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ABSTRACT

The problem of the charged-particle motion in an axisymmetric magnetic geometry is used to assess the validity of higher-order
Hamiltonian guiding-center theory, which includes higher-order corrections associated with gyrogauge invariance as well as guiding-center
polarization induced by magnetic-field non-uniformity. Two axisymmetric magnetic geometries are considered: a magnetic mirror geometry
and a simple tokamak geometry. When a magnetically confined charged-particle orbit is regular (i.e., its guiding-center magnetic moment is
adiabatically invariant), the guiding-center approximation, which conserves both energy and azimuthal canonical angular momentum, is

shown to be faithful to the particle orbit when higher-order corrections are taken into account.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0145035

I. INTRODUCTION

The guiding-center representation’ * of charged-particle orbits is
at the foundation of most particle simulations of magnetized plas-
mas.” ” The faithfulness of this representation relies on the adiabatic
invariance of the magnetic moment p, which is expressed as an
asymptotic expansion based on the nonuniformity of the magnetic
field. In addition, when the magnetic field is axisymmetric, the connec-
tion between the exact particle canonical azimuthal angular momen-
tum and its guiding-center representation can be used as a test for the
faithfulness of the guiding-center approximation.'’

For each guiding-center orbit parametrized by the guiding-center
magnetic moment p (with initial guiding-center position X, and initial
parallel guiding-center momentum P)jo), there corresponds an infinite
set of particle orbits (with local initial conditions x¢ and %) that are
labeled by an initial gyroangle, measured on an initial Kruskal ring'"*'*
(also parametrized by the magnetic moment p) defined on the two-
dimensional plane perpendicular to the local magnetic field. [In a
uniform magnetic field B = BZ, the Kruskal ring is a circle in the

(x, y)-plane of radius /2uB/mQ’ centered at the guiding-center
position X,, where Q = eB/mc denotes the gyrofrequency of a
charged particle of mass m and charge e and ¢ denotes the speed of
light.] By adopting a guiding-center formulation that is gyrogauge
invariant"” (i.e., a formulation that is not only gyroangle invariant but
also independent how the gyroangle is measured), the guiding-center
orbit can be compared to an arbitrary particle orbit belonging to the
same initial Kruskal ring.

The purpose of our present work is to explore how higher-
order Hamiltonian guiding-center theory is faithful to charged-
particle dynamics in an axisymmetric magnetic field. In particular,
compared to the exact particle canonical angular momentum
invariant, we will investigate the faithfulness of the guiding-center
canonical angular momentum derived either in the truncated
(lowest-order) guiding-center model,”"” in the standard work of
Littlejohn,"* which includes gyrogauge corrections, or the extended
work of Brizard'* and Tronko and Brizard," which includes effects
due to guiding-center polarization.'” For this purpose, we will con-
sider particle and guiding-center orbits in axisymmetric mirror
geometry (Sec. I11) and in axisymmetric (simple) tokamak geometry
(Sec. IV).

Il. PARTICLE AND GUIDING-CENTER ORBITS
IN GENERAL AXISYMMETRIC MAGNETIC GEOMETRY

In Sec. 11, we consider the problem of charged particle motion in
a generic nonuniform magnetic field. Since the primary focus of our
work involves the effects of magnetic nonuniformity, we assume that
the magnetic field is stationary and an electric field is absent in our
formulation.

A. Lagrangian particle dynamics

The orbits of a charged particle moving in a nonuniform mag-
netic field B(x) are represented as solutions of the Euler-Lagrange
equations obtained from the particle Lagrangian,
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L= (E A(x) +mv) - X —% Iv|?,
e X m .
=-AQX) X+ %[, 1)

where the particle velocity is v = x and the magnetic field B =V
X A = Bb (which is decomposed in terms of its magnitude B = |B|
and its direction unit vector b = B/|B|) is represented in terms of a
vector potential A. From this Lagrangian, we obtain the
Euler-Lagrange equations,

@ (o) o o
at\ox)  ox’

which yield the usual Lorentz force equation
mi=S(VA-x—% - VA) = % x B, 3)
c c

which is solved subject to the initial conditions (xo, %o = Vp). Since we
are interested in orbital solutions of the Lorentz force equation (3)
over long time scales compared to the short gyration period, which is
inversely proportional to the gyrofrequency Q) = eBy/(mc), where B,
denotes the characteristic strength of the magnetic field, we introduce
a dimensionless time ¢ = € Q t, where € < 1 denotes a small order-
ing parameter, so that x = € QX' (a prime denotes a derivative with
respect to t'). Hence, the Lorentz force equation (3) becomes

ex" =x' x B(x), (4)

where we have introduced a characteristic length scale R, associated
with the magnetic field, so that X = x/R, is dimensionless, and the
magnetic field B = By B(X) is expressed in terms of a dimensionless
field B(x). The solution for this equation of motion, which can be car-
ried out as an asymptotic expansion in powers of ¢,'* will be carried
out numerically in this paper.

In the event the magnetic field is axisymmetric, the particle
Lagrangian (1) is independent of the particle azimuthal angle ¢, and
the azimuthal canonical angular momentum,

oL e . ox
P(p:%:<EA+mX>'%, (5)

is a constant of the motion for particle orbits. With the normalization
discussed above, we note that the azimuthal canonical angular
momentum (5) becomes

P 4
mR(Z, QO

= (A +ex') -g—i, (©)

with the dimensionless magnetic vector potential A = A/(ByRy).

