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Summary

Numerous studies have shown reduced performance of plants surrounded by neighbors of
the same species'?, a phenomenon known as conspecific negative density dependence
(CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical
than temperate forests*®, increasing community stabilization, species coexistence, and local
tree species diversity®’. Recent analyses supporting such a latitudinal gradient in CNDD?8*°
have suffered from methodological limitations related to the use of static data'®-'2. Here, we
present the first comprehensive assessment of latitudinal CNDD patterns using dynamic
mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across
species, we found stabilizing CNDD at all except one site, but average CNDD was not
stronger toward the tropics. However, in tropical tree communities, rare and intermediate
abundant species experienced stronger CNDD than common species, a pattern absent in
temperate forests, suggesting that CNDD more strongly influences species abundances in
tropical forests'. We also found that interspecific variation in CNDD, which may attenuate its
stabilizing effect on species diversity'*'5, was high but not significantly different across
latitudes. Although the consequences of these patterns for latitudinal diversity gradients are
difficult to evaluate, we speculate that a more effective regulation of population abundances
could translate into greater stabilization of tropical tree communities and thus contribute to

the high local diversity of tropical forests.
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Main text

Explaining patterns of diversity across space and time is a fundamental goal of ecology®.
Among those patterns, the latitudinal gradient in tree species diversity is particularly
striking'”. A prominent explanation for the exceptionally high local diversity in tropical moist
forests is that their temporally stable and productive conditions allow natural enemies, i.e.
herbivores and pathogens, to be more specialized and damaging®'8, with the result that
conspecific neighbors — by virtue of their shared natural enemies — exert more negative
effects on a target tree individual than do heterospecific neighbors'®. Together with
intraspecific resource competition, specialized enemies can act as a stabilizing
mechanism?°, often referred to as conspecific negative density dependence (CNDD?3), that
should prevent the dominance of any particular tree species and therefore allow species
coexistence®’2122, First proposed by Janzen and Connell five decades ago*®, CNDD
mediated by specialized enemies is one key hypothesis for explaining the maintenance of

greater local tree species diversity in tropical forests?324.

After several decades of research, it is well established that CNDD is widespread in both
tropical and temperate forests’2. Nevertheless, its effect on community composition and
large-scale biodiversity patterns is still debated?526. Meta-analyses on CNDD, mostly based
on seed and seedling survival in field experiments, have found no variation in CNDD with
latitude 22327 possibly because of limited comparability among studies?. The few studies
that have directly examined large-scale geographical variation in CNDD have assessed
larger tree sizes and reported a pronounced increase in CNDD with decreasing latitude?®.
However, these latitudinal CNDD patterns have been attributed to statistical artefacts related
to the use of static data'®-122829, As a result, there is still no conclusive evidence if and how

CNDD differs between tropical and temperate forests.

Here, we analyze latitudinal CNDD patterns using dynamic forest inventory data (i.e.,

longitudinal tree survival data from repeated censuses, Extended Data Table 1) from 23
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large (6-52 ha) forest sites from the ForestGEO network?°, covering a gradient from the
tropics to the temperate zone (Fig. 1). We employed recently developed best-practice
statistical methods for measuring and comparing CNDD and making inferences about
stabilization and species coexistence (Methods) 192531, We fitted flexible species-site-specific
mortality models and quantified CNDD as the relative change in mortality probability of small
trees (trees with a diameter-at-breast-height [DBH] = 1 and < 10 cm) induced by a small
perturbation in conspecific density while keeping total densities (both measured as basal
area) constant (‘stabilizing CNDD’) 2° (Methods). By adjusting for total density, our estimate
of ‘stabilizing CNDD’ is equivalent to the difference between CNDD and heterospecific
negative density dependence (HNDD) in previous studies®3? and serves as a proxy for the
frequency dependence of population growth rates33. We then aggregated estimates of
stabilizing CNDD and patterns therein using multilevel meta-regressions to account for the
different uncertainties in CNDD estimates resulting from different sample sizes among
species®*. Using this framework, we assessed latitudinal patterns in (i) the average strength
of stabilizing CNDD (Fig. 2), (ii) its effects on species abundances (Fig. 3) and (iii) its
interspecific variability (Fig. 4), thereby testing three predictions (each described in a section
below) arising from the hypothesis that CNDD is more influential for maintaining local tree

species diversity in the tropics.

No latitudinal trend in average CNDD

According to the Janzen-Connell hypothesis, the average strength of stabilizing CNDD
across species should become greater at lower latitudes*524, but we found no support for
this hypothesis, although stabilizing CNDD was widespread. Averaged across species,
mortality of small trees increased with conspecific density at all but one site (Figs. 1 and 2,
CNDD < 0 for Santa Cruz), with an average relative mortality increase of 6.64% when
increasing conspecific density from the first to the third quantile for each species (95%
confidence interval (Cl): 2.80 to 10.62%; Extended Data Fig. 1). However, when comparing

the strength of CNDD across latitude, we found no trend. In the tropics, a perturbation in



141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

Hulsmann et al.

conspecific density (expressed by one additional conspecific neighbor with a DBH of 2 cm at
1 m distance; Methods ‘Quantification of conspecific density dependence’) led to a relative
increase in annual mortality probability by 0.41% (0.31 to 0.51% CI; calculated at 11.75°
absolute latitude; Fig. 2). In temperate forests, the corresponding value was 0.26% (0.06 to
0.47% CI; calculated at 45° absolute latitude). While the increase in mortality is slightly less
in temperate than tropical forests, the association of CNDD with latitude was not statistically
significant (p = 0.17, assessed through meta-regression, Table 1a) and the absolute change
in CNDD with latitude was small relative to the variation in CNDD across species and

abundances (see next subsections, Figs. 1, 3 and 4).

The lack of a latitudinal gradient in average CNDD was statistically robust (see Methods
‘Robustness tests’). When tree status (alive or dead) or conspecific densities were
randomized, our analysis pipeline of mortality models and meta-regression revealed neither
spurious CNDD nor noteworthy patterns of CNDD across latitudes (Extended Data Fig. 2a
and Extended Data Table 2). Moreover, we obtained qualitatively the same result, i.e., no
latitudinal trend in average species CNDD, also when statistically influential species were
removed from the meta-regression (Extended Data Fig. 3a and Extended Data Table 2) and
when two alternative definitions of CNDD were analyzed (Extended Data Figs. 4a and 5a
and Extended Data Table 3). These alternative definitions were calculated as (1) the
absolute change in mortality, which we consider less relevant for fithess, but which may
nevertheless be instructive if base mortality rates are independent of latitude, and (2) the
(relative) change in mortality at low conspecific densities, following the invasion criterion for

coexistence, which refers to a species’ ability to increase in abundance when rare3®.

Our results corroborate previous studies that found stabilizing CNDD (i.e., the negative effect
of being close to conspecifics) to be widespread across forest tree communities’?, but they
do not support previous reports of a pronounced latitudinal gradient in average CNDD?3?°.
This discrepancy can be explained by various factors, including our focus on mortality rather

than recruitment. We argue that our use of robust statistical methods and dynamic rather
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than static data'®-1228.36 js more reliable than previous analyses, suggesting that a latitudinal
gradient in average CNDD at the sapling stage is absent or at least weaker than previously

reported.

