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ABSTRACT

The problem of the charged-particle motion in crossed electric and magnetic fields is investigated, and the validity of the guiding-center rep-
resentation is assessed in comparison with the exact particle dynamics. While the magnetic field is considered to be straight and uniform, the
(perpendicular) radial electric field is nonuniform. The Hamiltonian guiding-center theory of charged-particle motion is presented for arbi-
trary radial electric fields, and explicit examples are provided for the case of a linear radial electric field.
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I. INTRODUCTION

The importance of radial electric fields in rotating magnetized
plasmas has been a topic of great interest for a few decades' * because
of the role of sheared E x B flows in the stabilization of turbulent mag-
netized plasmas. The guiding-center analysis for particle dynamics in
the presence of background (equilibrium) radial electric fields,”* and
its extension to the gyrokinetic analysis of turbulent magnetized plas-
mas,” " has also been a topic of great interest. The case of rotating
magnetized plasmas due to the presence of radial electric fields contin-
ues to attract attention.' "

In the present work, we apply the Hamiltonian guiding-center
theory developed in Ref. 5 for general magnetic geometry to the prob-
lem of charge-particle motion in the presence of a uniform magnetic
field B = By Z and a nonuniform electric field E = —V®. Using the
magnetic coordinates (1, 0, z), the magnetic field B =V x A can be
represented in terms of the magnetic vector potential A = V0,
where the magnetic flux is expressed in terms of cylindrical coordi-
nates as /(r) = Bor*/2 while the electric potential ® = ®() is
assumed to be a flux function. While the standard assumption is that
the E x B rotation frequency wg (i) = c @ () < Q is small when
compared to the gyrofrequency Q) = gB,/mc (for a particle of mass
m and charge g), this does not require the E x B velocity r wg(})) to
be small when compared to the thermal velocity,”'” especially in the
edge of a confined magnetized plasma.

The remainder of the paper is organized as follows. First, the
dynamics of a charged particle moving in the two-dimensional plane
perpendicular to a constant magnetic field under the influence of a
nonlinear radial electric field (Sec. 11) and a linear radial electric field

(Sec. I1I) is discussed, where explicit results are presented for the lin-
ear case. Next, the guiding-center analysis for particle dynamics in a
nonlinear radial electric field is presented in Sec. IV while explicit
guiding-center results are presented in Sec. V for a linear radial elec-
tric field.

Il. PARTICLE LAGRANGIAN DYNAMICS IN NONLINEAR
RADIAL ELECTRIC FIELD

The two-dimensional motion of a charged particle in the plane
perpendicular to the magnetic field is represented by the particle
Lagrangian expressed in magnetic coordinates as

L= (%A—Fmv) X — (% \v|2+q¢))

LT

_cA x+2\x| q@

g (o
—;¢9+E(U+9)—Q®(W)a (1)

where a dot denotes a time derivative and the particle’s velocity

. s 0x 2 0x 2y Vo .

is expressed in the plane perpendicular to the magnetic field, with
Jacobian Z - (9x/0y x 9x/00) = 1/B,. Since the Lagrangian (1) is
independent of the azimuthal angle 0, the azimuthal canonical angular
momentum
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L ¢q .
= —==-y(14+20/Q 3
po = a=v(1+20/%) 3)
is a constant of motion (i.e., dpy/dt = OL/00 = 0). By using the ini-
tial conditions (1, 0y = wy), we may write the azimuthal canonical
angular momentum as

po=Tuy(1+200/0) = 1, @

o

and, thus, the azimuthal angular velocity is

9(¢)=(;°<‘f; ) (5)

which indicates that reversal is possible if 1/ crosses .

Next, we construct the Routh-Lagrange function (or Routhian'*)
in order to obtain a reduced Lagrangian formulation of the y/-dynamics
as follows

Ry, ) = L—08L/00,

and we obtain

R(y, W) = & (f_w) — V(). (6)

where the effective potential is

()
4y

Hence, the Routh-Euler-Lagrange equation

d (0R) R
di\oj) o

yields the nonlinear second-order ordinary differential equation for
the normalized magnetic flux y = /i, as

V) = q0W) + 22 (g, —y)”. @)

1
i

1'=3, () + (1= 22)] = 2exv(2), ®)

where a prime denotes a derivative with respect to the normalized
time ¢ = Qp t and the dimensionless parameter

€= c®y)/ 9)

denotes the ratio of the Ex B azimuthal frequency wg (V)
= c® (Y,) at Yy =, to the gyrofrequency Qy, and we define the
function as

v(x) = o)/ (W), (10)

which equals one if @ (1) is a linear function of .
We note that Eq. (8) possesses an energy conservation law, with
normalization £ = (qQo¥r,/2¢) £, where

1 260Wo1) _ (1)

scitation.org/journal/php

?(x) = Qt(y) == r &

w/2s [ — U(s)] 7

where the initial condition y, can be chosen as a turning point
(7 = 0) defined by the condition & = U(y,,).

Finally, the solution for Eq. (12) can be analytically obtained by
quadrature for an electric potential ®(1/) represented as a polynomial
up to third order in ¥. Once the solution y(t') is found by inverting
the integral solution for Eq. (12), the solution for the azimuthal angle
0(t') is found by integrating

o't :%(ﬁ— 1). (13)

Hence, a particle orbit can be generated from these solutions, which
can be expressed in polar form as

(12)

=

=
S,

N
Il

r(t') cos O(t'), (14)
r(t') sinO(t), (15)

s

=
A

N
I

where r(¢') = \/2¢/(t")/Bo.