B. Lagrangian guiding-center dynamics

For most particle orbits that are solutions of the Lorentz force
equation (3), the lowest-order magnetic moment,
_m LM 2 2
=—|bxx|"==— Q 7
Ho =75 | | 2B |pol ) (7)
is an adiabatic invariant (where p, = b x x/Q denotes the lowest-
order gyroradius), i.e., while the time derivative,
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fto=—v - VInB— iy . vb - v, #0, (8)
does not vanish for a general magnetic field, its average over the fast
gyromotion timescale yields

Ho U]
B

where v =v - b is the local parallel velocity, (vi)=0 and
(mv, - Vb -v,)=puB(V -b). Since magnetic fields are diver-
genceless, we immediately find that (f1,) = 0, i.e., i is an invariant over
time scales that are slow compared to the fast gyromotion timescale.

The purpose of the guiding-center transformation is to construct
an expression for the guiding-center moment,

<ﬂ0>:—ﬂovu(5~VlnB+V~6):_ (V - B),

W= o+ ey + -y ©))

represented as an asymptotic series in powers of the dimensionless
parameter €, where the first-order correction,

PH ) 3 Pt P dbA 1
= \% + - = — |+t = 0
My (,uo InB m Po 5 Ko 5 ¢ Pos ( )

involves first-order magnetic-field nonuniformity associated with
magnetic curvature Kk = b - Vb and magnetic twist T =b - V x b,

with db/dt =% - Vb in a time-independent nonuniform magnetic
field. The new expression (10), which is derived from the standard
expression found in Refs. 1-4 in Appendix A, is easily computed from
the particle dynamics. Hence, from the magnetic-moment analysis of
the particle orbit yields a relatively accurate value for the guiding-
center magnetic moment u = 1, + € i, which can then be used as a
label for the guiding-center orbit.

The reduced guiding-center representation of charged-particle
dynamics in a nonuniform magnetic field’ is obtained by an asymp-
totic decoupling of the fast gyromotion from the slow magnetic-drift
motion in a reduced dynamical phase space with guiding-center coor-
dinates Z* = (X, P,|), while the fast gyromotion is represented by the
canonically conjugate guiding-center action-angle coordinates (J, (),
where the gyroaction J = uB,/Q (defined in terms of the magnetic
moment £t) is canonically conjugate to the guiding-center gyroangle (.

The guiding-center Lagrangian is expressed up to first order in
magnetic-field nonuniformity as

2
+,uB(X))
(am

where the e-ordering introduced in Eq. (11) is based on the standard
macroscopic ordering associated with the renormalization of the elec-
tric charge e — e/e. The selection of the vector field,

LgC:(;CA(XHPHB(X)—e]R*(x)) X4eJi— (2

0 (A)
1 -~
’R+% Vxb (C),

is based on whether the gyrogauge vector field R = Vé1 é
(defined’ in terms of the local orthogonal unit vectors €, and
&, =b x €) is kept (B) and (C) or not (A), and whether the guiding-
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center polarization correction” is kept (C) or not (B). The truncated
guiding-center model (A) is the simplest guiding-center model that is
used in several guiding-center orbit codes (e.g., Refs. 6 and 13) and is
reviewed in Ref. 3. The standard guiding-center model (B) was
derived'” to ensure that the guiding-center equations of motion are not
only independent of the gyroangle but also independent of how this
gyroangle is locally measured in the perpendicular plane spanned by
the unit vectors (€1,€,). The extended guiding-center model (C) was
derived” to ensure that the guiding-center transformation accurately
represents the guiding-center polarization." "
The guiding-center Euler-Lagrange equations,

d(OLy/0Z")/dt = DLy /D27,

lead to the reduced guiding-center equations of motion

. PH B* ECB
X =12 B 1
mBﬁ—O—eBmxyV, (13)
. B*
Py=—— - uVB, 14
=k (14)
where
B =B+ (R Vxb-cJVXR), (15)

and B = b - B* can be used as the guiding-center Jacobian. These
guiding-center equations are solved subject to the initial conditions
(Xo, P||g), once again labeled by the guiding-center magnetic moment
u obtained from the particle orbit. Because the particle and guiding-
center orbits share the same values of energy E and magnetic moment
1, the initial guiding-center parallel momentum can be chosen from
the initial condition Pﬁo /2m = E — i B(Xo), where the initial
guiding-center position X, is calculated from the initial particle posi-
tion Xy according to the guiding-center transformation, "

1
X:x+eG’f+ezG’2‘+zezG1.dG’1‘+...7 (16)

which implies that the initial guiding-center position X, is shifted
from the initial particle position xo. Hence, the initial guiding-center
position X, will depend on the guiding-center model used in Eq. (12),
which differs at second order through G%.*

Finally, when the magnetic field is axisymmetric, the guiding-
center Lagrangian (11) is independent of the guiding-center azimuthal
angle @, and the guiding-center azimuthal canonical angular
momentum,

A .
chcp:(i—c-l-PHb—G]R*) e =E— == (17)

is an exact guiding-center invariant. We note that the terms of third
order in € in A* (ie., second order in magnetic-field nonuniformity)
and higher are ignored.