Stronger CNDD for rare tropical species

A second pattern that has been interpreted as indicating more effective stabilizing control of
species abundances and thus community structure by CNDD is stronger CNDD for rare
species®®1321.37 Consistent with this, we found a striking latitudinal difference in the
association between species abundance and stabilizing CNDD when expanding the meta-
regression to include species abundance and allowing the relationship with abundance to be
moderated by latitude (p = 0.017 of the interaction, Table 1b). In tropical tree communities,
CNDD decreased significantly with species abundance (p = 9.5x1078, Fig. 3a) where CNDD
was stronger for rare species (0.76%, 0.59 to 0.92% CI, for a species with an abundance of
1 tree per hectare) and weaker for common species (0.30%, 0.19 to 0.40% ClI, for a species
with an abundance of 100 trees per hectare). With increasing latitude, this association
weakened. In temperate forests, there was no significant relationship between species
abundance and CNDD (p = 0.72, Fig. 3a), and CNDD was actually slightly higher for
common species (0.27%, 0.07 to 0.47 ClI) than for rare species (0.18%, -0.33 to 0.69% ClI).
From these patterns it follows that CNDD of rare and intermediate abundance species is
stronger in tropical than in temperate forests (p = 0.018 and p = 0.043 for species with an
abundance of 1 and 10 trees per hectare, respectively, Fig. 3b), while CNDD of common
species shows no latitudinal gradient (p = 0.77 for species with an abundance of 100 trees

per hectare).

Although associations between CNDD and species abundance have been reported in
previous studies, all but one study® analyzed CNDD at only a single site, mostly in tropical
forests. Of these, some reported stronger CNDD for rare species®38, others showed stronger

CNDD for common species?®3, and still others showed no association*?. We attribute these



194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

Hulsmann et al.

apparently inconsistent previous results to strong between-site variability, which is evident in
our data as well (Fig. 1). Our multi-site approach allows us to see past the noise and detect
the signal of a large-scale pattern of stronger CNDD for rare versus common species in the
tropics, but not in the temperate zone (Fig. 3a). The use of dynamic data also allows us to
make more statistically robust inferences about CNDD and its association with species
abundance''-'? (Extended Data Figs. 2b,c, 3b,c, 4b,c, and 5b,c and Extended Data Tables 2
and 3). Our study thus provides stronger evidence than previously available that a
correlation between CNDD and species abundance exists in tropical but not temperate

forests.

We believe that the most likely explanation for the latitudinal change in the correlation
between stabilizing CNDD and species abundance is that CNDD is more effective at
controlling tree species abundances in the tropics®2132137 To challenge this interpretation,
we sought alternative explanations for the observed pattern. In particular, we considered life
history strategies, which can correlate with both species rarity and CNDD'341-43 (see
Supplementary Fig. 1a,b) and could thus act as a confounder. However, accounting for life
history strategies (approximated by species’ demographic rates, maximum size, i.e., stature,
or tradeoffs therein) in the meta-regression, however, did not change the association
between CNDD and species abundance in the tropics (Extended Data Table 4), ruling out
those factors as important confounders. In addition to confounding, the observed pattern
could also arise under reverse causality, where species abundance controls CNDD. A
possible mechanism could be that pathogen loads for common species saturate in space,
thus rendering local variation in conspecific density inconsequential for infection and hence

mortality probabilities.

CNDD varies considerably between species

Recent theoretical studies have suggested that interspecific variation in CNDD can increase

competitive differences or the risk of local extinctions from demographic stochasticity and
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thus reduce or even reverse the diversity-enhancing effects of CNDD'4', Thus, if
interspecific CNDD variation was lower in tropical than temperate forests, this would provide
another avenue whereby CNDD could contribute to latitudinal differences in local tree

species diversity. No previous study, however, has empirically quantified this pattern.

To test for latitudinal differences in interspecific variation in CNDD, we used meta-
regressions fitted separately for each site to estimate the mean and the latent (true) standard
deviation of species-specific CNDD. Crucially, this approach allows us to distinguish
interspecific variation in CNDD from sampling uncertainty, i.e. random sampling error of
CNDD estimates®*. We then calculated the coefficient of variation (CV) of CNDD per site and
analyzed latitudinal patterns therein. However, interspecific variation of CNDD, quantified as
CV, showed no significant association with latitude (p = 0.69, Fig. 4a). Interestingly, though,
we found that the standard deviation of CNDD was of a similar magnitude to community
average CNDD across the forest sites (Fig. 4a,b), implying CV on the order of 1. In
simulation studies’ 5, CNDD settings with CV > 0.4 have tended to reduce rather than
stabilize species diversity (see Methods ‘Stable coexistence and interspecific variation in
CNDD’). Among the 22 sites where species on average exhibited CNDD (all except the
Santa Cruz site), this threshold (CV > 0.4) was exceeded at all but three sites (exceptions:
Barro Colorado Island, La Planada and Wabikon). We note, however, that there are several
reasons why the CV parameters in the simulation models cannot be directly matched to our
empirical estimates. One of them is that temporal variability in CNDD, possibly caused by
fluctuations of herbivore and pathogen populations, may inflate the empirically measured CV

above its long-term average .

Discussion

Our results support the conclusion of numerous previous studies that effects of conspecific
neighbors on tree survival tend to be negative (CNDD) 2. Contrary to long-held ecological

conjectures, however, we found a latitudinal gradient consistent with the Janzen-Connell
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hypothesis in only one of the CNDD patterns we tested. Most strikingly, the average strength
of CNDD did not increase toward the tropics (Fig. 2, Table 1a). In addition, tree species in
tropical communities did not experience more homogenous levels of CNDD than temperate
ones (Fig. 4a), which theoretically could have led to more effective stabilization through
reduced fitness differences in the tropics'+15. However, we did find that CNDD correlates
with species rarity in tropical but not temperate forests (Fig. 3, Table 1b), which suggests
that CNDD may play a stronger role in structuring species abundance distributions in the
tropics. The drivers and implications of stronger CNDD for rare to intermediate abundant

species in tropical versus temperate forests merit closer consideration.

Assuming that species abundances are at least partly controlled by CNDD, the association
of strong CNDD with species rarity in the tropics may be interpreted as an indication of more
efficient control of tropical tree species abundances through self-limitation?'37, despite
average CNDD being comparable across latitudes. This interpretation is broadly consistent
with the ideas of Janzen and Connell — with the nuance that the effects of specialized
enemies are not necessarily stronger overall in the tropics but have greater effectiveness in
controlling species abundances and thus potentially community assembly. A possible
explanation for why species abundances are less effectively controlled by CNDD in
temperate forests is that other mechanisms, such as alternative stabilizing mechanisms,
dispersal, immigration, and disturbances, are stronger in temperate forests and override the
effects of CNDD'44. We caution, however, that such a direct causal link and its direction
between CNDD and species rarity remains to be established. While we ruled out
confounding by differences in life history strategy (Extended Data Table 4), the possibility of
other unobserved confounding effects or reverse causality remains and should be explored

in future studies.

