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Summary 69 

Numerous studies have shown reduced performance of plants surrounded by neighbors of 70 

the same species1,2, a phenomenon known as conspecific negative density dependence 71 

(CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical 72 

than temperate forests4,5, increasing community stabilization, species coexistence, and local 73 

tree species diversity6,7. Recent analyses supporting such a latitudinal gradient in CNDD8,9 74 

have suffered from methodological limitations related to the use of static data10-12. Here, we 75 

present the first comprehensive assessment of latitudinal CNDD patterns using dynamic 76 

mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across 77 

species, we found stabilizing CNDD at all except one site, but average CNDD was not 78 

stronger toward the tropics. However, in tropical tree communities, rare and intermediate 79 

abundant species experienced stronger CNDD than common species, a pattern absent in 80 

temperate forests, suggesting that CNDD more strongly influences species abundances in 81 

tropical forests13. We also found that interspecific variation in CNDD, which may attenuate its 82 

stabilizing effect on species diversity14,15, was high but not significantly different across 83 

latitudes. Although the consequences of these patterns for latitudinal diversity gradients are 84 

difficult to evaluate, we speculate that a more effective regulation of population abundances 85 

could translate into greater stabilization of tropical tree communities and thus contribute to 86 

the high local diversity of tropical forests.  87 
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Main text 88 

Explaining patterns of diversity across space and time is a fundamental goal of ecology16. 89 

Among those patterns, the latitudinal gradient in tree species diversity is particularly 90 

striking17. A prominent explanation for the exceptionally high local diversity in tropical moist 91 

forests is that their temporally stable and productive conditions allow natural enemies, i.e. 92 

herbivores and pathogens, to be more specialized and damaging5,18, with the result that 93 

conspecific neighbors – by virtue of their shared natural enemies – exert more negative 94 

effects on a target tree individual than do heterospecific neighbors19. Together with 95 

intraspecific resource competition, specialized enemies can act as a stabilizing 96 

mechanism20, often referred to as conspecific negative density dependence (CNDD3), that 97 

should prevent the dominance of any particular tree species and therefore allow species 98 

coexistence6,7,21,22. First proposed by Janzen and Connell five decades ago4,5, CNDD 99 

mediated by specialized enemies is one key hypothesis for explaining the maintenance of 100 

greater local tree species diversity in tropical forests23,24.  101 

After several decades of research, it is well established that CNDD is widespread in both 102 

tropical and temperate forests1,2. Nevertheless, its effect on community composition and 103 

large-scale biodiversity patterns is still debated25,26. Meta-analyses on CNDD, mostly based 104 

on seed and seedling survival in field experiments, have found no variation in CNDD with 105 

latitude1,2,23,27, possibly because of limited comparability among studies2. The few studies 106 

that have directly examined large-scale geographical variation in CNDD have assessed 107 

larger tree sizes and reported a pronounced increase in CNDD with decreasing latitude8,9. 108 

However, these latitudinal CNDD patterns have been attributed to statistical artefacts related 109 

to the use of static data10-12,28,29. As a result, there is still no conclusive evidence if and how 110 

CNDD differs between tropical and temperate forests.  111 

Here, we analyze latitudinal CNDD patterns using dynamic forest inventory data (i.e., 112 

longitudinal tree survival data from repeated censuses, Extended Data Table 1) from 23 113 
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large (6-52 ha) forest sites from the ForestGEO network30, covering a gradient from the 114 

tropics to the temperate zone (Fig. 1). We employed recently developed best-practice 115 

statistical methods for measuring and comparing CNDD and making inferences about 116 

stabilization and species coexistence (Methods) 10,25,31. We fitted flexible species-site-specific 117 

mortality models and quantified CNDD as the relative change in mortality probability of small 118 

trees (trees with a diameter-at-breast-height [DBH] ≥ 1 and < 10 cm) induced by a small 119 

perturbation in conspecific density while keeping total densities (both measured as basal 120 

area) constant (‘stabilizing CNDD’) 20 (Methods). By adjusting for total density, our estimate 121 

of ‘stabilizing CNDD’ is equivalent to the difference between CNDD and heterospecific 122 

negative density dependence (HNDD) in previous studies3,32 and serves as a proxy for the 123 

frequency dependence of population growth rates33. We then aggregated estimates of 124 

stabilizing CNDD and patterns therein using multilevel meta-regressions to account for the 125 

different uncertainties in CNDD estimates resulting from different sample sizes among 126 

species34. Using this framework, we assessed latitudinal patterns in (i) the average strength 127 

of stabilizing CNDD (Fig. 2), (ii) its effects on species abundances (Fig. 3) and (iii) its 128 

interspecific variability (Fig. 4), thereby testing three predictions (each described in a section 129 

below) arising from the hypothesis that CNDD is more influential for maintaining local tree 130 

species diversity in the tropics. 131 

No latitudinal trend in average CNDD 132 

According to the Janzen-Connell hypothesis, the average strength of stabilizing CNDD 133 

across species should become greater at lower latitudes4,5,24, but we found no support for 134 

this hypothesis, although stabilizing CNDD was widespread. Averaged across species, 135 

mortality of small trees increased with conspecific density at all but one site (Figs. 1 and 2, 136 

CNDD < 0 for Santa Cruz), with an average relative mortality increase of 6.64% when 137 

increasing conspecific density from the first to the third quantile for each species (95% 138 

confidence interval (CI): 2.80 to 10.62%; Extended Data Fig. 1). However, when comparing 139 

the strength of CNDD across latitude, we found no trend. In the tropics, a perturbation in 140 
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conspecific density (expressed by one additional conspecific neighbor with a DBH of 2 cm at 141 

1 m distance; Methods ‘Quantification of conspecific density dependence’) led to a relative 142 

increase in annual mortality probability by 0.41% (0.31 to 0.51% CI; calculated at 11.75° 143 

absolute latitude; Fig. 2). In temperate forests, the corresponding value was 0.26% (0.06 to 144 

0.47% CI; calculated at 45° absolute latitude). While the increase in mortality is slightly less 145 

in temperate than tropical forests, the association of CNDD with latitude was not statistically 146 

significant (p = 0.17, assessed through meta-regression, Table 1a) and the absolute change 147 

in CNDD with latitude was small relative to the variation in CNDD across species and 148 

abundances (see next subsections, Figs. 1, 3 and 4).  149 

The lack of a latitudinal gradient in average CNDD was statistically robust (see Methods 150 

‘Robustness tests’). When tree status (alive or dead) or conspecific densities were 151 

randomized, our analysis pipeline of mortality models and meta-regression revealed neither 152 

spurious CNDD nor noteworthy patterns of CNDD across latitudes (Extended Data Fig. 2a 153 

and Extended Data Table 2). Moreover, we obtained qualitatively the same result, i.e., no 154 

latitudinal trend in average species CNDD, also when statistically influential species were 155 

removed from the meta-regression (Extended Data Fig. 3a and Extended Data Table 2) and 156 

when two alternative definitions of CNDD were analyzed (Extended Data Figs. 4a and 5a 157 

and Extended Data Table 3). These alternative definitions were calculated as (1) the 158 

absolute change in mortality, which we consider less relevant for fitness, but which may 159 

nevertheless be instructive if base mortality rates are independent of latitude, and (2) the 160 

(relative) change in mortality at low conspecific densities, following the invasion criterion for 161 

coexistence, which refers to a species’ ability to increase in abundance when rare35.  162 

Our results corroborate previous studies that found stabilizing CNDD (i.e., the negative effect 163 

of being close to conspecifics) to be widespread across forest tree communities1,2, but they 164 

do not support previous reports of a pronounced latitudinal gradient in average CNDD8,9. 165 

