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ABSTRACT

The problem of the charged-particle motion in an axisymmetric magnetic geometry is used to assess the validity of higher-order
Hamiltonian guiding-center theory, which includes higher-order corrections associated with gyrogauge invariance as well as guiding-center
polarization induced by magnetic-field non-uniformity. Two axisymmetric magnetic geometries are considered: a magnetic mirror geometry
and a simple tokamak geometry. When a magnetically confined charged-particle orbit is regular (i.e., its guiding-center magnetic moment is
adiabatically invariant), the guiding-center approximation, which conserves both energy and azimuthal canonical angular momentum, is
shown to be faithful to the particle orbit when higher-order corrections are taken into account.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0145035

I. INTRODUCTION

The guiding-center representation1–4 of charged-particle orbits is
at the foundation of most particle simulations of magnetized plas-
mas.5–9 The faithfulness of this representation relies on the adiabatic
invariance of the magnetic moment l, which is expressed as an
asymptotic expansion based on the nonuniformity of the magnetic
field. In addition, when the magnetic field is axisymmetric, the connec-
tion between the exact particle canonical azimuthal angular momen-
tum and its guiding-center representation can be used as a test for the
faithfulness of the guiding-center approximation.10

For each guiding-center orbit parametrized by the guiding-center
magnetic moment l (with initial guiding-center positionX0 and initial
parallel guiding-center momentum Pjj0), there corresponds an infinite
set of particle orbits (with local initial conditions x0 and _x0) that are
labeled by an initial gyroangle, measured on an initial Kruskal ring11,12

(also parametrized by the magnetic moment l) defined on the two-
dimensional plane perpendicular to the local magnetic field. [In a
uniform magnetic field B ¼ B ẑ, the Kruskal ring is a circle in the

(x, y)-plane of radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lB=mX2

p
centered at the guiding-center

position X0, where X ¼ eB=mc denotes the gyrofrequency of a
charged particle of mass m and charge e and c denotes the speed of
light.] By adopting a guiding-center formulation that is gyrogauge
invariant1,2 (i.e., a formulation that is not only gyroangle invariant but
also independent how the gyroangle is measured), the guiding-center
orbit can be compared to an arbitrary particle orbit belonging to the
same initial Kruskal ring.

The purpose of our present work is to explore how higher-
order Hamiltonian guiding-center theory is faithful to charged-
particle dynamics in an axisymmetric magnetic field. In particular,
compared to the exact particle canonical angular momentum
invariant, we will investigate the faithfulness of the guiding-center
canonical angular momentum derived either in the truncated
(lowest-order) guiding-center model,3,13 in the standard work of
Littlejohn,1,2 which includes gyrogauge corrections, or the extended
work of Brizard14 and Tronko and Brizard,4 which includes effects
due to guiding-center polarization.15 For this purpose, we will con-
sider particle and guiding-center orbits in axisymmetric mirror
geometry (Sec. III) and in axisymmetric (simple) tokamak geometry
(Sec. IV).

II. PARTICLE AND GUIDING-CENTER ORBITS
IN GENERAL AXISYMMETRIC MAGNETIC GEOMETRY

In Sec. II, we consider the problem of charged particle motion in
a generic nonuniform magnetic field. Since the primary focus of our
work involves the effects of magnetic nonuniformity, we assume that
the magnetic field is stationary and an electric field is absent in our
formulation.

A. Lagrangian particle dynamics

The orbits of a charged particle moving in a nonuniform mag-
netic field BðxÞ are represented as solutions of the Euler–Lagrange
equations obtained from the particle Lagrangian,
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L ¼ e
c
AðxÞ þm v

� �
� _x �m

2
jvj2;

¼ e
c
AðxÞ � _x þm

2
j _xj2; (1)

where the particle velocity is v ¼ _x and the magnetic field B � r
�A � B b̂ (which is decomposed in terms of its magnitude B ¼ jBj
and its direction unit vector b̂ ¼ B=jBj) is represented in terms of a
vector potential A. From this Lagrangian, we obtain the
Euler–Lagrange equations,

d
dt

@L
@ _x

� �
¼ @L

@x
; (2)

which yield the usual Lorentz force equation

m €x ¼ e
c
rA � _x � _x � rAð Þ ¼ e

c
_x � B; (3)

which is solved subject to the initial conditions ðx0; _x0 ¼ v0Þ. Since we
are interested in orbital solutions of the Lorentz force equation (3)
over long time scales compared to the short gyration period, which is
inversely proportional to the gyrofrequency X0 ¼ eB0=ðmcÞ, where B0
denotes the characteristic strength of the magnetic field, we introduce
a dimensionless time t0 ¼ �X0 t, where � � 1 denotes a small order-
ing parameter, so that _x ¼ �X0 x0 (a prime denotes a derivative with
respect to t0). Hence, the Lorentz force equation (3) becomes

� �x 00 ¼ �x 0 � �Bð�xÞ; (4)

where we have introduced a characteristic length scale R0 associated
with the magnetic field, so that �x � x=R0 is dimensionless, and the
magnetic field B ¼ B0 �Bð�xÞ is expressed in terms of a dimensionless
field �Bð�xÞ. The solution for this equation of motion, which can be car-
ried out as an asymptotic expansion in powers of �,16 will be carried
out numerically in this paper.

In the event the magnetic field is axisymmetric, the particle
Lagrangian (1) is independent of the particle azimuthal angle u, and
the azimuthal canonical angular momentum,

Pu � @L
@ _u

¼ e
c
Aþm _x

� �
� @x
@u

; (5)

is a constant of the motion for particle orbits. With the normalization
discussed above, we note that the azimuthal canonical angular
momentum (5) becomes

Pu
mR2

0X0
� �Pu ¼ �A þ � �x 0ð Þ � @�x

@u
; (6)

with the dimensionless magnetic vector potential �A � A=ðB0R0Þ.