I1l. PARTICLE DYNAMICS IN A LINEAR RADIAL
ELECTRIC FIELD

In previous work by White et al,'* a nonuniform radial electric
field was represented by the electric potential (1)) = a /i) + by,
where a and b are constants associated with a uniform radial electric
field and a radial electric with constant gradient, respectively.

Here, we look at charged particle dynamics in the electric potential

D) = ' (o) ¥, (16)
so that, using iy = By (x* + »?)/2, we find a linear radial electric field

E=-V®=—By®,)(xXx+yY). (17)

This nonuniform radial electric field yields a nonuniform E x B
velocity

u:E><E:er(x)?—y)A()7 (18)
Bg
which has constant parallel vorticity Z - V x u = 2¢ Q.

In the ordering recently considered by ]oseph,l‘? an electric oscil-
lation frequency is defined as Qp = (—g 'V - E/mc)?, so that we find
Qr = Q) /2 ¢ from Egs. (9) and (17). Hence, according to the Joseph
ordering,"” our study is situated between the large-flow ordering
Qp/Qy = O(e) and the maximal ordering Qr/Qy = O(1).

In recent work, Kabin'” considered an additional divergenceless
electric field E; = Ej; (yX + xY¥), but since it is generated by an
electric potential ®;(y,0) = —E},xy = —(E},/Bo) Y sin (20) that
breaks the invariance of the azimuthal canonical angular momentum,
it will not be considered here.

A. Normal-mode analysis

Using the electric field (17), the equations of motion are

z 2 2 —
€= 2 [+ (=] + Vo @ () =T +U(z), (1) expressed in Cartesian coordinates as
" /
= 1
so that the solution for y(#') can be found by inverting the integral x// Xty ) (19)
solution Yy = ey =X, (20)
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which have an azimuthal canonical angular momentum invariant

= / / l 2

Po=xy —yx +-x[ =1, @21
which follows from Eq. (4), and an energy invariant

=X +elx + iz (1
x|
which follows from Egs. (11) and (21). We note that since Egs. (19)
and (20) are linear in x and y, they can be arbitrary normalized.
Using the standard normal-mode analysis, where x = X exp (iwt)
and y =y exp (iwt), we obtain the matrix equation

e—w —iw x
( iw e—cuz).<)7):07 (3)

which has non-trivial solutions only if

—pp)+py— 1= +elx, (22

(e—a?) —? =0, (24)

with solutions = and *w_, where

o= :%(1i\/1+4e), (25)

and w_ < 0 < w, under the assumption that € > 0. By inspection,
the general solutions for Egs. (19) and (20) are
x(t') =a cos(wyt' + o) + b cos (w_t' + B), (26)
y(t') = —asin(w,t +a) — bsin(w_t' + f), (27)
where the constants (a, ; b, f§) are chosen from initial conditions. We

note that the normalized magnetic flux y = (x* + y?)/2 is expressed
as

2(t) :%(a2+b2)+ab cos (T + 0), (28)

V1+4et' andd = o — f5.

wheret = (w4 —w_ )t =

B. Integral orbital solution

We now consider the integral orbital solution (12), where the
effective potential

v =12 oy (29)
2y :
has a minimum U(y,) = 1/y, — 1 at
%o = 1/V1 + 4e. (30)

Hence, a real orbital radial solution exists for £ > U(y,), and the radi-
cand in Eq. (12) can be expressed as

25 [€ — U(s)] = (1 4 4€)[tan’p — (s — sec p)?],

where we defined

scitation.org/journal/php

1(t") = yo(sec ¢ —tan ¢ cost), (32)

where 7 = t'/y, = /1 + 4et’ and %(0) is chosen to be at the lower
turning point: x(0) = y, (sec ¢ — tan ¢). By comparing this solution
with the normal-mode solution (28), we obtain & = 7, with a® + b*
= 2y, sec ¢ and ab = y, tan ¢, from which we obtain

a(e, p) = b(e, ¢) tan (¢/2),
ble, ¢) = /2o(€) (1 + sec d),
so that Egs. (21) and (22) yield

_ 1 1
p9:a2<5—0)+) +b2(5—0\)7> =1,
E=a’ (o) +¢)+ 1 (0 +¢) =secd/y—1,

which follow from Egs. (4) and (31), respectively.
Using the orbital solution (32), the solution for the azimuthal

angle is obtain from Eq. (13) as

1 J i dz

9(1‘,) = —5—"5

(33)

— + Iz, @), (34)

o sec ¢ — tan ¢ cosz 2

where

V(t,¢) = arctan[ (sec ¢ — tan ¢ e”)]

—arctan[i(sec ¢ — tan ¢)]

_ iln <M)7 (35)

2 e'* — cot(¢p/2)

which vanishes at © = 0 and, as expected from Eq. (34), ¥(t, ¢)
—1/2as¢p — 0,ie,0(f') > —w_1t.

From the radial solution (32), we find that the radial period is
T = 2my,, and the azimuthal angular deviation between successive
radial maxima (or minima) is obtained from Eq. (34) as A0 = 0(T)
—0(0) = 7 (1 — y,), which implies that the planar curve [x(t'), y(¢')]
closes upon itself only if j, is a rational number. We also note that the
planar curve initiates retrograde motion near the upper radial turning
point o (sec¢ +tan¢) when ¢ > arcsin[(1 — z2)/(1 + x3)]
= arcsin[2¢/(1 + 2¢)].

