be bent and broken. In addition, due to difficulties in applying baby cream to awake animals, the application of this study remains limited in awake fMRI studies (Gao YR et al. 2017; Desjardins M et al. 2019; Tsurugizawa T et al. 2020; Gutierrez-Barragan D et al. 2022; Zeng H et al. 2022). Thus, measurements were performed only under a well-controlled anesthetic condition. Third, once the tympanic membranes are penetrated, the baby cream in the ear cavity is difficult to completely remove after experiments. The residual cream could attenuate the acoustic effect induced by EPI gradient switching sounds but may affect animal behaviors. Pain medication after penetration of the tympanic membrane should be applied in unanesthetized animals. For application scenarios when ear-filling is not desirable (e.g., in longitudinal studies) the ICE itself can still improve detection sensitivity for brain regions near the ear cavity because these regions are vulnerable to susceptibility artifacts. Moreover, if preclinical scanners can eventually have access to the more sophisticated techniques that are only available on clinical scanners, such as Z-shimming or RF pulse tailoring (Cho ZH and YM Ro 1992; Stenger VA et al. 2000; Yip CY 336 et al. 2006) without the using of the baby cream to fill the ear cavities, the ICE can further improve their performance. All these effects should be taken into consideration, therefore limiting this methodology for longitudinal studies. Lastly, although the ICE has a 2-fold and obvious SNR enhancement in regions adjacent to the skull, such as the EC and the paraflocculus in the cerebellum, its passive

378 coupling limits the effective enhancement depth, leading to no SNR improvement in regions farther away from the
379 skull, such as the lateral hypothalamus, ventral tegmental area, etc. In the future, it will be worthwhile to explore
380 the Wirelessly Amplified NMR Detector (Qian C et al. 2012) with the ear bar to actively amplify MRI signals,
381 leading to improved effective detection range with an additional >3-fold sensitivity gains over the passive coupling
382 in deeper brain regions.

383 CONCLUSIONS

384 In summary, we have implemented novel ICEs in the 7 T scanner to yield high-resolution structural and functional
385 images of the rat brain by reducing susceptibility-induced signal loss in functional MRI. The ICE-based mapping
386 scheme enables EC-driven brain connectivity studies with a simplified experimental setup, providing opportunities
387 to further study EC in AD animal models using fMRI coupled with additional modalities such as optogenetics and
388 calcium recordings. This setup could also be applied in other deep brain fMRI studies suffering from susceptibility
389 artifacts in both healthy and diseased rodent studies.

390 **Data availability.** The data supporting this study's findings are available from the following site:
391 <https://openneuro.org/datasets/ds004797>.

392 **Code availability.** The related image processing codes are available from the following site
393 <https://openneuro.org/datasets/ds004797>.

394 **Competing interests.** The authors declare no competing interests.

395 ACKNOWLEDGEMENTS

396 This research was supported by NIH RF1NS113278-01, RF1NS128611-01 (XY and CQ), NIH R01AG060731-A1
397 (SEC), NIH R21AG074514-01(AMD), NIH R01-HL-13769401 (AMD), R01AG057571 (DCZ) and by the
398 Division of Electrical, Communications and Cyber Systems of the National Science Foundation under award
399 number 2144138 (CQ). This project has received funding from the European Union Framework Program for
400 Research and Innovation Horizon 2020 (2014-2020) under the Marie Skłodowska-Curie Grant Agreement
401 No.896245. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the
402 author(s) and do not necessarily reflect the views of the funding agencies.

403 References

404 Baglietto-Vargas D, Forner S, Cai L, Martini AC, Trujillo-Estrada L, Swarup V, Nguyen MMT, Do Huynh K, Javonillo
405 DI, Tran KM, Phan J, Jiang S, Kramar EA, Nunez-Diaz C, Balderrama-Gutierrez G, Garcia F, Childs J, Rodriguez-Ortiz
406 CJ, Garcia-Leon JA, Kitazawa M, Shahnawaz M, Matheos DP, Ma X, Da Cunha C, Walls KC, Ager RR, Soto C, Gutierrez

407 A, Moreno-Gonzalez I, Mortazavi A, Tenner AJ, MacGregor GR, Wood M, Green KN, LaFerla FM. 2021. Generation
408 of a humanized Abeta expressing mouse demonstrating aspects of Alzheimer's disease-like pathology. *Nat*
409 *Commun.* 12:2421.