B. Lagrangian guiding-center dynamics

For most particle orbits that are solutions of the Lorentz force
equation (3), the lowest-order magnetic moment,

l0 �
m
2B

jb̂ � _xj2 ¼ m
2B

jq0j2 X2; (7)

is an adiabatic invariant (where q0 � b̂ � _x=X denotes the lowest-
order gyroradius), i.e., while the time derivative,

_l0 ¼ �l0 v � r lnB�
mvjj
B

v � rb̂ � v? 6¼ 0; (8)

does not vanish for a general magnetic field, its average over the fast
gyromotion timescale yields

h _l0i ¼ �l0 vjj b̂ � r lnBþr � b̂
� �

¼ �
l0 vjj
B

ðr � BÞ;

where vjj � v � b̂ is the local parallel velocity, hv?i ¼ 0 and
hmv? � rb̂ � v?i ¼ l0B ðr � b̂Þ. Since magnetic fields are diver-
genceless, we immediately find that h _l0i ¼ 0, i.e., l0 is an invariant over
time scales that are slow compared to the fast gyromotion timescale.

The purpose of the guiding-center transformation is to construct
an expression for the guiding-center moment,

l ¼ l0 þ � l1 þ � � � ; (9)

represented as an asymptotic series in powers of the dimensionless
parameter �, where the first-order correction,

l1 ¼ l0r lnBþ
p2jj j

2mB

� �
� q0 �

3
2
l0

pjj s

mX

� �
þ

pjj
2B

db̂
dt

� q0; (10)

involves first-order magnetic-field nonuniformity associated with
magnetic curvature j ¼ b̂ � rb̂ and magnetic twist s ¼ b̂ � r � b̂,
with db̂=dt � _x � rb̂ in a time-independent nonuniform magnetic
field. The new expression (10), which is derived from the standard
expression found in Refs. 1–4 in Appendix A, is easily computed from
the particle dynamics. Hence, from the magnetic-moment analysis of
the particle orbit yields a relatively accurate value for the guiding-
center magnetic moment l ¼ l0 þ � l1, which can then be used as a
label for the guiding-center orbit.

The reduced guiding-center representation of charged-particle
dynamics in a nonuniform magnetic field3 is obtained by an asymp-
totic decoupling of the fast gyromotion from the slow magnetic-drift
motion in a reduced dynamical phase space with guiding-center coor-
dinates Za ¼ ðX;PjjÞ, while the fast gyromotion is represented by the
canonically conjugate guiding-center action-angle coordinates ðJ; fÞ,
where the gyroaction J � lB0=X0 (defined in terms of the magnetic
moment l) is canonically conjugate to the guiding-center gyroangle f.

The guiding-center Lagrangian is expressed up to first order in
magnetic-field nonuniformity as

Lgc¼
e
�c

AðXÞþPjj b̂ðXÞ��JR�ðXÞ
� �

� _Xþ�J _f�
P2
jj

2m
þlBðXÞ

� �
;

(11)

where the �-ordering introduced in Eq. (11) is based on the standard
macroscopic ordering associated with the renormalization of the elec-
tric charge e ! e=�. The selection of the vector field,

R�ðXÞ ¼

0 ðAÞ

Rþ 1
2
s b̂ ðBÞ

Rþ 1
2
r� b̂ ðCÞ;

8>>>><
>>>>:

(12)

is based on whether the gyrogauge vector field R � rê1 � ê2

(defined1 in terms of the local orthogonal unit vectors ê1 and
ê2 � b̂ � ê1) is kept (B) and (C) or not (A), and whether the guiding-
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center polarization correction4 is kept (C) or not (B). The truncated
guiding-center model (A) is the simplest guiding-center model that is
used in several guiding-center orbit codes (e.g., Refs. 6 and 13) and is
reviewed in Ref. 3. The standard guiding-center model (B) was
derived1,2 to ensure that the guiding-center equations of motion are not
only independent of the gyroangle but also independent of how this
gyroangle is locally measured in the perpendicular plane spanned by
the unit vectors ðê1; ê2Þ. The extended guiding-center model (C) was
derived4 to ensure that the guiding-center transformation accurately
represents the guiding-center polarization.14,15

The guiding-center Euler–Lagrange equations,

dð@Lgc=@ _Z
aÞ=dt ¼ @Lgc=@Z

a;

lead to the reduced guiding-center equations of motion

_X ¼
Pjj
m

B�

B�
jj
þ � cb̂

eB�
jj
� lrB; (13)

_P jj ¼ �B�

B�
jj
� lrB; (14)

where

B� ¼ Bþ � c
e

Pjj r � b̂ � � Jr�R�
� �

; (15)

and B�
jj � b̂ � B� can be used as the guiding-center Jacobian. These

guiding-center equations are solved subject to the initial conditions
ðX0; Pjj0Þ, once again labeled by the guiding-center magnetic moment
l obtained from the particle orbit. Because the particle and guiding-
center orbits share the same values of energy E and magnetic moment
l, the initial guiding-center parallel momentum can be chosen from
the initial condition P2

jj0=2m ¼ E � lBðX0Þ, where the initial
guiding-center position X0 is calculated from the initial particle posi-
tion x0 according to the guiding-center transformation,1,2

X ¼ x þ �Gx
1 þ �2 Gx

2 þ
1
2
�2 G1 � dGx

1 þ � � � ; (16)

which implies that the initial guiding-center position X0 is shifted
from the initial particle position x0. Hence, the initial guiding-center
position X0 will depend on the guiding-center model used in Eq. (12),
which differs at second order throughGx

2.
4

Finally, when the magnetic field is axisymmetric, the guiding-
center Lagrangian (11) is independent of the guiding-center azimuthal
angle U, and the guiding-center azimuthal canonical angular
momentum,

PgcU ¼ eA
� c

þ Pjj b̂ � � JR�
� �

� @X
@U

� eA�

�c
� @X
@U

; (17)

is an exact guiding-center invariant. We note that the terms of third
order in �3 in A� (i.e., second order in magnetic-field nonuniformity)
and higher are ignored.

C. Validity of the guiding-center representation
in general axisymmetric magnetic geometry

While the azimuthal canonical angular momenta (5) and (17) are
constants of motion of their respective equations of motion, they can

only be compared when the guiding-center azimuthal canonical angu-
lar momentum (17) is pulled back into particle phase space,

TgcPgcU ¼ PgcU þ � Gl
1
@

@l
þ G

pjj
1

@

@pjj
� q0 � r

 !
PgcU

þ �2
1
2
q0q0 : rr� q1 � r

� �
PgcU þ � � �

� Pu; (18)

where ðGl
1 ;G

pjj
1 Þ denote the first-order corrections to the guiding-

center magnetic moment and guiding-center parallel momentum,
respectively, and the first-order gyroradius is defined in particle phase
space as

q1 ¼ � l0Bj

2mX2 þ
q0
2

� r lnB�
pjjs

mX

� �
q0 þ q1jj b̂; (19)

where while an explicit expression for the parallel component q1jj
� q1 � b̂ will not be needed in the present work, we note that its gyro-
angle average is hq1jji ¼ ðlB=2mX2Þr � b̂. We note that the first
term in Eq. (19) appears as a result of the extension4 of the standard
guiding-center transformation1 that correctly calculates the guiding-
center polarization (see Appendix B for details).