Figures 1 and 2 show two cases parametrized by different values
of (¢, ¢). In Fig. 1, the value ¢ = 1/2 causes y, = 1/+/3 to be irratio-
nal, and the planar curve [x(¢'), y(#')] does not close upon itself. The
planar curve also exhibits retrograde motion since ¢ = /3
> arcsin(1/2) = 7/6. In Fig. 2, on the other hand, the value ¢ = 6 is
chosen so that y, = 1/5 is rational and, therefore, the planar curve
[x(t'), y(t")] closes upon itself (after five radial cycles). Since ¢ = n/4
< arcsin(12/13) ~ 37/8, however, the planar curve does not exhibit
retrograde motion.

When expressed in terms of Cartesian coordinates, the orbital
solution is expressed as

x(t') = /2 y(t') cosO(t'),

(1+ 8y = sech >1, (31) = b(e, ¢)[cos (w_t') — tan (¢/2) cos (w.t')], (36)
i.e., the radial motion is periodic when the energy is above the mini- /278 sin O(f'
mum of U(y), with 0 < ¢ < m/2. The orbital solution is, therefore, yE) = A1) ®), , . ,
expressed as = b(e, @) [tan (¢/2) sin (w1') — sin (w_t')], (37)
Phys. Plasmas 30, 042113 (2023); doi: 10.1063/5.0146521 30, 042113-3
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FIG. 1. Plot of the planar curve [x(t'),y(t")], given by Egs. (36) and (37), for
e=1/2 (yp=1/+/3) and ¢ = /3. The outer and inner circles with radi

/2, (sec p=tan ) = 1/ (4/+/3) =2 are shown as dashed circles.

FIG. 2. Plot of the planar curve [x(t'), y(t')], given by Egs. (36) and (37), for e = 6
(o =1/5) and ¢ =mn/4. The outer and inner circles with radii

/2y (sec p*tan ) = 4/2 (\/§t1)/5 are shown as dashed circles.

where we selected the phases « = m and f = 0. We note that, when
the orbital solution (32)-(34) is evaluated at the minimum (¢ = 0) of
the effective potential U(y), we find a circular solution, with a constant
radius b = /2y, (witha=0) and 0(t') = —cw_ t'.

This completes our analysis of the charged-particle motion in a
uniform magnetic field ByZ = Vi x V0 with a linear radial electric
fieldE = —V® = —®, Vi with constant E x B parallel vorticity.

IV. GUIDING-CENTER ANALYSIS FOR A NONLINEAR
RADIAL ELECTRIC FIELD

In this section, we proceed with the guiding-center analysis of a
general radial electric field E = —V®(y/) with the dimensionless
parameter (9) considered in the limit € < 1. The purpose of the
guiding-center analysis is to derive a reduced dynamical description in
which the fast gyromotion has been transformed away (not averaged!).

The Hamiltonian guiding-center theory of charged-particle
motion in the presence of electric and magnetic fields was presented in
Refs. 5 and 6, and was recently summarized in Ref. 10, for the case of a
nonuniform magnetic fleld. Here, we apply the same perturbation
analysis for the simpler case of a uniform magnetic field.

A. Particle Lagrangian in a drifting frame

The guiding-center analysis begins by shifting the lab reference
frame to a reference frame drifting with the E x B velocity

cz 1oy 0% ox
ufB—OXV(D—C(D(lﬁ)%fegoy(W)%v

- g O () Y VO = % W, () V0, (38)
0 0

which is directed along the azimuthal direction, with parallel E x B
parallel vorticity

2-V><u:BiV2(D:eQO‘Y/1(lﬁ). (39)
0
Here, the first-order correction W; (1) is defined as
@'
nw) = (200 <20, (0
GQO

so that the phase-space position of a charged particle is transformed as
(x,v) — (x,w), where w = v — u denotes the relative particle veloc-
ity in the drifting frame.

Hence, the shifted particle Lagrangian becomes

Lg = [g\ﬁv9+m(w+u)} SX — (q®+%|w+u\2>, (41)

where |w + u> = |w|” + [u]* + 2w - u. We note that we restrict our
analysis to two-dimensional motion in the (x, y)-plane, where w is
expressed in particle space as

[9 — c®’(¢)] %. (42)

Ox
"
Here, the magnitude of w depends on the lowest-order magnetic
moment pio: w = |w| = /2 ftyBo/m, while the unit vector 1 = w/w
depends on the spatial coordinates (Y, 0) as well as the lowest-order
gyroangle {o.

w:X—u:l/}
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We now consider a guiding-center transformation (i, 0;w)
— (¥,0; 1, ), where (¥, 0) denotes the guiding-center coordi-
nates, 1t denotes the guiding-center magnetic moment, and { denotes
the guiding-center gyroangle that is canonically conjugate to the
guiding-center gyroaction | = uBy/Qo. The analysis begins with
renormalizing the mass of the particle as m — em (which is analo-
gous to performing an expansion in 1/€y), so that the shifted particle
Lagrangian is expressed as Lg = Lgg + € Lg;, where the lowest-order
particle Lagrangian is

Lio = (a/0 0 = q @), 43)
while the first-order particle Lagrangian is

Ox .  Ox . 0
Lm:m{w-(£Iﬁ+8—29)—w~c®’(!ﬁ)a—ﬂ

+% P () 0 — (@@ () + po Bo), (44)

which explicitly displays the gyroangle-dependent relative velocity w,
and

1 @'

Em|“\2 =qy @ (5> = eq®i(y) (45)
0

introduces the first-order correction ®; (/) to the electrostatic poten-

tial ®(1). We note that the gradient of @, introduces centrifugal

effects in the guiding-center dynamics of a charged particle.”