Our finding that rarer species experience stronger CNDD in the tropics (Fig. 3a) and
therefore CNDD weakens for species at rare and intermediate abundances towards the

temperate zone (Fig 3b) motivates further research targeted at the underlying mechanisms.
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Identifying these mechanisms and showing that their effects differ between the tropical and
temperate zone could provide strong independent evidence for the idea that CNDD
regulates tropical species abundances. This would require first a better understanding of
how specialized natural enemies and resource competition generate CNDD*® and how
CNDD interacts with other processes (e.g., facilitation*?), and then comparisons of these
mechanisms in coordinated global experiments*’. A further consideration is that species
abundances are controlled by processes occurring throughout the entire demographic cycle,
not only by mortality during the sapling life stage, as considered here. It is possible that
CNDD analyses of other vital rates and life stages, particularly earlier ones, would lead to
stronger CNDD and different patterns and conclusions?°, because the interaction between
ontogenetic and demographic processes may change with latitude. This possibility could be
explored using dynamic seedling data along latitudinal gradients, ideally with good coverage
of temperate tree species, which are naturally less represented in latitudinal studies. By
accumulating CNDD estimates across different vital rates and life stages, we could also
move closer to the ultimate goal of estimating CNDD in a species’ overall fithess and

population growth rate?235.

We found high interspecific variation in CNDD at all latitudes (Fig. 4a) which, based on
recent simulation studies, would be high enough to offset the stabilizing effect of CNDD at
the community level?'415. We believe that there is an urgent need to better understand the
effect of CNDD on community stability and coexistence in the presence of interspecific,
spatial, and temporal variability. Interspecific variation in CNDD has been linked to species-
specific characteristics such as mycorrhizal type*® and life history strategy*', as well as to
population-level diversity of pathogen resistance genes*, but likely our estimate of
interspecific variation also reflects temporal variation due to complex host-enemy dynamics
and resource competition in varying environments*°. Future empirical and theoretical
analyses should investigate in more detail the conditions under which interspecific variation

in CNDD weakens or reverses the stabilizing effect of CNDD on species diversity and
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whether the competitive disadvantage associated with stronger CNDD may be offset by
functional traits or life history strategies®335°. For example, there are indications that trees of
species with stronger CNDD grow faster*' (but cf. Extended Data Table 4), which may result

in faster population growth when a species is rare®’.

In the context of the Janzen-Connell hypothesis, we interpret our results as partial support
for the idea that CNDD contributes to the latitudinal gradient in tree species diversity. More
specifically, our results suggest a novel, refined interpretation of this classic idea: the
influence of specialized natural enemies, and more broadly intraspecific resource
competition, may not be stronger on average in tropical than temperate forests, but their
effects may exert stronger controls on species abundances in the tropics. Therefore, we
speculate that unless interspecific variability in CNDD overrides its stabilizing effect, CNDD

may contribute more strongly to the maintenance of local tree species diversity in the tropics.
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Tables

Table 1 | Estimates from the meta-regressions testing the first and second
hypothesized latitudinal pattern in stabilizing conspecific negative density
dependence (CNDD) in tree mortality. We fitted two models for the species-site-specific
CNDD estimates (n = 2534 species or species groups from 23 forest sites): (a) absolute
latitude as a predictor (‘average species CNDD model’), and (b) absolute latitude, species
abundance, and their interaction as predictors (‘abundance-mediated CNDD model’).
Species abundance was measured by log-transformed number of trees with DBH =1 cm per
hectare. Predictors were transformed (t), i.e., centered at abundance = 1 tree per hectare
and absolute latitude = 11.75°, so that main effects for abundance and latitude assess
slopes and respective significance tests for rare, tropical species. Stabilizing CNDD is
defined as in Fig. 1. For the models, CNDD estimates (rAMEs) were log-transformed after
adding 1 to improve normality assumptions, so that CNDD as the relative change in annual
mortality probability in percent induced by one additional conspecific neighbor can be
calculated from the model coefficients as 100 x (efo+fr*- — 1) Predictions of the models
are shown in Figs. 2 and 3. g, and g, are the estimated standard deviations of random

intercepts for CNDD among sites and species in sites, respectively.

Model Characteristic Beta 95% CI' p-value
ié)r‘;‘l\:)vlserage species intercept 0.004067 06900035(27022, 2.9 x 105
: : zzz;j tLatitude -0.000044 _06?00000100175 0.17
intercept 0.007527 00'900059817803’ 5.3x 10"

b) gz;gdance'mediated tLatitude -0.000172 -o.gggggsé . 0.018
Z : 2:23;: tAbundance -0.000990 -0'8(.)015;:2}; 9.5 x 10
tLatitude:tAbundance 0.000035 0.000006, 0.017

0.000064
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Figures

Fig. 1 | Estimated stabilizing conspecific negative density dependence (CNDD) in tree
mortality plotted against species abundance at the 23 forest plots, along with plot
locations. Points in small panels indicate CNDD estimates and abundances (number of
trees with DBH =1 cm per hectare) of individual species or species groups. Larger point
sizes indicate lower uncertainty (i.e., variance) in CNDD estimates. Points in dark grey
indicate effects that are statistically significantly different from zero (with a = 0.05). Circles
are individual species; diamonds are rare species analyzed jointly as groups of rare trees or
rare shrubs. Because of the high variation in CNDD estimates, not all species-specific
estimates can be shown, but the proportion of data that is represented by the estimates
outside the plotting area is indicated for each site. The regression lines, 95% confidence
intervals and p-values are based on meta-regression models fitted independently per site
(except for the Zofin site, where too few estimates were available). Dashed horizontal lines
indicate zero stabilizing CNDD. Locations of forest sites and CNDD-abundance relationships
are colored by latitude (gradient from tropical forests in red-orange to subtropical forests in
yellow-green and temperate forests in blue). Stabilizing CNDD is defined as the relative
change (in %) in annual mortality probability (relative average marginal effect rAME) induced
by a small perturbation in conspecific density (i.e., one additional conspecific neighbor with
DBH =2 cm at 1 m distance) while keeping total densities constant. Positive numbers
indicate a relative increase in mortality with an increase in conspecific density, i.e.,

conspecific negative density dependence (CNDD).
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Fig. 2 | Evaluation of the first hypothesized pattern, i.e. the average strength of
stabilizing CNDD across species becomes greater toward the tropics. The estimated
relationship of stabilizing CNDD to absolute latitude indicates that average species CNDD
does not become significantly stronger toward the tropics (p = 0.17). The regression line and
95% confidence intervals are predictions from the meta-regression model fitted with species-
site-specific CNDD estimates (n = 2534 species or species groups from 23 forest sites)
including absolute latitude as a predictor (‘mean species CNDD model’; see Table 1a). Grey
points are mean CNDD estimates per forest site from meta-regressions fitted separately for
each forest site without predictors (as in Fig. 4); note that the points are not the direct data
basis for the regression line. The dashed horizontal line indicates zero stabilizing CNDD.
Stabilizing CNDD is defined as in Fig. 1; for alternative definitions of CNDD see Extended