The guiding-center representation is faithful to particle dynamics
if the identity (18) is satisfied up to an arbitrary order in �. This identity
guarantees that the guiding-center push-forward of the particle conser-
vation law dPu=dt ¼ 0 yields the guiding-center conservation law,

0 ¼ T�1
gc

dPu
dt

� �
¼ T�1

gc
d
dt

Tgc

� �	 

T�1
gc Pu � dgcPgcU

dt
;

where dgc=dt is the time derivative generated by the guiding-center
Lagrangian dynamics and the guiding-center invariant PgcU � T�1

gc Pu
may be truncated at an arbitrary order in �.

In previous work, Belova et al.10 considered energetic-particle
orbits in the National Spherical Torus Experiment (NSTX) that satis-
fied the adiabatic invariance of the higher-order guiding-center mag-
netic moment (9), and numerically investigated the validity of the
guiding-center representation by verifying that the explicit expression
for the guiding-center pull-back of the guiding-center toroidal canoni-
cal angular momentum

TgcPgcU ¼ PgcU x � �q; p0jj þ �G
pjj
1 ; l0 þ �Gl

1

� �
; (20)

is nearly invariant, where q ¼ x � TgcX includes the first-order correc-
tions (19) due to magnetic nonuniformity. In Fig. 3 of Ref. 10, Belova
et al.10 show that the standard guiding-center expression
w� ¼ w� � ðcPjj=eÞbU þ �2ðcJ=eÞR�

U, whereR�
U ¼ bz þ 1

2 sbU, yields
an improved particle canonical angular momentum invariant (20)
compared with the truncated guiding-center expression w� ¼ w
� � ðcPjj=eÞbU.

In the present paper, the validity of the guiding-center represen-
tation is assessed on the basis of verifying that the expansion (18) is
exactly valid at each order in � for two axisymmetric magnetic geome-
tries: mirror geometry (Sec. III) and simple tokamak geometry (Sec.
IV). Here, the guiding-center representation is shown to be faithful up
to (and including) first order in magnetic-field nonuniformity, which
requires retaining all terms appearing in Eq. (17).
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III. MAGNETIC MIRROR GEOMETRY

We begin by considering the problem of charged-particle motion
in axisymmetric magnetic mirror geometry, where the magnetic field
is represented, using the cylindrical coordinates ðr;u; zÞ, by the
dimensionless expression

B ¼ rwðr; zÞ � ru ¼ 1
r

@w
@r

ẑ � @w
@z

r̂

� �
;

¼ Brðr; zÞ r̂ þ BzðzÞ ẑ; (21)

where the magnetic flux wðr; zÞ is defined as

wðr; zÞ ¼ 1
2
r2 ð1þ z2Þ: (22)

Figure 1 shows the magnetic-mirror vector field (21) in the (x, z)-
plane. With a field line passing through the point r ¼ r0 on the equa-
torial plane z¼ 0, which is labeled by the magnetic flux wðr0; 0Þ
¼ r20=2, the radial coordinate rðzÞ ¼ r0=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
of the field line can

be expressed as a function of z.
The magnitude of the magnetic field (21) is

Bðr; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 z2 þ ð1þ z2Þ2

q
; (23)

while the unit vector along the magnetic field is

b̂ðr;u; zÞ ¼ brðr; zÞ r̂ðuÞ þ bzðr; zÞ ẑ; (24)

where brðr; zÞ ¼ �r z=Bðr; zÞ; bzðr; zÞ ¼ ð1þ z2Þ=Bðr; zÞ, and r̂ðuÞ
¼ cosu x̂ þ sinu ŷ . Next, we can calculate

b̂ �r lnB ¼ � r br
B

3 zbz � rbrð Þru � �K1ru; (25)

r� b̂ ¼ � r2=Bþ K1

� �
ru � �K2ru; (26)

withr� B ¼ �r2 ru.

A. Particle dynamics

The normalized equations of motion (4) are expressed in cylin-
drical coordinates as

� x00 ¼ r u0 Bz r̂ � Br ẑð Þ � Bz r
0 � Br z

0ð Þû; (27)

where x0 ¼ r0 r̂ þ r u0 û þ z0 ẑ, with û ¼ @r̂=@u. These dimension-
less equations are numerically solved for � ¼ 1=20, with the initial con-
ditions ðr0;u0; z0Þ ¼ ð1; 0; 0Þ and ðr00;u0

0; z
0
0Þ ¼ 0; 1=10;

ffiffiffiffiffi
24

p
=10

� �
associated with the dimensionless energy E¼ 1/4.

We note that, because of the azimuthal symmetry of the magnetic
field (21), i.e., the components ðBr ;BzÞ are independent of the azi-
muthal angle u, the azimuthal canonical angular momentum,

Pu ¼ 1
�
wðr; zÞ þ r2u0; (28)

is a constant of the motion.
Figure 2 shows that, while the lowest-order normalized magnetic

moment (normalized to �2mX2
0=2B0),

l0 ¼ r u0ð Þ2 þ bz r
0 � br z

0ð Þ2
� �

=B; (29)

is relatively well conserved when the particle is near the orbital bounce
points, its adiabatic invariance is compromised as the particle crosses
the equatorial plane (z¼ 0) between t0 ¼ 28 and 29. The addition of
the first-order correction,

l1 ¼ l0 K1 þ �p2jj K2=Bþ �pjjz
0 K3

� �
u0=B; (30)

computed from Eq. (10) (with s ¼ b̂ � r � b̂ ¼ 0), where �p jj ¼ br r0

þ bz z0 and

q0 � r lnB ¼ �u0K1=B;

q0 � ðb̂ � rb̂Þ ¼ �u0K2=B;

q0 � b̂0 ¼ � z0u0K3;

(31)

FIG. 1. Plot of the magnetic-mirror vector field (21) in the (x, z)-plane.