410 Barriere DA, Magalhaes R, Novais A, Marques P, Selingue E, Geffroy F, Marques F, Cerqueira J, Sousa JC,
411 Boumezbeur F, Bottlaender M, Jay TM, Cachia A, Sousa N, Meriaux S. 2019. The SIGMA rat brain templates and
412 atlases for multimodal MRI data analysis and visualization. *Nat Commun.* 10:5699.

413 Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional Connectivity in the Motor Cortex of Resting Human
414 Brain Using Echo-Planar MRI. *Magnet Reson Med.* 34:537-541.

415 Brun VH, Leutgeb S, Wu HQ, Schwarcz R, Witter MP, Moser EI, Moser MB. 2008. Impaired spatial representation
416 in CA1 after lesion of direct input from entorhinal cortex. *Neuron.* 57:290-302.

417 Campolongo P, Rozendaal B, Trezza V, Hauer D, Schelling G, McGaugh JL, Cuomo V. 2009. Endocannabinoids in
418 the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory.
419 *Proc Natl Acad Sci U S A.* 106:4888-4893.

420 Chavoshinezhad S, Zibaii MI, Seyed Nazari MH, Ronaghi A, Asgari Taei A, Ghorbani A, Pandamooz S, Salehi MS,
421 Valian N, Motamedi F, Haghparast A, Dargahi L. 2021. Optogenetic stimulation of entorhinal cortex reveals the
422 implication of insulin signaling in adult rat's hippocampal neurogenesis. *Prog Neuropsychopharmacol Biol*
423 *Psychiatry.* 111:110344.

424 Chen Y, Sobczak F, Pais-Roldan P, Schwarz C, Koretsky AP, Yu X. 2020. Mapping the Brain-Wide Network Effects by
425 Optogenetic Activation of the Corpus Callosum. *Cerebral Cortex.* 30:5885-5898.

426 Chen Y, Wang Q, Choi S, Zeng H, Takahashi K, Qian CQ, Yu X. 2022. Focal fMRI signal enhancement with implantable
427 inductively coupled detectors. *Neuroimage.* 247.

428 Cho ZH, Ro YM. 1992. Reduction of susceptibility artifact in gradient-echo imaging. *Magn Reson Med.* 23:193-200.

429 Chuang KH, Lee HL, Li Z, Chang WT, Nasrallah FA, Yeow LY, Singh K. 2019. Evaluation of nuisance removal for
430 functional MRI of rodent brain. *Neuroimage.* 188:694-709.

431 Cohen RM, Rezai-Zadeh K, Weitz TM, Rentsendorj A, Gate D, Spivak I, Bholat Y, Vasilevko V, Glabe CG, Breunig JJ,
432 Rakic P, Davtyan H, Agadjanyan MG, Kepe V, Barrio JR, Bannykh S, Szekely CA, Pechnick RN, Town T. 2013. A
433 transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric Abeta, and frank
434 neuronal loss. *J Neurosci.* 33:6245-6256.

435 Dawson TM, Golde TE, Lagier-Tourenne C. 2018. Animal models of neurodegenerative diseases. *Nat Neurosci.*
436 21:1370-1379.

437 Desikan S, Koser DE, Neitz A, Monyer H. 2018. Target selectivity of septal cholinergic neurons in the medial and
438 lateral entorhinal cortex. *P Natl Acad Sci USA.* 115:E2644-E2652.

439 Desjardins M, Kilic K, Thunemann M, Mateo C, Holland D, Ferri CGL, Cremonesi JA, Li B, Cheng Q, Weldy KL, Saisan
440 PA, Kleinfeld D, Komiyama T, Liu TT, Bussell R, Wong EC, Scadeng M, Dunn AK, Boas DA, Sakadzic S, Mandeville JB,
441 Buxton RB, Dale AM, Devor A. 2019. Awake Mouse Imaging: From Two-Photon Microscopy to Blood Oxygen Level-
442 Dependent Functional Magnetic Resonance Imaging. *Biol Psychiatry Cogn Neurosci Neuroimaging.* 4:533-542.