B. Guiding-center dynamics in a drifting frame

The purpose of the guiding-center transformation is to remove
the linear contributions from the gyroangle-dependent relative velocity
w from Eq. (44). As a result of this transformation, the shifted
guiding-center Lagrangian is generically expressed as

Lige = %‘P*(i) +7( - 6) = (q@" + uB"), (46)

where (W*, @, B*) are functions of W that will be derived after the
guiding-center transformation is defined (see Sec. IV D). We note that
the terms J ({ — ©) appear in order to satisfy gyrogauge invariance,
with the gyrogauge vector R = V€, €, = VO calculated from
cylindrical geometry, so that R - X = ©.

The guiding-center equation of motion for the two-dimensional
guiding-center position X is obtained from the guiding-center
Lagrangian (46) as

Z

= qBT‘

X

X (qV®* + ' VB"), (47)

where
[=2-B"=2 V¥ x VO =B, d¥"/d¥, (48)
while the equation for the guiding-center gyroangle  is expressed as
{=QyB*/By+R-X. (49)

From Noether’s Theorem,'" we easily conclude that W and u are
guiding-center constants of motion since the guiding-center
Lagrangian (46) is independent of the angles ® and (.

scitation.org/journal/php

When considering the guiding-center motion in physical space,
we find the Cartesian representation for a circle X(¢) = R cos ©O(t)
and Y (¢) = R sin O(¢), with radius R = /2¥/B,. We also immedi-
ately find that the guiding-center energy

and the guiding-center azimuthal canonical angular momentum

P@gc = 6LEgc/6® = (‘Z/C) lP*(\Ij) =7 (51)

are guiding-center constants of motion.

We will now construct explicit expressions for (‘W*, ®*, B*) as
functions of W, represented as expansions in powers of €, once again
interpreted through the mass renormalization m — e m.

C. Guiding-center transformation

The derivation of the guiding-center transformation that leads
from the particle Lagrangian (41) to the guiding-center Lagrangian
(46) begins with the separation of a generic Lagrangian L = p, z* — H
into a symplectic part p,z*, which is then converted into the symplec-
tic one-form y = p, dz* (where d denotes an exterior derivative), and
a Hamiltonian part H.

Next, we construct the guiding-center transformation as an
asymptotic expansion in powers of € for each guiding-center phase-
space coordinate Z* = (¥, 0, 11, () in terms of the particle phase-
space coordinates z* = (/, 0, iy, {o):

Z“:z“—l—eG“—i—ez(G“—&—lGﬂaGT)+~-~ (52)

1 275 Y158 )

where the components (G¥, G!, G, G%) are chosen at nth-order in

order to derive an nth-order guiding-center Lagrangian that is inde-

pendent of the guiding-center gyroangle. Once these components are

derived, we return the particle mass to its physical value em — m.
Using the standard methods of Lie-transform perturbation the-

ory,'® the new symplectic one-form

Ty +dS = P, (¥, 0; 1) dZ7, (53)
where S is an arbitrary gauge function, and the new Hamiltonian
T;H = Hy (W, 0; ) (54)

are obtained at each order in €, where the guiding-center push-forward
operator

Tgcl = ... exp (—€£,) exp (—e£))

is expressed in terms of Lie derivatives £, generated by the vector field
G,,, which are then used in the guiding-center transformation (52).

Using the ordering (9), the phase-space Lagrangian symplectic
one-form y; = yg + €y, is expressed as

Tro = (q/¢) ¥ do, (55)

Ox 0x
VEL :%‘{’1(1,0) do + mw - (w dt//+% d9)7 (56)

where Wi (1)) is defined in Eq. (40), while the zeroth and first-order
Hamiltonians, on the other hand, are
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Hpy = q®(y), (57)

, ox
Hg = q@ () + o Bo + mw - c ' (V) -

20" (58)

where @, () is defined in Eq. (45).

1. Zeroth-order analysis

By definition, the zeroth-order guiding-center symplectic one-
form is

FEch = (q/C) v d@, (59)

where (W, ®) denotes the guiding-center position. The zeroth-order
guiding-center Hamiltonian, on the other hand, is

HEch = q (D(\P)a (60)
so that the zeroth-order guiding-center Lagrangian is
Ligeo = (q/c)¥ © — q®(¥), (61)

which yields the zeroth-order equation of motion ® = ¢ @ (), and
the azimuthal canonical angular momentum conservation law is
(q/0) ¥ = OLgge0 /0O = 0, implying that V' is conserved at the low-
est order.