C. Validity of the guiding-center representation
in general axisymmetric magnetic geometry

While the azimuthal canonical angular momenta (5) and (17) are
constants of motion of their respective equations of motion, they can

scitation.org/journal/php

only be compared when the guiding-center azimuthal canonical angu-
lar momentum (17) is pulled back into particle phase space,

0 0
TgCchlI) = chd) +€ <Glf 8_,[1 + GI;H ﬁ — Py V) chc[)

1
+€Z(E PoPo : VV*[)I ) V)ch®+"'
=P,, (18)
where (G",G") denote the first-order corrections to the guiding-
center magnetic moment and guiding-center parallel momentum,

respectively, and the first-order gyroradius is defined in particle phase
space as

_ MBx  (pg Pt -
== 7" (7 : VlnB—E)pﬁ—leb, (19)

where while an explicit expression for the parallel component py
= p; - b will not be needed in the present work, we note that its gyro-
angle average is (py) = (uB/2mQ*)V - b. We note that the first
term in Eq. (19) appears as a result of the extension” of the standard
guiding-center transformation’ that correctly calculates the guiding-
center polarization (see Appendix B for details).

The guiding-center representation is faithful to particle dynamics
if the identity (18) is satisfied up to an arbitrary order in €. This identity
guarantees that the guiding-center push-forward of the particle conser-
vation law dP,, /dt = 0 yields the guiding-center conservation law,

(P i (d L1 dePyco
_T11(%%e) _ 1[4 1p — Ygetyge
O*Tgc(dt) {Tg“ (dtTgC)}TgCP“’_ at

where dy/dt is the time derivative generated by the guiding-center
Lagrangian dynamics and the guiding-center invariant Py.q = Tg_cl P,
may be truncated at an arbitrary order in €.

In previous work, Belova et al.'’ considered energetic-particle
orbits in the National Spherical Torus Experiment (NSTX) that satis-
fied the adiabatic invariance of the higher-order guiding-center mag-
netic moment (9), and numerically investigated the validity of the
guiding-center representation by verifying that the explicit expression
for the guiding-center pull-back of the guiding-center toroidal canoni-
cal angular momentum

Tgcpgc(D = ch(D (X — €P, Po|| +e€ un s Mo + 6Glll)v (20)

is nearly invariant, where p = x — Tch includes the first-order correc-
tions (19) due to magnetic nonuniformity. In Fig. 3 of Ref. 10, Belova
et al'’ show that the standard guiding-center expression
W=y — e (cP/e)be + €(dJ /e) Ry, where Ry, = b; + § thg, yields
an improved particle canonical angular momentum invariant (20)
compared with the truncated guiding-center expression ¥* =
— € (CPH/e)b(p.

In the present paper, the validity of the guiding-center represen-
tation is assessed on the basis of verifying that the expansion (18) is
exactly valid at each order in € for two axisymmetric magnetic geome-
tries: mirror geometry (Sec. I1I) and simple tokamak geometry (Sec.
1V). Here, the guiding-center representation is shown to be faithful up
to (and including) first order in magnetic-field nonuniformity, which
requires retaining all terms appearing in Eq. (17).
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lll. MAGNETIC MIRROR GEOMETRY

We begin by considering the problem of charged-particle motion
in axisymmetric magnetic mirror geometry, where the magnetic field
is represented, using the cylindrical coordinates (r,¢,z), by the
dimensionless expression

B = Vy(r,z2) XVgo:%(%ﬁf%f),

= B,(r,z)f + B.(2) Z, (21)

where the magnetic flux i/(r, z) is defined as

W2 =3 P 1+ 7). (2)

Figure 1 shows the magnetic-mirror vector field (21) in the (x, 2)-
plane. With a field line passing through the point r = ry on the equa-
torial plane z=0, which is labeled by the magnetic flux (ry,0)
= r2 /2, the radial coordinate r(z) = ry/+/1 + z? of the field line can
be expressed as a function of z.

The magnitude of the magnetic field (21) is

B(r,z) = \/r2 22 + (1 + 22)°, (23)

while the unit vector along the magnetic field is

b(r,p,2) = b, (r,2) F(¢) + b.(r,2) 2, (24)

where b, (r,z) = —rz/B(r,z), b,(r,z) = (1 + 2*)/B(r, z), and F(¢)
= cos ¢ X + sin @ y. Next, we can calculate

. rb,
bxVInB=— 3

(3zb, — b, )V = —K Vo, (25)

e AN RN
NN
xS /;// /1 X\\\\\‘\\\ ‘iy‘?\:;

)

-3
7N

SN

-4 ‘ ‘ —~

X—axis

FIG. 1. Plot of the magnetic-mirror vector field (21) in the (x, z)-plane.

scitation.org/journal/php

Vxb=—(?/B+K)Vop=-KVe, (26)
withV x B = —1? V.

A. Particle dynamics
The normalized equations of motion (4) are expressed in cylin-
drical coordinates as
ex" =r¢'(B,# —B,z) — (B, —B,Z){, 27)

where X' =77 +r¢' ¢ + 7' 2, with ¢ = 97 /. These dimension-
less equations are numerically solved for ¢ = 1/20, with the initial con-
ditions (ro, @y, 20) = (1,0,0) and (1}, ¢}, z5) = (0,1/10,v/24/10)
associated with the dimensionless energy E = 1/4.