Data Figs. 4 and 5.
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Fig. 3 | Evaluation of the second hypothesized pattern, i.e., CNDD more strongly
regulates species abundances and thus community structure in the tropics. The
estimated relationship of stabilizing CNDD to absolute latitude and species abundance
indicates that species-specific CNDD is considerably stronger for rare than for common
species in tropical forests (p = 0.018), while species in subtropical and temperate forests
show no statistically significant association of CNDD with species abundance (p = 0.24 and
0.72, respectively) (a). Consequently, stabilizing CNDD of species with low abundance
(here, 1 tree per hectare) is stronger in tropical than in temperate forests, while CNDD of
species with high abundance (here, 100 trees per hectare) shows no latitudinal gradient (b).
Note that a caveat to the comparison in (b) is that species abundance distributions and total
community abundance change with latitude so that an abundance of 1 tree per hectare is not
necessarily biologically comparable across latitude. The regression lines and 95%
confidence intervals are predictions from the meta-regression model (n = 2534 species or
species groups from 23 forest sites) including absolute latitude, species abundance, and
their interaction as predictors (‘abundance-mediated CNDD model’; see Table 1b).
Predictions in (a) are shown for the centers of three latitudinal geographic zones, with the
tropical zone ranging between 0 and 23.5° absolute latitude, the subtropical between 23.5
and 35°, and the temperate between 35 and 66.5°. Species abundance is quantified as the
log-transformed number of trees per hectare. Confidence intervals and p-values are
obtained by refitting the model with data centered at the respective latitude or abundance
value. Dashed horizontal lines indicate zero stabilizing CNDD. Stabilizing CNDD is defined

as in Fig. 1; for alternative definitions of CNDD see Extended Data Figs. 4 and 5.
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Fig. 4 | Evaluation of the third hypothesized pattern, i.e., interspecific variation in
stabilizing CNDD decreases toward the tropics. Coefficients of variation (CV = standard
deviation / mean) per forest site showed no statistically significant latitudinal pattern (p =
0.69) but were on average greater than what theory suggests as a maximum for stable
coexistence (CV > 0.4, dotted horizonal line; see Methods ‘Stable coexistence and
interspecific variation in CNDD’) 1415 at all but three sites (Barro Colorado Island, La Planada
and Wabikon) (a) due to large differences among species at comparatively weak CNDD (b).
Mean CNDD and interspecific variation in CNDD, i.e., standard deviations, are estimated
using meta-regressions without predictors fitted separately for each forest site. Points are
colored by latitude (gradient from tropical forests in red-orange to subtropical forests in
yellow-green and temperate forests in blue). The regression line, 95% confidence interval
and p-value in (a) are based on a linear regression model. Grey lines in (b) indicate different
CV values. Note that we excluded one site from this figure where average CNDD was <0
(Santa Cruz, Fig. 2) because positive conspecific density dependence is expected to be
destabilizing, irrespective of species differences. Stabilizing CNDD is defined as in Fig. 1,
but here means and standard deviations are shown at the transformed scale, i.e.,

log(rAME + 1).
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Methods

Overview

We used repeated census data from 23 large forest sites around the globe (Fig. 1) to
analyze latitudinal patterns in stabilizing conspecific negative density dependence (CNDD)
following a three-step approach: First, we fitted species-site-specific mortality models from
repeated observations of individual trees. Second, we used these models to quantify CNDD
for each species and site using an estimator designed to maximize robustness,
comparability, and relevance for fitness and stabilization. Third, we used meta-regressions to
explore three distinct latitudinal patterns in CNDD derived from the hypothesis that CNDD is
more influential for maintaining local tree species diversity in the tropics. Robustness of the

analysis pipeline was validated by model diagnostics and randomization.

This approach is based on recently developed best-practice statistical methods for
estimating CNDD. Crucially, the use of dynamic mortality data allowed us to avoid the
statistical pitfalls of previous CNDD studies, in particular analyses of the static relationship of
number of saplings to number of adults, where the null hypothesis is a positive linear
relationship but regression dilution flattens this relationship and thus biases analyses
towards finding CNDD, especially for rare species'®-1228.29 By fitting mortality models where
the null hypothesis is no relationship between survival and number of conspecific neighbors,
we ensure that any regression dilution has a conservative effect by reducing CNDD
estimates. We also addressed other recently identified limitations of CNDD analyses, namely
non-linear and saturating CNDD (see ‘Species-site-specific mortality models’), the
comparability of CNDD among species and sites (see ‘Quantification of conspecific density
dependence’), and the extent to which CNDD estimates are meaningful for stabilization and

species coexistence0:2531,

All analyses were conducted in R version 4.2.1%".
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Forest data

The data used in this study were collected at 23 sites with permanent forest dynamics plots
that are part of the Forest Global Earth Observatory network (ForestGEO) 3° (Fig. 1,
Supplementary notes), where all free-standing woody stems with diameter 21 cm at 1.3 m
from the ground (DBH) are censused. We stipulated that for plots to be suitable for analyzing
tree mortality in response to local conspecific density, they should be at least a few hectares
in size with at least two censuses available (i.e., longitudinal data on individual trees). The
plots for which we obtained data vary in size between 6 and 52 ha (Supplementary Table 1),
with between 9,718 and 495,577 mapped tree individuals at each site (Extended Data Table
1). Censuses have been carried out with remeasurement intervals of approximately

five years (Supplementary Table 1). The census data collected for each individual include

species identity, DBH, spatial coordinates and status (alive or dead).

For the mortality analyses, we selected observations of all living trees of non-fern and non-
palm species with DBH < 10 cm in one census and follow-up data in a consecutive census
(Extended Data Table 1). We then statistically analyzed how tree mortality (measured by the
status ‘dead’ or ‘alive’ in the consecutive census) depends on local conspecific density and
potential confounders of this relationship (see ‘Species-site-specific mortality models’). We
focused on small trees (between 1 and 10 cm DBH), on the assumption that CNDD effects

are most pronounced in earlier life stages5253.

For tree individuals with more than one stem, the individual was considered ‘alive’ if at least
one of the stems was alive and ‘dead’ if all stems were dead. The DBH of multi-stem trees
was calculated from the summed basal area of all stems. For trees with multiple stems at
different coordinates, coordinates of the main stem were used. For the forest site Pasoh,
where every stem was treated as an individual (i.e., information on which stems belong to

the same tree was unavailable), we used observations of individual stems.
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Observations of trees or stems were excluded when information on coordinates, species,
status, or date of measurement was missing. Individuals classified as morphospecies were
kept and analyzed as the respective morphospecies. Status assignments were checked for
plausibility and corrected if necessary (i.e., trees found alive after being recorded as dead in
a previous census were set to ‘alive’). If trees or stems changed their coordinates or species

between censuses, the most recent information was used.

Definition of local conspecific density

Most previous CNDD studies have estimated separate effects for conspecific (CNDD) and
heterospecific negative density dependence (HNDD) 332, In the context of the Janzen-
Connell Hypothesis, where CNDD is a promotor of species diversity, however, we are
primarily interested in the difference between CNDD and HNDD, as only a detrimental effect
of neighboring conspecifics that exceeds the effect of any kind of neighbor (i.e., irrespective
of its species identity) can lead to a stabilizing effect at the population level®2°. We refer to
this effect, i.e., to the difference between CNDD and HNDD, as ‘stabilizing CNDD’. This

effect is more appropriate when estimating the degree of self-limitation for a tree species.