This discrepancy can be explained by various factors, including our focus on mortality rather 166 

than recruitment. We argue that our use of robust statistical methods and dynamic rather 167 
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than static data10-12,28,36 is more reliable than previous analyses, suggesting that a latitudinal 168 

gradient in average CNDD at the sapling stage is absent or at least weaker than previously 169 

reported.  170 

Stronger CNDD for rare tropical species 171 

A second pattern that has been interpreted as indicating more effective stabilizing control of 172 

species abundances and thus community structure by CNDD is stronger CNDD for rare 173 

species3,8,13,21,37. Consistent with this, we found a striking latitudinal difference in the 174 

association between species abundance and stabilizing CNDD when expanding the meta-175 

regression to include species abundance and allowing the relationship with abundance to be 176 

moderated by latitude (p = 0.017 of the interaction, Table 1b). In tropical tree communities, 177 

CNDD decreased significantly with species abundance (p = 9.510−8, Fig. 3a) where CNDD 178 

was stronger for rare species (0.76%, 0.59 to 0.92% CI, for a species with an abundance of 179 

1 tree per hectare) and weaker for common species (0.30%, 0.19 to 0.40% CI, for a species 180 

with an abundance of 100 trees per hectare). With increasing latitude, this association 181 

weakened. In temperate forests, there was no significant relationship between species 182 

abundance and CNDD (p = 0.72, Fig. 3a), and CNDD was actually slightly higher for 183 

common species (0.27%, 0.07 to 0.47 CI) than for rare species (0.18%, -0.33 to 0.69% CI). 184 

From these patterns it follows that CNDD of rare and intermediate abundance species is 185 

stronger in tropical than in temperate forests (p = 0.018 and p = 0.043 for species with an 186 

abundance of 1 and 10 trees per hectare, respectively, Fig. 3b), while CNDD of common 187 

species shows no latitudinal gradient (p = 0.77 for species with an abundance of 100 trees 188 

per hectare).  189 

Although associations between CNDD and species abundance have been reported in 190 

previous studies, all but one study8 analyzed CNDD at only a single site, mostly in tropical 191 

forests. Of these, some reported stronger CNDD for rare species3,38, others showed stronger 192 

CNDD for common species28,39, and still others showed no association40. We attribute these 193 
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apparently inconsistent previous results to strong between-site variability, which is evident in 194 

our data as well (Fig. 1). Our multi-site approach allows us to see past the noise and detect 195 

the signal of a large-scale pattern of stronger CNDD for rare versus common species in the 196 

tropics, but not in the temperate zone (Fig. 3a). The use of dynamic data also allows us to 197 

make more statistically robust inferences about CNDD and its association with species 198 

abundance11,12 (Extended Data Figs. 2b,c, 3b,c, 4b,c, and 5b,c and Extended Data Tables 2 199 

and 3). Our study thus provides stronger evidence than previously available that a 200 

correlation between CNDD and species abundance exists in tropical but not temperate 201 

forests. 202 

We believe that the most likely explanation for the latitudinal change in the correlation 203 

between stabilizing CNDD and species abundance is that CNDD is more effective at 204 

controlling tree species abundances in the tropics3,8,13,21,37. To challenge this interpretation, 205 

we sought alternative explanations for the observed pattern. In particular, we considered life 206 

history strategies, which can correlate with both species rarity and CNDD13,41-43 (see 207 

Supplementary Fig. 1a,b) and could thus act as a confounder. However, accounting for life 208 

history strategies (approximated by species’ demographic rates, maximum size, i.e., stature, 209 

or tradeoffs therein) in the meta-regression, however, did not change the association 210 

between CNDD and species abundance in the tropics (Extended Data Table 4), ruling out 211 

those factors as important confounders. In addition to confounding, the observed pattern 212 

could also arise under reverse causality, where species abundance controls CNDD. A 213 

possible mechanism could be that pathogen loads for common species saturate in space, 214 

thus rendering local variation in conspecific density inconsequential for infection and hence 215 

mortality probabilities.  216 

CNDD varies considerably between species 217 

Recent theoretical studies have suggested that interspecific variation in CNDD can increase 218 

competitive differences or the risk of local extinctions from demographic stochasticity and 219 
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thus reduce or even reverse the diversity-enhancing effects of CNDD14,15. Thus, if 220 

interspecific CNDD variation was lower in tropical than temperate forests, this would provide 221 

another avenue whereby CNDD could contribute to latitudinal differences in local tree 222 

species diversity. No previous study, however, has empirically quantified this pattern. 223 

To test for latitudinal differences in interspecific variation in CNDD, we used meta-224 

regressions fitted separately for each site to estimate the mean and the latent (true) standard 225 

deviation of species-specific CNDD. Crucially, this approach allows us to distinguish 226 

interspecific variation in CNDD from sampling uncertainty, i.e. random sampling error of 227 

CNDD estimates34. We then calculated the coefficient of variation (CV) of CNDD per site and 228 

analyzed latitudinal patterns therein. However, interspecific variation of CNDD, quantified as 229 

CV, showed no significant association with latitude (p = 0.69, Fig. 4a). Interestingly, though, 230 

we found that the standard deviation of CNDD was of a similar magnitude to community 231 

average CNDD across the forest sites (Fig. 4a,b), implying CV on the order of 1. In 232 

simulation studies14,15, CNDD settings with CV > 0.4 have tended to reduce rather than 233 

stabilize species diversity (see Methods ‘Stable coexistence and interspecific variation in 234 

CNDD’). Among the 22 sites where species on average exhibited CNDD (all except the 235 

Santa Cruz site), this threshold (CV > 0.4) was exceeded at all but three sites (exceptions: 236 

Barro Colorado Island, La Planada and Wabikon). We note, however, that there are several 237 

reasons why the CV parameters in the simulation models cannot be directly matched to our 238 

empirical estimates. One of them is that temporal variability in CNDD, possibly caused by 239 

fluctuations of herbivore and pathogen populations, may inflate the empirically measured CV 240 

above its long-term average .  241 

Discussion 242 

Our results support the conclusion of numerous previous studies that effects of conspecific 243 

neighbors on tree survival tend to be negative (CNDD) 1,2. Contrary to long-held ecological 244 

conjectures, however, we found a latitudinal gradient consistent with the Janzen-Connell 245 
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hypothesis in only one of the CNDD patterns we tested. Most strikingly, the average strength 246 

of CNDD did not increase toward the tropics (Fig. 2, Table 1a). In addition, tree species in 247 

tropical communities did not experience more homogenous levels of CNDD than temperate 248 

ones (Fig. 4a), which theoretically could have led to more effective stabilization through 249 

reduced fitness differences in the tropics14,15. However, we did find that CNDD correlates 250 

with species rarity in tropical but not temperate forests (Fig. 3, Table 1b), which suggests 251 

that CNDD may play a stronger role in structuring species abundance distributions in the 252 

tropics. The drivers and implications of stronger CNDD for rare to intermediate abundant 253 

species in tropical versus temperate forests merit closer consideration. 254 

Assuming that species abundances are at least partly controlled by CNDD, the association 255 

of strong CNDD with species rarity in the tropics may be interpreted as an indication of more 256 

efficient control of tropical tree species abundances through self-limitation21,37, despite 257 

average CNDD being comparable across latitudes. This interpretation is broadly consistent 258 

with the ideas of Janzen and Connell – with the nuance that the effects of specialized 259 

enemies are not necessarily stronger overall in the tropics but have greater effectiveness in 260 

controlling species abundances and thus potentially community assembly. A possible 261 

explanation for why species abundances are less effectively controlled by CNDD in 262 

temperate forests is that other mechanisms, such as alternative stabilizing mechanisms, 263 

dispersal, immigration, and disturbances, are stronger in temperate forests and override the 264 

effects of CNDD14,44. We caution, however, that such a direct causal link and its direction 265 

between CNDD and species rarity remains to be established. While we ruled out 266 

confounding by differences in life history strategy (Extended Data Table 4), the possibility of 267 

other unobserved confounding effects or reverse causality remains and should be explored 268 

in future studies. 269 

Our finding that rarer species experience stronger CNDD in the tropics (Fig. 3a) and 270 

therefore CNDD weakens for species at rare and intermediate  abundances towards the 271 

temperate zone (Fig 3b) motivates further research targeted at the underlying mechanisms. 272 
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Identifying these mechanisms and showing that their effects differ between the tropical and 273 

temperate zone could provide strong independent evidence for the idea that CNDD 274 

regulates tropical species abundances. This would require first a better understanding of 275 

how specialized natural enemies and resource competition generate CNDD45 and how 276 