443 Farahani K, Sinha U, Sinha S, Chiu LC, Lufkin RB. 1990. Effect of field strength on susceptibility artifacts in magnetic
444 resonance imaging. *Comput Med Imaging Graph.* 14:409-413.

445 Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. 2004. Spatial representation in the entorhinal cortex. *Science.*
446 305:1258-1264.

447 Gao YR, Ma Y, Zhang Q, Winder AT, Liang Z, Antinori L, Drew PJ, Zhang N. 2017. Time to wake up: Studying
448 neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. *Neuroimage.* 153:382-398.

449 Glen DR, Taylor PA, Buchsbaum BR, Cox RW, Reynolds RC. 2020. Beware (Surprisingly Common) Left-Right Flips in
450 Your MRI Data: An Efficient and Robust Method to Check MRI Dataset Consistency Using AFNI. *Front Neuroinform.*
451 14:18.

452 Gotz J, Bodea LG, Goedert M. 2018. Rodent models for Alzheimer disease. *Nat Rev Neurosci.* 19:583-598.

453 Grieder M, Wang DJJ, Dierks T, Wahlund LO, Jann K. 2018. Default Mode Network Complexity and Cognitive
454 Decline in Mild Alzheimer's Disease. *Front Neurosci.* 12:770.

455 Griffanti L, Douaud G, Bijsterbosch J, Evangelisti S, Alfaro-Almagro F, Glasser MF, Duff EP, Fitzgibbon S, Westphal
456 R, Carone D, Beckmann CF, Smith SM. 2017. Hand classification of fMRI ICA noise components. *Neuroimage*.
457 154:188-205.

458 Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ, Douaud G, Sexton CE, Zsoldos E, Ebmeier KP, Filippini
459 N, Mackay CE, Moeller S, Xu J, Yacoub E, Baselli G, Ugurbil K, Miller KL, Smith SM. 2014. ICA-based artefact removal
460 and accelerated fMRI acquisition for improved resting state network imaging. *Neuroimage*. 95:232-247.

461 Gutierrez-Barragan D, Singh NA, Alvino FG, Coletta L, Rocchi F, De Guzman E, Galbusera A, Ubaldi M, Panzeri S,
462 Gozzi A. 2022. Unique spatiotemporal fMRI dynamics in the awake mouse brain. *Curr Biol*. 32:631-644 e636.

463 Hernandez CM, Orsini CA, Labiste CC, Wheeler AR, Ten Eyck TW, Bruner MM, Sahagian TJ, Harden SW, Frazier CJ,
464 Setlow B, Bizon JL. 2019. Optogenetic dissection of basolateral amygdala contributions to intertemporal choice in
465 young and aged rats. *Elife*. 8.

466 Hsu JJ, Glover GH. 2005. Mitigation of susceptibility-induced signal loss in neuroimaging using localized shim coils.
467 *Magn Reson Med*. 53:243-248.

468 Hsu LM, Liang X, Gu H, Brynildsen JK, Stark JA, Ash JA, Lin CP, Lu H, Rapp PR, Stein EA, Yang Y. 2016. Constituents
469 and functional implications of the rat default mode network. *Proc Natl Acad Sci U S A*. 113:E4541-4547.

470 Hsu LM, Liang X, Gu H, Brynildsen JK, Stark JA, Ash JA, Lin CP, Lu HB, Rapp PR, Stein EA, Yang YH. 2016. Constituents
471 and functional implications of the rat default mode network. *P Natl Acad Sci USA*. 113:E4541-E4547.

472 Jacobs J, Miller J, Lee SA, Coffey T, Watrous AJ, Sperling MR, Sharan A, Worrell G, Berry B, Lega B, Jobst BC, Davis
473 K, Gross RE, Sheth SA, Ezzyat Y, Das SR, Stein J, Gorniak R, Kahana MJ, Rizzuto DS. 2016. Direct Electrical Stimulation
474 of the Human Entorhinal Region and Hippocampus Impairs Memory. *Neuron*. 92:983-990.