FIG. 2. Plots of the normalized lowest-order magnetic moment l0 (gray) and the
normalized magnetic moment l ¼ l0 þ �l1 ’ 0:01257 (black), with first-order
correction l1 given by Eq. (30). Here, � ¼ 1=20 and the normalized kinetic energy
is E0 ¼ 1=4, with the initial conditions ðr0;u0; z0Þ ¼ ð1; 0; 0Þ and ðr 00;u0

0; z
0
0Þ

¼ 0; 1=10;
ffiffiffiffiffi
24

p
=10

� �
.
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greatly improves the adiabatic invariance of the magnetic moment and
validates the guiding-center representation for the particle orbits in the
magnetic-mirror vector field (21). Here, K1 and K2 are defined in Eqs.
(25) and (26) and K3 ¼ rð3zbr þ rbzÞ=B2. Hence, the adiabatic invari-
ance of the magnetic moment justifies our use of the guiding-center
approximation in describing particle orbits in magnetic mirror geome-
try. The numerical value l ’ 0:01257 will be used as the normalized
guiding-center magnetic moment in the guiding-center equations of
motion in magnetic mirror geometry.

B. Guiding-center dynamics

The guiding-center Lagrangian in magnetic mirror geometry is

Lgc ¼
1
�
w� U0 þ Pjjb̂ � X0 � 1

2
P2
jj þ J B

� �
; (32)

where we use the extended guiding-center model (C) in Eq. (12),
X ¼ ðR;U;ZÞ denote the guiding-center position in cylindrical geom-
etry, Pjj denotes the normalized guiding-center parallel momentum,
and J � l=2 denotes the normalized guiding-center gyroaction. In
addition, in magnetic mirror geometry, we may choose the perpendic-
ular unit vectors ê1 ¼ Û and ê2 ¼ b̂ � Û, so that the gyrogauge vec-
torR ¼ rê1 � ê2 ¼ bz rU and the effective magnetic flux,

w� � wðR;ZÞ � �2J bz �
1
2
K2

� �
; (33)

is expressed in terms of the extended guiding-center model (C) in
Eq. (12),

R� ¼ bz �
1
2
K2

� �
rU: (34)

From this Lagrangian, we obtain Euler–Lagrange equations that can
be expressed as Eqs. (13) and (14), where

B� ¼ rw� � rU� � Pjj K2 rU;

B�
jj ¼ b̂ � rw� � rU:

(35)

The guiding-center equations are thus expressed as

ð _R; _ZÞ ¼
Pjj
RB�

jj
� @w�

@Z
;
@w�

@R

� �
; (36)

_U ¼ � �

R2B�
jj

P2
jj K2 þ J B K1

� �
; (37)

_P jj ¼ � J
RB�

jj

@B
@Z

@w�

@R
� @B
@R

@w�

@Z

� �
; (38)

which exactly conserve the (dimensionless) guiding-center energy E
¼ P2

jj=2þ JB (where J ¼ l=2 is obtained from Fig. 2) and the guiding-
center canonical azimuthal angular momentum PgcU ¼ ��1w�. These
dimensionless guiding-center equations are solved for � ¼ 1=20 with
the initial conditions ðR0;U0;Z0Þ ¼ ð201=200; 0; 0Þ, which takes into
account the radial shift (16) from the initial particle position
ðr0;u0; z0Þ ¼ ð1; 0; 0Þ, and Pjj0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � J BðR0;Z0Þ

p
.

Figure 3 shows the plots of the particle azimuthal angle u (gray)
and the guiding-center azimuthal angle U (black) for a particle orbit in
the magnetic-mirror vector field (21) during a full bounce period.

These orbital solutions are obtained by numerical integration of the
normalized equations of motion (27) and (36)–(38), while conserving
energy and azimuthal canonical angular momentum within machine
precision. We note that the guiding-center azimuthal angle changes
very slowly when the particle is near a turning point, while it changes
rapidly as the particle crosses the equatorial plane (z¼ 0).

Figure 4, on the other hand, shows the plots of the particle orbit
(gray) and the guiding-center orbit (black) during a bounce period in the
(y, z)-plane. While the motion is periodic in (r, z), there is a slow drift
motion in the azimuthal direction, which can be seen in Figs. 3 and 4

FIG. 3. Plots of the particle azimuthal angle u (gray) and the guiding-center azi-
muthal angle U (black) during a bounce period.

FIG. 4. Plots of particle orbit (gray) and guiding-center orbit (black) in the (y, z)
plane during a bounce period. Here, the particle and guiding-center orbits begin at
point A and, after one bounce period, the guiding-center orbit has drifted (in the
negative-y direction) to point B.
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(the slow drift motion is proceeds to the left on the y axis). The rapid,
small-amplitude oscillations that are noticeable in Figs. 3 and 4 are due
to the fast gyromotion of a charged particle about a magnetic-field line.

C. Validity of the guiding-center representation
in mirror geometry

We now show that the guiding-center representation of particle
motion in magnetic mirror geometry is faithful to the exact particle
motion, by showing that the guiding-center pull-back TgcPgcU ¼ Pu of
the guiding-center canonical azimuthal angular momentum is equal to
the particle canonical azimuthal angular momentum.

Up to second order in �, the guiding-center pull-back TgcPgcU is
expressed as

TgcPgcU ¼ 1
�

w� �q0 � rw� �2q1 � rw
� �

þ �

2
q0q0 : rrw� � J bz �

1
2
K2

� �
; (39)

where the first-order gyroradius correction is given by Eq. (19) and the
contribution associated with the magnetic twist b̂ � r � b̂ ¼ 0 van-
ishes for magnetic mirror geometry. Here, we find q0 � rw
¼ �r2u0; j � rw ¼ �K2B, and q0 � r lnB ¼ K1 u0=B, so that

�q1 � rw ¼ � 1
2
J K2 þ

r2u02

2B
K1;

while

1
2
q0q0 : rrw ¼ J bz �

r2u02

2B
K1:

Hence, up to second order in �, the guiding-center pull-back (39)
yields

TgcPgcU ¼ 1
�
wþ r2u0 � Pu; (40)

which confirms the validity of the guiding-center representation in
magnetic mirror geometry.