CNDD interacts with other processes (e.g., facilitation46), and then comparisons of these 277 

mechanisms in coordinated global experiments47. A further consideration is that species 278 

abundances are controlled by processes occurring throughout the entire demographic cycle, 279 

not only by mortality during the sapling life stage, as considered here. It is possible that 280 

CNDD analyses of other vital rates and life stages, particularly earlier ones, would lead to 281 

stronger CNDD and different patterns and conclusions20, because the interaction between 282 

ontogenetic and demographic processes may change with latitude. This possibility could be 283 

explored using dynamic seedling data along latitudinal gradients, ideally with good coverage 284 

of temperate tree species, which are naturally less represented in latitudinal studies. By 285 

accumulating CNDD estimates across different vital rates and life stages, we could also 286 

move closer to the ultimate goal of estimating CNDD in a species’ overall fitness and 287 

population growth rate22,35. 288 

We found high interspecific variation in CNDD at all latitudes (Fig. 4a) which, based on 289 

recent simulation studies, would be high enough to offset the stabilizing effect of CNDD at 290 

the community level2,14,15. We believe that there is an urgent need to better understand the 291 

effect of CNDD on community stability and coexistence in the presence of interspecific, 292 

spatial, and temporal variability. Interspecific variation in CNDD has been linked to species-293 

specific characteristics such as mycorrhizal type40 and life history strategy41, as well as to 294 

population-level diversity of pathogen resistance genes48, but likely our estimate of 295 

interspecific variation also reflects temporal variation due to complex host-enemy dynamics 296 

and resource competition in varying environments49. Future empirical and theoretical 297 

analyses should investigate in more detail the conditions under which interspecific variation 298 

in CNDD weakens or reverses the stabilizing effect of CNDD on species diversity and 299 
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whether the competitive disadvantage associated with stronger CNDD may be offset by 300 

functional traits or life history strategies6,33,50. For example, there are indications that trees of 301 

species with stronger CNDD grow faster41 (but cf. Extended Data Table 4), which may result 302 

in faster population growth when a species is rare37.  303 

In the context of the Janzen-Connell hypothesis, we interpret our results as partial support 304 

for the idea that CNDD contributes to the latitudinal gradient in tree species diversity. More 305 

specifically, our results suggest a novel, refined interpretation of this classic idea: the 306 

influence of specialized natural enemies, and more broadly intraspecific resource 307 

competition, may not be stronger on average in tropical than temperate forests, but their 308 

effects may exert stronger controls on species abundances in the tropics. Therefore, we 309 

speculate that unless interspecific variability in CNDD overrides its stabilizing effect, CNDD 310 

may contribute more strongly to the maintenance of local tree species diversity in the tropics.  311 
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Tables 447 

Table 1 | Estimates from the meta-regressions testing the first and second 448 

hypothesized latitudinal pattern in stabilizing conspecific negative density 449 

dependence (CNDD) in tree mortality. We fitted two models for the species-site-specific 450 

CNDD estimates (n = 2534 species or species groups from 23 forest sites): (a) absolute 451 

latitude as a predictor (‘average species CNDD model’), and (b) absolute latitude, species 452 

abundance, and their interaction as predictors (‘abundance-mediated CNDD model’). 453 

Species abundance was measured by log-transformed number of trees with DBH ≥1 cm per 454 

hectare. Predictors were transformed (t), i.e., centered at abundance = 1 tree per hectare 455 

and absolute latitude = 11.75°, so that main effects for abundance and latitude assess 456 

slopes and respective significance tests for rare, tropical species. Stabilizing CNDD is 457 

defined as in Fig. 1. For the models, CNDD estimates (𝑟𝐴𝑀𝐸𝑠) were log-transformed after 458 

adding 1 to improve normality assumptions, so that CNDD as the relative change in annual 459 

mortality probability in percent induced by one additional conspecific neighbor can be 460 

calculated from the model coefficients as 100 × (𝑒𝛽0+𝛽1∙𝑥… − 1). Predictions of the models 461 

are shown in Figs. 2 and 3. 𝜎𝑟 and 𝜎𝑠 are the estimated standard deviations of random 462 

intercepts for CNDD among sites and species in sites, respectively.  463 

Model Characteristic Beta 95% CI1 p-value 

a) Average species 
CNDD 

𝜎𝑟 = 0.0018 

𝜎𝑠 = 0.0054 

intercept 0.004087 0.003072, 
0.005102 2.9  10-15 

tLatitude -0.000044 -0.000107, 
0.000019 0.17 

b) Abundance-mediated 
CNDD 

𝜎𝑟 = 0.0018 

𝜎𝑠 = 0.0053 

intercept 0.007527 0.005870, 
0.009183 5.3  10-19 

tLatitude -0.000172 -0.000315, -
0.000030 0.018 

tAbundance -0.000990 -0.001353, -
0.000626 9.5  10-08 

tLatitude:tAbundance 0.000035 0.000006, 
0.000064 0.017 
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Model Characteristic Beta 95% CI1 p-value 

1Confidence interval 

  464 
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Figures 465 

Fig. 1 | Estimated stabilizing conspecific negative density dependence (CNDD) in tree 466 

mortality plotted against species abundance at the 23 forest plots, along with plot 467 

locations. Points in small panels indicate CNDD estimates and abundances (number of 468 

trees with DBH ≥1 cm per hectare) of individual species or species groups. Larger point 469 

sizes indicate lower uncertainty (i.e., variance) in CNDD estimates. Points in dark grey 470 

indicate effects that are statistically significantly different from zero (with α = 0.05). Circles 471 

are individual species; diamonds are rare species analyzed jointly as groups of rare trees or 472 

rare shrubs. Because of the high variation in CNDD estimates, not all species-specific 473 

estimates can be shown, but the proportion of data that is represented by the estimates 474 

outside the plotting area is indicated for each site. The regression lines, 95% confidence 475 

intervals and p-values are based on meta-regression models fitted independently per site 476 

(except for the Zofin site, where too few estimates were available). Dashed horizontal lines 477 

indicate zero stabilizing CNDD. Locations of forest sites and CNDD-abundance relationships 478 

are colored by latitude (gradient from tropical forests in red-orange to subtropical forests in 479 

yellow-green and temperate forests in blue). Stabilizing CNDD is defined as the relative 480 

change (in %) in annual mortality probability (relative average marginal effect 𝑟𝐴𝑀𝐸) induced 481 

by a small perturbation in conspecific density (i.e., one additional conspecific neighbor with 482 