475 Jessen F, Feyen L, Freymann K, Tepest R, Maier W, Heun R, Schild HH, Scheef L. 2006. Volume reduction of the
476 entorhinal cortex in subjective memory impairment. *Neurobiol Aging*. 27:1751-1756.

477 Jung WB, Jiang H, Lee S, Kim SG. 2022. Dissection of brain-wide resting-state and functional somatosensory circuits
478 by fMRI with optogenetic silencing. *Proc Natl Acad Sci U S A*. 119.

479 Kelly SC, McKay EC, Beck JS, Collier TJ, Dorrance AM, Counts SE. 2019. Locus Coeruleus Degeneration Induces
480 Forebrain Vascular Pathology in a Transgenic Rat Model of Alzheimer's Disease. *J Alzheimers Dis*. 70:371-388.

481 Khan UA, Liu L, Provenzano FA, Berman DE, Profaci CP, Sloan R, Mayeux R, Duff KE, Small SA. 2014. Molecular
482 drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease. *Nat Neurosci*.
483 17:304-311.

484 Kobro-Flatmoen A, Lagartos-Donate MJ, Aman Y, Edison P, Witter MP, Fang EF. 2021. Re-emphasizing early
485 Alzheimer's disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. *Ageing Res
486 Rev*. 67.

487 Lambers H, Wachsmuth L, Thomas D, Boumezbeur F, Hoesker V, Pradier B, Faber C. 2022. Fiber-based lactate
488 recordings with fluorescence resonance energy transfer sensors by applying an magnetic resonance-informed
489 correction of hemodynamic artifacts. *Neurophotonics*. 9:032212.

490 Lee HL, Li Z, Coulson EJ, Chuang KH. 2019. Ultrafast fMRI of the rodent brain using simultaneous multi-slice EPI.
491 *Neuroimage*. 195:48-58.

492 Lee JH, Durand R, Gradinariu V, Zhang F, Goshen I, Kim DS, Fenno LE, Ramakrishnan C, Deisseroth K. 2010. Global
493 and local fMRI signals driven by neurons defined optogenetically by type and wiring. *Nature*. 465:788-792.

494 Lee JY, You T, Lee CH, Im GH, Seo H, Woo CW, Kim SG. 2022. Role of anterior cingulate cortex inputs to
495 periaqueductal gray for pain avoidance. *Curr Biol*. 32:2834-2847 e2835.

496 Li RP, Liu XP, Sidabras JW, Paulson ES, Jesmanowicz A, Nencka AS, Hudetz AG, Hyde JS. 2015. Restoring
497 Susceptibility Induced MRI Signal Loss in Rat Brain at 9.4 T: A Step towards Whole Brain Functional Connectivity
498 Imaging. *Plos One*. 10.

499 Liu Y, Perez PD, Ma Z, Ma Z, Dopfel D, Cramer S, Tu W, Zhang N. 2020. An open database of resting-state fMRI in
500 awake rats. *Neuroimage*. 220:117094.

501 Logothetis NK. 2008. What we can do and what we cannot do with fMRI. *Nature*. 453:869-878.

502 Lu HB, Zou QH, Gu H, Raichle ME, Stein EA, Yang YH. 2012. Rat brains also have a default mode network. *P Natl
503 Acad Sci USA*. 109:3979-3984.

504 Lu Y, Zhong C, Wang L, Wei P, He W, Huang K, Zhang Y, Zhan Y, Feng G, Wang L. 2016. Optogenetic dissection of
505 ictal propagation in the hippocampal-entorhinal cortex structures. *Nat Commun*. 7:10962.

506 Lv H, Wang Z, Tong E, Williams LM, Zaharchuk G, Zeineh M, Goldstein-Piekarski AN, Ball TM, Liao C, Wintermark
507 M. 2018. Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know. *Am J
508 Neuroradiol*. 39:1390-1399.

509 Mahesh M. 2013. The Essential Physics of Medical Imaging, Third Edition. *Med Phys*. 40.

510 Mandeville JB, Marota JJA, Kosofsky BE, Keltner JR, Weissleder R, Rosen BR, Weisskoff RM. 1998. Dynamic
511 functional imaging of relative cerebral blood volume during rat forepaw stimulation. *Magnet Reson Med*. 39:615-
512 624.