We note that, because of the azimuthal symmetry of the magnetic
field (21), ie., the components (B,,B,) are independent of the azi-
muthal angle ¢, the azimuthal canonical angular momentum,

1
P, ==(r,z) + o, (28)
€
is a constant of the motion.
Figure 2 shows that, while the lowest-order normalized magnetic
moment (normalized to ezmQ(z) /2By),

o = [(rg)” + (bt — b, 2)° /B, (29)
is relatively well conserved when the particle is near the orbital bounce
points, its adiabatic invariance is compromised as the particle crosses
the equatorial plane (z=0) between ¢’ = 28 and 29. The addition of
the first-order correction,

4 = (,lOK1 +p}Ka/B +]3Hz'K3)q)'/B, (30)
computed from Eq. (10) (witht =b - V x b = 0), where p|| = b, r
+b,7 and
po - VInB =€¢'K; /B,
po - (b - Vb) = eqg'Ky/B, (31)
~

po - b =eZ¢9'Ks,

Magnetic Moment
0.016 -

0.015
0.014
0.013|
0.012 ‘»

0.011 |

0.010 -

L n 1 I 1 i o4 PR Tlme
24 26 28 30 32 34

FIG. 2. Plots of the normalized lowest-order magnetic moment 1 (gray) and the
normalized magnetic moment u = iy + € ;g =~ 0.01257 (black), with first-order
correction 4 given by Eq. (30). Here, e = 1/20 and the normalized kinetic energy
is Eg = 1/4, with the initial conditions (ro, ¢g,20) = (1,0,0) and (r}, ¢y, 2;)
= (0,1/10, v/24/10).
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greatly improves the adiabatic invariance of the magnetic moment and
validates the guiding-center representation for the particle orbits in the
magnetic-mirror vector field (21). Here, K; and K are defined in Eqs.
(25) and (26) and K3 = r(3zb, + rb,)/B. Hence, the adiabatic invari-
ance of the magnetic moment justifies our use of the guiding-center
approximation in describing particle orbits in magnetic mirror geome-
try. The numerical value y >~ 0.01257 will be used as the normalized
guiding-center magnetic moment in the guiding-center equations of
motion in magnetic mirror geometry.

B. Guiding-center dynamics

The guiding-center Lagrangian in magnetic mirror geometry is
Ly =2y @ +pb X~ (Lp2 178 32
gc — ; lﬁ + Il . - E || + ] 3 ( )

where we use the extended guiding-center model (C) in Eq. (12),
X = (R, ®, Z) denote the guiding-center position in cylindrical geom-
etry, P denotes the normalized guiding-center parallel momentum,
and J = p1/2 denotes the normalized guiding-center gyroaction. In
addition, in magnetic mirror geometry, we may choose the perpendic-
ular unit vectors 61 = ®andé, = b x ®, so that the gyrogauge vec-
tor R = V&, - €, = b, V® and the effective magnetic flux,

l//* = l//(R,Z) - 52] <bz - % K2)7 (33)

is expressed in terms of the extended guiding-center model (C) in
Eq. (12),

R = (bz - %Kz) V. (34)

From this Lagrangian, we obtain Euler-Lagrange equations that can
be expressed as Egs. (13) and (14), where

= Vl//* x VO — EPH K, V(D,

. 35
Bj=b - VY x V. (35)
The guiding-center equations are thus expressed as
A ( o a¢*>
R, Z — == 36
& 2) =\~ 9z o) (36)
. €
(I):—Rz—Bﬁ<PﬁK2+]BK1), (37)
. ] (0BOy" OB 6!//*)
Fir= ~RB] (az OR  OR Oz 8

which exactly conserve the (dimensionless) guiding-center energy &
= P2 /2 + B (where ] = 11/2 is obtained from Fig. 2) and the guiding-
center canonical azimuthal angular momentum Pgq = € ')*. These
dimensionless guiding-center equations are solved for € = 1/20 with
the initial conditions (Ro, @y, Zy) = (201/200, 0, 0), which takes into
account the radial shift (16) from the initial particle position
(10, @9, 20) = (1,0,0),and Pjo = \/E — ] B(Ry, Zo).

Figure 3 shows the plots of the particle azimuthal angle ¢ (gray)
and the guiding-center azimuthal angle ® (black) for a particle orbit in
the magnetic-mirror vector field (21) during a full bounce period.

scitation.org/journal/php

Azimuthal Angle

Time

FIG. 3. Plots of the particle azimuthal angle ¢ (gray) and the guiding-center azi-
muthal angle @ (black) during a bounce period.

These orbital solutions are obtained by numerical integration of the
normalized equations of motion (27) and (36)-(38), while conserving
energy and azimuthal canonical angular momentum within machine
precision. We note that the guiding-center azimuthal angle changes
very slowly when the particle is near a turning point, while it changes
rapidly as the particle crosses the equatorial plane (z = 0).

Figure 4, on the other hand, shows the plots of the particle orbit
(gray) and the guiding-center orbit (black) during a bounce period in the
(9, 2)-plane. While the motion is periodic in (r, z), there is a slow drift
motion in the azimuthal direction, which can be seen in Figs. 3 and 4

Z-axis

-0.020 -0.01

FIG. 4. Plots of particle orbit (gray) and guiding-center orbit (black) in the (y, z)
plane during a bounce period. Here, the particle and guiding-center orbits begin at
point A and, after one bounce period, the guiding-center orbit has drifted (in the
negative-y direction) to point B.
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(the slow drift motion is proceeds to the left on the y axis). The rapid,
small-amplitude oscillations that are noticeable in Figs. 3 and 4 are due
to the fast gyromotion of a charged particle about a magnetic-field line.

C. Validity of the guiding-center representation
in mirror geometry

We now show that the guiding-center representation of particle
motion in magnetic mirror geometry is faithful to the exact particle
motion, by showing that the guiding-center pull-back Ty Pgcqp = Py, of
the guiding-center canonical azimuthal angular momentum is equal to
the particle canonical azimuthal angular momentum.