DBH = 2 cm at 1 m distance) while keeping total densities constant. Positive numbers 483 

indicate a relative increase in mortality with an increase in conspecific density, i.e., 484 

conspecific negative density dependence (CNDD).  485 
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Fig. 2 | Evaluation of the first hypothesized pattern, i.e. the average strength of 486 

stabilizing CNDD across species becomes greater toward the tropics. The estimated 487 

relationship of stabilizing CNDD to absolute latitude indicates that average species CNDD 488 

does not become significantly stronger toward the tropics (p = 0.17). The regression line and 489 

95% confidence intervals are predictions from the meta-regression model fitted with species-490 

site-specific CNDD estimates (n = 2534 species or species groups from 23 forest sites) 491 

including absolute latitude as a predictor (‘mean species CNDD model’; see Table 1a). Grey 492 

points are mean CNDD estimates per forest site from meta-regressions fitted separately for 493 

each forest site without predictors (as in Fig. 4); note that the points are not the direct data 494 

basis for the regression line. The dashed horizontal line indicates zero stabilizing CNDD. 495 

Stabilizing CNDD is defined as in Fig. 1; for alternative definitions of CNDD see Extended 496 

Data Figs. 4 and 5.  497 
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Fig. 3 | Evaluation of the second hypothesized pattern, i.e., CNDD more strongly 498 

regulates species abundances and thus community structure in the tropics. The 499 

estimated relationship of stabilizing CNDD to absolute latitude and species abundance 500 

indicates that species-specific CNDD is considerably stronger for rare than for common 501 

species in tropical forests (p = 0.018), while species in subtropical and temperate forests 502 

show no statistically significant association of CNDD with species abundance (p = 0.24 and 503 

0.72, respectively) (a). Consequently, stabilizing CNDD of species with low abundance 504 

(here, 1 tree per hectare) is stronger in tropical than in temperate forests, while CNDD of 505 

species with high abundance (here, 100 trees per hectare) shows no latitudinal gradient (b). 506 

Note that a caveat to the comparison in (b) is that species abundance distributions and total 507 

community abundance change with latitude so that an abundance of 1 tree per hectare is not 508 

necessarily biologically comparable across latitude. The regression lines and 95% 509 

confidence intervals are predictions from the meta-regression model (n = 2534 species or 510 

species groups from 23 forest sites) including absolute latitude, species abundance, and 511 

their interaction as predictors (‘abundance-mediated CNDD model’; see Table 1b). 512 

Predictions in (a) are shown for the centers of three latitudinal geographic zones, with the 513 

tropical zone ranging between 0 and 23.5° absolute latitude, the subtropical between 23.5 514 

and 35°, and the temperate between 35 and 66.5°. Species abundance is quantified as the 515 

log-transformed number of trees per hectare. Confidence intervals and p-values are 516 

obtained by refitting the model with data centered at the respective latitude or abundance 517 

value. Dashed horizontal lines indicate zero stabilizing CNDD. Stabilizing CNDD is defined 518 

as in Fig. 1; for alternative definitions of CNDD see Extended Data Figs. 4 and 5.  519 
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Fig. 4 | Evaluation of the third hypothesized pattern, i.e., interspecific variation in 520 

stabilizing CNDD decreases toward the tropics. Coefficients of variation (CV = standard 521 

deviation / mean) per forest site showed no statistically significant latitudinal pattern (p = 522 

0.69) but were on average greater than what theory suggests as a maximum for stable 523 

coexistence (CV > 0.4, dotted horizonal line; see Methods ‘Stable coexistence and 524 

interspecific variation in CNDD’) 14,15 at all but three sites (Barro Colorado Island, La Planada 525 

and Wabikon) (a) due to large differences among species at comparatively weak CNDD (b). 526 

Mean CNDD and interspecific variation in CNDD, i.e., standard deviations, are estimated 527 

using meta-regressions without predictors fitted separately for each forest site. Points are 528 

colored by latitude (gradient from tropical forests in red-orange to subtropical forests in 529 

yellow-green and temperate forests in blue). The regression line, 95% confidence interval 530 

and p-value in (a) are based on a linear regression model. Grey lines in (b) indicate different 531 

CV values. Note that we excluded one site from this figure where average CNDD was < 0 532 

(Santa Cruz, Fig. 2) because positive conspecific density dependence is expected to be 533 

destabilizing, irrespective of species differences. Stabilizing CNDD is defined as in Fig. 1, 534 

but here means and standard deviations are shown at the transformed scale, i.e., 535 

𝑙𝑜𝑔(𝑟𝐴𝑀𝐸 + 1).   536 
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Methods 537 

Overview 538 

We used repeated census data from 23 large forest sites around the globe (Fig. 1) to 539 

analyze latitudinal patterns in stabilizing conspecific negative density dependence (CNDD) 540 

following a three-step approach: First, we fitted species-site-specific mortality models from 541 

repeated observations of individual trees. Second, we used these models to quantify CNDD 542 

for each species and site using an estimator designed to maximize robustness, 543 

comparability, and relevance for fitness and stabilization. Third, we used meta-regressions to 544 

explore three distinct latitudinal patterns in CNDD derived from the hypothesis that CNDD is 545 

more influential for maintaining local tree species diversity in the tropics. Robustness of the 546 

analysis pipeline was validated by model diagnostics and randomization.  547 

This approach is based on recently developed best-practice statistical methods for 548 

estimating CNDD. Crucially, the use of dynamic mortality data allowed us to avoid the 549 

statistical pitfalls of previous CNDD studies, in particular analyses of the static relationship of 550 

number of saplings to number of adults, where the null hypothesis is a positive linear 551 

relationship but regression dilution flattens this relationship and thus biases analyses 552 

towards finding CNDD, especially for rare species10-12,28,29. By fitting mortality models where 553 

the null hypothesis is no relationship between survival and number of conspecific neighbors, 554 

we ensure that any regression dilution has a conservative effect by reducing CNDD 555 

estimates. We also addressed other recently identified limitations of CNDD analyses, namely 556 

non-linear and saturating CNDD (see ‘Species-site-specific mortality models’), the 557 

comparability of CNDD among species and sites (see ‘Quantification of conspecific density 558 

dependence’), and the extent to which CNDD estimates are meaningful for stabilization and 559 

species coexistence10,25,31. 560 

All analyses were conducted in R version 4.2.151. 561 
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Forest data 562 

The data used in this study were collected at 23 sites with permanent forest dynamics plots 563 

that are part of the Forest Global Earth Observatory network (ForestGEO) 30 (Fig. 1, 564 

Supplementary notes), where all free-standing woody stems with diameter ≥1 cm at 1.3 m 565 

from the ground (DBH) are censused. We stipulated that for plots to be suitable for analyzing 566 

tree mortality in response to local conspecific density, they should be at least a few hectares 567 

in size with at least two censuses available (i.e., longitudinal data on individual trees). The 568 

plots for which we obtained data vary in size between 6 and 52 ha (Supplementary Table 1), 569 

with between 9,718 and 495,577 mapped tree individuals at each site (Extended Data Table 570 

1). Censuses have been carried out with remeasurement intervals of approximately 571 

five years (Supplementary Table 1). The census data collected for each individual include 572 

species identity, DBH, spatial coordinates and status (alive or dead).  573 

For the mortality analyses, we selected observations of all living trees of non-fern and non-574 

palm species with DBH < 10 cm in one census and follow-up data in a consecutive census 575 

