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ABSTRACT

The problem of the charged-particle motion in crossed electric and magnetic fields is investigated, and the validity of the guiding-center rep-
resentation is assessed in comparison with the exact particle dynamics. While the magnetic field is considered to be straight and uniform, the
(perpendicular) radial electric field is nonuniform. The Hamiltonian guiding-center theory of charged-particle motion is presented for arbi-
trary radial electric fields, and explicit examples are provided for the case of a linear radial electric field.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0146521

I. INTRODUCTION

The importance of radial electric fields in rotating magnetized
plasmas has been a topic of great interest for a few decades1–4 because
of the role of sheared E�B flows in the stabilization of turbulent mag-
netized plasmas. The guiding-center analysis for particle dynamics in
the presence of background (equilibrium) radial electric fields,5,6 and
its extension to the gyrokinetic analysis of turbulent magnetized plas-
mas,7–11 has also been a topic of great interest. The case of rotating
magnetized plasmas due to the presence of radial electric fields contin-
ues to attract attention.12,13

In the present work, we apply the Hamiltonian guiding-center
theory developed in Ref. 5 for general magnetic geometry to the prob-
lem of charge-particle motion in the presence of a uniform magnetic
field B ¼ B0 ẑ and a nonuniform electric field E ¼ �rU. Using the
magnetic coordinates ðw; h; zÞ, the magnetic field B ¼ r� A can be
represented in terms of the magnetic vector potential A ¼ wrh,
where the magnetic flux is expressed in terms of cylindrical coordi-
nates as wðrÞ ¼ B0r2=2 while the electric potential U ¼ UðwÞ is
assumed to be a flux function. While the standard assumption is that
the E�B rotation frequency xEðwÞ � cU0ðwÞ � X0 is small when
compared to the gyrofrequency X0 ¼ qB0=mc (for a particle of mass
m and charge q), this does not require the E�B velocity rxEðwÞ to
be small when compared to the thermal velocity,7,13 especially in the
edge of a confined magnetized plasma.

The remainder of the paper is organized as follows. First, the
dynamics of a charged particle moving in the two-dimensional plane
perpendicular to a constant magnetic field under the influence of a
nonlinear radial electric field (Sec. II) and a linear radial electric field

(Sec. III) is discussed, where explicit results are presented for the lin-
ear case. Next, the guiding-center analysis for particle dynamics in a
nonlinear radial electric field is presented in Sec. IV while explicit
guiding-center results are presented in Sec. V for a linear radial elec-
tric field.

II. PARTICLE LAGRANGIAN DYNAMICS IN NONLINEAR
RADIAL ELECTRIC FIELD

The two-dimensional motion of a charged particle in the plane
perpendicular to the magnetic field is represented by the particle
Lagrangian expressed in magnetic coordinates as

L ¼ q
c
Aþm v

� �
� _x � m

2
jvj2 þ qU

� �

¼ q
c
A � _x þm

2
j _xj2 � qU

¼ q
c
w _h þ qw

cX0

_w
2

4w2 þ _h
2

 !
� qUðwÞ; (1)

where a dot denotes a time derivative and the particle’s velocity

v � _x ¼ _w
@x
@w

þ _h
@x
@h

¼

ffiffiffiffiffiffi
2w
B0

s
_w
2w

r̂ þ _h ĥ

 !
(2)

is expressed in the plane perpendicular to the magnetic field, with
Jacobian ẑ � ð@x=@w� @x=@hÞ ¼ 1=B0. Since the Lagrangian (1) is
independent of the azimuthal angle h, the azimuthal canonical angular
momentum
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ph � @L

@ _h
¼ q

c
w 1þ 2 _h=X0

� �
(3)

is a constant of motion (i.e., dph=dt ¼ @L=@h ¼ 0). By using the ini-
tial conditions ðw0;

_h0 ¼ x0Þ, we may write the azimuthal canonical
angular momentum as

ph ¼
q
c
w0 1þ 2x0=X0ð Þ � q

c
�w0; (4)

and, thus, the azimuthal angular velocity is

_hðwÞ ¼ X0

2

�w0

w
� 1

 !
; (5)

which indicates that reversal is possible if w crosses �w0.
Next, we construct the Routh–Lagrange function (or Routhian14)

in order to obtain a reduced Lagrangian formulation of thew-dynamics
as follows

Rðw; _wÞ � L� _h @L=@ _h;

and we obtain

Rðw; _wÞ ¼ q
cX0

_w
2

4w

 !
� VðwÞ; (6)

where the effective potential is

VðwÞ ¼ qUðwÞ þ qX0

4cw
�w0 � w
� �2

: (7)

Hence, the Routh–Euler–Lagrange equation

d
dt

@R

@ _w

 !
¼ @R

@w

yields the nonlinear second-order ordinary differential equation for
the normalized magnetic flux v � w=�w0 as

v00 ¼ 1
2v

ðv0Þ2 þ 1� v2
� �� �

� 2� v �ðvÞ; (8)

where a prime denotes a derivative with respect to the normalized
time t0 � X0 t and the dimensionless parameter

� � cU0ð�w0Þ=X0 (9)

denotes the ratio of the E�B azimuthal frequency xEð�w0Þ
¼ cU0ð�w0Þ at w ¼ �w0 to the gyrofrequency X0, and we define the
function as

�ðvÞ � U0ð�w0vÞ=U0ð�w0Þ; (10)

which equals one if UðwÞ is a linear function of w.
We note that Eq. (8) possesses an energy conservation law, with

normalization E � ðqX0
�w0=2cÞ �E , where

�E ¼ 1
2v

ðv0Þ2 þ ð1� vÞ2
� �

þ 2�Uð�w0vÞ
�w0 U

0ð�w0Þ
� ðv0Þ2

2v
þ UðvÞ; (11)

so that the solution for vðt0Þ can be found by inverting the integral
solution

t0ðvÞ � X0 tðvÞ ¼ 6

ðv
vb

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s �E � UðsÞ
� �q ; (12)

where the initial condition vb can be chosen as a turning point
( _v ¼ 0) defined by the condition �E ¼ UðvbÞ.