Up to second order in ¢, the guiding-center pull-back Ty Py is
expressed as

1
Tchgch :E (lp —€Pg - le - 62p1 . VI//)
€ 1
+E PoPy - va—e](bz—EIQ), (39)
where the first-order gyroradius correction is given by Eq. (19) and the
contribution associated with the magnetic twist b - V x b = 0 van-

ishes for magnetic mirror geometry. Here, we find p, - V{
=—12¢/, k - Vi) = —=K;B,and p, - VInB = K, ¢'/B, so that

1 P
p VW =—JK+ 2K
P VY 2] 2+ZB 1
while
1 rro”
EPOPOZVV'//:”&— 25 K;.

Hence, up to second order in ¢, the guiding-center pull-back (39)
yields

1
TchgCCI) = E lﬁ + VZ(P/ = Pqn (40)

which confirms the validity of the guiding-center representation in
magnetic mirror geometry.

IV. SIMPLE TOKAMAK MAGNETIC GEOMETRY

We now turn our attention to the problem of charged-particle
motion in a simple magnetic tokamak geometry, with circular concen-
tric magnetic surfaces without Shafranov shift. The magnetic field is
represented, using the quasi-cylindrical coordinates (r, v, ¢), by the
dimensionless expression

2
B=_ Vo4V, (41)
qh

where q(r) = qo + o1*/2 is the safety factor (we will use gy = 1 and
o =2 in our numerical calculations) and & = 1 + r cos ¢ is the nor-
malized distance from the magnetic axis (r = 0) to the particle position
in the poloidal plane (which is normalized by the major radius R, of
the magnetic axis). Since the magnetic field (41) is divergenceless

B=VXxA=VYxVI+Ve xVy, (42)
it can be written in terms of the vector potential

A=YV —yVo. 43)

scitation.org/journal/php

By comparing with Eq. (41), we find 0¥(r,)/0r = r/h(r, ) and
dyr/dr = r/q(r), so that the toroidal and poloidal magnetic fluxes ¥
and | are

" udu 1 B lnh(r,ﬂ))
¥ ) = L h(u,9) ~ cos¥ (r cosd )’ (44)
o-[g-en(e) @

where we chose W(0,9) =0 = /(0). In what follows, we use the
quasi-cylindrical unit vectors F = cos® p +sin?2, 9 = O /O
= —sin¥p +cos¥z, and p =F x ) = p x 2 = Dp /¢, with the
quasi-cylindrical Jacobian 7 = (Vr x V& - V)" = rh(r, ).

The magnitude of the magnetic field (41) is

B(r,9) = 1+12/q(r) =

1
h(r,9)

and the unit vector along the magnetic field is

~ N 1
B(r,0) =— 0+~ ¢ = by(r) VO +b,(r.0) Vo,  (47)
af B
withVXf):Vb,y><V19+Vb(,,XV(p.Next,wecancalculate
rg cos?). sin¥ -
InB=|—=5— i 4
Vin <qﬁ2 . >r+ 29, (48)
sind /~ r . I [cosd r
W (ﬁfé“")*ﬁ( P 2)’ “
t—b-Vxbo—t g+t (50)
B e\ k)
N B - r rogr'~ @'sind /.y 1
b=->b- 'cos19+719’>7+—19+ (1977(),
p (‘*’ 9" )8 B B q”
(51)

where g(r) = d(r/q)/drand ' = (rg/qp)r'.

A. Particle dynamics

The dimensionless particle Lagrangian is

1 1
L=—(¥7 =y ¢) +5(2+ 20" + 12", ()
€
from which we obtain the following equations of motion:
y T s ¢ 2 2
=== +r? +hcostp?, (53)
e\h ¢
" —1 1’/ . ” ! ql
V' =—\|—+hsind”+2r9 |, (54)
r \€h
/ 2 /
QD”:E;;‘]*T(P (#' cost) — r sind). (55)

These dimensionless equations of motion are solved numerically for
€ = 1/100, with the initial conditions (ry,J9, ¢y) = (1/2,0,0) and
(15,05, @) = (0, 8,v22/ 3) associated with a dimensionless energy
E=43/2.
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We note that, because of the azimuthal symmetry of the magnetic
field (41), ie., the components (By,B,) are independent of the azi-
muthal angle ¢, the azimuthal canonical angular momentum (5),
expressed in dimensionless form as

Py == Y(r) + 1 0) 0, (56)

is a constant of the motion.
Before moving on to guiding center theory, we calculate the nor-
malized magnetic moment u = y, + € y; + - - -, where

o= (0 4 )b

with
o= (' —ho'/q)/B, (57)
and the dimensionless lowest-order gyroradius is
ro, 1 [~ T

Figure 5 shows that the lowest-order normalized magnetic moment is
poorly conserved, especially as the particle crosses the equatorial plane
(¥ = 0). We can greatly improve the adiabatic invariance of the mag-
netic moment by calculating y; from Eq. (10),

i
1y = o Gy + ”G+P”G ’;OBP”L (59)
where
J
G =po - Vlnle;— smﬂf— (/}g CO;ﬁ>, (60)
q
7' cos¥ r
=— —,
Gy=py - K 5 51n19+ﬁB( +q2) (61)
and

. / / 19/
Gs=p, - b’ :% <‘gﬁ—z+(p’sinz9> +;—(; <%+ (p'cosﬂ). (62)

Magnetic Moment

Time

FIG. 5. Plots of the normalized lowest-order magnetic moment 1 (gray) and the

normalized magnetic moment u = g + € 4 =~ 12.23 (black) for one bounce

period, with first-order correction 14 given by Eq. (59). Here, ¢ =1/100 and

the normalized kinetic energy is Ey = 21.5, with the initial conditions (rg, Jo, @)
= (1/2,0,0) and (1), %, @}) = (0,8, v/22/3).

scitation.org/journal/php

-

Figure 5 shows the lowest order magnetic moment p, and the
improved u = py + € ;. This first-order correction causes y ~ 12.23
to be a good adiabatic invariant, numerically validating the guiding-
center representation for the particle orbits in the simple tokamak
magnetic field (41). This adiabatic invariance of the magnetic moment
justifies our use of the guiding-center approximation in describing par-
ticle orbits in simple magnetic tokamak geometry.