(Extended Data Table 1). We then statistically analyzed how tree mortality (measured by the 576 

status ‘dead’ or ‘alive’ in the consecutive census) depends on local conspecific density and 577 

potential confounders of this relationship (see ‘Species-site-specific mortality models’). We 578 

focused on small trees (between 1 and 10 cm DBH), on the assumption that CNDD effects 579 

are most pronounced in earlier life stages52,53.  580 

For tree individuals with more than one stem, the individual was considered ‘alive’ if at least 581 

one of the stems was alive and ‘dead’ if all stems were dead. The DBH of multi-stem trees 582 

was calculated from the summed basal area of all stems. For trees with multiple stems at 583 

different coordinates, coordinates of the main stem were used. For the forest site Pasoh, 584 

where every stem was treated as an individual (i.e., information on which stems belong to 585 

the same tree was unavailable), we used observations of individual stems. 586 
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Observations of trees or stems were excluded when information on coordinates, species, 587 

status, or date of measurement was missing. Individuals classified as morphospecies were 588 

kept and analyzed as the respective morphospecies. Status assignments were checked for 589 

plausibility and corrected if necessary (i.e., trees found alive after being recorded as dead in 590 

a previous census were set to ‘alive’). If trees or stems changed their coordinates or species 591 

between censuses, the most recent information was used. 592 

Definition of local conspecific density  593 

Most previous CNDD studies have estimated separate effects for conspecific (CNDD) and 594 

heterospecific negative density dependence (HNDD) 3,32. In the context of the Janzen-595 

Connell Hypothesis, where CNDD is a promotor of species diversity, however, we are 596 

primarily interested in the difference between CNDD and HNDD, as only a detrimental effect 597 

of neighboring conspecifics that exceeds the effect of any kind of neighbor (i.e., irrespective 598 

of its species identity) can lead to a stabilizing effect at the population level6,20. We refer to 599 

this effect, i.e., to the difference between CNDD and HNDD, as ‘stabilizing CNDD’. This 600 

effect is more appropriate when estimating the degree of self-limitation for a tree species. 601 

Because CNDD and HNDD are both estimated with uncertainty (characterized by the 602 

standard error), previous analyses that separately estimated CNDD and HNDD often faced 603 

challenges when formally testing if conspecific effects are significantly more negative than 604 

heterospecific effects25. Here, we circumvent this problem by estimating the effect of 605 

conspecific density, adjusted (in a multiple regression) for total tree density which is the sum 606 

of conspecific and heterospecific density54. Defined in this way, the estimated effect (slope) 607 

for conspecific density in the regression corresponds to the effect of CNDD minus HNDD in 608 

previous studies55,56 (for details, see Supplementary methods). 609 

Local conspecific and total densities around each focal tree were calculated as the number 610 

of neighboring trees (𝑁) or their basal area (𝐵𝐴) at the census preceding the census at 611 

which tree status was modelled. We considered neighboring trees of all sizes at distances54 612 
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up to 30 m and discarded focal trees that were within 30 m of the plot boundaries. A 613 

decrease of neighborhood effects with increasing distance was considered using two 614 

alternative decay functions: 615 

exponential:  𝑓(𝑑𝑘) =  𝑒
−

1

𝜇
 𝑑𝑘   616 

exponential-normal: 𝑓(𝑑𝑘) =  𝑒
−

1

𝜇2 𝑑𝑘
2

 617 

with 𝑑𝑘 being the distance between a focal tree and its neighbor k, and the distance decay 618 

parameter 𝜇 defining how far neighborhood effects extend on average.  619 

The estimator for local density (i.e., 𝑁 or 𝐵𝐴), the shape of the decay kernel (i.e., exponential 620 

or exponential-normal) and its parameter 𝜇 were optimized via a grid search, optimizing the 621 

fit of the mortality models (see next section). The parameter 𝜇 was optimized jointly for all 622 

species but separately for conspecific and total densities following the idea that the two 623 

effects are caused by different agents and thus may act at different spatial scales. We tested 624 

all four combinations of density definitions (𝑁 or 𝐵𝐴, with exponential or normal distance 625 

decay) varying 𝜇 between 1 and 25 m in 2 m steps. our selection criterion was the sum of 626 

the log likelihood (LL), calculated using the set of species for which all models converged 627 

(nspecies = 2500). Highest overall LL was achieved when local densities were measured as BA 628 

with an exponential distance decay and 𝜇 = 3 and 17 for conspecific and total density, 629 

respectively (Supplementary Fig. 2). This definition of local densities resulted also in average 630 

AUC comparable to the overall AUC optimum (0.68; difference = 0.001). To ensure that the 631 

joint optimization of 𝜇 for all species did not induce a bias that correlated with the main 632 

predictors, i.e., latitude and species abundance, we further explored species-specific optima 633 

of 𝜇 for those species for which the grid search yielded a distinct optimum of the log 634 

likelihood. We found no pattern with respect to latitude and species abundance 635 

(Supplementary Fig. 3), justifying the use of a joint optimization. 636 
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Species-site-specific mortality models 637 

We used binomial generalized linear mixed models (GLMMs) with a complementary log-log 638 

(cloglog) link to model the tree status (‘dead’ or ‘alive’) as a function of conspecific density 639 

𝑐𝑜𝑛𝐷, total density 𝑡𝑜𝑡𝐷 and tree size 𝑑𝑏ℎ, which were added as potential confounder or 640 

precision covariates57. The advantage of the cloglog link over the more traditional logit link is 641 

that the cloglog allows better accounting for differences in observation time ∆𝑡 (see 642 

Supplementary Table 1) via an offset term58.  643 

Because recent evidence suggests that CNDD could be nonlinear and in particular 644 

saturating10,25, we used generalized additive models (GAM) with thin plate splines59 to allow 645 

for flexible nonlinear responses of all predictors. When the observations covered more than 646 

one census interval, ‘census’ was included as a random intercept. In sum, we model the 647 

status 𝑌𝑖𝑗 of observation i in census interval 𝑗 as a binomial random variable 648 

𝑌𝑖𝑗  ~ 𝐵𝑖𝑛𝑜𝑚 (𝑃𝑟(𝑦𝑖𝑗 = 1)), where  649 

𝑙𝑛 (−𝑙𝑛 (1 − 𝑃𝑟(𝑦𝑖𝑗 = 1))) =  𝛽0 + 𝑓𝑐𝑜𝑛𝐷(𝑥𝑐𝑜𝑛𝐷) + 𝑓𝑡𝑜𝑡𝐷(𝑥𝑡𝑜𝑡𝐷) +650 

𝑓𝑑𝑏ℎ(𝑥𝑑𝑏ℎ) +  𝑢𝑗 + 𝑙𝑜𝑔(∆𝑡)  651 

Here, 𝑃𝑟(𝑦𝑖𝑗 = 1) is the mortality probability of individual 𝑖 in census interval 𝑗, 𝑓𝑘 is the 652 

smooth function of the predictor 𝑥𝑘, 𝑐𝑜𝑛𝐷, 𝑡𝑜𝑡𝐷 and 𝑑𝑏ℎ are the predictor variables, 𝛽0 is the 653 

intercept term, 𝑢𝑗 is the random intercept for census interval 𝑗 with 𝑢𝑗 ∼ 𝑁(0, 𝜎𝑢
2) and ∆𝑡 is 654 

the census interval length in years. 655 

GAM smoothness selection was carried out via restricted maximum likelihood estimation 656 

(REML). Basis dimensions of smoothing splines were kept at modest levels (k = 10) but 657 

were reduced when the number of unique values (nvals) in a predictor was less than 10 658 

(k = nvals – 2). Models were fitted with the function gam() from the package mgcv60 659 

(Version 1.8-40).  660 
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In this setup, we fitted species-site-specific mortality models for all species that had at least 661 

20 alive and dead status observations each and at least four unique conspecific density 662 

values with a range that included the value used to calculate average marginal effects (see 663 

‘Quantification of conspecific density dependence’). The species that did not fulfill these 664 

criteria and those where no convergence was achieved (overall 63.2% of the species) were 665 

fitted jointly in one of two groups – rare shrub species and rare tree species (Extended Data 666 