2. First-order analysis
Next, the first-order guiding-center symplectic one-form is con-

structed as

Trger = 20, d0 + mw - ( d¢+7 d0>
c

oy
14 (G‘f do — G dy)
q‘Ifl(‘P) de, (62)

where §; = 0 at this order and the gyroangle-dependent relative veloc-
ity w is removed by choosing the spatial components

GV = (By/Q) w - 9x/00, (63)
G} = —(Bo/Q0) w - Ox /W, (64)
which yields the standard result’
x 2 1 8w

where the relative velocity w = Qo dp/9(, is defined in Eq. (42). We

note that by returning the particle mass to its physical value em — m,

the components (63) and (64) are, in fact, zeroth order in € and, there-

fore, we will need to derive the components (G2 , GY) at second order.
The first-order guiding-center Hamiltonian is constructed as

scitation.org/journal/php

Liga =1 ¥1(¥)© — (qO1(¥) + uBy). (67)

which preserves the conservation law of ¥ of the zeroth-order guid-

ing-center Lagrangian.

3. Second-order analysis

At second order, the second-order guiding-center symplectic
one-form is constructed as

Pege = —2[ (64 d0 - Glay) + (¥ a0 — Gl ay )|

(G“@+Gg aw> (a" ay + 2 dG)

oy ' L o
ow ow
+EG’1‘~ {(Bu du°+8ij C)—dxXwa}
=J(d{-R-dX) =] (d{ - dO), (68)

where S, = 0 at this order, ] = u B, /Qy is the guiding-center gyroac-
tion, with its canonically conjugate guiding-center gyroangle {, and
the gyrogauge vector R = V€, - €, = VO is calculated from cylin-
drical geometry (with €, =7 and €, = 0 =2 x &,). Here, we use
the identity

ow
VXw=—XTR, (69)

Gy
whjch follows from the alternate definition R = V1 - P> where w =
w L (wis constant in a uniform magnetic field) andZ = 1 x p, so that

ow
(P'R)a—c dx.

|3

(prXw)-dx:]oRdx—ﬁ—%

Hence, Eq. (68) yields the second-order spatial components

ow s OW\  Ox
Vo ! oY u ¢ .
Gy =¥ 6l -5 (G au0+gla£0) 50 (70
B ow ow\ Ox
0 _ g () 0 { .
GY = —¥ Gl +55- (G 8 1850) 0 71)

where gi = G} + p-R. The second-order spatial vector field is,
therefore, expressed as

op op

X ! I
G=¥rp+ (G E +g&i 8{0) (72)

where we substituted Eq. (65).
We now turn our attention to the second-order guiding-center
Hamiltonian, which is constructed as

Hggr = —q(tb’G;” + mgci’) —ByG!

B Ox n : :
Hpgar = q @1 + 119 By +Q%> qo'w- %*qq)/ G/ = q®:(¥) + uBo, 3 [(up) : Vw + (wp) : Vu
m ow : Ow
66 _m ,
(66) " (G S G (%0) u 73)
where we used Eq. (63) to cancel the gyroangle-dependent relative
velocity w. Hence, the first-order guiding-center Lagrangian is First, we note that
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m mu Ow
E(“P)-VW—*T‘aTVO(P‘R)a (74)
while
m 1.
5 (wp) : Va=—Jpa; : Vu— 5]02 -V X u, (75)

where the dyadic tensor a, = —1 (Lp + pL) is explicitly gyroangle-
dependent. Hence, inserting these expressions into Eq. (73), while
using Eq. (70), we obtain

z
Hgger :‘1((1),\}’/1 _(D,l)Glf_BOG’f—]o(al 1V“+§'VXU)7

(76)

where the terms G'f’ and a, are explicitly gyroangle-dependent and
must be removed from the guiding-center Hamiltonian. The second-
order guiding-center Hamiltonian is, therefore, defined as

. z
HEch = —B <Gé> —J E -V x u, (77)
where the gyroangle-dependent part of G is defined as

Gl = go (@ ¥, —®)G/ —La, : Vu. (78)

The remaining first-order components (G/) and G} must now be
determined at third order.

By combining the symplectic structure (68) and the Hamiltonian
(77), the second-order guiding-center Lagrangian is expressed as

. .z
Lego =J (£ =0) + By (G) +7 5V xw,  (79)
which now introduces the gyromotion dynamics.

4. Third-order analysis

Because of the smallness of the ordering parameter e, there is no
interest (at this time) in deriving third-order corrections to the
guldmg center Lagrangian. The missing first-order components
((G), G%), however, are determined at third order in the guiding-
center analysis from the identities’

Gy = —11y(2/Q) - V x u+ (Qy/By) 883/, (80)
© = —(Qy/By) 0S5/, (81)

where the third-order scalar functions (S, S3) are explicitly gyroangle
dependent, with

- 2
S3 = S3 *g/,lo (Bo/Qo)pR (82)

First, by gyroangle averaging both sides of Eq. (80), we immediately
find that

(GYy = —u(z2/Q) -V xu=—pe¥), (83)

and the second-order guiding-center Hamiltonian (77) becomes

z
HEgCZZIE'vxuzéegoqﬂl' (84)

scitation.org/journal/php

while, usingw = Qqy dp /9y, Eq. (78) yields

853 qBo P , 6[) ox Jo oa,
— Y - =
oL Q ( g, 9y 00 QI '
where a; = da,/d( anda, = —(il — pp), which is solved as
< qBO /! / ox Jo
QY - D —_— - : .
S=g ( )P Gg g, 2V
We now use Eq. (82) to obtain
qBo 8x ]0
S; = o (V] — D)) 3 Qo Vu+ 3 Ho (Bo/Q) p - R,

which can be inserted into Eq. (81) to obtain

¢ a ap Ox
Gi=-p R+—:Vu—q(0'V — ] S 85
1 P + Q u q( ) duy 00 (85)
We note that the first term on the right side of Eq. (85) is required to
preserve gyrogauge invariance.