Finally, the solution for Eq. (12) can be analytically obtained by
quadrature for an electric potential UðwÞ represented as a polynomial
up to third order in w. Once the solution vðt0Þ is found by inverting
the integral solution for Eq. (12), the solution for the azimuthal angle
hðt0Þ is found by integrating

h0ðt0Þ ¼ 1
2

1
vðt0Þ � 1
� �

: (13)

Hence, a particle orbit can be generated from these solutions, which
can be expressed in polar form as

xðt0Þ ¼ rðt0Þ cos hðt0Þ; (14)

yðt0Þ ¼ rðt0Þ sin hðt0Þ; (15)

where rðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wðt0Þ=B0

p
.

III. PARTICLE DYNAMICS IN A LINEAR RADIAL
ELECTRIC FIELD

In previous work by White et al.,12 a nonuniform radial electric
field was represented by the electric potential UðwÞ ¼ a

ffiffiffiffi
w

p
þ bw,

where a and b are constants associated with a uniform radial electric
field and a radial electric with constant gradient, respectively.

Here, we look at charged particle dynamics in the electric potential

UðwÞ ¼ U0ð�w0Þw; (16)

so that, using w ¼ B0 ðx2 þ y2Þ=2, we find a linear radial electric field

E ¼ �rU ¼ �B0 U
0ð�w0Þ x x̂ þ y ŷ

� �
: (17)

This nonuniform radial electric field yields a nonuniform E�B
velocity

u ¼ E� cẑ
B0

¼ �X0 x ŷ � y x̂
� �

; (18)

which has constant parallel vorticity ẑ � r � u ¼ 2�X0.
In the ordering recently considered by Joseph,13 an electric oscil-

lation frequency is defined as XE � ð�qr � E=mcÞ
1
2, so that we find

XE ¼ X0
ffiffiffiffiffiffi
2 �

p
from Eqs. (9) and (17). Hence, according to the Joseph

ordering,13 our study is situated between the large-flow ordering
XE=X0 ¼ Oð�Þ and the maximal orderingXE=X0 ¼ Oð1Þ.

In recent work, Kabin15 considered an additional divergenceless
electric field E1 ¼ E0

10 ðy x̂ þ x ŷÞ, but since it is generated by an
electric potential U1ðw; hÞ ¼ �E0

10 x y ¼ �ðE0
10=B0Þw sin ð2hÞ that

breaks the invariance of the azimuthal canonical angular momentum,
it will not be considered here.

A. Normal-mode analysis

Using the electric field (17), the equations of motion are
expressed in Cartesian coordinates as

x00 ¼ �� x þ y0; (19)

y00 ¼ �� y � x0; (20)
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which have an azimuthal canonical angular momentum invariant

�ph ¼ x y0 � y x0 þ 1
2
jxj2 � 1; (21)

which follows from Eq. (4), and an energy invariant

�E ¼ jx0j2 þ � jxj2 þ 1

jxj2
1� �p2h
� �

þ �ph � 1 � jx0j2 þ � jxj2; (22)

which follows from Eqs. (11) and (21). We note that since Eqs. (19)
and (20) are linear in x and y, they can be arbitrary normalized.

Using the standard normal-mode analysis, where x ¼ �x exp ðixt0Þ
and y ¼ �y exp ðixt0Þ, we obtain the matrix equation

�� x2 �ix
ix �� x2

� �
� �x

�y

� �
¼ 0; (23)

which has non-trivial solutions only if

�� x2ð Þ2 � x2 ¼ 0; (24)

with solutions6xþ and6x�, where

x6 ¼ 1
2

16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 �

p� �
; (25)

and x� < 0 < xþ under the assumption that � > 0. By inspection,
the general solutions for Eqs. (19) and (20) are

xðt0Þ ¼ a cos ðxþt
0 þ aÞ þ b cos ðx�t

0 þ bÞ; (26)

yðt0Þ ¼ �a sin ðxþt
0 þ aÞ � b sin ðx�t

0 þ bÞ; (27)

where the constants ða; a; b;bÞ are chosen from initial conditions. We
note that the normalized magnetic flux v � ðx2 þ y2Þ=2 is expressed
as

vðt0Þ ¼ 1
2

a2 þ b2ð Þ þ a b cos ðsþ dÞ; (28)

where s � ðxþ � x�Þt0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�

p
t0 and d � a� b.

B. Integral orbital solution

We now consider the integral orbital solution (12), where the
effective potential

UðvÞ ¼ ð1� vÞ2

2v
þ 2� v (29)

has a minimum Uðv0Þ ¼ 1=v0 � 1 at

v0 � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�

p
: (30)

Hence, a real orbital radial solution exists for �E � Uðv0Þ, and the radi-
cand in Eq. (12) can be expressed as

2s �E � UðsÞ
� �

¼ ð1þ 4�Þ tan2/� ðs� sec/Þ2
� �

;

where we defined

ð1þ �EÞv0 � sec/ � 1; (31)

i.e., the radial motion is periodic when the energy is above the mini-
mum of UðvÞ, with 0 � / < p=2. The orbital solution is, therefore,
expressed as

vðt0Þ � v0 sec/� tan/ cos sð Þ; (32)

where s ¼ t0=v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�

p
t0 and vð0Þ is chosen to be at the lower

turning point: vð0Þ ¼ v0 ðsec/� tan/Þ. By comparing this solution
with the normal-mode solution (28), we obtain d ¼ p, with a2 þ b2

¼ 2v0 sec/ and a b ¼ v0 tan/, from which we obtain

að�;/Þ ¼ bð�;/Þ tan ð/=2Þ;
bð�;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v0ð�Þ ð1þ sec/Þ

p
;

(33)

so that Eqs. (21) and (22) yield

�ph ¼ a2
1
2
� xþ

� �
þ b2

1
2
� x�

� �
¼ 1;

�E ¼ a2 x2
þ þ �

� �
þ b2 x2

� þ �
� �

¼ sec/=v0 � 1;

which follow from Eqs. (4) and (31), respectively.
Using the orbital solution (32), the solution for the azimuthal

angle is obtain from Eq. (13) as

hðt0Þ ¼ � t0

2
þ 1
2

ðs
0

dz
sec/� tan/ cos z

� � t0

2
þ #ðs;/Þ; (34)

where

#ðs;/Þ ¼ arctan i sec/� tan/ eis
� �� �

�arctan i sec/� tan/ð Þ½ 	

� � i
2
ln

1� eis cotð/=2Þ
eis � cotð/=2Þ

 !
; (35)

which vanishes at s ¼ 0 and, as expected from Eq. (34), #ðs;/Þ
! s=2 as / ! 0, i.e., hðt0Þ ! �x� t0.