B. Guiding-center dynamics
The guiding-center Lagrangian in simple tokamak geometry is

1 1
Ly :E(l}‘*(a’ﬂ//*cb’) —eJR Ry — (Epﬁ +]B), (63)

where X = (R, ®, ®) denotes the guiding-center position in quasi-
cylindrical geometry, ] = /2 denotes the dimensionless guiding-center
magnetic moment, and P|; denotes the dimensionless guiding-center
momentum parallel to the magnetic field. In addition, the effective poloi-
dal and toroidal magnetic fluxes,

W'=Y +ePjbo — €] Ry, (64)
V= —€P bo + € R, (65)
are expressed in terms of the extended guiding-center model (C) in Eq.
(12): R* =R 43 V x b. Here, we calculate the gyrogauge vector
R = Vel é, bychoosmg €, =rand ez = b x F, so that we obtain

R =p"'VO —b,VO, where b,=b -z = (R/qf) cos®, and,
according to the extended guiding-center model (C) in Eq. (12), we find

1
R* :R-i-E(Vh@ X VO + Vbg X V@),

=Ry VR+Rg VO + Ry VO. (66)

From this Lagrangian, we obtain Euler-Lagrange equations that can
be expressed as Egs. (13) and (14), where

B"=VY¥ x VO — Vy" x VO + Vy x VR, (67)

with y = —¢*JR} and B = b - B*. The guiding-center equations
are thus expressed as

(68)

P 81# eJ
o =_I + be
T e OR T g

oV €J OB
7 (o %) T w7
I (0v 0p_ov )
j OR 0©® 00 OR
where J w=J B‘*‘ combines the quasi-cylindrical Jacobian 7 and the

guiding-center Jacobian Bjj. We note that these equations exactly con-
serve the guiding-center energy & = P / 2+ JB and the guiding-

center canonical azimuthal angular momentum

(69)

(D/

P"‘ = (71)

1 1
chd):*El//*:*Elp‘FPHbd)*E]RE). (72)

The dimensionless guiding-center equations are solved numerically for
€ =1/100 with the initial conditions (Ry, @y, ®y) = (0.5380,0,0),
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0.40
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0.30
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Time

FIG. 6. Plots of the particle radial position (gray) and the guiding-center radial posi-
tion (black) during the first two bounce periods.

which takes into account the radial shift (16) from the initial particle
position (ry, @y, 20) = (0.5,0,0),and Py = \/E — ] B(Ry, ©).
Figures 6-8 show the plots of the particle position (gray) and the
guiding-center position (black), obtained from the extended guiding-
center model C in Eq. (12), during the first bounce periods. Figure 6
shows plots of the particle radial position (gray) and the guiding-center
radial position (black) during the first two bounce periods, Fig. 7 shows
the classic “closed” guiding-center banana orbit (black) projected
onto the poloidal plane (at constant toroidal angle), and Fig. 8 shows
that the three-dimensional guiding-center orbit (black) follows the three-
dimensional particle orbit (gray) very well over two bounce periods.

C. Higher-order guiding-center orbits

We now make a few remarks on the three guiding-center models
presented in Eq. (12). In order to compare their effectiveness at approx-
imating the particle orbit, we need to ensure that the initial conditions
for these guiding-center orbits are consistent with the initial conditions
for the particle orbit. This consistency is achieved by connecting the ini-
tial conditions through the guiding-center transformation (16).

In what follows, the guiding-center orbit A is generated from the
initial condition obtained from the lowest-order relation X = x — € p,
(i.e., the initial condition only takes into account the lowest-order

Z-axis

04+
02+

R-axis

FIG. 7. Plots of the particle position (gray) and the guiding-center position (black)
projected into the poloidal plane during the first two bounce periods.

scitation.org/journal/php

0.5

z—axis 0.0

-05|

FIG. 8. Plots of the three-dimensional particle orbit (gray) and the guiding-center
orbit (black) during the first two bounce periods.

guiding-center transformation), which yields the initial radial position
Ro|, = 0.5396 from the particle initial conditions. The initial condi-
tions for the guiding-center orbits B and C, on the other hand, are dis-
tinguished by the guiding-center polarization  correction
Glpo = (J/2mQ) x for the extended guiding-center model C," while
3|pot = 0 for the standard guiding-center model B."” Hence, we use
the initial radial positions Ry|, = 0.5380 and Ry| = 0.5384, which
are calculated when the particle initial conditions are inserted in the
guiding-center transformation (16).

Figure 9 shows the particle position (gray) and the guiding-
center positions (labeled A, B, and C) projected into the poloidal plane
near the upper turning point. Because the guiding-center orbits have

Z-axis
0.09+
0.08
0.07 —
0.06 »
0.05

0.04

0.03F

0.02

FIG. 9. Plots of the particle position (gray) and the guiding-center positions pro-
jected into the poloidal plane near the upper turning point, according to three differ-
ent guiding-center models in Eq. (12): (black, solid) extended guiding-center model
(C); (black, dashed) standard guiding-center model (B); and (black, dotted) trun-
cated guiding-center model (A).
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different guiding-center toroidal canonical angular momenta (65), Fig.
9 shows that each guiding-center turning point occurs on a different
magnetic surface. In addition, while the standard guiding-center orbit
B slightly overshoots the particle center of gyration at the turning
point, the truncated guiding-center orbit A largely undershoots the
particle center of gyration. We note that the three guiding-center
orbits are nearly indistinguishable away from the turning-point
regions (see Fig. 7).