D. Guiding-center Lagrangian in a drifting frame

By combining all relevant orders, and restoring the physical mass
em — m, we construct the guiding-center Lagrangian in the drifting
frame

Lig=2w0 +1({ - 0) — (g0 +uB), (86)
where
V(W) =W+ =Y+ 2en(V)), (87)
O (P) = D+ D = O(W) + ¢ VO (V) v(P), (88)
B (¥) = Bo(l +% l}"l), (89)

and € = c®'(¥y)/Qy returns to its physical interpretation, and
v(¥) =@ (¥)/D'(¥)). The Euler-Lagrange guiding-center equa-
tions of motion for the guiding-center angles ® and ( are

. c do* dB*
®——(‘1W+ﬂw> = QWY p), (90)

{=QyB"(¥)/By + O, (91)

where we note that the guiding-center azimuthal angular velocity (90)
depends on the guiding-center magnetic moment p for nonlinear
radial electric fields since W # 0. Since the guiding-center azimuthal
angle ® is ignorable, the guiding-center azimuthal canonical angular
momentum

Ol _ =dew+w) - (92)

Pyo =
is conserved, which follows from the conservation of ¥ and J. It is also
immediately clear that the guiding-center energy &g = q®*(‘¥)
+4B*('P) is also a constant of motion.

We note that the term % 1By ‘{‘/1 in Egs. (86) and (89) can be
interpreted as a finite-Larmor-correction to the electrostatic potential
energy
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1
9 (@(X+p)) —gO(X) =2 (pp) : VVO = = uBy ¥,
Hence, the guiding-center Hamiltonian can be expressed as
Hye = q(@(¥ = GY)) +q®1(¥) + B, (93)
where g ®; = m |ul*/2.

Finally, we note that the guiding-center position can be expressed
in Cartesian coordinates as (X, Y), where

X(t) = /2¥/By cos [Q(Y, n)t], (94)
Y(t) = \/2¥/By sin [Q(F, w)t], (95)

which can then be compared with the Cartesian coordinates (x, ) of
the particle position given by Eqs. (14) and (15). Hence, because of the
conservation law of P, the guiding-center moves on a circle with con-
stant radius /2 ¥'/Bj, at a constant angular velocity Q(\P, p).

E. Guiding-center conservation laws

We have just discovered that the guiding-center motion con-
serves the guiding-center magnetic flux ¥ and the guiding-center
magnetic moment . First, the guiding-center magnetic flux ¥ can be
constructed from the particle dynamics directly from the expansion

Y=y+G +G += G’{‘ZG/, (96)
In Eq. (96), we find
oG’ B ox ox
pE1L D0 | o X hatinl I
"o T Q, [G VWt O V(ae) W}
By [ Ow . 0w\ Ox
+Qo (G h +G; ac()) 50 (97)
Here, using GY = —p, we find
. ox ow Ox
G- Vw55 = 0 R) 5e g0

while

. Ox . wl>  2J
G V(%) "W=2Z-(WXp) =970:Z7
where Jo = 1By /€y is the lowest-order gyroaction, so that

=—Jo+ la_'uo"‘gla_éo '%7

/3@ c By [ Oow 0w\ Ox
Lozb T q 20,

p - R. Since GZ‘/’, given by Eq. (70), is
ow 8w) ox

where gt = G} +

B
Gl =¥ G -2 (G"

20, \ %1 B +&i 50 ) e
then
aG!
G+ G{’a;——\P’lthh

Hence, the guiding-center magnetic flux ‘¥’ is defined as

scitation.org/journal/php

\1/:1//+(17\11;)G*f+210+--~, (98)

where W, = 2¢(® +y @")/Qy and GV = 2/ (0 — cd' /Qp). We
also note that the gyroangle-averaged magnetic flux () =¥
—(¢/q)] # ¥ is not equal to the guiding-center magnetic flux.

Next, the guiding-center magnetic moment g, can be con-
structed from the particle dynamics directly from the expansion

f=po+Gf+ -+, (99)

where the lowest-order magnetic moment y, = m|w]|* /2By is

. 2
ql// lp [ 2
- - 0 — 1
M= B, (2;/;) + (60— o) |, (100)
and
G‘fzfg(al:Vu+2-V><u)+Bi(CD"I"'17(I)’1)G‘1/’, (101)
0 0
with

/ N\ 2
oY — D, @ (2D + 2y ") — (@ + 2y D)) % <CD>
QO Cc Q()

Here, we use Eq. (75) to write

m
—Q—Oal VH—Z—BO( ) Vu-l— VXIL
where
v A A}
m q / 1" h c q
— Va=—12 (@ @ —
2p, (W) Vu =g (V420 )(6 Qo) B, (21//)
(102)
and
HoZ VXu—l,u‘“I’,:,u((D/—l—lﬁ(D”). (103)
290 2 0 *1 0

We thus easily conclude that from Eq. (99), we find the simple relation
(o) = 1t — (G'Yy = ud¥*/d¥. The conservation laws of the
guiding-center azimuthal canonical angular momentum (98) and the
guiding-center magnetic moment (99) will be explored in Sec. V for
the case of a linear radial electric field.