From the radial solution (32), we find that the radial period is
T ¼ 2p v0, and the azimuthal angular deviation between successive
radial maxima (or minima) is obtained from Eq. (34) as Dh � hðTÞ
�hð0Þ ¼ p ð1� v0Þ, which implies that the planar curve ½xðt0Þ; yðt0Þ	
closes upon itself only if v0 is a rational number. We also note that the
planar curve initiates retrograde motion near the upper radial turning
point v0 ðsec/þ tan/Þ when / > arcsin½ð1� v20Þ=ð1þ v20Þ	
¼ arcsin½2�=ð1þ 2�Þ	.

Figures 1 and 2 show two cases parametrized by different values
of ð�;/Þ. In Fig. 1, the value � ¼ 1=2 causes v0 ¼ 1=

ffiffiffi
3

p
to be irratio-

nal, and the planar curve ½xðt0Þ; yðt0Þ	 does not close upon itself. The
planar curve also exhibits retrograde motion since / ¼ p=3
> arcsinð1=2Þ ¼ p=6. In Fig. 2, on the other hand, the value � ¼ 6 is
chosen so that v0 ¼ 1=5 is rational and, therefore, the planar curve
½xðt0Þ; yðt0Þ	 closes upon itself (after five radial cycles). Since / ¼ p=4
< arcsinð12=13Þ ’ 3p=8, however, the planar curve does not exhibit
retrograde motion.

When expressed in terms of Cartesian coordinates, the orbital
solution is expressed as

xðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 vðt0Þ

p
cos hðt0Þ;

¼ bð�;/Þ cos ðx�t
0Þ � tan ð/=2Þ cos ðxþt

0Þ
� �

; (36)

yðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 vðt0Þ

p
sin hðt0Þ;

¼ bð�;/Þ tan ð/=2Þ sin ðxþt
0Þ � sin ðx�t

0Þ
� �

; (37)
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where we selected the phases a ¼ p and b ¼ 0. We note that, when
the orbital solution (32)–(34) is evaluated at the minimum ð/ ¼ 0Þ of
the effective potentialUðvÞ, we find a circular solution, with a constant
radius b ¼ ffiffiffiffiffiffiffi

2v0
p

(with a¼ 0) and hðt0Þ ¼ �x� t0.
This completes our analysis of the charged-particle motion in a

uniform magnetic field B0 ẑ ¼ rw�rh with a linear radial electric
field E ¼ �rU ¼ �U0

0 rw with constant E�B parallel vorticity.

IV. GUIDING-CENTER ANALYSIS FOR A NONLINEAR
RADIAL ELECTRIC FIELD

In this section, we proceed with the guiding-center analysis of a
general radial electric field E ¼ �rUðwÞ with the dimensionless
parameter (9) considered in the limit � � 1. The purpose of the
guiding-center analysis is to derive a reduced dynamical description in
which the fast gyromotion has been transformed away (not averaged!).

The Hamiltonian guiding-center theory of charged-particle
motion in the presence of electric and magnetic fields was presented in
Refs. 5 and 6, and was recently summarized in Ref. 10, for the case of a
nonuniform magnetic field. Here, we apply the same perturbation
analysis for the simpler case of a uniform magnetic field.

A. Particle Lagrangian in a drifting frame

The guiding-center analysis begins by shifting the lab reference
frame to a reference frame drifting with the E�B velocity

u ¼ cẑ
B0

�rU ¼ cU0ðwÞ @x
@h

¼ �X0 �ðwÞ
@x
@h

;

¼ 2c
B0

U0ðwÞwrh ¼ X0

B0
�W1ðwÞrh; (38)

which is directed along the azimuthal direction, with parallel E�B
parallel vorticity

ẑ � r � u ¼ c
B0

r2U ¼ �X0 W
0
1ðwÞ: (39)

Here, the first-order correctionW1ðwÞ is defined as

W1ðwÞ � w 2
cU0ðwÞ
�X0

� �
¼ 2w �ðwÞ; (40)

so that the phase-space position of a charged particle is transformed as
ðx; vÞ ! ðx;wÞ, where w � v � u denotes the relative particle veloc-
ity in the drifting frame.

Hence, the shifted particle Lagrangian becomes

LE ¼ q
c
wrhþm ðw þ uÞ

	 

� _x � qUþm

2
jw þ uj2

� �
; (41)

where jw þ uj2 ¼ jwj2 þ juj2 þ 2w � u. We note that we restrict our
analysis to two-dimensional motion in the (x, y)-plane, where w is
expressed in particle space as

w ¼ _x � u ¼ _w
@x
@w

þ _h � cU0ðwÞ
h i

@x
@h

: (42)

Here, the magnitude of w depends on the lowest-order magnetic
moment l0: w ¼ jwj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0B0=m

p
, while the unit vector ?̂ � w=w

depends on the spatial coordinates ðw; hÞ as well as the lowest-order
gyroangle f0.

FIG. 1. Plot of the planar curve ½xðt0Þ; yðt0Þ	, given by Eqs. (36) and (37), for
� ¼ 1=2 (v0 ¼ 1=

ffiffiffi
3

p
) and / ¼ p=3. The outer and inner circles with radiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2v0 ðsec/6tan/Þ
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=

ffiffiffi
3

p� �
62

q
are shown as dashed circles.