IV. SIMPLE TOKAMAKMAGNETIC GEOMETRY

We now turn our attention to the problem of charged-particle
motion in a simple magnetic tokamak geometry, with circular concen-
tric magnetic surfaces without Shafranov shift. The magnetic field is
represented, using the quasi-cylindrical coordinates ðr; #;uÞ, by the
dimensionless expression

B � r2

qh
r#þru; (41)

where qðrÞ ¼ q0 þ rr2=2 is the safety factor (we will use q0 ¼ 1 and
r¼ 2 in our numerical calculations) and h ¼ 1þ r cos# is the nor-
malized distance from the magnetic axis (r¼ 0) to the particle position
in the poloidal plane (which is normalized by the major radius R0 of
the magnetic axis). Since the magnetic field (41) is divergenceless

B � r� A ¼ rW�r#þru�rw; (42)

it can be written in terms of the vector potential

A ¼ Wr#� wru: (43)

By comparing with Eq. (41), we find @Wðr; #Þ=@r ¼ r=hðr; #Þ and
dw=dr ¼ r=qðrÞ, so that the toroidal and poloidal magnetic fluxes W
and w are

Wðr; #Þ ¼
ðr
0

u du
hðu; #Þ ¼

1
cos#

r � ln hðr; #Þ
cos#

� �
; (44)

wðrÞ ¼
ðr
0

u du
qðuÞ ¼

1
r

ln
qðrÞ
q0

� �
; (45)

where we chose Wð0; #Þ ¼ 0 ¼ wð0Þ. In what follows, we use the
quasi-cylindrical unit vectors r̂ ¼ cos# q̂ þ sin# ẑ; #̂ ¼ @r̂=@#
¼ �sin# q̂ þ cos# ẑ, and û � r̂ � #̂ ¼ q̂ � ẑ ¼ @q̂=@u, with the
quasi-cylindrical Jacobian J ¼ ðrr �r# � ruÞ�1 ¼ r hðr; #Þ.

The magnitude of the magnetic field (41) is

Bðr; #Þ ¼ 1
hðr; #Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=qðrÞ2

q
� bðrÞ

hðr; #Þ ; (46)

and the unit vector along the magnetic field is

b̂ðr; #Þ ¼ r
qb

#̂ þ 1
b
û � b#ðrÞr#þ buðr; #Þru; (47)

withr� b̂ ¼ rb# �r#þrbu �ru. Next, we can calculate

r lnB ¼ r g

qb2
� cos#

h

 !
r̂ þ sin#

h
#̂; (48)

j ¼ sin#

hb2
#̂ � r

q
û

� �
� r̂

b2
cos#
h

þ r
q2

� �
; (49)

s ¼ b̂ � r � b̂ ¼ 1

b2
g þ 1

hq

� �
; (50)

b̂
0 ¼ �b0

b
b̂ � u0 cos#þ r

q
#0

� �
r̂

b
þ gr0

b
#̂ þu0 sin#

b
#̂ � r

q
û

� �
;

(51)

where gðrÞ � dðr=qÞ=dr and b0 ¼ ðrg=qbÞ r0.

A. Particle dynamics

The dimensionless particle Lagrangian is

L ¼ 1
�

W#0 � wu0� �
þ 1
2

r02 þ r2 #02 þ h2 u02� �
; (52)

from which we obtain the following equations of motion:

r00 ¼ r
�

#0

h
� u0

q

 !
þ r #02 þ h cos#u02; (53)

#00 ¼ �1
r

r0

� h
þ h sin#u02 þ 2 r0 #0

� �
; (54)

u00 ¼ r r0

� h2 q
� 2u0

h
r0 cos#� r #0 sin#ð Þ: (55)

These dimensionless equations of motion are solved numerically for
� ¼ 1=100, with the initial conditions ðr0; #0;u0Þ ¼ ð1=2; 0; 0Þ and
ðr00; #0

0;u
0
0Þ ¼ 0; 8;

ffiffiffiffiffi
22

p
=3

� �
associated with a dimensionless energy

E¼ 43/2.
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We note that, because of the azimuthal symmetry of the magnetic
field (41), i.e., the components ðB#;BuÞ are independent of the azi-
muthal angle u, the azimuthal canonical angular momentum (5),
expressed in dimensionless form as

Pu ¼ � 1
�
wðrÞ þ h2ðr; #Þu0; (56)

is a constant of the motion.
Before moving on to guiding center theory, we calculate the nor-

malized magnetic moment l ¼ l0 þ � l1 þ � � �, where

l0 ¼ r02 þ r2x2ð Þ=B;
with

x � #0 � hu0=q
� �

=b; (57)

and the dimensionless lowest-order gyroradius is

q0 ¼ � rx
B

r̂ þ r0

bB
#̂ � r

q
û

� �
: (58)

Figure 5 shows that the lowest-order normalized magnetic moment is
poorly conserved, especially as the particle crosses the equatorial plane
ð# ¼ 0Þ. We can greatly improve the adiabatic invariance of the mag-
netic moment by calculating l1 from Eq. (10),

l1 ¼ l0 G1 þ
p2k
B

G2 þ
pk
B

G3 �
3 l0 pk
2B

s; (59)

where

G1 ¼ q0 � r lnB ¼ r0

b2
sin#� rx

B
r g

qb2
� cos#

h

 !
; (60)

G2 ¼ q0 � j ¼ r0

b2
sin#þ rx

b2B

cos#
h

þ r
q2

� �
; (61)

and

G3 ¼ q0 � b̂ 0 ¼ r0

B
g r0

b2
þ u0 sin#

 !
þ rx
bB

r#0

q
þ u0 cos#

 !
: (62)

Figure 5 shows the lowest order magnetic moment l0 and the
improved l ¼ l0 þ � l1. This first-order correction causes l ’ 12:23
to be a good adiabatic invariant, numerically validating the guiding-
center representation for the particle orbits in the simple tokamak
magnetic field (41). This adiabatic invariance of the magnetic moment
justifies our use of the guiding-center approximation in describing par-
ticle orbits in simple magnetic tokamak geometry.