Finally, we establish the validity of the guiding-center representa-
tion by verifying that the guiding-center pull-back Ty Pye of the
guiding-center azimuthal canonical angular momentum (92) is equal to
the particle azimuthal canonical angular momentum (3): Tg.Pgco = py.
Here, the expansion of the guiding-center pull-back TPy

TchgCG:gl//+€g(‘{ll+Gl{/) _52]
Cc Cc
1
+62g (cg/ +5Gi-d6Y + G ‘P’l)

:g w(1+20/Q0) = po (104)

yields the particle azimuthal canonical angular momentum py up
to second order in €. Hence, the guiding-center transformation (52)

Phys. Plasmas 30, 042113 (2023); doi: 10.1063/5.0146521
Published under an exclusive license by AIP Publishing

30, 042113-8

3pd'LZ691L0°S L €LLZP0/SSSL9691/1.259110°6/E901L 0/10p/spd-sjonue/dod/die/Bio-die'sqndy/:diy woy pepeojumoq


https://scitation.org/journal/php

Physics of Plasmas ARTICLE

generated by the components (G}, G5, ...) is faithful to the exact con-
servation laws of the particle dynamics.

F. Guiding-center polarization and magnetization

Polarization and magnetization are pillars of the reduced
Vlasov-Maxwell dynamical description of self-consistent magnetized
plasmas.””'” We now calculate the guiding-center polarization and
magnetization in the lab frame, which are each defined as the sum of a
contribution associated with the transformation to the drifting frame
and a contribution in the drifting frame directly calculated from the
guiding-center transformation.

We begin with the guiding-center polarization, which is
expressed in terms of the electric-dipole definition

Tge = q(Ps + (Pge)) (105)
where the lowest-order electric displacement

_Zz VO Oy
PE =0, " T TR B

Vi (106)

involves the radial electric field, as expected. The contribution associ-
ated with the guiding-center transformation is constructed from the
guiding-center displacement p,. = T;clx — X, which is expressed as

1
pgc:—eG’l‘—ez(Gg—i G1~dG’1‘) +oe-
€z Ow L Ow
=e(1 _€\P/1)P—Q—OX (Gllﬁ_,u%—gfa_{)’

where we have restored the mass renormalization m — € m. Given the
fact that the lowest-order gyroradius p is gyroangle dependent, the
gyroangle-averaged guiding-center displacement yields the expression

622 llaw gaw
(Pgc) = N <G1 6_[u+gla_é>
e
" By

(VW) — )V, (107)

where we used Eqgs. (80) and (81). By adding the two contributions
(106) and (107) in Eq. (105), we find the net guiding-center electric-
dipole moment

Mg = — = [@ 4 (@, — O'¥))]Vy, (108)
By

which contains first-order guiding-center corrections to the lowest-

order electric displacement. We now show that, using Eq. (94), Eq.

(108) can be expressed as

qz cqVo* cq do*
= x—— =4
T =0, " BiQy B d¥° vy
cq [ +ed)
= — _ 109
B()Qo <1+6‘P/1 vl//, ( )

which yields Eq. (108) if we explicitly expand Eq. (109) in powers of €
and keep only terms up to second order.

We note that the drifting-frame guiding-center polarization con-
tribution can also be calculated from the guiding-center Lagrangian
(86), which can be rewritten as

scitation.org/journal/php

Lgge = (g‘PV@—Q-mu) ~X+](5—R‘X)

m
7(q¢’+5 |u\2+,uBofg (pp):VE). (110)
Hence, we find
OLgge qz gcE gz .

while the quadrupole contribution

aLEgC),‘I _
v (8VE =3V lop) =0

vanishes in a uniform magnetic field.
Next, we calculate the guiding-center intrinsic magnetic dipole

_ qQO 8pgc
”gc :?<pgc X (’)C >

:%(1—26T1)<px%€>
eq /|, ow 0w op
_7<[z>< (G’fa—ﬂ—i-gla—g)} X[)_{> (112)

The lowest-order contribution makes use of the definition
(p x Op/d) = —(21yBy/mEY) Z, so that we find

qz—gio(l *26‘1’3)<pxg—’g> = —to(1—2e¥)) 2,

while the first-order contribution is

eq /. ow  .ow\] ap .
§<{ZX(G’13—#+g§0—C)}Xa—€>:fe,uo‘l-’lz.

If we combine these results, we obtain the simple formula
Mo = —Ho (Bo/Bj)2 = —pty (1 — € ¥)) 2, (113)
after an expansion in powers of ¢ is carried out.

V. GUIDING-CENTER DYNAMICS FOR A LINEAR
RADIAL ELECTRIC FIELD

In this section, we return to the case of a linear radial electric
field, where @ = €Qy/c and " =0, so that €V} = 2¢ and €@
= €2Qy/c. In this case, the guiding-center azimuthal angular velocity
(90) is QW) = Qo @(€), where @(e) =€ (1+¢€)/(1+ 2¢), ie, in
the limit € < 1, the guiding-center azimuthal angular velocity is pro-
portional to € = c®'(1f,)/Qo. As was noted below Eq. (90), the
guiding-center azimuthal angular velocity Q(¥) is independent of the
guiding-center magnetic moment yu for a linear radial electric field
since P is a constant.