513 Mandino F, Yeow LY, Bi RZ, Sejin L, Bae HG, Baek SH, Lee CY, Mohammad H, Horien C, Teoh CL, Lee JH, Lai MKP,
514 Jung S, Fu Y, Olivo M, Gigg J, Grandjean J. 2022. The lateral entorhinal cortex is a hub for local and global
515 dysfunction in early Alzheimer's disease states. *J Cerebr Blood F Met*. 42:1616-1631.

516 Mankin EA, Fried I. 2020. Modulation of Human Memory by Deep Brain Stimulation of the Entorhinal-Hippocampal
517 Circuitry. *Neuron*. 106:218-235.

518 Matin N, Fisher C, Lansdell TA, Hammock BD, Yang J, Jackson WF, Dorrance AM. 2021. Soluble epoxide hydrolase
519 inhibition improves cognitive function and parenchymal artery dilation in a hypertensive model of chronic cerebral
520 hypoperfusion. *Microcirculation*. 28:e12653.

521 Mechling AE, Arefin T, Lee HL, Bienert T, Reisert M, Ben Hamida S, Darcq E, Ehrlich A, Gaveriaux-Ruff C, Parent MJ,
522 Rosa-Neto P, Hennig J, von Elverfeldt D, Kieffer BL, Harsan LA. 2016. Deletion of the mu opioid receptor gene in
523 mice reshapes the reward-aversion connectome. *Proc Natl Acad Sci U S A*. 113:11603-11608.

524 Nasrallah FA, To XV, Chen DY, Routtenberg A, Chuang KH. 2016. Functional connectivity MRI tracks memory
525 networks after maze learning in rodents. *Neuroimage*. 127:196-202.

526 Pires PW, Jackson WF, Dorrance AM. 2015. Regulation of myogenic tone and structure of parenchymal arterioles
527 by hypertension and the mineralocorticoid receptor. *Am J Physiol Heart Circ Physiol*. 309:H127-136.

528 Pradier B, Wachsmuth L, Nagelmann N, Segelcke D, Kreitz S, Hess A, Pogatzki-Zahn EM, Faber C. 2021. Combined
529 resting state-fMRI and calcium recordings show stable brain states for task-induced fMRI in mice under combined
530 ISO/MED anesthesia. *Neuroimage*. 245:118626.

531 Qian C, Yu X, Chen D, Dodd S, Bouraoud N, Pothayee N, Chen Y, Beeman S, Bennett K, Murphy-Boesch J, Koretsky
532 A. Wireless Amplified NMR Detector (WAND) for high resolution MRI of internal organs: Preclinical demonstration
533 in a rodent model. *Radiology*. 268:228-236.

534 Rauchmann BS, Ersoezlue E, Stoecklein S, Keeser D, Brosseron F, Buerger K, Dechent P, Dobisch L, Ertl-Wagner B,
535 Fliessbach K, Haynes JD, Heneka MT, Incesoy EI, Janowitz D, Kilimann I, Laske C, Metzger CD, Munk MH, Peters O,
536 Priller J, Ramirez A, Roeske S, Roy N, Scheffler K, Schneider A, Spottke A, Spruth EJ, Teipel S, Tscheuschler M,
537 Vukovich R, Wagner M, Wilfong J, Yakupov R, Duezel E, Jessen F, Perneczky R, group Ds, the Alzheimer's Disease
538 Neuroimaging I. 2021. Resting-State Network Alterations Differ between Alzheimer's Disease Atrophy Subtypes.
539 *Cereb Cortex*. 31:4901-4915.

540 Ryu JK, Jung WB, Yu J, Son JP, Lee SK, Kim SG, Park JY. 2021. An equal-TE ultrafast 3D gradient-echo imaging
541 method with high tolerance to magnetic susceptibility artifacts: Application to BOLD functional MRI. *Magn Reson
542 Med*. 85:1986-2000.

543 Salvan P, Lazari A, Vidaurre D, Mandino F, Johansen-Berg H, Grandjean J. 2021. Frequency modulation of
544 entorhinal cortex neuronal activity drives distinct frequency-dependent states of brain-wide dynamics. *Cell Rep*.
545 37:109954.