B. Guiding-center dynamics

The guiding-center Lagrangian in simple tokamak geometry is

Lgc ¼
1
�

W� H0 � w� U0� �
� � J R0 R�

R �
1
2
P2
jj þ J B

� �
; (63)

where X ¼ ðR;H;UÞ denotes the guiding-center position in quasi-
cylindrical geometry, J ¼ l=2 denotes the dimensionless guiding-center
magnetic moment, and Pjj denotes the dimensionless guiding-center
momentum parallel to themagnetic field. In addition, the effective poloi-
dal and toroidal magnetic fluxes,

W� ¼ Wþ � Pk bH � �2 JR�
H; (64)

w� ¼ w� � Pk bU þ �2 JR�
U; (65)

are expressed in terms of the extended guiding-center model (C) in Eq.
(12): R� ¼ Rþ 1

2 r� b̂. Here, we calculate the gyrogauge vector
R ¼ rê1 � ê2 by choosing ê1 ¼ r̂ and ê2 ¼ b̂ � r̂, so that we obtain
R ¼ b�1rH� bzrU, where bz � b̂ � ẑ ¼ ðR=qbÞ cosH, and,
according to the extended guiding-center model (C) in Eq. (12), we find

R� ¼ Rþ 1
2

rbU �rUþrbH �rHð Þ;

� R�
R rRþR�

H rHþR�
U rU: (66)

From this Lagrangian, we obtain Euler–Lagrange equations that can
be expressed as Eqs. (13) and (14), where

B� ¼ rW� � rH�rw� � rUþrv�rR; (67)

with v � ��2 JR�
R and B�

jj ¼ b̂ � B�. The guiding-center equations
are thus expressed as

R0 ¼ �
Pjj
J gc

@w�

@H
� � J
J gc

bU
@B
@H

; (68)

H0 ¼
Pjj
J gc

@w�

@R
þ � J
J gc

bU
@B
@R

; (69)

U0 ¼
Pjj
J gc

@W�

@R
þ �2J

@R�
R

@H

� �
� � J
J gc

bH
@B
@R

; (70)

P0
jj ¼ � J

J gc

@w�

@R
@�B
@H

� @w�

@H
@B
@R

� �
; (71)

where J gc � J B�
jj combines the quasi-cylindrical Jacobian J and the

guiding-center Jacobian B�
jj. We note that these equations exactly con-

serve the guiding-center energy E ¼ P2
jj=2þ JB and the guiding-

center canonical azimuthal angular momentum,

PgcU ¼ � 1
�
w� ¼ � 1

�
wþ Pjj bU � � JR�

U: (72)

The dimensionless guiding-center equations are solved numerically for
� ¼ 1=100 with the initial conditions ðR0;H0;U0Þ ¼ ð0:5380; 0; 0Þ,

FIG. 5. Plots of the normalized lowest-order magnetic moment l0 (gray) and the
normalized magnetic moment l ¼ l0 þ �l1 ’ 12:23 (black) for one bounce
period, with first-order correction l1 given by Eq. (59). Here, � ¼ 1=100 and
the normalized kinetic energy is E0 ¼ 21:5, with the initial conditions ðr0; #0;u0Þ
¼ ð1=2; 0; 0Þ and ðr 00; #

0
0;u

0
0Þ ¼ 0; 8;

ffiffiffiffiffi
22

p
=3

� �
.
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which takes into account the radial shift (16) from the initial particle
position ðr0;u0; z0Þ ¼ ð0:5; 0; 0Þ, and Pjj0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � J BðR0;H0Þ

p
.

Figures 6–8 show the plots of the particle position (gray) and the
guiding-center position (black), obtained from the extended guiding-
center model C in Eq. (12), during the first bounce periods. Figure 6
shows plots of the particle radial position (gray) and the guiding-center
radial position (black) during the first two bounce periods, Fig. 7 shows
the classic “closed” guiding-center banana orbit (black) projected
onto the poloidal plane (at constant toroidal angle), and Fig. 8 shows
that the three-dimensional guiding-center orbit (black) follows the three-
dimensional particle orbit (gray) very well over two bounce periods.

C. Higher-order guiding-center orbits

We now make a few remarks on the three guiding-center models
presented in Eq. (12). In order to compare their effectiveness at approx-
imating the particle orbit, we need to ensure that the initial conditions
for these guiding-center orbits are consistent with the initial conditions
for the particle orbit. This consistency is achieved by connecting the ini-
tial conditions through the guiding-center transformation (16).

In what follows, the guiding-center orbit A is generated from the
initial condition obtained from the lowest-order relation X ¼ x � � q0
(i.e., the initial condition only takes into account the lowest-order

guiding-center transformation), which yields the initial radial position
R0jA ¼ 0:5396 from the particle initial conditions. The initial condi-
tions for the guiding-center orbits B and C, on the other hand, are dis-
tinguished by the guiding-center polarization correction
Gx
2jpol ¼ ðJ=2mXÞj for the extended guiding-center model C,4 while

Gx
2jpol ¼ 0 for the standard guiding-center model B.1,2 Hence, we use

the initial radial positions R0jC ¼ 0:5380 and R0jB ¼ 0:5384, which
are calculated when the particle initial conditions are inserted in the
guiding-center transformation (16).

Figure 9 shows the particle position (gray) and the guiding-
center positions (labeled A, B, and C) projected into the poloidal plane
near the upper turning point. Because the guiding-center orbits have

FIG. 6. Plots of the particle radial position (gray) and the guiding-center radial posi-
tion (black) during the first two bounce periods.

FIG. 7. Plots of the particle position (gray) and the guiding-center position (black)
projected into the poloidal plane during the first two bounce periods.

FIG. 8. Plots of the three-dimensional particle orbit (gray) and the guiding-center
orbit (black) during the first two bounce periods.

FIG. 9. Plots of the particle position (gray) and the guiding-center positions pro-
jected into the poloidal plane near the upper turning point, according to three differ-
ent guiding-center models in Eq. (12): (black, solid) extended guiding-center model
(C); (black, dashed) standard guiding-center model (B); and (black, dotted) trun-
cated guiding-center model (A).
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different guiding-center toroidal canonical angular momenta (65), Fig.
9 shows that each guiding-center turning point occurs on a different
magnetic surface. In addition, while the standard guiding-center orbit
B slightly overshoots the particle center of gyration at the turning
point, the truncated guiding-center orbit A largely undershoots the
particle center of gyration. We note that the three guiding-center
orbits are nearly indistinguishable away from the turning-point
regions (see Fig. 7).