Table 1) – following the assumption that different growth forms may differ in their base 667 

mortality rate. This allows us to at least consider very rare species for our analyses, even if 668 

these species do not contribute to the results to the same extent as species with more 669 

observations. The growth form of each tree species, i.e., ‘shrub’ or ‘tree’, was derived from a 670 

species’ maximum tree size. If the maximum of the average DBH of the six largest trees or 671 

stems of each species per census was > 10 cm, a species was considered a tree and 672 

otherwise a shrub61,62.  673 

Quantification of conspecific density dependence 674 

Based on the species-site-specific mortality models, we then quantified how a change in 675 

conspecific density affects mortality probability. The challenge here is that the nonlinear link 676 

in the GLMMs implies that effects at the scale of the linear predictor can translate nonlinearly 677 

to the response scale (mortality rates) when the estimated intercept differs between 678 

individual species and sites31. To obtain an estimate of the strength of stabilizing CNDD that 679 

is nonetheless comparable among species and sites, we calculated the average marginal 680 

effect (𝐴𝑀𝐸) of a small perturbation of conspecific density on mortality probability63 at the 681 

response scale. We derived both absolute and relative 𝐴𝑀𝐸 (𝑎𝐴𝑀𝐸 and 𝑟𝐴𝑀𝐸, 682 

respectively), which can be interpreted as the average absolute (%/year) and relative (%) 683 

change, respectively, in mortality probability caused by the increase in conspecific density. In 684 

meta-analysis and econometrics, 𝑎𝐴𝑀𝐸 is also known as the average risk difference, and 685 

𝑟𝐴𝑀𝐸 + 1 as the average risk ratio64,65. 686 
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To obtain 𝑎𝐴𝑀𝐸 and 𝑟𝐴𝑀𝐸, we first calculated the absolute and relative effect of one 687 

additional conspecific neighbor on the mortality probability (response scale) for each 688 

observation 𝑖:  689 

𝑎𝑀𝐸𝑖 =  𝑝𝑖,𝑐𝑜𝑛𝐷𝑖+1 − 𝑝𝑖,𝑐𝑜𝑛𝐷𝑖
   690 

𝑟𝑀𝐸𝑖 =  
𝑝𝑖,𝑐𝑜𝑛𝐷𝑖+1

𝑝𝑖,𝑐𝑜𝑛𝐷𝑖

− 1 =   
𝑝𝑖,𝑐𝑜𝑛𝐷𝑖+1− 𝑝𝑖,𝑐𝑜𝑛𝐷𝑖

𝑝𝑖,𝑐𝑜𝑛𝐷𝑖

   691 

Here, 𝑝𝑖 is the mortality probability at the response scale and 𝑐𝑜𝑛𝐷𝑖 the observed local 692 

conspecific density. The subscript 𝑐𝑜𝑛𝐷𝑖 + 1 denotes the new conspecific density, which is 693 

obtained by adding one conspecific neighbor with DBH = 2 cm at 1 m distance, a relatively 694 

small perturbation that was within the range of observed conspecific densities even for rare 695 

species. A larger perturbation in conspecific densities could create extrapolation problems. 696 

For each observation, 𝑎𝑀𝐸𝑖 and 𝑟𝑀𝐸𝑖 were calculated using observed conspecific densities. 697 

Likewise, confounders, i.e., total density, DBH and census interval, were kept at observed 698 

values, and the interval length was fixed at one year. As an alternative quantification of 699 

density dependence that links to theoretical considerations from coexistence theory7 (i.e. 700 

invasion criterion35), we quantified CNDD at low conspecific densities by setting 𝑐𝑜𝑛𝐷𝑖 = 0 701 

and again increasing it by one additional conspecific neighbor with DBH = 2 cm at 1 m 702 

distance. As a further alternative, we calculated CNDD as the change in mortality resulting 703 

from a change in conspecific density from the first to the third quantile of observed 704 

conspecific densities per species to estimate how important CNDD is effectively for small 705 

tree mortality. It must be noted that values from this latter metric should not be compared 706 

between species (or sites), as the change in conspecific density is different for each species 707 

and tends to increase with species abundance. 708 

Individual marginal effects (𝑎𝑀𝐸𝑖 and 𝑟𝑀𝐸𝑖) were averaged over all observations per species 709 

to obtain average marginal effects31. Because there is no analytical function to forward the 710 

uncertainty of the GAM predictions to the response scale, we estimated uncertainties, i.e., 711 
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sampling variances 𝑣𝑙𝑚, and significance levels for species-site-specific 𝑎𝐴𝑀𝐸 and 𝑟𝐴𝑀𝐸 by 712 

simulation. To this end, we simulated 500 sets of new model coefficients from a multivariate 713 

normal distribution with the unconditional covariance matrix of the fitted model, calculated 714 

𝑎𝐴𝑀𝐸 and 𝑟𝐴𝑀𝐸 for each set66 and used quantiles of the simulated distributions to 715 

approximate sampling variances and significance levels of CNDD estimates. 716 

In our results, we concentrate our discussion on 𝑟𝐴𝑀𝐸 because we consider relative 717 

changes in mortality to be ecologically more meaningful than absolute changes. The reason 718 

is that the relevance of an increase in mortality for a species’ fitness strongly depends on its 719 

base mortality rate. Vice versa, if CNDD effects exist, it is to be expected that they are higher 720 

in absolute terms for species that already have higher absolute mortality rates. Moreover, 721 

given that species-specific mortality rates may also correlate with species abundance and 722 

latitude, the use of absolute mortality rates is likely more prone to confounding. To be 723 

comparable with previous studies, which commonly use absolute effects, results for the two 724 

main meta-regressions are also presented for the absolute effects, i.e., 𝑎𝐴𝑀𝐸 estimates 725 

(Extended Data Fig. 4 and Extended Data Table 3). 726 

Meta-regressions for CNDD patterns 727 

To test for latitudinal patterns in stabilizing CNDD, we fitted meta-regressions34,67 using the 728 

species-site-specific CNDD estimates. The advantage of these models is that they 729 

simultaneously account for the uncertainties in 𝑎𝐴𝑀𝐸 and 𝑟𝐴𝑀𝐸 estimates (i.e., sampling 730 

variances) – much like measurement error models – as well as heterogeneity among sites 731 

and species via a multilevel model: 732 

𝐴𝑀𝐸𝑙𝑚 =  𝑏0 + 𝑟𝑙 + 𝑠𝑙𝑚 + 𝑒𝑙𝑚 + 𝑓(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠)    733 

 𝑟𝑙 ∼ 𝑁(0, 𝜎𝑟
2) 734 

 𝑠𝑙𝑚 ∼ 𝑁(0, 𝜎𝑠
2) 735 
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 𝑒𝑙𝑚 ∼ 𝑁(0, 𝑣𝑙𝑚) 736 

Here, 𝐴𝑀𝐸𝑙𝑚 is the average marginal effect for site l and species m, 𝑏0 is the intercept, 𝑟𝑙 737 

is the random effect for site l (normally distributed with 𝜎𝑟
2), 𝑠𝑙𝑚 is the random effect of 738 

species 𝑚 (normally distributed with 𝜎𝑠
2), and 𝑒𝑙𝑚 is the uncertainty of the individual 739 

estimates (normally distributed with the species-site-specific sampling variance 𝑣𝑙𝑚). 740 