546 Schnall MD, Barlow C, Subramanian VH, Leigh JS. 1986. Wireless Implanted Magnetic-Resonance Probes for Invivo
547 Nmr. *J Magn Reson*. 68:161-167.

548 Schwindt GC, Chaudhary S, Crane D, Ganda A, Masellis M, Grady CL, Stefanovic B, Black SE. 2013. Modulation of
549 the default-mode network between rest and task in Alzheimer's Disease. *Cereb Cortex*. 23:1685-1694.

550 Stenger VA, Boada FE, Noll DC. 2000. Three-dimensional tailored RF pulses for the reduction of susceptibility
551 artifacts in T¹(*)-weighted functional MRI. *Magn Reson Med.* 44:525-531.

552 Stockmann JP, Arango NS, Witzel T, Mareyam A, Sappo C, Zhou J, Jenkins L, Craven-Brightman L, Milshteyn E,
553 Davids M, Hoge WS, Sliwiak M, Nasr S, Keil B, Adalsteinsson E, Guerin B, White JK, Setsompop K, Polimeni JR, Wald
554 LL. 2022. A 31-channel integrated "AC/DC" B(0) shim and radiofrequency receive array coil for improved 7T MRI.
555 *Magn Reson Med.* 87:1074-1092.

556 Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Burki K, Frey P,
557 Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staufenbiel M, Sommer B. 1997. Two amyloid precursor
558 protein transgenic mouse models with Alzheimer disease-like pathology. *Proc Natl Acad Sci U S A.* 94:13287-13292.

559 Suthana N, Haneef Z, Stern J, Mukamel R, Behnke E, Knowlton B, Fried I. 2012. Memory enhancement and deep-
560 brain stimulation of the entorhinal area. *N Engl J Med.* 366:502-510.

561 Sydekum E, Baltes C, Ghosh A, Mueggler T, Schwab ME, Rudin M. 2009. Functional reorganization in rat
562 somatosensory cortex assessed by fMRI: elastic image registration based on structural landmarks in fMRI images
563 and application to spinal cord injured rats. *Neuroimage.* 44:1345-1354.

564 Tsao A, Sugar J, Lu L, Wang C, Knierim JJ, Moser MB, Moser EI. 2018. Integrating time from experience in the lateral
565 entorhinal cortex. *Nature.* 561:57-62.

566 Tsoi SY, Oncul M, Svahn E, Robertson M, Bogdanowicz Z, McClure C, Surmeli G. 2022. Telencephalic outputs from
567 the medial entorhinal cortex are copied directly to the hippocampus. *Elife.* 11.

568 Tsurugizawa T, Tamada K, Ono N, Karakawa S, Kodama Y, Debacker C, Hata J, Okano H, Kitamura A, Zalesky A,
569 Takumi T. 2020. Awake functional MRI detects neural circuit dysfunction in a mouse model of autism. *Sci Adv.*
570 6:eaav4520.

571 Tudela R, Munoz-Moreno E, Sala-Llonch R, Lopez-Gil X, Soria G. 2019. Resting State Networks in the TgF344-AD
572 Rat Model of Alzheimer's Disease Are Altered From Early Stages. *Front Aging Neurosci.* 11.

573 Vismer MS, Forcelli PA, Skopin MD, Gale K, Koubeissi MZ. 2015. The piriform, perirhinal, and entorhinal cortex in
574 seizure generation. *Front Neural Circuit.* 9.

575 Wiesmann M, Roelofs M, van der Lugt R, Heerschap A, Kiliaan AJ, Claassen JA. 2017. Angiotensin II, hypertension
576 and angiotensin II receptor antagonism: Roles in the behavioural and brain pathology of a mouse model of
577 Alzheimer's disease. *J Cereb Blood Flow Metab.* 37:2396-2413.

578 Wirth ED, Mareci TH, Beck BL, Fitzsimmons JR, Reier PJ. 1993. A Comparison of an Inductively-Coupled Implanted
579 Coil with Optimized Surface Coils for in-Vivo Nmr Imaging of the Spinal-Cord. *Magnet Reson Med.* 30:626-633.

580 Witter MP, Moser EI. 2006. Spatial representation and the architecture of the entorhinal cortex. *Trends Neurosci.*
581 29:671-678.