Because CNDD and HNDD are both estimated with uncertainty (characterized by the
standard error), previous analyses that separately estimated CNDD and HNDD often faced
challenges when formally testing if conspecific effects are significantly more negative than
heterospecific effects?S. Here, we circumvent this problem by estimating the effect of
conspecific density, adjusted (in a multiple regression) for total tree density which is the sum
of conspecific and heterospecific density®*. Defined in this way, the estimated effect (slope)
for conspecific density in the regression corresponds to the effect of CNDD minus HNDD in

previous studies®>%¢ (for details, see Supplementary methods).

Local conspecific and total densities around each focal tree were calculated as the number
of neighboring trees (N) or their basal area (BA) at the census preceding the census at

which tree status was modelled. We considered neighboring trees of all sizes at distances®
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up to 30 m and discarded focal trees that were within 30 m of the plot boundaries. A
decrease of neighborhood effects with increasing distance was considered using two

alternative decay functions:
1,
exponential: fld,) = e r"*

1 2
, ——d
exponential-normal:  f(dy) = e #2°*

with d, being the distance between a focal tree and its neighbor k, and the distance decay

parameter u defining how far neighborhood effects extend on average.

The estimator for local density (i.e., N or BA), the shape of the decay kernel (i.e., exponential
or exponential-normal) and its parameter u were optimized via a grid search, optimizing the
fit of the mortality models (see next section). The parameter u was optimized jointly for all
species but separately for conspecific and total densities following the idea that the two
effects are caused by different agents and thus may act at different spatial scales. We tested
all four combinations of density definitions (N or BA, with exponential or normal distance
decay) varying u between 1 and 25 m in 2 m steps. our selection criterion was the sum of
the log likelihood (LL), calculated using the set of species for which all models converged
(nspecies = 2500). Highest overall LL was achieved when local densities were measured as BA
with an exponential distance decay and u = 3 and 17 for conspecific and total density,
respectively (Supplementary Fig. 2). This definition of local densities resulted also in average
AUC comparable to the overall AUC optimum (0.68; difference = 0.001). To ensure that the
joint optimization of u for all species did not induce a bias that correlated with the main
predictors, i.e., latitude and species abundance, we further explored species-specific optima
of u for those species for which the grid search yielded a distinct optimum of the log
likelihood. We found no pattern with respect to latitude and species abundance

(Supplementary Fig. 3), justifying the use of a joint optimization.
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Species-site-specific mortality models

We used binomial generalized linear mixed models (GLMMs) with a complementary log-log
(cloglog) link to model the tree status (‘dead’ or ‘alive’) as a function of conspecific density
conD, total density totD and tree size dbh, which were added as potential confounder or
precision covariates®’. The advantage of the cloglog link over the more traditional logit link is
that the cloglog allows better accounting for differences in observation time At (see

Supplementary Table 1) via an offset term>8.

Because recent evidence suggests that CNDD could be nonlinear and in particular
saturating'®25, we used generalized additive models (GAM) with thin plate splines® to allow
for flexible nonlinear responses of all predictors. When the observations covered more than
one census interval, ‘census’ was included as a random intercept. In sum, we model the

status Y;; of observation i in census interval j as a binomial random variable

Y;j ~ Binom (Pr(yij = 1)), where

In (_ln (1 - PT(Yij = 1))) = Bo+ fconD (xconD) + ftotD (xtotD) +

favn(Xapn) + w; + log(At)

Here, Pr(yl-j = 1) is the mortality probability of individual i in census interval j, f; is the
smooth function of the predictor x;, conD, totD and dbh are the predictor variables, g, is the
intercept term, Uj is the random intercept for census interval j with uj ~ N(0,02) and At is

the census interval length in years.

GAM smoothness selection was carried out via restricted maximum likelihood estimation
(REML). Basis dimensions of smoothing splines were kept at modest levels (k = 10) but
were reduced when the number of unique values (nvals) in a predictor was less than 10
(k = nvals — 2). Models were fitted with the function gam() from the package mgcv®°

(Version 1.8-40).
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In this setup, we fitted species-site-specific mortality models for all species that had at least
20 alive and dead status observations each and at least four unique conspecific density
values with a range that included the value used to calculate average marginal effects (see
‘Quantification of conspecific density dependence’). The species that did not fulfill these
criteria and those where no convergence was achieved (overall 63.2% of the species) were
fitted jointly in one of two groups — rare shrub species and rare tree species (Extended Data
Table 1) — following the assumption that different growth forms may differ in their base
mortality rate. This allows us to at least consider very rare species for our analyses, even if
these species do not contribute to the results to the same extent as species with more
observations. The growth form of each tree species, i.e., ‘shrub’ or ‘tree’, was derived from a
species’ maximum tree size. If the maximum of the average DBH of the six largest trees or
stems of each species per census was > 10 cm, a species was considered a tree and

otherwise a shrub8'62,

Quantification of conspecific density dependence

Based on the species-site-specific mortality models, we then quantified how a change in
conspecific density affects mortality probability. The challenge here is that the nonlinear link
in the GLMMs implies that effects at the scale of the linear predictor can translate nonlinearly
to the response scale (mortality rates) when the estimated intercept differs between
individual species and sites®'. To obtain an estimate of the strength of stabilizing CNDD that
is nonetheless comparable among species and sites, we calculated the average marginal
effect (AME) of a small perturbation of conspecific density on mortality probability®® at the
response scale. We derived both absolute and relative AME (aAME and rAME,
respectively), which can be interpreted as the average absolute (%/year) and relative (%)
change, respectively, in mortality probability caused by the increase in conspecific density. In
meta-analysis and econometrics, aAME is also known as the average risk difference, and

rAME + 1 as the average risk ratio%4°
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To obtain aAME and rAME, we first calculated the absolute and relative effect of one
additional conspecific neighbor on the mortality probability (response scale) for each

observation i:

aME; = Pi,conp;+1 — Pi,conb;

PiconD;+1
rME; = 2omPitt -

Di,conD; Di,conD;

PiconD;+1~ PiconD;

Here, p; is the mortality probability at the response scale and conD; the observed local
conspecific density. The subscript conD; + 1 denotes the new conspecific density, which is
obtained by adding one conspecific neighbor with DBH = 2 cm at 1 m distance, a relatively
small perturbation that was within the range of observed conspecific densities even for rare
species. A larger perturbation in conspecific densities could create extrapolation problems.
For each observation, aME; and rME; were calculated using observed conspecific densities.
Likewise, confounders, i.e., total density, DBH and census interval, were kept at observed
values, and the interval length was fixed at one year. As an alternative quantification of
density dependence that links to theoretical considerations from coexistence theory” (i.e.
invasion criterion®?), we quantified CNDD at low conspecific densities by setting conD; = 0
and again increasing it by one additional conspecific neighbor with DBH=2cm at 1 m
distance. As a further alternative, we calculated CNDD as the change in mortality resulting
from a change in conspecific density from the first to the third quantile of observed
conspecific densities per species to estimate how important CNDD is effectively for small
tree mortality. It must be noted that values from this latter metric should not be compared
between species (or sites), as the change in conspecific density is different for each species

and tends to increase with species abundance.