FIG. 2. Plot of the planar curve ½xðt0Þ; yðt0Þ	, given by Eqs. (36) and (37), for � ¼ 6
(v0 ¼ 1=5) and / ¼ p=4. The outer and inner circles with radiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v0 ðsec/6tan/Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
61

� �
=5

q
are shown as dashed circles.
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We now consider a guiding-center transformation ðw; h;wÞ
! ðW;H; l; fÞ, where ðW;HÞ denotes the guiding-center coordi-
nates, l denotes the guiding-center magnetic moment, and f denotes
the guiding-center gyroangle that is canonically conjugate to the
guiding-center gyroaction J ¼ lB0=X0. The analysis begins with
renormalizing the mass of the particle as m ! �m (which is analo-
gous to performing an expansion in 1=X0), so that the shifted particle
Lagrangian is expressed as LE ¼ LE0 þ � LE1, where the lowest-order
particle Lagrangian is

LE0 ¼ ðq=cÞw _h � qUðwÞ; (43)

while the first-order particle Lagrangian is

LE1 ¼ m w � @x
@w

_w þ @x
@h

_h

� �
� w � cU0ðwÞ @x

@h

	 


þ q
c
W1ðwÞ _h � qU1ðwÞ þ l0 B0ð Þ; (44)

which explicitly displays the gyroangle-dependent relative velocity w,
and

1
2
mjuj2 ¼ qwU0 cU0

X0

� �
� � qU1ðwÞ (45)

introduces the first-order correction U1ðwÞ to the electrostatic poten-
tial UðwÞ. We note that the gradient of U1 introduces centrifugal
effects in the guiding-center dynamics of a charged particle.3

B. Guiding-center dynamics in a drifting frame

The purpose of the guiding-center transformation is to remove
the linear contributions from the gyroangle-dependent relative velocity
w from Eq. (44). As a result of this transformation, the shifted
guiding-center Lagrangian is generically expressed as

LEgc � q
c
W
 _H þ J _f � _H

� �
� qU
 þ lB
ð Þ; (46)

where ðW
;U
;B
Þ are functions of W that will be derived after the
guiding-center transformation is defined (see Sec. IVD). We note that
the terms J ð _f � _HÞ appear in order to satisfy gyrogauge invariance,
with the gyrogauge vector R � rê1 � ê2 ¼ rH calculated from
cylindrical geometry, so thatR � _X ¼ _H.

The guiding-center equation of motion for the two-dimensional
guiding-center position X is obtained from the guiding-center
Lagrangian (46) as

_X ¼ cẑ
qB


k
� qrU
 þ lrB
ð Þ; (47)

where

B

k � ẑ � B
 ¼ ẑ � rW
 � rH ¼ B0 dW


=dW; (48)

while the equation for the guiding-center gyroangle f is expressed as

_f ¼ X0 B

=B0 þR � _X: (49)

From Noether’s Theorem,14 we easily conclude that W and l are
guiding-center constants of motion since the guiding-center
Lagrangian (46) is independent of the anglesH and f.

When considering the guiding-center motion in physical space,
we find the Cartesian representation for a circle XðtÞ ¼ R cosHðtÞ
and YðtÞ ¼ R sinHðtÞ, with radius R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W=B0

p
. We also immedi-

ately find that the guiding-center energy

Egc ¼ qU
ðWÞ þ lB
ðWÞ (50)

and the guiding-center azimuthal canonical angular momentum

PHgc � @LEgc=@ _H ¼ ðq=cÞW
ðWÞ � J (51)

are guiding-center constants of motion.
We will now construct explicit expressions for ðW
;U
;B
Þ as

functions of W, represented as expansions in powers of �, once again
interpreted through the mass renormalizationm ! �m.

C. Guiding-center transformation

The derivation of the guiding-center transformation that leads
from the particle Lagrangian (41) to the guiding-center Lagrangian
(46) begins with the separation of a generic Lagrangian L ¼ pa _z

a � H
into a symplectic part pa _z

a, which is then converted into the symplec-
tic one-form c ¼ pa dza (where d denotes an exterior derivative), and
a Hamiltonian partH.

Next, we construct the guiding-center transformation as an
asymptotic expansion in powers of � for each guiding-center phase-
space coordinate Za ¼ ðW;H; l; fÞ in terms of the particle phase-
space coordinates za ¼ ðw; h;l0; f0Þ:

Za ¼ za þ �Ga
1 þ �2 Ga

2 þ
1
2
Gb
1
@Ga

1

@zb

� �
þ � � � ; (52)

where the components ðGw
n ;G

h
n;G

l
n;G

f
nÞ are chosen at nth-order in

order to derive an nth-order guiding-center Lagrangian that is inde-
pendent of the guiding-center gyroangle. Once these components are
derived, we return the particle mass to its physical value �m ! m.

Using the standard methods of Lie-transform perturbation the-
ory,16 the new symplectic one-form

T�1
gc cþ dS � PaðW;H; lÞ dZa; (53)

where S is an arbitrary gauge function, and the new Hamiltonian

T�1
gc H � HgcðW;H; lÞ (54)

are obtained at each order in �, where the guiding-center push-forward
operator

T�1
gc ¼ � � � exp ð��2£2Þ exp ð��£1Þ

is expressed in terms of Lie derivatives £n generated by the vector field
Gn, which are then used in the guiding-center transformation (52).

Using the ordering (9), the phase-space Lagrangian symplectic
one-form cE ¼ cE0 þ � cE1 is expressed as

cE0 ¼ ðq=cÞw dh; (55)

cE1 ¼
q
c
W1ðwÞdhþmw � @x

@w
dwþ @x

@h
dh

� �
; (56)

where W1ðwÞ is defined in Eq. (40), while the zeroth and first-order
Hamiltonians, on the other hand, are
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HE0 ¼ qUðwÞ; (57)

HE1 ¼ qU1ðwÞ þ l0 B0 þmw � cU0ðwÞ @x
@h

; (58)

whereU1ðwÞ is defined in Eq. (45).

1. Zeroth-order analysis

By definition, the zeroth-order guiding-center symplectic one-
form is

CEgc0 � ðq=cÞW dH; (59)

where ðW;HÞ denotes the guiding-center position. The zeroth-order
guiding-center Hamiltonian, on the other hand, is

HEgc0 � qUðWÞ; (60)

so that the zeroth-order guiding-center Lagrangian is

LEgc0 ¼ ðq=cÞW _H � qUðWÞ; (61)

which yields the zeroth-order equation of motion _H ¼ cU0ðWÞ, and
the azimuthal canonical angular momentum conservation law is
ðq=cÞ _W ¼ @LEgc0=@H ¼ 0, implying that W is conserved at the low-
est order.