582 Xia F, Yiu A, Stone SSD, Oh S, Lozano AM, Josselyn SA, Frankland PW. 2017. Entorhinal Cortical Deep Brain
583 Stimulation Rescues Memory Deficits in Both Young and Old Mice Genetically Engineered to Model Alzheimer's
584 Disease. *Neuropsychopharmacol.* 42:2493-2503.

585 Yamori Y, Horie R, Handa H, Sato M, Okamoto K. 1975. Proceedings: Studies on stroke in stroke-prone
586 spontaneously hypertensive rats (SHRSP). (I). Local factor analysis on stroke. *Jpn Heart J.* 16:329-331.

587 Yip CY, Fessler JA, Noll DC. 2006. Advanced three-dimensional tailored RF pulse for signal recovery in T²-weighted
588 functional magnetic resonance imaging. *Magn Reson Med.* 56:1050-1059.

589 Yoo S, Song H, Kim SG, Shim WM, Lee SK. 2020. Feasibility of head-tilted brain scan to reduce susceptibility-
590 induced signal loss in the prefrontal cortex in gradient echo-based imaging. *Neuroimage.* 223:117265.

591 Zeng H, Jiang Y, Beer-Hammer S, Yu X. 2022. Awake Mouse fMRI and Pupillary Recordings in the Ultra-High
592 Magnetic Field. *Front Neurosci.* 16:886709.

593 Zerbi V, Grandjean J, Rudin M, Wenderoth N. 2015. Mapping the mouse brain with rs-fMRI: An optimized pipeline
594 for functional network identification. *Neuroimage.* 123:11-21.

595 Zhang SJ, Ye J, Miao C, Tsao A, Cerniauskas I, Ledergerber D, Moser MB, Moser EI. 2013. Optogenetic dissection
596 of entorhinal-hippocampal functional connectivity. *Science.* 340:1232627.

597 Zhu DC, Majumdar S, Korolev IO, Berger KL, Bozoki AC. 2013. Alzheimer's disease and amnestic mild cognitive
598 impairment weaken connections within the default-mode network: a multi-modal imaging study. *J Alzheimers Dis.*
599 34:969-984.

600

601

602 Figure Caption

603 **Fig.1.** Evaluation of inductive-coupled ear bars with EPI in phantoms. (a) The schematic diagram (left),
604 the cartoon (right), and the real picture (middle) of an inductive coupler mounted on the flange of an ear
605 bar for *in vitro* experimental setup. The ICE circuit consists of a loop inductor (labeled in red) connected
606 in series with a zero-biased diode whose junction capacitance is utilized to resonate the circuit. The
607 resonance frequency can be empirically adjusted by varying the turns and diameter of the loop inductor.
608 Normally, more turns and larger diameters would lead to larger inductance and thus smaller resonance
609 frequency. When the ICE plane is perpendicularly overlapping with the edge of the receiver coil (green),
610 the ICE's normal axis is parallel to the B_1 field of the receiver coil, creating effective inductive coupling.
611 (b-j): The left column is SNR maps obtained from Echo Planar Images acquired by the arrayed coil placed
612 above the sample tube, based on the following parameters: TE = 20 ms, TR = 1 s, FOV = $26 \times 26 \times 16$
613 mm³. The middle column is SNR maps acquired with an additional ICE pressed against the left wall of
614 the sample tube, using the same acquisition parameters. The right column of the SNR enhancement ratio
615 was obtained by dividing SNR maps in the middle column with SNR maps in the left column. (f) was
616 acquired through the slice passing through the center axis of ICE, while (c) and (i) were acquired through
617 the slices with 2-mm off-sets from the center position.