Figure 10 shows the three-dimensional particle orbit (gray) and
three guiding-center orbits (labeled A, B, and C) during the first two
bounce periods. Here, we see that the lowest-order truncated guiding-
center orbit A clearly separates from the particle orbit (i.e., the guiding-
center orbit is located well outside of the particle’s gyration radius),
while the two higher-order guiding-center orbits B and C are still nearly
indistinguishable over the first two bounce periods, except when the
standard guiding-center orbit B overshoots the turning point. We note
that the standard guiding-center orbit B noticeably separates from the
particle orbit during the next two bounce periods, while the extended
guiding-center orbit C still remains at the center of the particle orbit.

D. Validity of the guiding-center representation
in simple tokamak magnetic geometry

We now show that the guiding-center approximation is faithful
to the particle motion in simple tokamak magnetic geometry by show-
ing that the guiding-center pull-back Ty Pgp = P, of the guiding-
center canonical azimuthal angular momentum is equal to the particle
canonical azimuthal angular momentum. Up to second order in ¢, the
guiding-center pull-back Ty Pgco is expressed as

1 €
Tgcpgcd)zfglp+p0 : le+pr(P+6pl . Vlljfipopovv‘//

+¢(Gl' by —py 0y - V) — IRy, (73)

X—-axis

FIG. 10. Plots of the three-dimensional particle orbit (gray) and the guiding-center
orbits (labeled A, B, and C) during two bounce periods, according to three different
guiding-center models in Eq. (12): (black, solid) extended guiding-center model (C);
(black, dashed) standard guiding-center model (B); and (black, dotted) truncated
guiding-center model (A). Here, the truncated guiding-center orbit A has clearly
separated from the particle orbit, while the higher-order guiding-center orbits B and
C are nearly indistinguishable, except when the standard guiding-center orbit B
overshoots the turning point.

scitation.org/journal/php

where the first-order gyroradius correction p, is given by Eq. (19) and
the first-order correction to the guiding-center parallel momentum is
given by Eq. (A6),

3 1
& =-la+iri-sa, (74)

where (1, Gy, G3) are defined in Egs. (50), (61), and (62).
First, using p, = b x x'/B and the simple-tokamak identity
B x 0x/0¢ = Vi, we find

b ox
po - V=g xx - BX%=h2<P'*Pwa,
so that, at first order (ie., zeroth order in magnetic-field nonunifor-
mity), we find

po - VY +p b, =h¢. (75)

Hence, we now need to show that, at second order (i.e., first order in
magnetic-field nonuniformity), we find the identity

B 1
TR, = py - V¥ == popo s YV +G'by = pypg - Vb, (76)
so that Eq. (73) becomes
1
TocPyew = —— W +h ¢/ = P, (77)

which guarantees the validity of the guiding-center representation in
simple tokamak magnetic geometry. A complete proof of the identity
(76) is given in Appendix C.

V. SUMMARY

In previous work,'” we showed that the guiding-center approxima-
tion was valid in a straight magnetic field with constant perpendicular
magnetic gradient, even in the presence of strong gradients. In addition,
based on the existence of an exact analytical solution for the particle
orbits, this work also confirmed that the guiding-center polarization cor-
responded exactly with an orbit-averaged particle displacement.

In the present work, we extended our investigation of the validity
of the guiding-center approximation in describing charged single-
particle motion in a nonuniform magnetic field. Here, we considered
regular particle orbits in azimuthally symmetric magnetic mirror geom-
etry and simple tokamak magnetic geometry, in which the azimuthal
angular canonical momentum is conserved and the guiding-center
magnetic moment is an adiabatic invariant. We successfully validated
the guiding-center approximation in describing particle motion in an
azimuthally symmetric magnetic field provided higher-order guiding-
center corrections are taken into account, which had already been
noted for the case of an axisymmetric tokamak magnetic field.' In par-
ticular, the guiding-center polarization correction in the guiding-center
azimuthal angular canonical momentum, not taken into account in the
standard guiding-center approximation,"” proved crucial in establish-
ing a faithful guiding-center representation for regular particle orbits in
axisymmetric magnetic geometry.

Finally, we note that the truncated guiding-center model” is used
extensively in guiding-center particle simulations, despite the fact that
it is not as faithful to particle orbits as higher-order guiding-center
models. In most applications, however, the truncated guiding-center
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model is either used to analyze particle orbits in the presence of per-
turbed electric and/or magnetic fields, or as the unperturbed compo-
nent for the gyrocenter orbit used in nonlinear gyrokinetic theory.”
Future work may look into the issue of faithfulness for these applica-
tions. In addition, the faithfulness of the guiding-center representation
for particle orbits in non-axisymmetric magnetic geometries may be
explored.
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APPENDIX A: GUIDING-CENTER TRANSFORMATION

The standard expression for the first-order correction to the
guiding-center magnetic moment is'*

Pt
G =py - (HonnB+ ! > too (t+on), (Al

where ¢ =p/(mQ) and o = —; Llp+pl): Vb is con-
structed from the gyroangle- dependent unit vectors | = 9p /I
= p x b. Using the identity