Here, we will use the dimensionless ordering parameter
€ = 1/30, instead of the standard value 1/1000 that is commonly
assumed in guiding-center theory, in order to show how far
the perturbation analysis can be pushed to nonstandard
orderings, e.g., according to Joseph’s ordering,” we find

Qr/Qy = V2 =~ 25%.
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FIG. 3. Plots of the normalized magnetic
flux x(t) = () /v, (gray) and the nor-
malized guiding-center magnetic  flux
Zae(7) = W(7) /Y (black) for the case
ofa linear radial electric field with ¢ — 1/ 30

0.9

0.8 rl

and ¢ = n/10. The horizontal dashed line
corresponds to the averaged magnetic flux

(1) = (@ + ) /2 = zo(e) sec .

I

50 100

A. Guiding-center conservation laws

In the case of a linear radial electric field, the guiding-center mag-
netic flux (98) becomes
- c
Y(1) = (1—2¢) Y, +@(€—q®0)+562 v(z), (114)
where @, = ®(),) and the time dependence (with
T =+/1+4€Qt) have been pushed from zeroth order to second

order in € as a result of the guiding-center transformation (98). Next,
the guiding-center magnetic moment (99) becomes

wt) = (1-2¢) BE— (1-3¢) %%—463(‘]—!20)[#(‘[), (115)

0 0 CB()
where y is given in Eq. (100):

9<%

o= (€ = g0) /30 + & (10 )0

116
B, (116)

Hence, the time dependence has been pushed from second order to
third order in € as a result of the guiding-center transformation (99).

In Fig. 3, we see the normalized lowest-order magnetic flux
7(7) = W(1) /Y, (gray) and the normalized guiding-center magnetic
flux Yac (black) for the case of a linear radial electric field with
e =1/30 and ¢ = n/10. We clearly see that the large-amplitude
oscillation in () has been greatly reduced in Eq. (114) by a factor of
2. We also see that the normalized guiding-center magnetic flux g i
NOT equal to the averaged normalized magnetic flux (y) = (a?
+b%)/2 = y, sec ¢, shown as a dashed horizontal line in Fig. 3.

In Fig. 4, we see the normalized lowest-order magnetic moment
fo (gray) and the normalized guiding-center magnetic moment g
(black) for the case of a linear radial electric field with ¢ = 1/30 and
¢ = 110, each normalized by (q€Q%/cBo) . We clearly see that, while
the lowest-order magnetic moment (116) shows some oscillations with
small amplitudes (at order ¢2), the guiding-center magnetic moment
(115) is fairly flat, with minimal-amplitude oscillations (at order €?).

150

B. Guiding-center dynamics

Finally, the plots of x(#') and X(t'), as well as the parametric
plots of (x, y) and (X, Y), are shown in Figs. 5 and 6, respectively, for
the case of a linear radial electric field with e = 1/30 and ¢ = /10.
We clearly see how well the guiding-center position (94) and (95)

X(t') = \/2¥(x)/By cos (f@(e)), (117)
Y(t') = /2¥(x)/By sin (f@(e)) (118)

follows the particle position (36) and (37). Hence, the guiding-
center transformation introduced in Sec. I'V has achieved its pur-
pose in building guiding-center invariants ¥ and p to higher order
in perturbation analysis from the lowest-order coordinates \ and
Uo- In addition, the guiding-center dynamics follows the particle
dynamics.

Magnetic Moment
0.028 -

AAATAATAAA

0.027 -

0.026 +

MANNANNNANANNNNNNNNNNNNNNANANNNNNNNY

Il Il
50 100 150

Time

FIG. 4. Plots of the normalized magnetic moment 7i,(7) (gray) and the normalized
guiding-center magnetic moment z () (black) for the case of a linear radial electric
field with ¢ = 1/30 and ¢ = =/10.
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x-axis in performing gyrokinetic studies of ion-temperature-gradient (ITG)
turbulence and transport in the scrape-off layer (SOL) region of a

13 field-reversed magnetized plasma.
10fb The results of our guiding-center analysis for the case of a linear
radial electric field confirm the faithfulness of the guiding-center rep-
05} resentation. For a nonlinear radial electric field with quadratic
) nonlinearity
\ ‘ y ‘ ‘ . Time
100 200 300 - 1 -
05 DY) = Do + ) (Y — ) + 2 O (= o),
-1.0f the radial integral solution (12) involves Weierstrass elliptic functions
el (for example, see Ref. 14), and the energy dependence of the guiding-
’ center azimuthal angular velocity (90) becomes important. Additional
comments concerning guiding-center orbits in a nonlinear radial elec-
FIG. 5. Plots of x(t') and X(t') shown as gray and black curves, respectively, tric field in a uniform magnetic field can be found in the recent work
in the range 0 < t' < 4n/@(e) for the case of a linear radial electric field with by ]oseph.” Future work will consider other orbital effects of nonlin-
e=1/30and ¢ = z/10. ear radial electric field such as the orbit squeezing effect,””** which
may be explored in the limit of a uniform magnetic field, as well as
VI. SUMMARY applications of the general guiding-center theory presented in Sec. [V
The presence of a nonuniform electric field adds a significant ele- for the case of a nonlinear radial electric field in a nonuniform mag-
ment of complexity in the guiding-center analysis of particle motion netic field.

in crossed electric and magnetic fields, which are quite common in
laboratory and space magnetized plasmas. In the present work, we ACKNOWLEDGMENTS
greatly simplified the guiding-center analysis presented in Ref. 5 by
considering a nonuniform radial electric field in the presence of a uni-
form magnetic field.

The case of a nonlinear radial electric field is a topic of great
interest in the investigation of turbulence and transport in rotating
magnetized plasmas' %’ and was recently explored by Wang et al."’
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