Figure 10 shows the three-dimensional particle orbit (gray) and
three guiding-center orbits (labeled A, B, and C) during the first two
bounce periods. Here, we see that the lowest-order truncated guiding-
center orbit A clearly separates from the particle orbit (i.e., the guiding-
center orbit is located well outside of the particle’s gyration radius),
while the two higher-order guiding-center orbits B and C are still nearly
indistinguishable over the first two bounce periods, except when the
standard guiding-center orbit B overshoots the turning point. We note
that the standard guiding-center orbit B noticeably separates from the
particle orbit during the next two bounce periods, while the extended
guiding-center orbit C still remains at the center of the particle orbit.

D. Validity of the guiding-center representation
in simple tokamak magnetic geometry

We now show that the guiding-center approximation is faithful
to the particle motion in simple tokamak magnetic geometry by show-
ing that the guiding-center pull-back TgcPgcU ¼ Pu of the guiding-
center canonical azimuthal angular momentum is equal to the particle
canonical azimuthal angular momentum. Up to second order in �, the
guiding-center pull-back TgcPgcU is expressed as

TgcPgcU ¼� 1
�
wþ q0 � rwþ pjj bu þ � q1 � rw� �

2
q0q0 : rrw

þ � G
pjj
1 bu � pjj q0 � rbu

� �
� � JR�

u; (73)

where the first-order gyroradius correction q1 is given by Eq. (19) and
the first-order correction to the guiding-center parallel momentum is
given by Eq. (A6),

G
pjj
1 ¼ �

pjj
2

G2 þ
3
2
J s� 1

2
G3; (74)

where ðs;G2;G3Þ are defined in Eqs. (50), (61), and (62).
First, using q0 ¼ b̂ � x0=B and the simple-tokamak identity

B� @x=@u ¼ rw, we find

q0 � rw ¼ b̂

B
� x0 � B� @x

@u
¼ h2u0 � pjj bu;

so that, at first order (i.e., zeroth order in magnetic-field nonunifor-
mity), we find

q0 � rwþ pjj bu ¼ h2 u0: (75)

Hence, we now need to show that, at second order (i.e., first order in
magnetic-field nonuniformity), we find the identity

JR�
u � q1 � rw� 1

2
q0q0 : rrwþ G

pjj
1 bu � pjjq0 � rbu; (76)

so that Eq. (73) becomes

TgcPgcU ¼ � 1
�
wþ h2 u0 � Pu; (77)

which guarantees the validity of the guiding-center representation in
simple tokamak magnetic geometry. A complete proof of the identity
(76) is given in Appendix C.

V. SUMMARY

In previous work,17 we showed that the guiding-center approxima-
tion was valid in a straight magnetic field with constant perpendicular
magnetic gradient, even in the presence of strong gradients. In addition,
based on the existence of an exact analytical solution for the particle
orbits, this work also confirmed that the guiding-center polarization cor-
responded exactly with an orbit-averaged particle displacement.

In the present work, we extended our investigation of the validity
of the guiding-center approximation in describing charged single-
particle motion in a nonuniform magnetic field. Here, we considered
regular particle orbits in azimuthally symmetric magnetic mirror geom-
etry and simple tokamak magnetic geometry, in which the azimuthal
angular canonical momentum is conserved and the guiding-center
magnetic moment is an adiabatic invariant. We successfully validated
the guiding-center approximation in describing particle motion in an
azimuthally symmetric magnetic field provided higher-order guiding-
center corrections are taken into account, which had already been
noted for the case of an axisymmetric tokamak magnetic field.10 In par-
ticular, the guiding-center polarization correction in the guiding-center
azimuthal angular canonical momentum, not taken into account in the
standard guiding-center approximation,1,2 proved crucial in establish-
ing a faithful guiding-center representation for regular particle orbits in
axisymmetric magnetic geometry.

Finally, we note that the truncated guiding-center model6 is used
extensively in guiding-center particle simulations, despite the fact that
it is not as faithful to particle orbits as higher-order guiding-center
models. In most applications, however, the truncated guiding-center

FIG. 10. Plots of the three-dimensional particle orbit (gray) and the guiding-center
orbits (labeled A, B, and C) during two bounce periods, according to three different
guiding-center models in Eq. (12): (black, solid) extended guiding-center model (C);
(black, dashed) standard guiding-center model (B); and (black, dotted) truncated
guiding-center model (A). Here, the truncated guiding-center orbit A has clearly
separated from the particle orbit, while the higher-order guiding-center orbits B and
C are nearly indistinguishable, except when the standard guiding-center orbit B
overshoots the turning point.
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model is either used to analyze particle orbits in the presence of per-
turbed electric and/or magnetic fields, or as the unperturbed compo-
nent for the gyrocenter orbit used in nonlinear gyrokinetic theory.2

Future work may look into the issue of faithfulness for these applica-
tions. In addition, the faithfulness of the guiding-center representation
for particle orbits in non-axisymmetric magnetic geometries may be
explored.
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APPENDIX A: GUIDING-CENTER TRANSFORMATION

The standard expression for the first-order correction to the
guiding-center magnetic moment is1,4

Gl
1 ¼ q0 � l0 r lnBþ

p2jj j

mB

� �
� l0 .jj ðsþ a1Þ; (A1)

where .jj � pjj=ðmXÞ and a1 � � 1
2 ð?

^ q̂ þ q̂?^ Þ : rb̂ is con-
structed from the gyroangle-dependent unit vectors ?^ � @q̂=@f
¼ q̂ � b̂. Using the identity

a1 ¼
1
2
s� ?̂ � rb̂ � q̂; (A2)

we obtain

sþ a1 ¼
3
2
s� ?̂ � rb̂ � q̂: (A3)

Next, we write

l0 .jj ?̂ � rb̂ � q̂
� �

¼
pjj
2B

v? � rb̂ � q0
� �

;

¼
pjj
2B

db̂
dt

� vjj b̂ � rb̂

� �
� q0;

¼
pjj
2B

db̂
dt

�
p2jjj

2mB

� �
� q0; (A4)

which yields Eq. (10)

Gl
1 ¼ l0r lnBþ

p2jj j

2mB

� �
� q0 �

3
2
l0

pjj s

mX

� �
þ

pjj
2B

db̂
dt

� q0: (A5)

Using the same identity (A3), the standard expression for the
first-order correction to the guiding-center parallel momentum1,4 is
replaced with the new expression