1 R .
CXIZET_L'Vb'ﬁ, (Az)
we obtain
3 N ~
‘c+oc1:5171_~Vb~p. (A3)
Next, we write
s o\ P -
_n (@f ;. ) .
~ 2
py db PH")
N I | e A4
<2B it 2mp) PO (A4)

which yields Eq. (10)

scitation.org/journal/php

L ! H ) 3 I | f | “: A
f \V4 — | + == 5
Gl = < Ho lnB+2 mB Po Ho Q B * Po- ( )

Using the same identity (A3), the standard expression for the
first-order correction to the guiding-center parallel momentum"” is
replaced with the new expression

1B
Gl = —ppy - K+ (t+a),

Q
_ 3mB _ mdb
=S P Ko T P (A6)

APPENDIX B: GUIDING-CENTER POLARIZATION

The guiding-center polarization was calculated directly from
the guiding-center transformation in our previous works.”'* It is
formally defined by the multipole expansion

Tge = e<pgc> -V <§ <pgcpgc>) ey (B1)

where the dipole and quadrupole moments are shown here, while
Py = Tg’clx X is the guiding-center gyroradius. We note that the
guiding-center gyroradius p,. is related to the particle gyroradius
p = x — Ty X by the identity p,. = T < p- Using the gurdmg center
transformation presented by Tronko and Brizard," we find the
dipole contribution

(pye) = <<p1> -2

and the quadrupole contribution

v G <pgcpgc>) =-V: (%(H—BB))

B € uB
="V, InB+—— |k+(V-b)b], (B3
S VLI +2mQZ [+ |, ®3)

2
) _% LV, B+ (V. b)b], (B2)
m.

which both appear at €? at their lowest orders (i.e., first order in

magnetic-field nonuniformity).
Hence, the guiding-center polarization (B1) is expressed as

0SBy )]
Tge —ee<(p1>p01+2mgzk)+ o X~ uVB—i—mx ,
(B4)

where (p, ),y is the polarization correction not included in the stan-
dard gurdmg center transformation.”” We, therefore, recover the stan-
dard guiding-center polarization g = € 2(eb/Q) x dX/dt" only if
we choose

B
K o x
2 mQ
which appears as the first term on the right side of Eq. (19). With this
choice, the magnetic vector potential A* defined in Eq. (17) becomes

<p1>pol = (BS)

eA* €A mQ
o« _E+PH —6](R+ b) . — (P1)pol>
eA
7+PH 7€]<T\’,+ V x b) (B6)
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where the standard correction %152’3 is replaced with the correction
% v X b./l,l/l

Finally, it is important to keep in mind that the guiding-center
polarization discussed here occurs in the absence of an external
electric field and is simply due to magnetic-field non-uniformity.
Since the guiding-center polarization effect is inversely proportional
the gyrofrequency, it is an important effect for ions. The electric
field generated by the charge separation associated with the
guiding-center polarization, therefore, requires a self-consistent
treatment that must include an electric field as an integral part of
the guiding-center formulation.'® This self-consistent analysis, how-
ever, is outside the scope of this paper.

APPENDIX C: PROOF OF IDENTITY (76)

In this Appendix, we proceed with a proof of the identity (76).
Using (k/B) - V{ = tb, — 2 (b, + R;,), we write

_ 1 * 1 py
pl . vw— —E]['L'b(p _2(bz+R(p)} + (z Gl —E‘L')po . vlﬁ
(C1)
Next, since Vi = (r/q) f, we find
PN BN
VvV :grr+a 99 +Bb, ¢,
recosd\ .. U9
=Bb,1 — —, 2
b +(g o )rr+qh (C2)
so that
1 1 rcosv 02
- . _ bz - o 2 09 3
5Py VVY =] +2<g A )p0r+2qhv (€3)
where p,, = —rw/B, pyy =r'/BB, and we used the lowest-order
expression

B 1
J=3 (P%, + Bpog) = E(VIZ +rro?),

where py, = —(r/q) poy- With these expressions, and using Eq.
(74), the identity (76) becomes
* J p 3
JR, = —E[Tb(/, —2(b: +R})] —]bz-i—E]‘cbq,

Pilg —Lg —cp - wp)-&
+B<G1 2G2 TPy Vlﬁ B

Py 1 ( rcos ¥

2hq 2 hq
which, after cancelations, yields an expression for G

G3 :2]’E+p||(2G1 —G2 —2Tp0 . Vzp)

Bp?, 1
+Guwo~vw4~fgﬁ—(ﬁr—a)3%ﬁ (1)

1
)Pér+§ Gipy - VY,

where we used

ARTICLE scitation.org/journal/php

_ rcos? +1<171) —ﬂzrfl

which follows from the definition (50) for 7.

We now compare Eq. (C4) with Eq. (62), which requires
expressing (', ¢') in terms of (p|, ), where ® is defined in Eq.
(57) and p| = ¢'/B+1*9'/(qP) is the lowest-order dimensionless
particle parallel momentum. Hence, after substituting

V' = (o +p)/q9)/B,

(C5)
o' = (p — r*w/q)/(hp),
into Eq. (62), we obtain a second expression for Gs
G3 :2]‘5 +pH G2 JrGl BpO . vl//
2 202 hp +1—
L N (RS e ]
hqp~ B hq

where we used 14 f*rcos®) = hf* +1 — % By comparing Egs.
(C4) and (C6), we obtain the following expression:

(G =Gy —1py - Vi) =0, (C7)

after carrying out several cancelations on the right side of Eq. (C7).
Finally, using Egs. (60) and (61), we obtain

ro [ rg  cost ro (cosd
G-C=—Flog 7w ) 3\ Th &)
af Bf q
rw
= _fq—B = 1p, - VY, (C8)

which confirms Eq. (C7) and completes the proof of the identity
(76).
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