Omitting the random effects would lead to inappropriate estimates because it does not 741 

consider the true interspecific variation in species’ CNDD. To improve the normality 742 

assumption of the residuals of the meta-regressions, 𝑟𝐴𝑀𝐸𝑠 were log-transformed after 743 

adding 1 before calculating the sampling variances (see above); 𝑎𝐴𝑀𝐸 remained 744 

untransformed. 745 

Depending on the respective prediction to be evaluated, we used different meta-regression 746 

models. To evaluate latitudinal patterns in average CNDD and in the association of CNDD 747 

and abundance, we fitted multilevel models to all species-site-specific estimates (see model 748 

formula above): the first including absolute latitude as a predictor (Fig. 2 and Table 1a) and 749 

the second additionally including log-transformed species abundance and its interaction with 750 

latitude (Fig. 3 and Table 1b).  751 

Absolute latitude was calculated as the distance (in degrees) to the equator. This metric 752 

does not distinguish between the northern and southern hemispheres and is commonly used 753 

as a proxy for the current and past bio-climatic variables that are assumed to underlie most 754 

latitudinal biological patterns68,69. We calculated the abundance of each tree species per site 755 

as the number of all living trees (or stems, for Pasoh) per hectare on the entire plot. 756 

Abundance for the two groups of rare species (rare trees and rare shrubs) was calculated as 757 

the average of species abundances within the respective group. The predictors were 758 

centered at abundance = 1 tree per hectare and absolute latitude = 11.75°, so that main 759 

effects reflect slopes and respective significant tests for rare tropical species (Table 1).  760 
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We also separately fitted meta-regressions for each site with species as a random intercept: 761 

firstly, without any predictor to obtain mean CNDD and its standard deviation among species 762 

per site (Figs. 2 and 4); and then with species abundance as a predictor to illustrate site-763 

specific relationships of CNDD and abundance (Fig. 1).  764 

Average marginal effects (𝐴𝑀𝐸) calculated for species-specific interquantile ranges were 765 

aggregated in a global meta-regression with random intercepts for sites and species within 766 

sites to obtain a global average of CNDD and assess its importance for small tree mortality 767 

(Extended Data Fig. 1). 768 

Models were fitted via restricted maximum likelihood estimation (REML) using the functions 769 

rma.mv() and rma() from the package metafor70 (Version 3.4-0) for the global and site-770 

specific cases, respectively. 771 

Robustness tests 772 

Statistical assumptions of the mortality models were verified based on simulated residuals 773 

generated with the package DHARMa71 (Version 0.4.6). Distributional assumptions and 774 

residual patterns against predictors were assessed visually, revealing no critical violations of 775 

assumptions and a consistently good model fit. To verify that no additional unobserved local 776 

confounders, particularly habitat effects, were affecting the relationship between conspecific 777 

density and mortality, we tested each mortality model for spatial autocorrelation using the 778 

package DHARMa71. After adjusting p-values for multiple testing using the Holm method, 779 

significant spatial autocorrelation was detected in only seven models, or 0.28% of all 780 

species-site combinations, which means that there is no indication that local species-specific 781 

CNDD estimates were affected by spatial pseudo-replication.  782 

Model diagnostics for the meta-regressions were based on standardized residuals and visual 783 

assessments. Because of the unbalanced design (more tropical than temperate species, see 784 

Supplementary Fig. 1c), we carried out additional robustness tests by identifying influential 785 
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species-site-specific CNDD estimates and refitting the two main meta-regression models (cf. 786 

Table 1) with a reduced dataset without these observations. We removed 99 CNDD 787 

estimates that had Cook’s distances larger than 0.005 in the abundance-mediated CNDD 788 

model72. Meta-regressions fitted with these reduced datasets revealed similar patterns and 789 

significance levels (Extended Data Fig. 3 and Extended Data Table 2). 790 

To evaluate the robustness of the entire analysis pipeline with respect to potential 791 

abundance- and latitude-related biases11,12, we repeated all steps of the analysis (i.e., 792 

mortality models, average marginal effects, and meta-regressions) with two randomizations 793 

of the original dataset (similar tests highlighted biases in the pipeline of LaManna et al. 8, 794 

see11,12). We randomized (1) observations of tree status within each species, thus removing 795 

any relationship between mortality and predictors but maintaining species-level mortality 796 

rates, and (2) observations of local conspecific density within each species, thus removing 797 

the relationship between mortality and conspecific density but maintaining the relationships 798 

between mortality and confounders. Meta-regressions applied to these randomized datasets 799 

revealed close to zero CNDD and no considerable patterns with latitude or species 800 

abundance (Extended Data Fig. 2 and Extended Data Table 2). When randomizing tree 801 

status, rare species exhibited minimally, but significantly, stronger CNDD, but the effect 802 

sizes varied by orders of magnitude from those observed in the original dataset. We 803 

therefore consider our results robust to statistical artifacts related to species abundance and 804 

latitude.  805 

In addition, not only statistical biases but also alternative explanations could create a 806 

spurious correlation between CNDD and species abundance. To test this, we included 807 

potential confounders for this relationship in the ‘abundance-mediated CNDD model’. 808 

Following the idea that fast-growing tree species with short life spans (i.e., lower survival 809 

rates) tend to be rarer43, a pattern also observed across the 23 forest sites analyzed here 810 

(Supplementary Fig. 1a,b), and at the same time may experience stronger CNDD41, we 811 

considered two sets of predictors that are proxies for different life history strategies, namely: 812 
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(1) species-specific growth and survival rates and (2) species-specific values along two 813 

demographic tradeoff axes73,74. Species-specific growth was calculated as the median of the 814 

annual DBH increment, log-transformed after adding 1. For survival, we calculated mean 815 

annual survival rates (based on the intercept of a GLM similar to the mortality models for 816 

CNDD but without predictors) and applied a logit-transformation. Both rates were 817 

standardized within sites, i.e., subtracting the mean and dividing by the standard deviation, 818 

to account for differences in the realized demographic spectrum between sites. The 819 

demographic tradeoffs reflect the two axes ‘growth-survival’ and ‘stature-recruitment’ and 820 

were adapted from the procedure described in Rüger et al.73 using species-specific growth 821 

and survival rates (as described before) and the species’ maximum size (i.e., stature), 822 

calculated as the log-transformed 90th percentile of the DBH, again standardized within sites. 823 

In both cases, we included main effects of the two predictors and their interaction. 824 

Accounting for life history strategies did not change the patterns obtained, and species 825 

abundance and CNDD were still strongly and statistically significantly correlated in tropical 826 

forests (Extended Data Table 4). 827 

Stable coexistence and interspecific variation in CNDD 828 

If CNDD varies strongly among species and the resulting interspecific fitness differences are 829 

not compensated by equalizing mechanisms6,33, the stabilizing advantage of CNDD may not 830 

promote diversity. May et al.14 suggested based on simulations that the number of species 831 

maintained strongly drops when the coefficient of variation (CV = standard deviation/mean) 832 

for CNDD is above 0.4 (see their Figure 2), i.e., the stronger CNDD becomes the more 833 

interspecific variation it enables. Similarly, Stump and Comita15 found considerably fewer 834 

species with increasing standard deviations of CNDD supporting a comparable threshold of 835 

CV = 0.4 (standard deviation = 0.2 at mean CNDD = 0.5, their Figure 2a). Miranda et al.75, 836 

who also explored the effect of interspecific variation in CNDD, identified no threshold for 837 

stable coexistence, which is most likely caused by the relatively small variation in CNDD that 838 

they tested (see their Figure 2). While it is not entirely clear if the threshold of CV = 0.4 is 839 
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truly due to the magnitude of fitness differences or to the fact that some species tend to have 840 

almost no CNDD when interspecific variation becomes large, the consistency of this 841 

threshold, despite different implementations of CNDD14,15, provides a starting point for 842 

evaluating the relevance of CNDD for community assembly. We estimated true interspecific 843 

variation of CNDD within forest communities fitting site-specific meta-regressions without 844 

predictors (see ‘Meta-regressions for CNDD patterns’), which are particularly helpful in this 845 

case because the raw variability of species-specific CNDD estimates is also driven by 846 

statistical uncertainty. 847 

Data availability 848 

The forest data that support the findings of this study are available from the ForestGEO 849 

network. For some of the sites, the data is publicly available at 850 

https://forestgeo.si.edu/explore-data. Restrictions apply, however, to the availability of the 851 

data from other sites, which were used under license for the current study, and so are not 852 

publicly available. Raw data are available from the authors upon reasonable request and 853 

with permission of the principal investigators of the ForestGEO sites. Species-site-specific 854 