G
pjj
1 ¼ �pjj q0 � jþ l0B

X
ðsþ a1Þ;

¼ �
pjj
2

q0 � jþ 3
2
l0B
X

s�m
2
db̂
dt

� q0: (A6)

APPENDIX B: GUIDING-CENTER POLARIZATION

The guiding-center polarization was calculated directly from
the guiding-center transformation in our previous works.4,14 It is
formally defined by the multipole expansion

pgc � e hqgci � r � e
2
hqgcqgci

� �
þ � � � ; (B1)

where the dipole and quadrupole moments are shown here, while
qgc � T�1

gc x � X is the guiding-center gyroradius. We note that the
guiding-center gyroradius qgc is related to the particle gyroradius
q � x � TgcX by the identity qgc � T�1

gc q. Using the guiding-center
transformation presented by Tronko and Brizard,4 we find the
dipole contribution

hqgci ¼ �2 hq1i �
p2jjj

m2X2

 !
� �2lB

mX2 2r? lnBþ r � b̂ð Þb̂
� �

; (B2)

and the quadrupole contribution

�r � 1
2
hqgcqgci

� �
¼�r � �2lB

2mX2 ðI� b̂b̂Þ
� �

¼ �2lB

2mX2 r? lnBþ
�2lB

2mX2 jþ r � b̂ð Þb̂
� �

; (B3)

which both appear at �2 at their lowest orders (i.e., first order in
magnetic-field nonuniformity).

Hence, the guiding-center polarization (B1) is expressed as

pgc ¼ �2e hq1ipol þ
lB

2mX2 j

� �
þ �2eb̂

X
� b̂

mX
� lrBþ

p2jj
m

j

� �	 

;

(B4)

where hq1ipol is the polarization correction not included in the stan-
dard guiding-center transformation.2,3 We, therefore, recover the stan-
dard guiding-center polarization pgc � �2ðeb̂=XÞ � dX=dt15 only if
we choose

hq1ipol ¼ � lB

2mX2 j; (B5)

which appears as the first term on the right side of Eq. (19). With this
choice, the magnetic vector potential A� defined in Eq. (17) becomes

eA�

�c
¼ eA

�c
þ Pjj b̂ � �J Rþ 1

2
sb̂

� �
þmX

�
hq1ipol;

¼ eA
�c

þ Pjj b̂ � �J Rþ 1
2
r� b̂

� �
; (B6)
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where the standard correction 1
2 sb̂

2,3 is replaced with the correction
1
2 r� b̂.4,14

Finally, it is important to keep in mind that the guiding-center
polarization discussed here occurs in the absence of an external
electric field and is simply due to magnetic-field non-uniformity.
Since the guiding-center polarization effect is inversely proportional
the gyrofrequency, it is an important effect for ions. The electric
field generated by the charge separation associated with the
guiding-center polarization, therefore, requires a self-consistent
treatment that must include an electric field as an integral part of
the guiding-center formulation.18 This self-consistent analysis, how-
ever, is outside the scope of this paper.

APPENDIX C: PROOF OF IDENTITY (76)

In this Appendix, we proceed with a proof of the identity (76).
Using ðj=BÞ � rw ¼ s bu � 2 ðbz þR�

uÞ, we write

q1 � rw ¼ � 1
2
J s bu � 2 bz þR�

u

� �� �
þ 1

2
G1 �

pjj
B

s

� �
q0 � rw:

(C1)

Next, since rw ¼ ðr=qÞ r̂, we find

rrw ¼ g r̂ r̂ þ 1
q
#̂#̂ þ B bz ûû;

¼ B bz Iþ g � r cos#
qh

� �
r̂ r̂ þ #̂#̂

qh
; (C2)

so that

1
2
q0q0 : rrw ¼ Jbz þ

1
2

g � r cos#
qh

� �
q20r þ

q20#
2 qh

; (C3)

where q0r ¼ �rx=B; q0# ¼ r0=bB, and we used the lowest-order
expression

J ¼ B
2

q20r þ b2q20#
� �

¼ 1
2B

r02 þ r2x2ð Þ;

where q0u ¼ �ðr=qÞq0#. With these expressions, and using Eq.
(74), the identity (76) becomes

JR�
u ¼ � J

2
s bu � 2 bz þR�

u

� �� �
� J bz þ

3
2
J s bu

þ
pjj
B

G1 �
1
2
G2 � s q0 � rw

� �
� G3

2B

� q20#
2 hq

� 1
2

g � r cos#
hq

� �
q20r þ

1
2
G1 q0 � rw;

which, after cancelations, yields an expression for G3

G3 ¼ 2 J sþ pjj 2G1 � G2 � 2 sq0 � rwð Þ

þG1 Bq0 � rw� Bq20#
hq

� b2 s� 1
q

� �
Bq20r ; (C4)

where we used

g � r cos#
hq

¼ g þ 1
q

1
h
� 1

� �
¼ b2 s� 1

q
;

which follows from the definition (50) for s.
We now compare Eq. (C4) with Eq. (62), which requires

expressing ð#0;u0Þ in terms of ðpjj;xÞ, where x is defined in Eq.
(57) and pjj ¼ u0=Bþ r2#0=ðqbÞ is the lowest-order dimensionless
particle parallel momentum. Hence, after substituting

#0 ¼ ðxþ pjj=qÞ=b;
u0 ¼ ðpjj � r2x=qÞ=ðhbÞ;

(C5)

into Eq. (62), we obtain a second expression for G3

G3 ¼ 2 J sþ pjj G2 þ G1 Bq0 � rw

� 2J

hq b2
� r2x2

B
g � ðhb2 þ 1� b2Þ

hq b2

" #
; (C6)

where we used 1þ b2r cos# ¼ hb2 þ 1� b2. By comparing Eqs.
(C4) and (C6), we obtain the following expression:

pjj G1 � G2 � s q0 � rwð Þ ¼ 0; (C7)

after carrying out several cancelations on the right side of Eq. (C7).
Finally, using Eqs. (60) and (61), we obtain

G1 � G2 ¼ � rx
B

rg

qb2
� cos#

h

 !
� rx

Bb2
cos#
h

� r
q2

� �
;

¼ �s
r2x
qB

� s q0 � rw; (C8)

which confirms Eq. (C7) and completes the proof of the identity
(76).
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