2. First-order analysis

Next, the first-order guiding-center symplectic one-form is con-
structed as

CEgc1 ¼
q
c
W1 dhþmw � @x

@w
dwþ @x

@h
dh

� �

� q
c

Gw
1 dh� Gh

1 dw
� �

� q
c
W1ðWÞ dH; (62)

where S1 ¼ 0 at this order and the gyroangle-dependent relative veloc-
ity w is removed by choosing the spatial components

Gw
1 ¼ ðB0=X0Þw � @x=@h; (63)

Gh
1 ¼ �ðB0=X0Þw � @x=@w; (64)

which yields the standard result6

Gx
1 ¼ w � ẑ

X0
¼ 1

X0

@w
@f

� �q; (65)

where the relative velocity w � X0 @q=@f0 is defined in Eq. (42). We
note that by returning the particle mass to its physical value �m ! m,
the components (63) and (64) are, in fact, zeroth-order in � and, there-
fore, we will need to derive the components ðGw

2 ;G
h
2Þ at second order.

The first-order guiding-center Hamiltonian is constructed as

HEgc1 ¼ qU1 þ l0 B0 þ
B0

X0
qU0 w � @x

@h
� qU0 Gw

1 ¼ qU1ðWÞ þ lB0;

(66)

where we used Eq. (63) to cancel the gyroangle-dependent relative
velocity w. Hence, the first-order guiding-center Lagrangian is

LEgc1 ¼
q
c
W1ðWÞ _H � qU1ðWÞ þ lB0ð Þ; (67)

which preserves the conservation law of W of the zeroth-order guid-
ing-center Lagrangian.

3. Second-order analysis

At second order, the second-order guiding-center symplectic
one-form is constructed as

CEgc2 ¼ � q
c

Gw
2 dh� Gh

2 dw
� �

þW0
1 Gw

1 dh� Gh
1 dw

� �h i
�m

2
Gl
1
@w
@l0

þ Gf
1
@w
@f0

� �
� @x

@w
dwþ @x

@h
dh

� �

þm
2
Gx
1 �

@w
@l0

dl0 þ
@w
@f0

df0

� �
� dx �r� w

	 

� J df�R � dXð Þ ¼ J df� dHð Þ; (68)

where S2 ¼ 0 at this order, J � lB0=X0 is the guiding-center gyroac-
tion, with its canonically conjugate guiding-center gyroangle f, and
the gyrogauge vector R � rê1 � ê2 ¼ rH is calculated from cylin-
drical geometry (with ê1 ¼ r̂ and ê2 ¼ ĥ ¼ ẑ � ê1). Here, we use
the identity

r� w ¼ @w
@f0

�R; (69)

which follows from the alternate definition R ¼ r?̂ � q̂, where w �
w ?̂ (w is constant in a uniformmagnetic field) and ẑ ¼ ?̂ � q̂, so that

m
2

q�r� wð Þ � dx ¼ J0 R � dx þm
2
ðq �RÞ @w

@f
� dx:

Hence, Eq. (68) yields the second-order spatial components

Gw
2 ¼ �W0

1 G
w
1 � B0

2X0
Gl
1
@w
@l0

þ gf1
@w
@f0

� �
� @x
@h

; (70)

Gh
2 ¼ �W0

1 G
h
1 þ

B0

2X0
Gl
1
@w
@l0

þ gf1
@w
@f0

� �
� @x
@w

; (71)

where gf1 � Gf
1 þ q �R. The second-order spatial vector field is,

therefore, expressed as

Gx
2 ¼ W0

1 qþ 1
2

Gl
1
@q

@l0
þ gf1

@q

@f0

� �
; (72)

where we substituted Eq. (65).
We now turn our attention to the second-order guiding-center

Hamiltonian, which is constructed as

HEgc2 ¼ �q U0Gw
2 þ U0

1G
w
1

� �
� B0 G

l
1

þm
2

ðuqÞ : rw þ ðwqÞ : ru½ 	

�m
2

Gl
1
@w
@l0

þ Gf
1
@w
@f0

� �
� u: (73)

First, we note that
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m
2
ðuqÞ : rw ¼ �mu

2
� @w
@f0

ðq �RÞ; (74)

while

m
2
ðwqÞ : ru ¼ �J0a1 : ru� 1

2
J0ẑ � r � u; (75)

where the dyadic tensor a1 � � 1
2 ð?̂q̂ þ q̂?̂Þ is explicitly gyroangle-

dependent. Hence, inserting these expressions into Eq. (73), while
using Eq. (70), we obtain

HEgc2 ¼ q U0 W0
1 � U0

1

� �
Gw
1 � B0 G

l
1 � J0 a1 : ruþ ẑ

2
� r � u

� �
;

(76)

where the terms Gw
1 and a1 are explicitly gyroangle-dependent and

must be removed from the guiding-center Hamiltonian. The second-
order guiding-center Hamiltonian is, therefore, defined as

HEgc2 � �B0 hGl
1i � J

ẑ

2
� r � u; (77)

where the gyroangle-dependent part of Gl
1 is defined as

~G
l
1 ¼ q

B0
U0 W0

1 � U0
1

� �
Gw
1 � J0

B0
a1 : ru: (78)

The remaining first-order components hGl
1i and Gf

1 must now be
determined at third order.

By combining the symplectic structure (68) and the Hamiltonian
(77), the second-order guiding-center Lagrangian is expressed as

LEgc2 ¼ J _f � _H
� �

þ B0 hGl
1i þ J

ẑ

2
� r � u; (79)

which now introduces the gyromotion dynamics.

4. Third-order analysis

Because of the smallness of the ordering parameter �, there is no
interest (at this time) in deriving third-order corrections to the
guiding-center Lagrangian. The missing first-order components
ðhGl

1i;Gf
1Þ, however, are determined at third order in the guiding-

center analysis from the identities5

Gl
1 ¼ �l0ðẑ=X0Þ � r � uþ ðX0=B0Þ @�S3=@f0; (80)

Gf
1 ¼ �ðX0=B0Þ @S3=@l0; (81)

where the third-order scalar functions ðS3;�S3Þ are explicitly gyroangle
dependent, with

�S3 � S3 �
2
3
l0 ðB0=X0Þq �R: (82)