Individual marginal effects (aME; and rME;) were averaged over all observations per species
to obtain average marginal effects®'. Because there is no analytical function to forward the

uncertainty of the GAM predictions to the response scale, we estimated uncertainties, i.e.,



712

713

714

715

716

7

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Hilsmann et al.

sampling variances v;,,, and significance levels for species-site-specific aAME and rAME by
simulation. To this end, we simulated 500 sets of new model coefficients from a multivariate
normal distribution with the unconditional covariance matrix of the fitted model, calculated
aAME and rAME for each set®® and used quantiles of the simulated distributions to

approximate sampling variances and significance levels of CNDD estimates.

In our results, we concentrate our discussion on rAME because we consider relative
changes in mortality to be ecologically more meaningful than absolute changes. The reason
is that the relevance of an increase in mortality for a species’ fithess strongly depends on its
base mortality rate. Vice versa, if CNDD effects exist, it is to be expected that they are higher
in absolute terms for species that already have higher absolute mortality rates. Moreover,
given that species-specific mortality rates may also correlate with species abundance and
latitude, the use of absolute mortality rates is likely more prone to confounding. To be
comparable with previous studies, which commonly use absolute effects, results for the two
main meta-regressions are also presented for the absolute effects, i.e., aAME estimates

(Extended Data Fig. 4 and Extended Data Table 3).

Meta-regressions for CNDD patterns

To test for latitudinal patterns in stabilizing CNDD, we fitted meta-regressions346” using the
species-site-specific CNDD estimates. The advantage of these models is that they
simultaneously account for the uncertainties in aAME and rAME estimates (i.e., sampling
variances) — much like measurement error models — as well as heterogeneity among sites

and species via a multilevel model:

AME,,, = by + 1 + S;yy + €1n + f(predictors)

n ~N(0,0'72)

Slm ~ N(OI 0.92)
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€im ~ N(O' vlm)

Here, AME,, is the average marginal effect for site | and species m, b, is the intercept, r;
is the random effect for site 1 (normally distributed with ¢2), s;,,, is the random effect of
species m (normally distributed with ¢2), and e, is the uncertainty of the individual

estimates (normally distributed with the species-site-specific sampling variance v;,,).
Omitting the random effects would lead to inappropriate estimates because it does not
consider the true interspecific variation in species’ CNDD. To improve the normality
assumption of the residuals of the meta-regressions, rAMEs were log-transformed after
adding 1 before calculating the sampling variances (see above); aAME remained

untransformed.

Depending on the respective prediction to be evaluated, we used different meta-regression
models. To evaluate latitudinal patterns in average CNDD and in the association of CNDD
and abundance, we fitted multilevel models to all species-site-specific estimates (see model
formula above): the first including absolute latitude as a predictor (Fig. 2 and Table 1a) and
the second additionally including log-transformed species abundance and its interaction with

latitude (Fig. 3 and Table 1b).

Absolute latitude was calculated as the distance (in degrees) to the equator. This metric
does not distinguish between the northern and southern hemispheres and is commonly used
as a proxy for the current and past bio-climatic variables that are assumed to underlie most
latitudinal biological patterns®8%. We calculated the abundance of each tree species per site
as the number of all living trees (or stems, for Pasoh) per hectare on the entire plot.
Abundance for the two groups of rare species (rare trees and rare shrubs) was calculated as
the average of species abundances within the respective group. The predictors were
centered at abundance = 1 tree per hectare and absolute latitude = 11.75°, so that main

effects reflect slopes and respective significant tests for rare tropical species (Table 1).
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We also separately fitted meta-regressions for each site with species as a random intercept:
firstly, without any predictor to obtain mean CNDD and its standard deviation among species
per site (Figs. 2 and 4); and then with species abundance as a predictor to illustrate site-

specific relationships of CNDD and abundance (Fig. 1).

Average marginal effects (AME) calculated for species-specific interquantile ranges were
aggregated in a global meta-regression with random intercepts for sites and species within
sites to obtain a global average of CNDD and assess its importance for small tree mortality

(Extended Data Fig. 1).

Models were fitted via restricted maximum likelihood estimation (REML) using the functions
rma.mv() and rma() from the package metafor’® (Version 3.4-0) for the global and site-

specific cases, respectively.

Robustness tests

Statistical assumptions of the mortality models were verified based on simulated residuals
generated with the package DHARMa’" (Version 0.4.6). Distributional assumptions and
residual patterns against predictors were assessed visually, revealing no critical violations of
assumptions and a consistently good model fit. To verify that no additional unobserved local
confounders, particularly habitat effects, were affecting the relationship between conspecific
density and mortality, we tested each mortality model for spatial autocorrelation using the
package DHARMa"'. After adjusting p-values for multiple testing using the Holm method,
significant spatial autocorrelation was detected in only seven models, or 0.28% of all
species-site combinations, which means that there is no indication that local species-specific

CNDD estimates were affected by spatial pseudo-replication.

Model diagnostics for the meta-regressions were based on standardized residuals and visual
assessments. Because of the unbalanced design (more tropical than temperate species, see

Supplementary Fig. 1c), we carried out additional robustness tests by identifying influential
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species-site-specific CNDD estimates and refitting the two main meta-regression models (cf.
Table 1) with a reduced dataset without these observations. We removed 99 CNDD
estimates that had Cook’s distances larger than 0.005 in the abundance-mediated CNDD
model”2. Meta-regressions fitted with these reduced datasets revealed similar patterns and

significance levels (Extended Data Fig. 3 and Extended Data Table 2).

To evaluate the robustness of the entire analysis pipeline with respect to potential
abundance- and latitude-related biases'"-'2, we repeated all steps of the analysis (i.e.,
mortality models, average marginal effects, and meta-regressions) with two randomizations
of the original dataset (similar tests highlighted biases in the pipeline of LaManna et al. ,
see'12). We randomized (1) observations of tree status within each species, thus removing
any relationship between mortality and predictors but maintaining species-level mortality
rates, and (2) observations of local conspecific density within each species, thus removing
the relationship between mortality and conspecific density but maintaining the relationships
between mortality and confounders. Meta-regressions applied to these randomized datasets
revealed close to zero CNDD and no considerable patterns with latitude or species
abundance (Extended Data Fig. 2 and Extended Data Table 2). When randomizing tree
status, rare species exhibited minimally, but significantly, stronger CNDD, but the effect
sizes varied by orders of magnitude from those observed in the original dataset. We
therefore consider our results robust to statistical artifacts related to species abundance and

latitude.

In addition, not only statistical biases but also alternative explanations could create a
spurious correlation between CNDD and species abundance. To test this, we included
potential confounders for this relationship in the ‘abundance-mediated CNDD model’.
Following the idea that fast-growing tree species with short life spans (i.e., lower survival
rates) tend to be rarer*?, a pattern also observed across the 23 forest sites analyzed here
(Supplementary Fig. 1a,b), and at the same time may experience stronger CNDD*', we

considered two sets of predictors that are proxies for different life history strategies, namely:
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(1) species-specific growth and survival rates and (2) species-specific values along two
demographic tradeoff axes”74. Species-specific growth was calculated as the median of the
annual DBH increment, log-transformed after adding 1. For survival, we calculated mean
annual survival rates (based on the intercept of a GLM similar to the mortality models for
CNDD but without predictors) and applied a logit-transformation. Both rates were
standardized within sites, i.e., subtracting the mean and dividing by the standard deviation,
to account for differences in the realized demographic spectrum between sites. The
demographic tradeoffs reflect the two axes ‘growth-survival’ and ‘stature-recruitment’ and
were adapted from the procedure described in Riger et al.”® using species-specific growth
and survival rates (as described before) and the species’ maximum size (i.e., stature),
calculated as the log-transformed 90™ percentile of the DBH, again standardized within sites.
In both cases, we included main effects of the two predictors and their interaction.
Accounting for life history strategies did not change the patterns obtained, and species
abundance and CNDD were still strongly and statistically significantly correlated in tropical

forests (Extended Data Table 4).