618 **Fig.2.** Restored EPI signals in deep-brain regions with baby cream. (a) These pictures show the tip of the
619 blunt tubing used to puncture the tympanic membrane and to introduce baby cream into the middle ear.
620 (b) These pictures show representative EPI (upper row) and temporal signal-to-noise ratio (tSNR) maps
621 (lower row) (voxel size = $0.5 \times 0.5 \times 0.5$ mm³, TR = 1 s) without baby cream from a representative animal.
622 White arrows demonstrate the susceptibility-induced EPI signal loss. (c) These pictures show
623 representative EPI (upper row) and tSNR (lower row) (voxel size = $0.5 \times 0.5 \times 0.5$ mm³, TR = 1 s) affected
624 by the baby cream. Magenta arrows demonstrate the restored EPI signals in the right hemisphere with
625 baby cream infusion in the right ear, while white arrows demonstrate the susceptibility-induced EPI signal
626 loss in the left hemisphere. (d) These pictures show EPI (upper two rows) and RARE images (lower two
627 rows) (pixel size = 0.1 mm \times 0.1 mm, thickness 0.5 mm) from a representative animal with baby cream
628 placed in the right ear and none in the left ear. (e) The image signal profile demonstrates the EPI signal
629 restoration in the right hemisphere following baby cream injection, while the ear cavity has negligible
630 influence on the image quality of RARE from a representative animal. The white arrow indicates the
631 susceptibility artifacts.

632 **Fig. 3.** ICE increased the SNR in EC. (a) 2D schematic of ICE placement (blue arrow) in contrast to
633 standard ear bar (red arrow). (b) Example of RARE images with enhanced MRI signal due to ICE in the
634 left hemisphere and without enhancement in the right hemisphere. (c) Significantly increased focal signal
635 intensity in ROI 1 with the ICE placed on the left side compared to the signal intensity in ROI 2 where
636 the right hemisphere has no ICE (* $p < 0.05$, paired samples t-test, $n = 4$ animals).

637 **Fig.4.** BOLD fMRI responses induced with left forepaw electrical stimulation and DMN rs-fMRI
638 functional connectivity in dementia rats. (a) 2D schematic of bilateral ICE placement (blue arrows). (b)
639 Evoked BOLD fMRI maps show activation in S1FL following tactile stimulation of the left forepaw ($n =$
640 5 animals). GLM-based t-statistics in AFNI are used. P (corrected) < 0.001 . (c) (left) Averaged tracing of
641 S1FL BOLD signal evolution over the time course upon forepaw stimulation ($n = 5$ animals). (right) Mean
642 BOLD signal alterations from a representative rat following various stimulation intensities (1, 1.5, 2, 2.5,
643 3 mA, 3 Hz, 4 s, 333 μ s pulse width), frequencies (1, 2, 3, 5, 10 Hz, 2 mA, 4 s, 333 μ s pulse width), and
644 durations (1, 2, 4, 6 s, 3 Hz, 2 mA, 333 μ s pulse width). (d). Default-mode network (DMN) shown in color
645 overly on the SIGMA rat brain atlas (Barriere DA et al. 2019), as constructed from the seed-based analysis
646 of rs-fMRI data, with ICEs replacing conventional ear bars and with baby cream fulfilled in middle ears
647 ($n = 5$ animals). Significant clusters include brain Regions “1” (Orbitofrontal Cortex), “2” (Prelimbic
648 Cortex), “3” (Anterior Cingulate Cortex), “4” (Auditory Cortex), “5” (Hippocampus), “6” (Posterior
649 Parietal Cortex), “7” (Retrosplenial Cortex) and “8” (Visual Cortex V1/V2).

650 **Fig.5.** Left lateral EC-based whole-brain connectivity. (a) Amyloid- β deposition with antibodies in the
651 brain slice and anatomical location of the entorhinal cortex in a representative rat. (b) Normalized time
652 courses from two highly correlated regions from a representative rat, left lateral EC as seed region with
653 ICEs in place, as the blue arrow shows the ROI in (c) and ACC (red line), as the red arrow shows the ROI
654 in (d). (c) Left lateral EC-based rs-fMRI connectivity maps show the local connectivity in the EC region
655 and Amygdala hippocampal Area in a mixed dementia rat model ($n = 5$ animals). The correlation maps
656 indicate strong connectivity to “1” Prefrontal Cortex, “2” Prelimbic Cortex, “3” Anterior Cingulated
657 Cortex, “4” Secondary Motor Cortex, “5” Primary Motor Cortex, “6” Medio Medial Secondary Visual
658 Cortex, and “7” Medio Lateral Secondary Visual Cortex based on SIGMA rat brain atlas (Barriere DA et
659 al. 2019).

660