First, by gyroangle averaging both sides of Eq. (80), we immediately
find that

hGl
1i � �l ðẑ=X0Þ � r � u ¼ �l �W0

1; (83)

and the second-order guiding-center Hamiltonian (77) becomes

HEgc2 ¼ J
ẑ

2
� r � u ¼ J

2
�X0 W

0
1: (84)

while, using w ¼ X0 @q=@f0, Eq. (78) yields

@�S3
@f

¼ qB0

X0
U0 W0

1 � U0
1

� � @q
@f0

� @x
@h

� J0
X0

@a2
@f0

: ru;

where a1 � @a2=@f and a2 � 1
4 ð?̂?̂ � q̂q̂Þ, which is solved as

�S3 ¼
qB0

X0
U0 W0

1 � U0
1

� �
q � @x

@h
� J0
X0

a2 : ru:

We now use Eq. (82) to obtain

S3 ¼
qB0

X0
U0 W0

1 � U0
1

� �
q � @x

@h
� J0
X0

a2 : ruþ 2
3
l0 ðB0=X0Þq �R;

which can be inserted into Eq. (81) to obtain

Gf
1 ¼ �q �Rþ a2

X0
: ru� q U0 W0

1 � U0
1

� � @q
@l0

� @x
@h

: (85)

We note that the first term on the right side of Eq. (85) is required to
preserve gyrogauge invariance.

D. Guiding-center Lagrangian in a drifting frame

By combining all relevant orders, and restoring the physical mass
�m ! m, we construct the guiding-center Lagrangian in the drifting
frame

LEgc �
q
c
W
 _H þ J _f � _H

� �
� qU
 þ lB
ð Þ; (86)

where

W
ðWÞ � WþW1 ¼ W 1þ 2 � �ðWÞð Þ; (87)

U
ðWÞ � Uþ U1 ¼ UðWÞ þ �WU0ðWÞ �ðWÞ; (88)

B
ðWÞ � B0 1þ 1
2
W0

1

� �
; (89)

and � ¼ cU0ðW0Þ=X0 returns to its physical interpretation, and
�ðWÞ � U0ðWÞ=U0ðW0Þ. The Euler–Lagrange guiding-center equa-
tions of motion for the guiding-center anglesH and f are

_H ¼ c
q

q
dU


dW
 þ l
dB


dW


� �
� XðW;lÞ; (90)

_f ¼ X0 B

ðWÞ=B0 þ _H; (91)

where we note that the guiding-center azimuthal angular velocity (90)
depends on the guiding-center magnetic moment l for nonlinear
radial electric fields since W00

1 6¼ 0. Since the guiding-center azimuthal
angle H is ignorable, the guiding-center azimuthal canonical angular
momentum

PgcH � @LEgc

@ _H
¼ q

c
WþW1ð Þ � J (92)

is conserved, which follows from the conservation ofW and J. It is also
immediately clear that the guiding-center energy Egc � qU
ðWÞ
þlB
ðWÞ is also a constant of motion.

We note that the term 1
2 lB0 W

0
1 in Eqs. (86) and (89) can be

interpreted as a finite-Larmor-correction to the electrostatic potential
energy
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q hUðX þ qÞi � qUðXÞ ¼ q
2
hqqi : rrU ¼ 1

2
lB0 W

0
1:

Hence, the guiding-center Hamiltonian can be expressed as

Hgc ¼ q hUðW� Gw
1 Þi þ qU1ðWÞ þ lB0; (93)

where qU1 � m juj2=2.
Finally, we note that the guiding-center position can be expressed

in Cartesian coordinates as (X, Y), where

XðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W=B0

p
cos XðW;lÞt½ 	; (94)

YðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W=B0

p
sin XðW;lÞt½ 	; (95)

which can then be compared with the Cartesian coordinates (x, y) of
the particle position given by Eqs. (14) and (15). Hence, because of the
conservation law ofW, the guiding-center moves on a circle with con-
stant radius

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W=B0

p
, at a constant angular velocityXðW; lÞ.

E. Guiding-center conservation laws

We have just discovered that the guiding-center motion con-
serves the guiding-center magnetic flux W and the guiding-center
magnetic moment l. First, the guiding-center magnetic flux W can be
constructed from the particle dynamics directly from the expansion

W ¼ wþ Gw
1 þ Gw

2 þ 1
2
Gb
1
@Gw

1

@zb
þ � � � : (96)

In Eq. (96), we find

Gb
1
@Gw

1

@zb
¼ B0

X0
Gx
1 � rw � @x

@h
þ Gx

1 � r
@x
@h

� �
� w

	 


þ B0

X0
Gl
1
@w
@l0

þ Gf
1
@w
@f0

� �
� @x
@h

: (97)

Here, using Gx
1 ¼ �q, we find

Gx
1 � rw � @x

@h
¼ ðq �RÞ @w

@f0
� @x
@h

;

while

Gx
1 � r

@x
@h

� �
� w ¼ ẑ � w � qð Þ ¼

jwj2

X0
¼ 2J0

m
;

where J0 ¼ l0B0=X0 is the lowest-order gyroaction, so that

1
2
Gb
1
@Gw

1

@zb
¼ c

q
J0 þ

B0

2X0
Gl
1
@w
@l0

þ gf1
@w
@f0

� �
� @x
@h

;

where gf1 ¼ Gf
1 þ q �R. Since Gw

2 , given by Eq. (70), is

Gw
2 ¼ �W0

1 G
w
1 � B0

2X0
Gl
1
@w
@l0

þ gf1
@w
@f0

� �
� @x
@h

;

then

Gw
2 þ 1

2
Gb
1
@Gw

1

@zb
¼ �W0

1 G
w
1 þ c

q
J0:

Hence, the guiding-center magnetic fluxW is defined as

W ¼ wþ 1�W0
1

� �
Gw
1 þ c

q
J0 þ � � � ; (98)

where W0
1 ¼ 2 cðU0 þ wU00Þ=X0 and Gw

1 ¼ 2w ð _h � cU0=X0Þ. We
also note that the gyroangle-averaged magnetic flux hwi ¼ W
�ðc=qÞ J 6¼ W is not equal to the guiding-center magnetic flux.