Stable coexistence and interspecific variation in CNDD

If CNDD varies strongly among species and the resulting interspecific fitness differences are
not compensated by equalizing mechanisms®33, the stabilizing advantage of CNDD may not
promote diversity. May et al.' suggested based on simulations that the number of species
maintained strongly drops when the coefficient of variation (CV = standard deviation/mean)
for CNDD is above 0.4 (see their Figure 2), i.e., the stronger CNDD becomes the more
interspecific variation it enables. Similarly, Stump and Comita's found considerably fewer
species with increasing standard deviations of CNDD supporting a comparable threshold of
CV = 0.4 (standard deviation = 0.2 at mean CNDD = 0.5, their Figure 2a). Miranda et al.”®,
who also explored the effect of interspecific variation in CNDD, identified no threshold for
stable coexistence, which is most likely caused by the relatively small variation in CNDD that

they tested (see their Figure 2). While it is not entirely clear if the threshold of CV = 0.4 is
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truly due to the magnitude of fitness differences or to the fact that some species tend to have
almost no CNDD when interspecific variation becomes large, the consistency of this
threshold, despite different implementations of CNDD'4'5, provides a starting point for
evaluating the relevance of CNDD for community assembly. We estimated true interspecific
variation of CNDD within forest communities fitting site-specific meta-regressions without
predictors (see ‘Meta-regressions for CNDD patterns’), which are particularly helpful in this
case because the raw variability of species-specific CNDD estimates is also driven by

statistical uncertainty.

Data availability

The forest data that support the findings of this study are available from the ForestGEO
network. For some of the sites, the data is publicly available at
https://forestgeo.si.edu/explore-data. Restrictions apply, however, to the availability of the
data from other sites, which were used under license for the current study, and so are not
publicly available. Raw data are available from the authors upon reasonable request and
with permission of the principal investigators of the ForestGEO sites. Species-site-specific
CNDD estimates to reproduce the meta-analyses are available at

https://github.com/LisaHuelsmann/latitudinal CNDD.

Code availability

All custom R code used for the analyses is available in a GitHub repository at

https://github.com/LisaHuelsmann/latitudinal CNDD.

Methods references

51 R Core Team. (R Foundation for Statistical Computing, Vienna, Austria, 2022).



862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

52

53

54

55

56

57

58

59

60

61

62

Hilsmann et al.

Zhu, Y., Comita, L. S., Hubbell, S. P., Ma, K. & Shefferson, R. Conspecific and
phylogenetic density-dependent survival differs across life stages in a tropical forest.
J. Ecol. 103, 957-966, doi:doi:10.1111/1365-2745.12414 (2015).

Johnson, D. J. et al. Conspecific negative density-dependent mortality and the
structure of temperate forests. Ecology 95, 2493-2503 (2014).

Hubbell, S. P., Ahumada, J. A., Condit, R. & Foster, R. B. Local neighborhood effects
on long-term survival of individual trees in a neotropical forest. Ecol. Res. 16, 859-
875 (2001).

Lebrija-Trejos, E., Wright, S. J., Hernandez, A. & Reich, P. B. Does relatedness
matter? Phylogenetic density-dependent survival of seedlings in a tropical forest.
Ecology 95, 940-951, doi:10.1890/13-0623.1 (2014).

Ramage, B. S. & Mangana, I. J. Conspecific negative density dependence in
American beech. For. Ecosyst. 4, 8, doi:10.1186/s40663-017-0094-y (2017).
Laubach, Z. M., Murray, E. J., Hoke, K. L., Safran, R. J. & Perng, W. A biologist's
guide to model selection and causal inference. Proceedings of the Royal Society B
288, 20202815 (2021).

Fortin, M., Bédard, S., DeBlois, J. & Meunier, S. Predicting individual tree mortality in
northern hardwood stands under uneven-aged management in southern Québec,
Canada. Ann. For. Sci. 65, doi:10.1051/forest:2007088 (2008).

Wood, S. N., Pya, N. & Safken, B. Smoothing parameter and model selection for
general smooth models. Journal of the American Statistical Association 111, 1548-
1563 (2016).

Wood, S. in R package, Version 1.8-34 (2015).

Wright, S. J. et al. Functional traits and the growth—mortality trade-off in tropical
trees. Ecology 91, 3664-3674 (2010).

King, D. A, Davies, S. J. & Noor, N. S. M. Growth and mortality are related to adult
tree size in a Malaysian mixed dipterocarp forest. Forest Ecology and Management

223, 152-158 (2006).



890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

63

64

65

66

67

68

69

70

71

72

73

74

Hilsmann et al.

Wooldridge, J. M. Econometric analysis of cross section and panel data. (MIT press,
2010).

Breen, R., Karlson, K. B. & Holm, A. Interpreting and Understanding Logits, Probits,
and Other Nonlinear Probability Models. Annu. Rev. Sociol. 44, 39-54,
doi:10.1146/annurev-soc-073117-041429 (2018).

Egger, M., Smith, G. D. & Phillips, A. N. Meta-analysis: principles and procedures.
BMJ 315, 1533-1537 (1997).

Wood, S. N. On confidence intervals for generalized additive models based on
penalized regression splines. Australian & New Zealand Journal of Statistics 48, 445-
464 (2006).

Nakagawa, S., Noble, D. W., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-
analysis: ten appraisal questions for biologists. BMC Biol. 15, 1-14 (2017).
Nishizawa, K., Shinohara, N., Cadotte, M. W. & Mori, A. S. The latitudinal gradient in
plant community assembly processes: A meta-analysis. Ecol. Lett. 25, 1711-1724
(2022).

Lamanna, C. et al. Functional trait space and the latitudinal diversity gradient.
Proceedings of the National Academy of Sciences 111, 13745-13750 (2014).
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. Journal of
statistical software 36, 1-48 (2010).

Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed)
Regression Models. R package version 0.4.6. (2022).

Viechtbauer, W. & Cheung, M. W. L. Outlier and influence diagnostics for meta-
analysis. Research synthesis methods 1, 112-125 (2010).

Rager, N. et al. Beyond the fast—slow continuum: demographic dimensions
structuring a tropical tree community. Ecol. Lett. 21, 1075-1084,
doi:10.1111/ele.12974 (2018).

Ruger, N. et al. Demographic trade-offs predict tropical forest dynamics. Science

368, 165-168 (2020).



918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

Hilsmann et al.

75 Miranda, A., Carvalho, L. M. & Dionisio, F. Lower Within-Community Variance of
Negative Density Dependence Increases Forest Diversity. PLoS One 10, e0127260,

doi:10.1371/journal.pone.0127260 (2015).