CNDD estimates to reproduce the meta-analyses are available at 855 

https://github.com/LisaHuelsmann/latitudinalCNDD. 856 

Code availability 857 
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Extended data figures 940 

Extended Data Fig. 1 | Distribution of stabilizing CNDD calculated over species-site-941 

specific interquantile ranges in conspecific density. Besides the frequency distribution of 942 

species-site-specific estimates, the figure indicates the global average assessed through 943 

meta-regression with random intercepts for sites and species in sites (red diamond with 95% 944 

confidence interval) and the interquantile range of the estimates. Note that 1% of the CNDD 945 

estimates are outside the limits of the x-axis.  946 
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Extended Data Fig. 2 | Robustness tests of the analysis pipeline based on randomized 947 

datasets. When observations of tree status (red) or conspecific density (blue) were 948 

randomized, stabilizing CNDD was practically zero at all latitudes (a) and for all species 949 

abundances (b,c). Rare species exhibited minimally, but significantly, stronger CNDD for the 950 

dataset with randomized tree status, but the effect sizes varied by orders of magnitude from 951 

those observed in the original dataset (black). See ‘Robustness tests’ for details. For details 952 

on the visualization and definition of CNDD in (a) and (b,c), see Figs. 2 and 3, respectively. 953 

Estimates of the meta-regressions are shown in Extended Data Table 2 (randomized 954 

datasets) and Table 1 (original dataset).  955 
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Extended Data Fig. 3 | Robustness tests without most influential observations. When 956 

influential observations were removed (nremoved = 99, see ‘Robustness tests’ for details), the 957 

qualitative patterns remained the same, i.e., stronger CNDD for rare than common species 958 

in the tropics (b,c) but not generally stronger tropical CNDD (a). For details on the 959 

visualization and definition of CNDD in (a) and (b,c), see Figs. 2 and 3, respectively. 960 

Estimates of the meta-regressions are shown in Extended Data Table 2.  961 
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Extended Data Fig. 4 | Alternative definition of stabilizing CNDD as the absolute 962 

change in mortality probability. Similar patterns are visible to the main analysis, i.e., 963 

stronger CNDD for rare than common species in the tropics (b,c) but not generally stronger 964 

tropical CNDD (a), but in contrast to the main analysis the interaction of species abundance 965 

and latitude was insignificant. See ‘Quantification of conspecific density dependence’ for 966 

details on the definitions of CNDD. For details on the visualization in (a) and (b,c), see Figs. 967 

2 and 3, respectively. Estimates of the meta-regressions are shown in Extended Data 968 

Table 3.  969 
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Extended Data Fig. 5 | Alternative definition of stabilizing CNDD calculated at low 970 

conspecific densities (i.e., invasion densities). The patterns remained qualitatively the 971 

same as in the main analysis, i.e., stronger CNDD for rare than common species in the 972 

tropics (b,c) but not generally stronger tropical CNDD (a). See ‘Quantification of conspecific 973 

density dependence’ for details on the definition of CNDD. For details on the visualization in 974 

(a) and (b,c), see Figs. 2 and 3, respectively. Note that for one of the sites (Smithsonian 975 

Conservation Biology Institute), no point could be drawn for mean CNDD in (a) because the 976 

site-specific meta-regression did not converge. Estimates of the meta-regressions are shown 977 

in Extended Data Table 3.  978 
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Extended data tables 979 

Extended Data Table 1 | Summary information of the data used in mortality models 980 

per forest plot. Observations for the mortality analyses (N status observations) were 981 

selected as follows: (1) no fern or palm species, (2) no missing information on coordinates, 982 

species, status, or date of measurement, (3) alive in the first census and alive or dead in the 983 

consecutive census, (4) DBH between 1 and 10 cm in the first census, (5) more than 30 m 984 

away from the plot boundaries. From the total number of species in the mortality dataset (N 985 

species for mortality analyses), only some proportion could be successfully fit (% species 986 

fitted individually). The remaining species were jointly fitted in species groups (N species 987 

fitted as rare trees or shrubs): these were species with fewer than 20 alive and dead 988 

observations each, species with fewer than four unique values of conspecific density, 989 

species with a range of conspecific density values not including the value used to calculate 990 

average marginal effects, or species for which no convergence of the mortality model was 991 

achieved. In some cases, the mortality model for a species group did not converge 992 

(indicated by N = 0 in the respective column). Note that the percentage of dead trees (% 993 

dead status observations) does not correspond to mortality rates because of varying interval 994 

lengths. Numbers of species can include morphospecies. Note that for the Pasoh site, each 995 

stem was counted as an individual tree (see Methods ‘Forest data’).  996 
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Extended Data Table 2 | Estimates for the two main meta-regressions using 997 

randomized and reduced datasets. We randomized observations of tree status within each 998 

species, thus removing any relationship between mortality and predictors but retaining 999 

species-level mortality rates, and observations of local conspecific density within each 1000 

species, thus removing the relationship between mortality and conspecific density but 1001 

retaining the relationships between mortality and confounders (see Methods ‘Robustness 1002 

tests’). For the reduced dataset, we removed n = 99 influential species-site-specific CNDD 1003 

estimates with Cook’s distances larger than 0.005 to evaluate the possibility that a few 1004 

observations were responsible for the observed patterns. Species-site-specific CNDD 1005 

estimates and predictors are defined as in Table 1. Predictions of the meta-regressions are 1006 

shown in Extended Data Figs. 2 and 3.  1007 
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Extended Data Table 3 | Estimates for the two main meta-regressions using two 1008 

alternative definitions of stabilizing CNDD. Species-site-specific CNDD estimates 1009 

(n = 2534 species or species groups from 23 forest sites) were calculated as the absolute 1010 

change in mortality probability (𝑎𝐴𝑀𝐸) and as the relative change in mortality probability 1011 

(𝑟𝐴𝑀𝐸) but at low conspecific densities (i.e., invasion densities; see Methods ‘Quantification 1012 

of conspecific density dependence’). For the meta-regressions, 𝑎𝐴𝑀𝐸𝑠 were not transformed 1013 

and can be simply multiplied by 100 to obtain the absolute change in annual mortality 1014 

probability induced by additional conspecific neighbor in percent. For 𝑟𝐴𝑀𝐸𝑠, 1015 

backtransformation is necessary as in Table 1. Predictions of the meta-regressions are 1016 

shown in Extended Data Figs. 4 and 5.  1017 
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Extended Data Table 4 | Estimates for the two main meta-regressions accounting for 1018 

potential confounding by life history strategies. The original ‘abundance-mediated 1019 

CNDD model’ (cf. Table 1b) was extended to include either the demographic rates growth 1020 

and mortality or demographic tradeoffs (see Methods ‘Robustness tests’). Demographic 1021 

rates and tradeoff axes were centered and scaled. Species-site-specific CNDD estimates 1022 

(n = 2534 species or species groups from 23 forest sites) and predictors (i.e. latitude and 1023 

abundance) are defined as in Table 1. 1024 
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