Next, the guiding-center magnetic moment lgc can be con-
structed from the particle dynamics directly from the expansion

l ¼ l0 þ Gl
1 þ � � � ; (99)

where the lowest-order magnetic moment l0 ¼ mjwj2=2B0 is

l0 ¼
qw

cX0B0

_w
2w

 !2

þ _h � cU0ð Þ2
2
4

3
5; (100)

and

Gl
1 ¼ � l0

X0
a1 : ruþ ẑ � r � uð Þ þ q

B0
U0 W0

1 � U0
1

� �
Gw
1 ; (101)

with

U0 W0
1 � U0

1 ¼
cU0

X0
ð2U0 þ 2wU00Þ � ðU0 þ 2wU00Þ
� �

¼ X0

c
cU0

X0

� �2

:

Here, we use Eq. (75) to write

� l0
X0

a1 : ru ¼ m
2B0

ðwqÞ : ruþ l0ẑ
2X0

� r � u;

where

m
2B0

ðwqÞ :ru¼�qw
B0

U0 þ 2wU00� �
_h� cU0

X0

� �2

� qw
B0

U0
_w
2w

 !2

;

(102)

and

l0ẑ
2X0

� r � u ¼ 1
2
l0 W

0
1 ¼ l0 U0 þ wU00� �

: (103)

We thus easily conclude that from Eq. (99), we find the simple relation
hl0i ¼ l� hGl

1i � l dW
=dW. The conservation laws of the
guiding-center azimuthal canonical angular momentum (98) and the
guiding-center magnetic moment (99) will be explored in Sec. V for
the case of a linear radial electric field.

Finally, we establish the validity of the guiding-center representa-
tion by verifying that the guiding-center pull-back TgcPgcH of the
guiding-center azimuthal canonical angular momentum (92) is equal to
the particle azimuthal canonical angular momentum (3): TgcPgcH ¼ ph.
Here, the expansion of the guiding-center pull-back TgcPgcH

TgcPgcH ¼ q
c
wþ �

q
c

W1 þ Gw
1

� �
� �2 J

þ�2
q
c

Gw
2 þ 1

2
G1 � dGw

1 þ Gw
1 W

0
1

� �

¼ q
c
w 1þ 2 _h=X0

� �
¼ ph (104)

yields the particle azimuthal canonical angular momentum ph up
to second order in �. Hence, the guiding-center transformation (52)
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generated by the components ðGa
1;G

a
2;…Þ is faithful to the exact con-

servation laws of the particle dynamics.

F. Guiding-center polarization and magnetization

Polarization and magnetization are pillars of the reduced
Vlasov–Maxwell dynamical description of self-consistent magnetized
plasmas.17–19 We now calculate the guiding-center polarization and
magnetization in the lab frame, which are each defined as the sum of a
contribution associated with the transformation to the drifting frame
and a contribution in the drifting frame directly calculated from the
guiding-center transformation.

We begin with the guiding-center polarization, which is
expressed in terms of the electric-dipole definition

pgc � q qE þ hqgci
� �

; (105)

where the lowest-order electric displacement

qE � ẑ

X0
� u ¼ � crU

B0X0
¼ � cU0ðwÞ

B0X0
rw (106)

involves the radial electric field, as expected. The contribution associ-
ated with the guiding-center transformation is constructed from the
guiding-center displacement qgc � T�1

gc x � X, which is expressed as

qgc ¼ ��Gx
1 � �2 Gx

2 �
1
2
G1 � dGx

1

� �
þ � � �

¼ � 1� �W0
1

� �
q� �2ẑ

X0
� Gl

1
@w
@l

þ gf1
@w
@f

� �
;

where we have restored the mass renormalizationm ! �m. Given the
fact that the lowest-order gyroradius q is gyroangle dependent, the
gyroangle-averaged guiding-center displacement yields the expression

hqgci ¼ � �2ẑ

X0
�


Gl
1
@w
@l

þ gf1
@w
@f

�

¼ �2c
B0X0

U0 W0
1 � U0

1

� �
rw; (107)

where we used Eqs. (80) and (81). By adding the two contributions
(106) and (107) in Eq. (105), we find the net guiding-center electric-
dipole moment

pgc ¼ � cq
B0X0

U0 þ � U0
1 � U0W0

1

� �� �
rw; (108)

which contains first-order guiding-center corrections to the lowest-
order electric displacement. We now show that, using Eq. (94), Eq.
(108) can be expressed as

pgc �
qẑ
X0

� _X ¼ � cqrU


B

kX0

¼ � cq
B0X0

dU


dW
 rw

¼ � cq
B0X0

U0 þ �U0
1

1þ �W0
1

 !
rw; (109)

which yields Eq. (108) if we explicitly expand Eq. (109) in powers of �
and keep only terms up to second order.

We note that the drifting-frame guiding-center polarization con-
tribution can also be calculated from the guiding-center Lagrangian
(86), which can be rewritten as

LEgc ¼
q
c
WrHþmu

� �
� _X þ J _f �R � _X

� �
� qUþm

2
juj2 þ lB0 �

q
2
hqqi : rE

� �
: (110)

Hence, we find

@LEgc
@E

¼ qẑ
X0

� _X � qcE
B0X0

¼ qẑ
X0

� _X � q qE; (111)

while the quadrupole contribution

r �
@LEgc
@rE

� �
¼ q

2
r � hqqi ¼ 0

vanishes in a uniform magnetic field.
Next, we calculate the guiding-center intrinsic magnetic dipole

lgc �
qX0

2c



qgc �

@qgc

@f

�

¼ qX0

2c
1� 2 �W0

1

� �

q� @q

@f

�

� �q
c



ẑ � Gl

1
@w
@l

þ gf1
@w
@f

� �	 

� @q

@f

�
: (112)

The lowest-order contribution makes use of the definition
hq� @q=@fi ¼ �ð2l0B0=mX2

0Þ ẑ, so that we find

qX0

2c
1� 2 �W0

1

� �

q� @q

@f

�
¼ �l0 1� 2 �W0

1

� �
ẑ;

while the first-order contribution is

�q
c



ẑ � Gl

1
@w
@l

þ gf1
@w
@f

� �	 

� @q

@f

�
¼ �� l0W

0
1 ẑ:

If we combine these results, we obtain the simple formula

lgc � �l0 ðB0=B


kÞ ẑ ¼ �l0 1� �W0

1

� �
ẑ; (113)

after an expansion in powers of � is carried out.