Acknowledgements

The authors thank the many people involved in establishing and maintaining the forest sites
used in the analyses. A detailed list of funding sources, fieldwork permissions,
acknowledgements, and references for each forest site is available in the Supplementary
notes. L.H. and F.H. received funding by the Bavarian Ministry of Science and the Arts in the
context of the Bavarian Climate Research Network (bayklif). L.C. received funding from the
U.S. National Science Foundation (DEB-1845403). Contributions by M.S.L. were supported
by the ForestGEO network (2020), the Smithsonian Institute (2020-2021), and PROEX-
CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior— Brazil, 2022).

The study benefited from the ForestGEO workshop in 2019 (NSF-2020424 to S.J. Davies).

Author contributions

L.H. and F.H. conceived the overall study. L.H. and M.S.L. homogenized the forest census
and meta data. L.H., F.H., R.C., L.C., and M.V. devised the CNDD estimator and the
analysis pipeline. L.H. performed the statistical analyses and generated figures and tables.
L.H., F.H, R.C., L.C., and M.V. interpreted the results and drafted the manuscript. The other
authors contributed forest census data and feedback on the manuscript. All authors read and

approved the manuscript.

Competing interest declaration

The authors declare no competing interests.



940

941

942

943

944

945

946

Hilsmann et al.

Extended data figures

Extended Data Fig. 1 | Distribution of stabilizing CNDD calculated over species-site-
specific interquantile ranges in conspecific density. Besides the frequency distribution of
species-site-specific estimates, the figure indicates the global average assessed through
meta-regression with random intercepts for sites and species in sites (red diamond with 95%
confidence interval) and the interquantile range of the estimates. Note that 1% of the CNDD

estimates are outside the limits of the x-axis.
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Extended Data Fig. 2 | Robustness tests of the analysis pipeline based on randomized
datasets. When observations of tree status (red) or conspecific density (blue) were
randomized, stabilizing CNDD was practically zero at all latitudes (a) and for all species
abundances (b,c). Rare species exhibited minimally, but significantly, stronger CNDD for the
dataset with randomized tree status, but the effect sizes varied by orders of magnitude from
those observed in the original dataset (black). See ‘Robustness tests’ for details. For details
on the visualization and definition of CNDD in (a) and (b,c), see Figs. 2 and 3, respectively.
Estimates of the meta-regressions are shown in Extended Data Table 2 (randomized

datasets) and Table 1 (original dataset).
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Extended Data Fig. 3 | Robustness tests without most influential observations. \When
influential observations were removed (Nremoved = 99, see ‘Robustness tests’ for details), the
qualitative patterns remained the same, i.e., stronger CNDD for rare than common species
in the tropics (b,c) but not generally stronger tropical CNDD (a). For details on the
visualization and definition of CNDD in (a) and (b,c), see Figs. 2 and 3, respectively.

Estimates of the meta-regressions are shown in Extended Data Table 2.
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Extended Data Fig. 4 | Alternative definition of stabilizing CNDD as the absolute
change in mortality probability. Similar patterns are visible to the main analysis, i.e.,
stronger CNDD for rare than common species in the tropics (b,c) but not generally stronger
tropical CNDD (a), but in contrast to the main analysis the interaction of species abundance
and latitude was insignificant. See ‘Quantification of conspecific density dependence’ for
details on the definitions of CNDD. For details on the visualization in (a) and (b,c), see Figs.
2 and 3, respectively. Estimates of the meta-regressions are shown in Extended Data

Table 3.
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Extended Data Fig. 5 | Alternative definition of stabilizing CNDD calculated at low
conspecific densities (i.e., invasion densities). The patterns remained qualitatively the
same as in the main analysis, i.e., stronger CNDD for rare than common species in the
tropics (b,c) but not generally stronger tropical CNDD (a). See ‘Quantification of conspecific
density dependence’ for details on the definition of CNDD. For details on the visualization in
(a) and (b,c), see Figs. 2 and 3, respectively. Note that for one of the sites (Smithsonian
Conservation Biology Institute), no point could be drawn for mean CNDD in (a) because the
site-specific meta-regression did not converge. Estimates of the meta-regressions are shown

in Extended Data Table 3.
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Extended data tables

Extended Data Table 1 | Summary information of the data used in mortality models
per forest plot. Observations for the mortality analyses (N status observations) were
selected as follows: (1) no fern or palm species, (2) no missing information on coordinates,
species, status, or date of measurement, (3) alive in the first census and alive or dead in the
consecutive census, (4) DBH between 1 and 10 cm in the first census, (5) more than 30 m
away from the plot boundaries. From the total number of species in the mortality dataset (N
species for mortality analyses), only some proportion could be successfully fit (% species
fitted individually). The remaining species were jointly fitted in species groups (N species
fitted as rare trees or shrubs): these were species with fewer than 20 alive and dead
observations each, species with fewer than four unique values of conspecific density,
species with a range of conspecific density values not including the value used to calculate
average marginal effects, or species for which no convergence of the mortality model was
achieved. In some cases, the mortality model for a species group did not converge
(indicated by N = 0 in the respective column). Note that the percentage of dead trees (%
dead status observations) does not correspond to mortality rates because of varying interval
lengths. Numbers of species can include morphospecies. Note that for the Pasoh site, each

stem was counted as an individual tree (see Methods ‘Forest data’).
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Extended Data Table 2 | Estimates for the two main meta-regressions using
randomized and reduced datasets. \We randomized observations of tree status within each
species, thus removing any relationship between mortality and predictors but retaining
species-level mortality rates, and observations of local conspecific density within each
species, thus removing the relationship between mortality and conspecific density but
retaining the relationships between mortality and confounders (see Methods ‘Robustness
tests’). For the reduced dataset, we removed n = 99 influential species-site-specific CNDD
estimates with Cook’s distances larger than 0.005 to evaluate the possibility that a few
observations were responsible for the observed patterns. Species-site-specific CNDD
estimates and predictors are defined as in Table 1. Predictions of the meta-regressions are

shown in Extended Data Figs. 2 and 3.
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Extended Data Table 3 | Estimates for the two main meta-regressions using two
alternative definitions of stabilizing CNDD. Species-site-specific CNDD estimates

(n = 2534 species or species groups from 23 forest sites) were calculated as the absolute
change in mortality probability (aAME) and as the relative change in mortality probability
(rAME) but at low conspecific densities (i.e., invasion densities; see Methods ‘Quantification
of conspecific density dependence’). For the meta-regressions, aAMEs were not transformed
and can be simply multiplied by 100 to obtain the absolute change in annual mortality
probability induced by additional conspecific neighbor in percent. For rAMEs,
backtransformation is necessary as in Table 1. Predictions of the meta-regressions are

shown in Extended Data Figs. 4 and 5.
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Extended Data Table 4 | Estimates for the two main meta-regressions accounting for
potential confounding by life history strategies. The original ‘abundance-mediated
CNDD model’ (cf. Table 1b) was extended to include either the demographic rates growth
and mortality or demographic tradeoffs (see Methods ‘Robustness tests’). Demographic
rates and tradeoff axes were centered and scaled. Species-site-specific CNDD estimates
(n = 2534 species or species groups from 23 forest sites) and predictors (i.e. latitude and

abundance) are defined as in Table 1.
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