V. GUIDING-CENTER DYNAMICS FOR A LINEAR
RADIAL ELECTRIC FIELD

In this section, we return to the case of a linear radial electric
field, where U0 ¼ �X0=c and U00 ¼ 0, so that �W0

1 ¼ 2� and �U0
1

¼ �2X0=c. In this case, the guiding-center azimuthal angular velocity
(90) is XðWÞ ¼ X0 �xð�Þ, where �xð�Þ ¼ � ð1þ �Þ=ð1þ 2�Þ, i.e., in
the limit � � 1, the guiding-center azimuthal angular velocity is pro-
portional to � ¼ cU0ð�w0Þ=X0. As was noted below Eq. (90), the
guiding-center azimuthal angular velocity XðWÞ is independent of the
guiding-center magnetic moment l for a linear radial electric field
sinceW0

1 is a constant.
Here, we will use the dimensionless ordering parameter

� ¼ 1=30, instead of the standard value 1/1000 that is commonly
assumed in guiding-center theory, in order to show how far
the perturbation analysis can be pushed to nonstandard
orderings, e.g., according to Joseph’s ordering,13 we find
XE=X0 ¼

ffiffiffiffiffi
2�

p
’ 25%.
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A. Guiding-center conservation laws

In the case of a linear radial electric field, the guiding-center mag-
netic flux (98) becomes

WðsÞ ¼ ð1� 2�Þ �w0 þ
c

qX0
E � qU0ð Þ þ 5 �2 wðsÞ; (114)

where U0 � Uð�w0Þ and the time dependence (with
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�

p
X0 t) have been pushed from zeroth order to second

order in � as a result of the guiding-center transformation (98). Next,
the guiding-center magnetic moment (99) becomes

lðsÞ ¼ ð1� 2 �Þ E
B0

� ð1� 3 �Þ qU0

B0
� 4 �3

qX0

cB0

� �
wðsÞ; (115)

where l0 is given in Eq. (100):

l0 ¼ ðE � qU0Þ=B0 þ �2
qX0

cB0

� �
wðsÞ: (116)

Hence, the time dependence has been pushed from second order to
third order in � as a result of the guiding-center transformation (99).

In Fig. 3, we see the normalized lowest-order magnetic flux
vðsÞ � wðsÞ=�w0 (gray) and the normalized guiding-center magnetic
flux vgc (black) for the case of a linear radial electric field with
� ¼ 1=30 and / ¼ p=10. We clearly see that the large-amplitude
oscillation in wðsÞ has been greatly reduced in Eq. (114) by a factor of
�2. We also see that the normalized guiding-center magnetic flux vgc is
NOT equal to the averaged normalized magnetic flux hvi ¼ ða2
þb2Þ=2 ¼ v0 sec/, shown as a dashed horizontal line in Fig. 3.

In Fig. 4, we see the normalized lowest-order magnetic moment
�l0 (gray) and the normalized guiding-center magnetic moment �l
(black) for the case of a linear radial electric field with � ¼ 1=30 and
/ ¼ p=10, each normalized by ðqX0=cB0Þ�w0. We clearly see that, while
the lowest-order magnetic moment (116) shows some oscillations with
small amplitudes (at order �2), the guiding-center magnetic moment
(115) is fairly flat, with minimal-amplitude oscillations (at order �3).

B. Guiding-center dynamics

Finally, the plots of xðt0Þ and Xðt0Þ, as well as the parametric
plots of (x, y) and (X, Y), are shown in Figs. 5 and 6, respectively, for
the case of a linear radial electric field with � ¼ 1=30 and / ¼ p=10.
We clearly see how well the guiding-center position (94) and (95)

Xðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WðsÞ=B0

p
cos t0 �xð�Þ
� �

; (117)

Yðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WðsÞ=B0

p
sin t0 �xð�Þ
� �

(118)

follows the particle position (36) and (37). Hence, the guiding-
center transformation introduced in Sec. IV has achieved its pur-
pose in building guiding-center invariants W and l to higher order
in perturbation analysis from the lowest-order coordinates w and
l0. In addition, the guiding-center dynamics follows the particle
dynamics.

FIG. 3. Plots of the normalized magnetic
flux vðsÞ � wðsÞ=�w0 (gray) and the nor-
malized guiding-center magnetic flux
vgcðsÞ � WðsÞ=�w0 (black) for the case
of a linear radial electric field with � ¼ 1= 30
and / ¼ p=10. The horizontal dashed line
corresponds to the averaged magnetic flux
hvi ¼ ða2 þ b2Þ=2 ¼ v0ð�Þ sec/.

FIG. 4. Plots of the normalized magnetic moment �l0ðsÞ (gray) and the normalized
guiding-center magnetic moment �lðsÞ (black) for the case of a linear radial electric
field with � ¼ 1=30 and / ¼ p=10.
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VI. SUMMARY

The presence of a nonuniform electric field adds a significant ele-
ment of complexity in the guiding-center analysis of particle motion
in crossed electric and magnetic fields, which are quite common in
laboratory and space magnetized plasmas. In the present work, we
greatly simplified the guiding-center analysis presented in Ref. 5 by
considering a nonuniform radial electric field in the presence of a uni-
form magnetic field.

The case of a nonlinear radial electric field is a topic of great
interest in the investigation of turbulence and transport in rotating
magnetized plasmas1–3,8,9 and was recently explored by Wang et al.11

in performing gyrokinetic studies of ion-temperature-gradient (ITG)
turbulence and transport in the scrape-off layer (SOL) region of a
field-reversed magnetized plasma.

The results of our guiding-center analysis for the case of a linear
radial electric field confirm the faithfulness of the guiding-center rep-
resentation. For a nonlinear radial electric field with quadratic
nonlinearity

UðwÞ ¼ U0 þ U0
0 ðw� �w0Þ þ

1
2
U00

0 ðw� �w0Þ
2;

the radial integral solution (12) involves Weierstrass elliptic functions
(for example, see Ref. 14), and the energy dependence of the guiding-
center azimuthal angular velocity (90) becomes important. Additional
comments concerning guiding-center orbits in a nonlinear radial elec-
tric field in a uniform magnetic field can be found in the recent work
by Joseph.13 Future work will consider other orbital effects of nonlin-
ear radial electric field such as the orbit squeezing effect,20–22 which
may be explored in the limit of a uniform magnetic field, as well as
applications of the general guiding-center theory presented in Sec. IV
for the case of a nonlinear radial electric field in a nonuniform mag-
netic field.
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